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Abstract

In this letter we study the exponentially decaying corrections to saturation of the second
Rényi entropy of one interval of length ` in minimal E8 Toda field theory. It has been
known for some time that the entanglement entropy of a massive quantum field theory
in 1+1 dimensions saturates to a constant value for m1`� 1 where m1 is the mass of the
lightest particle in the spectrum. Subsequently, results by Cardy, Castro-Alvaredo and
Doyon have shown that there are exponentially decaying corrections to this behaviour
which are characterized by Bessel functions with arguments proportional to m1`. For
the von Neumann entropy the leading correction to saturation takes the precise uni-
versal form −1

8 K0(2m1`) whereas for the Rényi entropies leading corrections which are
proportional to K0(m1`) are expected. Recent numerical work by Pálmai for the second
Rényi entropy of minimal E8 Toda has identified next-to-leading order corrections which
decay as e−2m1` rather than the expected e−m1`. In this paper we investigate the origin
of this result and show that it is incorrect. An exact form factor computation of correla-
tors of branch point twist fields reveals that the leading corrections are proportional to
K0(m1`) as expected.
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1 Introduction

1.1 Entanglement entropy

Measures of entanglement, such as the entanglement entropy (EE), have attracted much at-
tention in recent years, particularly in the context of one-dimensional many body quantum
systems (see e.g. review articles in the special issue [1]). Among such systems, those enjoying
conformal invariance in the scaling limit are of particular interest as they provide a theoret-
ical and universal description of critical phenomena. In their seminal work Calabrese and
Cardy [2] used principles of Conformal Field Theory (CFT) to study the (EE) [3] of quantum
critical systems. Their results generalised previous work [4], provided theoretical support for
numerical observations in critical quantum spin chains [5] and highlighted the fact that the
EE encodes universal information about quantum critical points, such as the central change
of the corresponding CFT. This information may be extracted numerically in a very efficient
way, typically by employing Density Matrix Renormalization Group methods [6], and this has
provided one of the main motivations to investigate measures of entanglement in critical and
near-critical systems. From a mathematical physics viewpoint (the one taken in this paper)
the investigation of the EE is driven by interest in developing a better (if possible, analytical)
understanding of the universal properties of the ground state of extended many body quantum
systems.

The EE is a measure of the amount of quantum entanglement, in a pure quantum state,
between the degrees of freedom associated to two sets of independent observables whose
union is complete on the Hilbert space. In the present paper, the two sets of observables
correspond to the local observables in two complementary connected regions, A and B, of
a 1+1-dimensional massive quantum field theory (QFT), and we will consider only the case
where the quantum state is the ground state. Let |Ψ〉 be such a ground state. Consider a space
bi-partition of the theory as sketched in Figure 1. Then the EE associated to region A may
be expressed as S(`) = −Tr(ρA logρA) where ρA = TrB(|Ψ〉〈Ψ|) is the reduced density matrix
associated to subsystem A and ` is the subsystem’s length.

The EE defined above is also known as von Neumann entropy. Alternative, related defini-
tions of the entanglement entropy have been proposed which are also frequently studied. A
set of popular measures is provided by the Rényi entropies which are defined as

Sn(`) =
log Trρn

A

1− n
, (1)

and have the property limn→1 Sn(`) = S(`). In this paper we will consider the case n= 2 where
S2(`) = − log Trρ2

A. We will refer to this quantity as the second Rényi entropy. We choose this
particular value in order to compare with results obtained in [7] for the same quantity by a
different method.
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As mentioned earlier, at quantum critical points, the scaling limit of the EE has been widely
studied in CFT [2, 4, 5, 8–10] and in lattice realizations of critical systems such as quantum
spin chains [11–17] and lattice models [18–20]. In particular, the combination of a geometric
description, Riemann uniformization techniques and standard expressions for CFT partition
functions is very fruitful. Recently [21], this was generalized to non-unitary CFT and to the EE
of excited states [22, 23], where general formulae were obtained using also such techniques.
Near critical points, the scaling limit is instead described by massive quantum field theory
(QFT), and geometric techniques relying on conformal mappings break down. So far the
most powerful way of studying the EE in massive QFT is by using an approach based on local
branch-point twist fields [24–26]. This approach is very fruitful and complete as it allows both
for numerical and analytical computations. In this context, the second Rényi entropy may be
defined as:

