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Abstract

We show that an inhomogeneous coagulation/decoagulation model can be mapped to a
quadratic fermionic model via a Jordan-Wigner transformation. The spectrum for this
inhomogeneous model is computed exactly and the spectral gap is described for some
examples. We construct our inhomogeneous model from two different homogeneous
models joined by one special bond (impurity). The homogeneous models we started with
are the coagulation/decoagulation models studied previously using the Jordan-Wigner
transformation.
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1 Introduction

The description of the non-equilibrium stationary state (NESS) of a macroscopic system is
much less understood than the equilibrium case. One major difference is that the behavior of
the NESS is essentially non-local whereas that systems at equilibrium (away from the critical
point) is local. This implies that local changes of the non-equilibrium model may have a
significant repercussion in physical quantities even away from this modification. It is why the
study of the effects of the boundaries or the introduction of impurities in such models has
attracted as much attentions.

In one-dimensional models, this behavior is even heightened. In this case, we can hope
that some exact results for particular models can be obtained. For example, numerous exact
results have been computed for exclusion processes where one particle moves differently from
the other ones [5, 11, 12, 15, 26, 28]. Unfortunately, for stationary defect (i.e. the rates are
modified at particular bonds), very few exact results have been computed. To the best of our
knowledge, it is only for parallel dynamics and deterministic hopping that analytical results
exist [20, 31]. In the case of the asymmetric simple exclusion process (ASEP) which can be
solved analytically for a homogeneous lattice, the effects of a static impurity and the formation
of shocks have been intensively studied by various methods [13,16,17,22,24,29,30,33,35].
Exact results have been obtained only in the low-current regime [34]. Let us also mention
that the introduction of a static impurity for other integrable systems has also been studied
intensively [4,6–8,10]: there exist strong constraints on the type of impurity and on the bulk
coupling constants such that the model with the impurity remains integrable.

In this paper, we solve analytically an inhomogeneous Markovian model composed of two
segments with different hopping rates. These two segments are joined by a bond whose rates
are computed such that the analytical resolution remains possible. When the rates in both
segments are identical, we recover a model with one impurity. It is well-known that a homoge-
neous coagulation/decoagulation model (see section 2.1 and figure 1) can be mapped to a free
fermion model [1,18,19,25]. We show in this paper that this type of mapping is still possible
for an inhomogeneous model based on two different homogeneous coagulation/decoagulation
models joined by a bond (see section 2.2). The techniques needed to obtain the spectrum of
the homogeneous model are recalled in section 3 and are generalized to the inhomogeneous
case in section 4. More precisely, we show that the spectrum of the Markov matrix is given by
the roots of a polynomial (see equation (39)) of degree the length of the chain. This polyno-
mial is expressed in terms of the Chebyshev polynomials. Finally, in section 5, two examples
are worked out for which the spectral gap is computed.

2 Solvable Markovian models on inhomogeneous lattice

In this section, we show that we can construct a Markovian model on an inhomogeneous lattice
which can be mapped to a quadratic fermionic model. Similar mappings have been obtained
previously in [1, 18, 19, 25] for homogeneous lattices. We recall these results in section 2.1
for a coagulation/decoagulation model and then we generalize them to the inhomogeneous
model in section 2.2.
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2.1 Solvable model on homogeneous lattice and the quantum formalism for its
master equation

We present now the master equation for the Markovian model on a homogeneous lattice of a
particular coagulation/decoagulation process: the rates are chosen such that the Markovian
matrix can be mapped to a quadratic fermionic model [1,18,19,25].

We consider a stochastic process which describes particles moving on a one-dimensional
lattice of L sites with at most one particle per site. The time evolution is governed by the
following rules. During each infinitesimal time d t, a particle in the bulk can jump to the left
(resp. right) with probability proportional to qd t (resp. pd t) on the neighbouring site if it is
empty. If two neighbouring sites are simultaneously occupied, the left (resp. right) particles
can disappear with the rate pd t (resp. qd t). A particle can also appear on the left (resp. right)
neighbouring empty site of a particle present on the lattice with the rate ∆qd t (resp. ∆pd t).
A summary of these rates is presented on figure 1. Let us emphasize that the parameters p, q

q

p

p
∆q

q
∆p

Figure 1: Non vanishing rates between the different configurations at two neighboring sites
in the bulk.

and ∆ are real positive numbers such that the probabilities remain positive.
We recall now the quantum Hamiltonian formalism, which is suitable for the following

computations, used to present the master equation (see [32] for details). The configurations
of the previous process are in one-to-one correspondence with the vectors describing a system
of L spins 1

2 . Indeed, the spin vector |σ1,σ2, . . . ,σL〉 with σi = ±1 corresponds to a config-
uration with one particle at site i if σi = −1 and zero particle if σi = +1. The probability
Pt(σ1,σ2, . . . ,σL) at time t to be in the configuration |σ1,σ2, . . . ,σL〉 can be encompassed in
the following state vector