S2(`) = − log
�

ε4∆2〈T (0)T̃ (`)〉2
�

, (2)

where T and T̃ := T † are the branch point twist fields,

∆n =
c

24

�

n−
1
n

�

, (3)

is their conformal dimension (at criticality) [2, 27, 28] as a function of the central charge c,
and ε is a non-universal short-distance cut-off. The expression 〈T (0)T̃ (`)〉2 above denotes
the two-point function in the ground state for n = 2. An important subtlety is that branch
point twist fields are local fields in a new QFT which is constructed as n non-interacting copies
(in this case 2) of the original QFT. In this context, they are interpreted as symmetry fields
associated to the cyclic permutation symmetry of the “replica" theory.

In this paper we aim to compare re-

Figure 1: Typical bi-partition for the EE of one in-
terval.

sults based on a branch point twist field
approach to recent numerical results by
Tamás Pálmai [7] for the quantity (2). In
[7] a new approach to the computation of
the second Rényi entropy in massive inte-
grable QFT was proposed which is based
on the use of the Truncated Conformal
Space Approach (TCSA) first proposed by
Yurov and Zamolodchikov in [29]. The
TCSA is based on Zamolodchikov’s view
of massive integrable models as massive

perturbations of CFT [30]. It exploits the rich structure of the Hilbert space of CFT, perturbes
and truncates the latter and then diagonalizes the “truncated” Hamiltonian. This provides a
very successful way to access the low energy spectrum of massive integrable QFT with (a pri-
ori) any desired level of accuracy. The work [7] showed for the first time that TCSA can also
be employed to access the quantity Trρ2

A, and so may be applied to the study of measures of
entanglement. This is a very interesting development which complements and enhances the
existing twist field approach for massive QFTs.

1.2 The model

In this paper we consider an integrable massive QFT sometimes referred to as the critical Ising
model in a magnetic field (IMMF) and also known as the minimal E8 Toda field theory. In the
spirit of Zamolodchikov’s work [30], the theory can be described as a massive perturbation of
the conformal Ising model whose operator content consists of simply three fields: the identity,
the energy field ε and the spin field σ. It is well-known that a massive perturbation by the
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energy field gives rise to an integrable QFT known as the massive Ising model. This theory
has a single particle and the two-body scattering matrix is simply S(θ ) = −1 as a function
of the rapidity θ . Surprisingly, perturbing with the spin field σ instead gives rise to a much
more complex but still integrable interacting QFT, the IMMF [30, 31]. The theory consists of
8 self-conjugate particles of different masses. All of the particles can also be formed as bound
states of two other particles in the spectrum, that is, the corresponding two-body scattering
matrices have a rich pole structure in the physical sheet with poles of up to order 12. Following
Zamolodchikov’s work, a plethora of papers by many authors led to the realization that the
IMMF is but a particular case of a much wider family of integrable QFTs known as minimal
Toda field theories (a detailed historical account of these findings can be found in [32, 35]
and references therein). These in turn are “simplified” versions of another class of models, the
Affine Toda field theories (ATFTs), in the sense that the S-matrices of ATFTs are equal those of
minimal Toda theories, up to coupling-dependent multiplicative factors which have no poles
in the physical sheet. ATFTs have been studied since a long time and have played a prominent
role in the development of the field of integrable field theories [36,37]. Based on the IMMF

Figure 2: E8 Dynkin diagram as a representation of the mass spectrum of the IMMF.

example and on extensive work on classical Toda theory it came to be expected that a different
theory should exist for each simple Lie algebra and that this Lie algebraic structure would be
crucial in the understanding of these models. Subsequently, a lot of work was carried out
in order to compute the S-matrices of ATFTs related to each simple Lie algebra. Universal
formulae for all simply-laced ATFTs were given in [32]. A universal description of the S-
matrices of non-simply-laced ATFT based on q-deformed Coxeter elements was first proposed
in [34] and further studied in [35] where a universal integral representation for all ATFT S-
matrices was given. In this context, the eight particles in the spectrum of the IMMF are in
one-to-one correspondence with the simple roots of E8 (see Fig. 2). Indeed, their values are
the Perron-Frobenius eigenvector of the corresponding Cartan matrix. A detailed account of
the masses and scattering matrices of the theory can be found for instance in the review [38]
and also in [39]. Here we will only report the data that we need for the present paper. We
will only require the values of the masses of the four lightest particles in the spectrum

m2 = 2m1 cos
π

5
, m3 = 2m1 cos

π

30
and m4 = 2m2 cos

7π
30

. (4)

where m1 is the mass of the lightest particle. We note that the masses of the IMMF satisfy the
inequality mi > 2m1 for i > 3 whereas m1,2,3 < 2m1. In the following we will also require
some of the two-particle scattering amplitudes as functions of the rapidity variable θ . They
generally have the structure:

Sab(θ ) =
∏

α∈Sab

�

tanh 1
2 (θ + iπα)

tanh 1
2 (θ − iπα)

�pα

∀ a, b = 1, . . . , 8. (5)

where Sab is a known set of integer values which characterises the scattering matrix and pα
are integer powers which determine the degeneracy of the poles of Sab(θ ) at θ = iπα. In
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particular,

S11(θ ) =
tanh 1

2

�

θ + 2πi
3

�

tanh 1
2

�

θ − 2πi
3

�

tanh 1
2

�

θ + 2πi
5

�

tanh 1
2

�

θ − 2πi
5

�

tanh 1
2

�

θ + iπ
15

�

tanh 1
2

�

θ − iπ
15

� , (6)

and

S12(θ ) =
tanh 1

2

�

θ + 4πi
5

�

tanh 1
2

�

θ − 4πi
5

�

tanh 1
2

�

θ + 3πi
5

�

tanh 1
2

�

θ − 3πi
5

�

tanh 1
2

�

θ + 7πi
15

�

tanh 1
2

�

θ − 7iπ
15

�

tanh 1
2

�

θ + 4πi
15

�

tanh 1
2

�

θ − 4iπ
15

� , (7)

are the only amplitudes we will require in this paper. As we can see, S11(θ ) has simple poles
at 2πi

3 , 2πi
5 and π

15 corresponding to the formation of particles 1, 2 and 3, respectively through
the scattering processes 1+ 1→ 1, 1+ 1→ 2 and 1+ 1→ 3. Similarly, the scattering matrix
S12(θ ) has four simple poles at 4πi

5 , 3πi
5 , 7iπ

15 and 4iπ
15 corresponding to the formation of bound

states 1, 2, 3 and 4. Associated to these simple poles are the three-point couplings Γ c
ab defined

as
i(Γ c

ab)
2 = Resθ=iπαSab(θ ). (8)

In particular

(Γ 1
11)

2 = 2
Æ

15− 6
p

5cot
π

30
cot2 2π

15
, (Γ 2

11)
2 = (Γ 1

11)
2
Æ

9+ 4
p

5 tan
2π
15

tan
7π
30

,

(Γ 3
11)

2 = (Γ 2
11)

2 tan π
30 tan π

15
p

9+ 4
p

5
, Γ 1

12 = Γ
2
11, (Γ 2

12)
2 = (Γ 1

12)
2(2+

p
5)tan

2π
15

cot2 π

15
cot

7π
30

,

(Γ 3
12)

2 = (Γ 1
12)

2 cot
π

30
cot

π

15
cot

2π
15

cot
7π
30

, (Γ 4
12)

2 = (Γ 3
12)

2 tan
π

30
tan

2π
15

. (9)

will enter in some of the equations we will see later.

1.3 Structure of the paper

This paper is organised as follows: in section 2 we review the form factor approach for branch
point twist fields. We propose expressions for some of the two-particle form factors in the
IMMF as well as a set of consistency conditions that allow us to determine also the one-particle
form factors of the four lightest particles in the spectrum. In section 3 we explain how the
second Rényi entropy may be expressed in terms of twist field form factors and write down
an expression including the six leading form factor corrections to its saturation value. We
determine the precise coefficients of these corrections by solving the form factor equations
proposed in section 2. We confirm the presence of exponentially decaying corrections, led by
e−m1`. In section 4 we compare our results to those obtained in [7] by employing the TCSA
approach and discuss their level of agreement. We present our conclusions and outlook in
section 5.