Pt =
∑

σi=±
Pt(σ1,σ2, . . . ,σL)|σ1,σ2, . . . ,σL〉. (1)

Then the master equation describing the time evolution of the probabilities can be written as
follows

dPt

d t
= M Pt , (2)

where M is the Markov matrix. For the process studied here for which only two neighbouring
sites are considered at each infinitesimal time, it reads

M =
L−1
∑

k=1

mk,k+1, (3)

where the subscripts indicate on which spins the matrix m acts on non trivially. In the basis
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|+〉=
�

1
0

�

and |−〉=
�

0
1

�

, the local jump operator m is given by

m=







0 0 0 0
0 −(∆+ 1)q p p
0 q −(∆+ 1)p q
0 ∆q ∆p −p− q






. (4)

For later convenience, we define the angle 0≤ θ < π/4 by

∆= tan2(2θ ). (5)

In order to perform the mapping to the fermionic operator, we rewrite the local jump
operator m as

m12 = em12+ t(S x
1 −S x

2 ) with em12 = aS+1 S−2 + bS−1 S+2 + cS+1 S+2 +dS−1 S−2 +hSz
1+ h̄Sz

2+ f . (6)

We have used the following definitions:

a =
p cos4(θ ) + q sin4(θ )

cos2(2θ )
b =

q cos4(θ ) + p sin4(θ )
cos2(2θ )

c =
(p+ q) cos4(θ )

cos2(2θ )
(7)

d =
(p+ q) sin4(θ )

cos2(2θ )
h=

p
2 cos(2θ )

h̄=
q

2cos(2θ )
(8)

t =
1
4
(p− q) tan2(2θ ) f = −

p+ q
4

�

1+
1

cos2(2θ )

�

(9)

and

S+ = sin2(θ )

 

1 − cos(2θ )
2 sin2(θ )

2sin2(θ )
cos(2θ ) −1

!

S− = cos2(θ )

�

1 cos(2θ )
2 cos2(θ )

−2cos2(θ )
cos(2θ ) −1

�

(10)

Sz = cos(2θ )

�

1 1
tan2(2θ ) −1

�

S x = S+ + S− and S y = i(S− − S+). (11)

The previous matrices S±, S x , S y and Sz are the Pauli matrices in an unusual basis. We recover
the usual representation of the Pauli matrices by a simple conjugation.

By using the form (6) of m, the Markov matrix (3) becomes

M = eM + t(S x
1 − S x

L ) with eM =
L−1
∑

k=1

emk,k+1. (12)

The bulk part eM of the Markov matrix is quadratic in terms of the Pauli matrices S+ and S−

(we recall that Sz = 2S+S− − 1) up to a constant term. Then, it can be mapped to a free
fermionic model [27]. The boundary terms in M seem problematic since they are linear in
S+ and S− however this problem has been overcome in [2,3,19]. Before coming back to this
problem in section 3, we want to present the first new result of this paper: the construction of
a Markovian model on an inhomogeneous lattice with the bulk part quadratic in terms of S+

and S−.

2.2 Inhomogeneous model equivalent to a quadratic fermionic model

In this section, we want to obtain similar Markovian model to the previous one but with the
rates depending on the sites. Such an inhomogeneous model is obtained by juxtaposing two
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segments with different rates and connecting them by an impurity bond: we consider a first
segment from 1 to L1 where the rates are given by p1, q1 and ∆1 = tan2(2θ1) and a sec-
ond segment of length L2 from L1 + 1 to L2 + L1 where the rates are given by p2, q2 and
∆2 = tan2(2θ2). We want to determine the rates between the sites L1 and L1 + 1 such that
the whole model from 1 to L1 + L2 can be transformed to a quadratic fermionic model. More
precisely, we look for the 4× 4 matrix mjunc such that the following Markovian matrix

M =
L1−1
∑

k=1

m(1)k,k+1 +mjunc
L1,L1+1 +

L1+L2−1
∑

k=L1+1

m(2)k,k+1, (13)

can be mapped to a quadratic fermionic model using a Jordan-Wigner transformation. In
relation (13), the notation m(i) stands for the matrix m given by (4) where p, q and ∆ are
replaced by pi , qi and∆i . The local jump operators m(1) and m(2) can be written as in relation
(6) where S#

j (for # = ±, x , y, z) are given by (10) and (11) but with θ replaced by θ1 if
1≤ j ≤ L1 and by θ2 if L1 + 1≤ j ≤ L1 + L2.