2 Twist field form factors in the IMMF

2.1 Generalities

In 1+1 dimensional integrable QFT the most successful approach to computing multi-point
functions of local operators is by expressing them in terms of form factors of individual fields.
Form factors of local fields in integrable QFT can generally be computed exactly by pursuing
the so-called form factor programme [40,41] which was extended to the treatment of branch
point twist fields in [24]. The programme has been carried out for countless models and fields
and provides extremely accurate results for correlators, particularly two-point functions. Here
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we are interested in the correlator (2) in the IMMF. Let (a, j) represent the quantum numbers
of a particle of type a = 1, . . . , 8 living in copy j = 1, . . . , n (we will specialize to n = 2 later
on). We may employ the so-called cumulant expansion [42–44]:

log

�

〈T (0)T̃ (`)〉n
〈T 〉2n

�

=
∞
∑

k=1

ck(`)
k!(2π)k

, (10)

with

ck(`) =
8
∑

a1,...,ak=1

2
∑

j1,..., jk=1

∫ ∞

−∞
dθ1 · · ·

∫ ∞

−∞
dθk ha1...ak

j1... jk
(θ1, · · · ,θk; n)e−`

∑k
i=1 mai

coshθi , (11)

where the functions ha1...ak
j1... jk

(θ1, · · · ,θk; n) are given in terms of the form factors of the fields
involved. In particular,

ha
j (θ ; n) = |FT |(a, j)

1 (θ ; n)|2,

ha1a2
j1 j2
(θ1,θ2; n) = FT |(a1, j1)(a2, j2)

2 (θ1,θ2; n)(F T̃ |(a1, j1)(a2, j2)
2 (θ1,θ2; n))∗ − ha1

j1
(θ1)h

a2
j2
(θ2), (12)

where

FT |(a, j)
1 (θ ; n) :=

〈0|T (0)|θ 〉(a, j)

〈T 〉n
, FT |(a1, j1)(a2, j2)

2 (θ1,θ2; n) :=
〈0|T (0)|θ1θ2〉(a1, j1)(a2, j2)

〈T 〉n
(13)

are the normalized one- and two-particle form factors. Here 〈0| represents the vacuum state
and |θ 〉(a, j), |θ1θ2〉(a1, j1)(a2, j2) represent in-states of 1 and 2 particles, respectively. The states
are characterized by the rapidities θi and particle quantum numbers (ai , ji). In this paper we
will only be interested in one and two particle form factor contributions which provide the
most important contributions to (11) for large `. For spinless operators in relativistic theories
we have that the one-particle form factors are rapidity independent. Therefore, from now on
we will simply write FT |(a, j)

1 (θ ; n) := FT |(a, j)
1 (n).

2.2 One- and two-particle form factors of the IMMF

Form factors of the IMMF where constructed in [39] for the stress-energy tensor (e.g. the spin
field) and in [45] for the energy field. This construction can be easily adapted to the twist
field by employing the programme proposed in [24]. In addition, here we only want to study
a subset of the one- and two-particle form factors of the twist field which means that we do not
need to engage into solving the complicated recursive equations that arise for higher particle
numbers. We will also avoid the consideration of higher order poles which has been extensively
discussed in [38, 39]. A particular feature of the computation of form factors of twist fields
is that many of the basic formulae are very similar to those used in the construction of form
factors of standard local fields, particularly when it comes to constructing the two-particle
minimal form factor and therefore, what follows is strongly guided by the analysis of [39].