We look for mjunc in the form

mjunc = αS+⊗S−+βS−⊗S++γS+⊗S++δS−⊗S−+ηSz⊗I+η̄I⊗Sz+ψ+τS x⊗I+τ̄I⊗S x (14)

where I is the 2×2 identity matrix and S# are given by (10),(11) with θ replaced by θ1 (resp.
by θ2) in the first (resp. second) space. The values of τ and τ̄ must be chosen such that they
compensate the boundary term on the site L1 coming from the first segment and the boundary
term on the site L1 + 1 coming from the second segment:

τ=
p1 − q1

4
tan2(2θ1) and τ̄= −

p2 − q2

4
tan2(2θ2). (15)

The first result of this paper consists in finding α,β ,γ,δ,η, η̄ and ψ such that mjunc be
Markovian. We get that the impurity local jump operator given by:

mjunc =









Q2 −Q1 0 0 0
q̄∆2 −Q−Q2 −Q−Q1 − q̄ p̄ p̄
p̄∆1 −Q+Q1 q̄ −Q+Q2 − p̄ q̄

2Q− p̄∆1 − q̄∆2 Q+Q1 Q−Q2 −p̄− q̄









with Q i =
∆i(qi − pi)

2

(16)
can be written as (14) with

α=
p̄ cos2(θ1)
cos(2θ1)

−
q̄ sin2(θ2)
cos(2θ2)

+
Q
2

β = −
p̄ sin2(θ1)
cos(2θ1)

+
q̄ cos2(θ2)
cos(2θ2)

+
Q
2

(17)

γ=
p̄ cos2(θ1)
cos(2θ1)

+
q̄ cos2(θ2)
cos(2θ2)

+
Q
2

δ = −
p̄ sin2(θ1)
cos(2θ1)

−
q̄ sin2(θ2)
cos(2θ2)

+
Q
2

(18)

η=
p̄

2 cos(2θ1)
η̄=

q̄
2 cos(2θ2)

(19)

ψ=
p1 − q1

4
tan2(2θ1) +

q2 − p2

4
tan2(2θ2)−

Q+ p̄+ q̄
2

. (20)

Let us emphasize that mjunc given by (16) is the most general Markovian matrix with this
property. The parameters p̄, q̄, Q are new free parameters characterizing the rates on the
impurity. The different processes at the impurity with their rates are displayed on figure 2.
The positivity of the rates for the impurity imposes some constraints on the parameters:

Q1 ≥Q2, q̄ ≥ 0, p̄ ≥ 0, (21)

2Q ≥ p̄∆1 + q̄∆2, p̄∆1 +Q1 ≥Q ≥ −Q1, q̄∆2 −Q2 ≥Q ≥Q2. (22)
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2Q− p̄∆1 − q̄∆2

q̄∆2 −Q−Q2 p̄∆1 −Q+Q1

q̄

p̄

p̄
Q+Q1

q̄
Q−Q2

Figure 2: Non vanishing rates between the different configurations at the impurity junction.
The left site on the figure corresponds to the site L1 of the lattice.

Let us remark that we recover an homogeneous model of length L1 + L2 for

p1 = p2 = p̄ = p, q1 = q2 = q̄ = q, θ1 = θ2 = θ and Q =
q+ p

2
tan2(2θ ). (23)

We show in section 4 that the resolution of this inhomogeneous model is possible using a
mapping to a free quadratic fermionic model. This mapping is possible since the bulk part of
its Markovian matrix given by (13) and (16) are quadratic in S+ and S−.

3 Resolution of the homogeneous model

In this section, before solving the inhomogeneous model, we recall well-known results con-
cerning the resolution of the homogeneous model given by the Markov matrix (12).

As explained previously, the matrix eM in (12) can be mapped to a quadratic fermionic
model [27] but it is not the case for M due to the boundary terms which are linear in S x . As
explained in [2,3,19], to deal with these boundary terms, we must modify slightly the Markov
matrix. We add additional sites, called 0 and L + 1 at both ends of the chain and define

M ′ = eM + tS x
0 S x

1 − tS x
L S x

L+1, (24)

with eM acting trivially on the sites 0 and L+1. The spectrum of M ′ decomposes into 4 sectors
(++), (+−), (−+) and (−−) which correspond to the eigenvalues of (S x

0 , S x
L+1). We recover

exactly the spectrum of the Markov matrix M in the sector (++) [2,3,19].
Using the Jordan-Wigner transformation [23], we define the fermionic creation and anni-

hilation operators

a+k = S+k

k−1
∏

j=0

Sz
j and a−k = S−k

k−1
∏

j=0

Sz
j , (25)

which satisfy the canonical anticommutation relations

{a−k ,a+` }= δk,` , {a−k ,a−` }= 0 and {a+k ,a+` }= 0. (26)

6
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Using this transformation, M ′ can be expressed as a combination of a±k :

M ′ =
L−1
∑

k=1

�

−a a+k a
−
k+1 + b a−k a

+
k+1 − c a+k a

+
k+1 + d a−k a

−
k+1 + 2h a+k a

−
k + 2h̄ a+k+1a

−
k+1

�

+ t(−a+0 + a−0 )(a
+
1 + a−1 )− t(−a+L + a−L )(a

+
L+1 + a−L+1) + (L − 1)( f − h− h̄), (27)

where a, b, c, d, h, h̄, t and f are given by (7)-(9). It is well-established that this type of
fermionic models can be written as follows [27]

M ′ =
L+1
∑

k=0

λk

�

c+k c
−
k −

1
2

�

+ (L − 1) f , (28)

where c+k and c−k are also fermionic creation and annihilation operators and are linear combi-
nations of a±k :

cεk =
L+1
∑

`=0

∑

τ=±
(φεk)

τ
` aτ` for k = 0, 1, . . . , L + 1 , ε= ±. (29)

We recall that the coefficient in front of the identity operator in (28) may be determined by
comparing the trace of M ′ given by (24) and (28).

We recall briefly the computation of the coefficients (φεk)
τ
`

and of the one-particle energy
λk in the appendix A. We get for the one-particle energy

λk =
1

cos(2θ )

�

2
p

pq cos
�

πk
L

�

−
p+ q

2

�

cos(2θ ) +
1

cos(2θ )

��

, for k = 1, . . . , L − 1

(30)

λ0 = 0, λL = λL+1 = −

�

�p− q
�

�

2
tan2(2θ ). (31)

Let us emphasize that all the one-particle energies are chosen negative. Then, by using the
value (9) of f and this choice of λk, relation (28) becomes

M ′ =
|p− q|

2
tan2(2θ ) +

L+1
∑

k=0

λkc
+
k c
−
k . (32)

As mentioned above, the spectrum of M can be deduced from the one of M ′: the eigen-
vectors and eigenvalues of M are the ones of M ′ with an odd number of excitations and by
discarding the excitation with vanishing energy [3, 19]. Namely, the eigenvalues of M are
given by

Λ=
|p− q|

2
tan2(2θ ) +

r
∑

`=1

λk` , (33)

where r is odd, 0< k1 < k2 < · · ·< kr ≤ L+1 and λk are given by (30) and (31). In this way,
one finds the 2L eigenvalues of M .

The eigenvalues of M with one excitation of type c+L or c+L+1 vanish: they correspond to
the two stationary states of M (one of them being the trivial stationary state given by the
empty lattice). The eigenvalue with one excitation of type c+1 in the thermodynamical limit
corresponds to the spectral gap G and is given by [19]

G =







− p
cos2(2θ )

�Ç

q
p − cos(2θ )

�2
if p > q

− q
cos2(2θ )

�Ç

p
q − cos(2θ )

�2
if q > p

(34)
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It is also established in [19] that there exists a phase transition when the gap vanishes. For
example, for q > p, the gap vanishes for

Ç

p
q = cos(2θ ) (or (∆+1)p = q) and the system is in

a low-density phase for
Ç

p
q < cos(2θ ) and a high-density phase for

Ç

p
q > cos(2θ ).

4 Spectrum of the inhomogeneous model

Using methods similar to the ones presented in section 3, we want to find the spectrum of the
Markovian matrix (13),(16) corresponding to the inhomogeneous model. As in the homoge-
neous case, the first step consists in dealing with the boundaries. Thus, instead of M given by
(13) and (16), we study

M ′ =
L1−1
∑

k=1

em(1)k,k+1 + em
junc
L1,L1+1 +

L1+L2−1
∑

k=L1+1

em(2)k,k+1 + t1S x
0 S x

1 − t2S x
L1+L2

S x
L1+L2+1. (35)

where em(i) are given by (6) with p, q and θ replaced by pi , qi and θi and emjunc are given by
(14) without the terms proportional to τ and τ̄. In relation (35), the matrix S x acting in the
space 0 (resp. L1 + L2 + 1) is given by (10) and (11) with θ replaced by θ1 (resp. θ2). We
have also used the notation t i standing for the function t (9) where p, q and θ are replaced
by pi , qi and θi . In the following, the same trick is used for the functions a, b, c, d, h, h̄ and f .
As previously, the spectrum of the inhomogeneous Markov matrix M is deduced from the one
of M ′ (see below).

Now, M ′ can be mapped to a quadratic fermionic operator. The Jordan-Wigner transfor-
mation for the inhomogeneous case is given by

a+k = S+k

k−1
∏

j=0

Sz
j and a−k = S−k

k−1
∏

j=0

Sz
j , for k = 0, 1, . . . L1 + L2 + 1 (36)

but with S#
j given by (10) and (11) with θ replaced by θ1 if 0 ≤ j ≤ L1 and by θ2 if

L1 + 1≤ j ≤ L1 + L2 + 1. Then, by introducing c+k and c−k which are also fermionic creation
and annihilation operators given by a linear transformation similar to (29), we get

M ′ =
L1+L2+1
∑

k=0

λk(c
+
k c
−
k −

1
2
) + (L1 − 1) f1 + (L2 − 1) f2 +ψ. (37)

The one-particle energies λk are computed in the appendix B. We get

λ0 = 0, λL1+L2
= −

�

�p1 − q1

�

�

2
tan2(2θ1), λL1+L2+1 = −

�

�p2 − q2

�

�

2
tan2(2θ2) (38)

and the other L1 + L2 − 1 one-particle energies λ1,λ2, . . . ,λL1+L2−1 are the solutions of the
following equation in λ:

�

λ+Q+ p̄+ q̄
�

UL1−1

�

λ− 2 f1
2µ1

�

UL2−1

�

λ− 2 f2
2µ2

�

= µ1
p̄
p1

UL1−2

�

λ− 2 f1
2µ1

�

UL2−1

�

λ− 2 f2
2µ2

�

+µ2
q̄
q2

UL1−1

�

λ− 2 f1
2µ1

�

UL2−2

�

λ− 2 f2
2µ2

�

, (39)

where UL(cos(x)) = sin((L + 1)x)/ sin(x) are the Chebyshev polynomials of the second kind,
fi is given by (9) and µi =

p
piqi

cos(2θi)
.
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Let us deduce from the spectrum of M ′, the spectrum of the inhomogeneous Markov matrix
M given by (13). Firstly, in [3], they proved that we must discard the vanishing one-particle
energy λ0. Secondly, they showed that only two different cases can occur: (i) the eigenvalues
of M are the ones of M ′ with an odd number of excitations; (ii) the eigenvalues of M are the
ones of M ′ with an even number of excitations. The case (i) is the one used in section 3 for the
homogeneous model. For inhomogeneous model, we must choose between these two cases.

To know which cases we must use, we compute the vacuum energy of M ′

Ω= −
1
2

L1+L2+1
∑

k=0

λk + (L1 − 1) f1 + (L2 − 1) f2 +ψ. (40)

If this vacuum energy vanishes, the spectrum of M is obtained from an even number of excita-
tions whereas if it is positive, it is obtained from an odd number of excitations. This statement
is proved by knowing that all the one-particle energies are negative, that the Markov matrix
M has only negative or vanishing eigenvalues and that there are only the two possibilities (i)
and (ii) presented above.

Although there are no analytical expressions for the roots of (39), their sum is associated
to the coefficient in front of λL1+L2−2. Then, one gets that

Ω=











q2−p2
2 ∆2 for ∆1(q1 − p1)≥∆2(q2 − p2)> 0

0 for ∆1(q1 − p1)≥ 0≥∆2(q2 − p2)
p1−q1

2 ∆1 for 0>∆1(q1 − p1)≥∆2(q2 − p2)

(41)

From the above results, we deduce that the spectrum of M is given by an odd number of
excitations if

∆1(q1 − p1)≥∆2(q2 − p2)> 0 or 0>∆1(q1 − p1)≥∆2(q2 − p2), (42)

and an even number of excitations if

∆1(q1 − p1)≥ 0≥∆2(q2 − p2). (43)

5 Spectral gaps for two particular models

In this section, we compute the spectral gap for inhomogeneous models. To simplify the pre-
sentation, we restrict ourselves to two particular cases and we set also L1 = L2 = L.

5.1 Impurity

We want to study here the effect of a single impurity between two identical segments. There-
fore, we set

p1 = p2 = p, q1 = q2 = q and θ1 = θ2 = θ . (44)

The rates at the junction are given by

p̄ = p+ s, q̄ = q+ s and Q =
�q+ p

2
+ s
�

tan2(2θ ), (45)

where s ≥ −min(p, q) is a free parameter. In this case m(1) = m(2) = m where m is given
by (4) and

mjunc =







0 0 0 0
0 −(q+ s)(∆+ 1) p+ s p+ s
0 q+ s −(p+ s)(∆+ 1) q+ s
0 (q+ s)∆ (p+ s)∆ −p− q− 2s






. (46)
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The homogeneous lattice of length 2L is recovered for s = 0.
As explained previously, to get the spectrum and therefore the spectral gap, we must solve

equation (39). In the cases treated here, the parameters satisfied (42). Therefore, the spec-
trum of the Markov matrix is obtained with an odd number of excitations. In particular, the
spectral gap is obtained by adding the largest one-particle energy (we recall that the one-
particle energies have been chosen negative) to this vacuum energy. We present on figure 3
the spectral gap in terms of s for L = 60 (i.e. a lattice of length 120), q = 3 and p = 0.5 and
for different values of θ = 0.1, 0.5, 0.6, 0.65. Let us notice that for these values of p and q,
the phase transition of the homogeneous model described in section 3 is for θ ' 0.575. The
crosses on the Y-axis of figure 3 stand for the values of the spectral gap of the homogeneous
case (s = 0) computed previously (34) for L → +∞. We see that the finite size effects are
negligible since the curves corresponding to a lattice of finite length go through these points.

Figure 3: Spectral gap for the impurity model for L = 60, q = 3, p = 0.5.

For θ = 0.1 or 0.5 and s = 0, the system is in a low-density phase (see section 3 and [19]).
We see on the figure 3 that the introduction of the impurity has no significant influence on the
spectral gap. For θ = 0.6 or 0.65 and s = 0, the system is in a high-density phase. In this case,
if the impurity slows down the particles (i.e. the rates at the impurity are smaller than the
ones in the bulk, s < 0), the gap goes to zero. If at the impurity, the rates are greater than the
ones of the bulk, the gap is almost unchanged. In summary, the impurity has only a significant
influence in the high density phase when it is a slower junction than the ones in the bulk.