A minimal solution to the two-particle form factor equation will be denoted by

fa1a2
(θ1 − θ2; n) := FT |(a1, j)(a2, j)

min (θ1,θ2; n) with j = 1, . . . , n. (14)

This minimal form factor satisfies a twist field version of Watson’s equations which may be
summarised as [24]

fa1a2
(θ , n) = fa1a2

(−θ , n)Sa1a2
(θ ) = fa1a2

(−θ + 2πni, n). (15)
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Let Sa1a2
(θ ) have an integral representation of the form

Sa1a2
(θ ) = exp

�∫ ∞

0

d t
t

sa1a2
(t) sinh

�

tθ
iπ

�

�

, (16)

where sa1a2
(θ ) is a function which depends of the theory and the particles a1, a2. Employing

this integral representation it is easy to show that the solution to (15) may be written as

fa1a2
(θ ; n) = exp

�∫ ∞

0

d t
t sinh(nt)

sa1a2
(t) sin2

�

i t
2

�

n+
iθ
π

��

�

. (17)

It is also well-known that if Sa1a2
(θ ) = −1 in (15) then the free Fermion solution fa1a2

(θ ) =
−i sinh θ

2n is obtained. Combining these two results and comparing with the formulae provided
in [39] for the minimal form factors of the IMMF we find

fa1a2
(θ ; n) =

(−i sinh
θ

2n
)δa1a2 exp





∑

α∈Sa1a2

2pα

∫ ∞

0

d t
cosh

�

(α− 1
2)t
�

t cosh t
2 sinh(nt)

sin2
�

i t
2

�

n+
iθ
π

��



 , (18)

where the exponential may be also expressed as the infinite product of gamma functions:

∏

α∈Sa1a2

∞
∏

k=0





Γ
� k+n−α+1

2n

�2
Γ
� k+n+α

2n

�2

Γ
�

k−α− iθ
π +1

2n

�

Γ
�

k+α− iθ
π

2n

�

Γ
�

1+ k−α+ iθ
π +1

2n

�

Γ
�

1+ k+α+ iθ
π

2n

�





pα(−1)k

(19)

and the set Sa1a2
has been defined after (5). Following [24] and [39], the most generic two-

particle form factor takes the form

FT |(a1, j1)(a2, j2)
2 (θ1,θ2; n) =

Q j1 j2
a1a2
(θ12; n)

2nK j1 j2(θ12; n)δa1a2
∏

α∈Sa1a2

�

Bα(θ12; n)u(pα)B1−α(θ12; n)v(pα)
�δ j1 j2

×
FT |(a1, j1)(a2, j2)

min (θ1,θ2; n)

FT |(a1, j1)(a2, j2)
min (iπ, 0; n)

, (20)

with θ12 := θ1 − θ2,

K j1 j2(θ ; n) =
sinh

�

iπ(1−2( j1− j2))−θ
2n

�

sinh
�

iπ(1−2( j1− j2))+θ
2n

�

sin πn
, (21)

Bα(θ ; n) = sinh
�

iπα− θ
2n

�

sinh
�

iπα+ θ
2n

�

, (22)

and

u(2k+ 1) = k+ 1, u(2k) = k and v(2k+ 1) = v(2k) = k for k ∈ Z. (23)

The function K j1 j2(θ ; n) encodes the full kinematic pole structure of the form factor, having
kinematic poles at θ = iπ and θ = iπ(2n−1) in the extended physical strip Im(θ ) ∈ [0, 2πn],
whereas Bα(θ ; n) encodes the bound state pole structure, as characterised in [39]. The min-
imal form factors in (20) can be easily obtained from (18) by employing standard relations
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which can be found for instance in [24]. Finally, the functions Q j1 j2
a1a2
(θ ; n) are solutions to the

equations:
Q11

a1a2
(θ ; n) =Q11

a1a2
(−θ ; n) =Q11

a1a2
(−θ + 2πin; n) (24)

namely, they are linear combinations of functions of the type coshk θ
n for k = 1,2, . . ., similar

to the ansatz already employed in [39]. Which values of k are involved will be determined by
constraints on how Q11

a1a2
(θ ; n) behaves as θ →∞which we will discuss in the next subsection.

In this paper we will only require the two-particle form factors F (1,1)(1,1)
2 (θ1,θ2; n) and

F (1,1)(2,1)
2 (θ1,θ2; n). These are special cases of (20) explicitly given by

FT |(1,1)(1,1)
2 (θ1,θ2; n) =

Q11
11(θ12; n)

2nK11(θ12; n)
∏

α= 2
3 , 2

5 , 1
15

Bα(θ12; n)
f11(θ12; n)
f11(iπ; n)

, (25)

and

FT |(1,1)(2,1)
2 (θ1,θ2; n) =

Q11
12(θ12; n)

2n
∏

α= 4
5 , 3

5 , 7
15 , 4

15

Bα(θ12; n)
f12(θ12; n)
f12(iπ; n)

, (26)

with

f11(θ ; n) = −i sinh
θ

2n
exp

�

2

∫ ∞

0

d t
t

cosh t
10 + cosh t

6 + cosh 13t
30

cosh t
2 sinh(nt)

sin2
�

i t
2

�

n+
iθ
π

��

�

, (27)

and

f12(θ ; n) = exp

�

2

∫ ∞

0

d t
t

cosh t
10 + cosh 3t

10 + cosh t
30 + cosh 7t

30

cosh t
2 sinh(nt)

sin2
�

i t
2

�

n+
iθ
π

��

�

. (28)

2.3 Fixing one- and two-particle form factors

The equations (25)-(26) give the two-particle form factors of interest up to the functions
Q11

11(θ ; n) and Q11
12(θ ; n). As anticipated earlier, these functions may be determined by em-

ploying additional constraints. In particular, the kinematic and bound state residue equations
for the two-particle form factors require that:

lim
θ̄0→θ0

(θ0 − θ̄0)F
T |(a, j)(ā, j)
2 (θ̄0 + iπ,θ0; n) = i, (29)

and

lim
θ̄0→θ0

(θ0 − θ̄0)F
T |(a1, j)(a2, j)
2 (θ̄0 +

iπα
2

,θ0 −
iπα

2
; n) = iΓ a3

a1a2
FT |(a3, j)

1 (n). (30)

In the IMMF all particles are self conjugate so that the form factor (25) must satisfy the con-
dition (29), giving the constraint:

Q11
11(iπ; n) =

∏

α=5,9,14,16,21,25,30

sin
πα

30n
. (31)

The same form factor possesses three bound state poles related to the formation of bound
states, 1, 2 and 3. This means that it satisfies three versions of equation (30), giving three
additional constraints:

Q11
11(

2πi
3

; n) = −Γ 1
11FT |(1,1)

1 (n) csc
π

n
f11(iπ; n)

f11(
2πi
3 ; n)

∏

α=4,5,9,11,16,20,25

sin
απ

30n
, (32)
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Q11
11(

2πi
5

; n) = Γ 2
11FT |(2,1)

1 (n) csc
π

n
f11(iπ; n)

f11(
2πi
5 ; n)

∏

α=4,5,7,9,12,16,21

sin
απ

30n
, (33)

Q11
11(

iπ
15

; n) = −Γ 3
11FT |(3,1)

1 (n) csc
π

n
f11(iπ; n)

f11(
iπ
15 ; n)

∏

α=2,5,7,9,11,14,16

sin
απ

30n
. (34)

The form factor (26) has no kinematic poles but has four bound state poles associated to the
formation of bound states 1, 2, 3 and 4. They give the additional constraints:

Q11
12(

4πi
5

; n) = Γ 1
12FT |(1,1)

1 (n)
f12(iπ; n)

f12(
4πi
5 ; n)

∏

α=3,5,8,16,19,21,24

sin
απ

30n
, (35)

Q11
12(

3πi
5

; n) = −Γ 2
12FT |(2,1)

1 (n)
f12(iπ; n)

f12(
3πi
5 ; n)

∏

α=2,3,5,13,16,18,21

sin
απ

30n
, (36)

Q11
12(

7iπ
15

; n) = Γ 3
12FT |(3,1)

1 (n)
f12(iπ; n)

f12(
7πi
15 ; n)

∏

α=2,3,5,11,14,16,19

sin
απ

30n
, (37)

and

Q11
12(

4iπ
15

; n) = −Γ 4
12FT |(4,1)

1 (n)
f12(iπ; n)

f12(
4πi
15 ; n)

∏

α=3,5,8,11,13,16

sin
απ

30n
. (38)