5.2 Spatial quench

In this subsection, we leave the rates of both segments free but we choose for the junction:

p̄ = p1, q̄ = q2 and Q =
p1∆1 + q2∆2

2
. (47)
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In this case, the impurity jump operator becomes

mjunc =











∆2(q2−p2)−∆1(q1−p1)
2 0 0 0

p2∆2−p1∆1
2 − q1∆1+q2(∆2+2)

2 p1 p1
q1∆1−q2∆2

2 q2 − p1(∆1+2)+p2∆2
2 q2

0 q1∆1+q2∆2
2

p1∆1+p2∆2
2 −p1 − q2











. (48)

In addition to pi , qi ,∆i ≥ 0, the parameters must satisfy

∆2p2 ≥∆1p1 and ∆1q1 ≥∆2q2, (49)

so that the rates of the impurity be positive. These rates are displayed on the Figure 4. Let us

p2∆2−p1∆1
2

q1∆1−q2∆2
2

q2

p1

p1
∆1q1+∆2q2

2

q2
∆1p1+∆2p2

2

Figure 4: Nonvanishing rates between the different configurations at the junction.

remark that if the rates in both segments are identical then the impurity rates become equal
to the bulk ones and we recover an homogeneous model.

We study in details the cases when L = 60, p1 = 0.6, q1 = 6, p2 = 6 and q2 = 0.2. For this
case, the vacuum energy (41) vanishes and the spectrum of M is obtained with an even number
of excitations. Then, the spectral gap is the sum of the two largest one-particle energies. We
plot in figure 5 the spectral gap w.r.t. ∆2 for different values of ∆1. We see on this figure
that there are two different regimes. It corresponds to a crossing of the one-particle energies.
For small ∆2, the two largest one-particle energies are q2−p2

2 ∆2 and the largest solution of
(39). For large ∆2, they are p1−q1

2 ∆1 and still the largest solution of (39). The spectral gap
depends greatly on the parameters of the second segment for ∆2 << ∆1 and of the first ones
for ∆2 >>∆1.

6 Conclusion

We showed that inhomogeneous Markovian models can be mapped to free fermion models.
We used this property to compute the spectral gap for different examples. We obtained that a
local change of the rates may have a significant influence on the gap. Let us emphasize that
the results and the methods used here can also be interesting to study quantum XY spin chains.

There are numerous open questions. For example, it is possible to compute for the in-
homogeneous model other physical quantities like the density, the current or the correlation
functions. To achieve this, it is necessary to generalize the methods developed to study the
homogeneous case, like the empty interval method [14] or the matrix ansatz [21].
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Figure 5: Spectral gap for the quench model for L = 60, p1 = 0.6, q1 = 6, p2 = 6 and q2 = 0.2.

There are other types of generalizations. There is a classification of the homogeneous
Markovian models which can be mapped to free fermions [18]: they are four classes of such
models. With methods similar to those presented in this paper, we can wonder if it is possible
to pick up two different classes of models and glue them together. We can also try to study
the cases with more than one impurity. Finally, we can also look for a Markovian model on a
graph which can be mapped to fermionic models. Recently a XY model on a star graph was
constructed in [9] where the Jordan-Wigner transformation was used to solve this problem.

Acknowledgement: I thank warmly V. Caudrelier, E. Ragoucy and M. Vanicat for their inter-
ests and their suggestions.

A Computation of the one-particle energies λk for homogeneous
model

In this appendix, we compute the one-particle energies λk and the coefficients (φεk)
τ
`

of rela-
tions (28) and(29). By computing the commutator [M ′, cεk] with M ′ given by (27) or (28), we
show that they must satisfy

Mφεk = ελkφ
ε
k (50)

where φε
k
= ( (φεk)

+
0 , (φεk)

−
0 , (φεk)

+
1 , . . . , (φεk)

−
L+1 )

t and

M =





















0 T 0
T t H I 0
0 J H +H I 0

...
0 J H +H I 0

0 J H −T
0 −T t 0





















, (51)
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and

H = 2

�

h
−h

�

, H = 2

�

h̄
−h̄

�

, T =

�

−t −t
t t

�

, I =

�

−a −c
d b

�

and J =

�

−b c
−d a

�

.

(52)
Then, we need now to find the 2L + 4 eigenvectors and eigenvalues of M .

Firstly, there exist two trivial eigenvectors with vanishing eigenvalue:

φ =
1
2
( 1, 1,0, . . . , 0, 1,−1 )t and φ =

1
2
( 1,1, 0, . . . , 0,−1,1 )t . (53)

Secondly, to find L+1 other eigenvectors φ of M , we suppose that their components take
the following form, for `= 1, 2, . . . , L,

�

φ+
`
φ−
`

�

= x`−1

�

1+ x
1− x

�

−
�

p
qx

�`−1
�

1+ p
qx

1− p
qx

�

. (54)

Then, the bulk part of (50) is satisfied if the eigenvalues are given by

λ=
1

cos(2θ )

�

qx −
p+ q

2

�

cos(2θ ) +
1

cos(2θ )

�

+
p
x

�

. (55)

Its boundary terms are satisfied if
�

φ+0
φ−0

�

=
1
λ

T

�

φ+1
φ−1

�

,

�

φ+L+1
φ−L+1

�

= −
1
λ

T t

�

φ+L
φ−L

�

, (56)

and if x takes one of the following values:

x =
p
q

cos(2θ ), x = cos(2θ ), x =
√

√ p
q

eiπ k
L for k = 1, . . . , L − 1. (57)

The eigenvalues become respectively

λ=
q− p

2
tan2(2θ ), λ=

p− q
2

tan2(2θ ),

λ=
1

cos(2θ )

�

2
p

pq cos
�

πk
L

�

−
p+ q

2

�

cos(2θ ) +
1

cos(2θ )

��

. (58)

Finally, the L + 1 remaining eigenvectors are obtained starting from the following ansatz
for the components of φ

�

φ+
`
φ−
`

�

= x`−1

�

(1− x) cos4(θ )
(1+ x) sin4(θ )

�

− r(x)
�

q
px

�`−1
�

(1− q
px ) cos4(θ )

(1+ q
px ) sin

4(θ )

�

, (59)

where

r(x) =
pq(x cos(2θ )− 1)(x − cos(2θ ))
(px cos(2θ )− q)(px − q cos(2θ ))

. (60)

By following the same steps as previously, one finds the eigenvalues given by (58) but with an
opposite sign.

As explained in [3], we have a freedom in the choice of the sign for the one-particle energies
λk. In this article, we choose the negative ones and we find finally that the one-particle energies
are given by relations (30) and (31).
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B Computation of the one-particle energies λk for inhomogeneous
model

In this appendix, we compute the one-particle energies λk for the inhomogeneous model (37).
They are determined by solving Mφ = λφ where

M =













































0 T1 0
T t

1 H1 I1 0
0 J1 H1 +H1 I1 0

...
0 J1 H1 +H1 I1 0

0 J1 N +H1 A 0
0 B H2 + N I2 0

0 J2 H2 +H2 I2 0
...

0 J2 H2 +H2 I2 0
0 J2 H2 −T2

0 −T t
2 0













































(61)

and Ti , Ii Ji , Hi and H i are given by (52) with the functions replaced by the corresponding
ones and

N = 2

�

η

−η

�

, N = 2

�

η̄

−η̄

�

, A=

�

−α −γ
δ β

�

and B =

�

−β γ

−δ α

�

. (62)

Now, we must find the eigenvalues λ of M given by (61).
As previously, there exist two trivial eigenvectors similar than (53) with vanishing eigen-

values.
To obtain L1+L2−1 other eigenvalues, we suppose that the components of the eigenvectors

φ take the following form

�

φ+
`
φ−
`

�

=



















v

�

x`−1
1

�

1+ x1

1− x1

�

−
�

p1
q1 x1

�`−1
�

1+ p1
q1 x1

1− p1
q1 x1

��

for `= 1, 2, . . . , L1

x`−L1−L2−1
2

�

1+ x2

1− x2

�

−
�

p2
q2 x2

�`−L1−L2−1
�

1+ p2
q2 x2

1− p2
q2 x2

�

for `= L1 + 1, . . . , L1 + L2

(63)
The parameters x1, x2 and v have to be determined to get an eigenvector. The parameter v
may be interpreted as a transmission factor. The boundary parts in 0, 1, L1+ L2 and L1+ L2+1
do not constrain these parameters. The bulk parts of the spectral problem give

λ= 2µ1 cos(ζ1) + 2 f1 = 2µ2 cos(ζ2) + 2 f2 (64)

where

fi = −
pi + qi

4

�

1+
1

cos2(2θi)

�

, µi =
p

piqi

cos(2θi)
and exp(iζi) =

√

√qi

pi
x i . (65)

New relations are given at the junction:

J1

�

φ+L1−1
φ−L1−1

�

+ (N +H1)

�

φ+L1

φ−L1

�

+ A

�

φ+L1+1
φ−L1+1

�

= λ

�

φ+L1

φ−L1

�

(66)

B

�

φ+L1

φ−L1

�

+ (H2 + N)

�

φ+L1+1
φ−L1+1

�

+ I2

�

φ+L1+2
φ−L1+2

�

= λ

�

φ+L1+1
φ−L1+1

�

(67)
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which are equivalent to the following constraints between the parameters

v =

1
x

L2
2

−
�

q2 x2
p2

�L2

x L1
1 −

�

p1
q1 x1

�L1
(68)

and
�

2 f1 +Q+ p̄+ q̄
�

sin(L1ζ1) sin(L2ζ2) =µ1

�

p̄
p1
− 1

�

sin((L1 − 1)ζ1) sin(L2ζ2)

+
µ2q̄
q2

sin(L1ζ1) sin((L2 − 1)ζ2)

−µ1 sin((L1 + 1)ζ1) sin(L2ζ2)

(69)

�

2 f2 +Q+ p̄+ q̄
�

sin(L1ζ1) sin(L2ζ2) =µ2

�

q̄
q2
− 1

�

sin(L1ζ1) sin((L2 − 1)ζ2)

+
µ1 p̄
p1

sin((L1 − 1)ζ1) sin(L2ζ2)

−µ2 sin(L1ζ1) sin((L2 + 1)ζ2)

(70)

Using relation (64), we can show that equation (69) implies equation (70). Finally, from (64)
and (69), we get equation (39). The highest degree w.r.t. λ in (39) is L1+ L2−1 then, solving
it, one gets L1 + L2 − 1 eigenvalues.

Other L1 + L2 − 1 eigenvectors with the eigenvalues solution of (39) with opposite signs
are obtained by starting from an ansatz for the eigenvectors similar than (59).

Two others eigenvectors are obtained from

�

φ+
`
φ−
`

�

=



















v1 x`−1
1

�

1+ x1

1− x1

�

− v2

�

p1
q1 x1

�`−1
�

1+ p1
q1 x1

1− p1
q1 x1

�

for `= 1, 2, . . . , L1

x`−L1−L2−1
2

�

1+ x2

1− x2

�

−
�

p2
q2 x2

�`−L1−L2−1
�

1+ p2
q2 x2

1− p2
q2 x2

�

for `= L1 + 1, . . . , L1 + L2

(71)
with x1 =

p1
q1

cos(2θ1) or cos(2θ1). They give the eigenvalues λ = ± q1−p1
2 tan2(2θ1). The

upper sign is for the former choice of x1 and the lower sign for the latter. The parameter x2 is
constrained by the bulk equations and must satisfied

1
cos(2θ2)

�

q2 x2 −
p2 + q2

2

�

cos(2θ2) +
1

cos(2θ2)

�

+
p2

x2

�

= ±
q1 − p1

2
tan2(2θ1) . (72)

The coefficients v1 and v2 are fixed by constraints (66)-(67) and are given explicitly by

v1 =
p1 cos(2θ1)

p̄(p1 − q1 x2
1)x

L1−1
1 x L2

2

�

�

Q+ p̄+ q̄+λ−
p̄q1 x1

p1 cos(2θ1)

�

�

1−
�

q2 x2
2

p2

�L2
�

−
q̄x2

cos(2θ2)

�

1−
�

q2 x2
2

p2

�L2−1��

, (73)

v2 =

�

q1 x2
1

p1

�L1

v1 −
�

q1 x1

p1

�L1 1

x L2
2

�

1−
�

q2 x2
2

p2

�L2
�

. (74)

Finally, the last two eigenvectors are given by

�

φ+
`
φ−
`

�

=



















x`−1
1

�

1+ x1

1− x1

�

−
�

p1
q1 x1

�`−1
�

1+ p1
q1 x1

1− p1
q1 x1

�

for `= 1, 2, . . . , L1

w1 x`−L1−L2−1
2

�

1+ x2

1− x2

�

−w2

�

p2
q2 x2

�`−L1−L2−1
�

1+ p2
q2 x2

1− p2
q2 x2

�

for `= L1 + 1, . . . , L1 + L2

(75)
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with x2 =
p2
q2

cos(2θ2) or cos(2θ2). They give the eigenvalues λ = ± q2−p2
2 tan2(2θ2). The

upper sign is for the former choice of x2 and the lower sign for the latter. The parameter x1 is
constrained by the bulk equations and must satisfied

1
cos(2θ1)

�

q1 x1 −
p1 + q1

2

�

cos(2θ1) +
1

cos(2θ1)

�

+
p1

x1

�

= ±
q2 − p2

2
tan2(2θ2) . (76)

The coefficients w1 and w2 are fixed by constraints (66)-(67) and are given explicitly by

w1 =
q2 cos(2θ2)x

L1
1 x L2+1

2

q̄(p2 − q2 x2
2)

�

�

Q+ p̄+ q̄+λ−
q̄p2

x2q2 cos(2θ2)

�

�

�

p1

q1 x2
1

�L1

− 1

�

−
p̄

x1 cos(2θ1)

�

�

p1

q1 x2
1

�L1−1

− 1

��

, (77)

w2 =

�

p2

q2 x2
2

�L2

w1 −
�

p2

q2 x2

�L2

x L1
1

�

�

p1

q1 x2
1

�L1

− 1

�

. (78)

As explained in [3] for the homogeneous case and previously in appendix A, we have a
freedom in the choice of the sign for the one-particle energies λk. In this article, we choose
again the negative ones and finally, one gets the one-particle energies (38)-(39).
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