At this stage we have obtained 8 equations and have 4 unknowns, corresponding to the one
particle form factors FT |(a,1)

1 (n) with a = 1,2, 3,4 as well as the polynomials Q11
11(θ ; n) and

Q11
12(θ ; n). We know from the two particle form factor equations that they must be even func-

tions of θ and we would also like to require the cluster decomposition property which has been
discussed in detail in [49] and observed for numerous models (a particularly rich example can
be found in [50]), namely that

lim
θ1→∞

FT |(1,1)(1,1)
2 (θ1,θ2; n) = (FT |(1,1)

1 (n))2. (39)

and
lim
θ1→∞

FT |(1,1)(2,1)
2 (θ1,θ2; n) = FT |(1,1)

1 (n)FT |(2,1)
1 (n). (40)

These properties provide very strong constraints for the functions Q11
11(θ ; n) and Q11

12(θ ; n), as
they allow us to determine the highest power of eθ/n that can be involved. We have that

K11(θ ; n)∼ −
1
4

e
θ
n and Bα(θ ; n)∼ −

1
4

e
θ
n for θ →∞. (41)

It is also easy to determine the leading behaviours of f11(θ ; n) and f12(θ ; n) as θ →∞. In
this limit, integrals of the type

exp

�

2

∫ ∞

0

d t
cosh

�

(α− 1
2)t
�

t cosh t
2 sinh(nt)

sin2
�

i t
2

�

n+
iθ
π

��

�

, (42)

may be approximated by changing variables to x = tθ and then expanding for small values of
x
θ . At leading and next-to-leading order, this yields the simple integral:

exp

�∫ ∞

0

d x
�

2θ
nx2

sin2
� x

2π

�

−
i
x

sin
� x
π

�

�

�

= −ie
θ
2n . (43)

9

https://scipost.org
https://scipost.org/SciPostPhys.2.1.008


SciPost Phys. 2, 008 (2017)

Numerical evaluation of the minimal form factors for θ large confirms the behaviour above, up
to n-dependent proportionality constants which we, unfortunately, have been unable to find a
convergent analytic expression for

f11(θ ; n)∼ v(n)e
2θ
n , f12(θ ; n)∼ u(n)e

2θ
n for θ →∞. (44)

Nonetheless, the numbers v(n) and u(n) can be numerically estimated for every n. This means
that, in order to satisfy (39)-(40) we need

Q11
11(θ ; n)∼ e

2θ
n and Q11

12(θ ; n)∼ e
2θ
n for θ →∞. (45)

thus, in general

Q11
11(θ ; n) = A11

11(n) + B11
11(n) cosh

θ

n
+ C11

11 (n) cosh2 θ

n
, (46)

and

Q11
12(θ ; n) = A11

12(n) + B11
12(n) cosh

θ

n
+ C11

12 (n) cosh2 θ

n
. (47)

And the cluster decomposition equations (39)-(40) can be written as

(FT |(1,1)
1 (n))2 =

43 sin πn C11
11 (n)v(n)

2nf11(iπ; n)
and FT |(2,1)

1 (n)FT |(1,1)
1 (n) =

43C11
12 (n)u(n)

2nf12(iπ; n)
. (48)

It is worth noting that the same conclusions regarding the form of the functions Q11
11(θ ; n)

and Q11
12(θ ; n) can be reached by appealing to a well-known argument presented for instance

in [39] according to which the form factors of unitary operators (in particular, the twist field)
can diverge at most as e∆nθi when one of the rapidities θi →∞ and where∆n is the conformal
dimension (3) of the twist field. In fact, for c = 1

2 it turns out that ∆n < 1 for n < 49 and
therefore, at least for a wide range of values of n the form factors must tend to a constant as
any of the rapidities they depend upon tends to infinity. The property of cluster decomposition,
additionally establishes what this constant must be.

Putting together equations (31)-(38) and (48) we end up with 10 equations for 10 un-
knowns: A11

11(n), B11
11(n), C11

11 (n), A11
12(n), B11

12(n), C11
12 (n) and the four one particle form factors

FT |(1,1)
1 (n), FT |(2,1)

1 (n), FT |(3,1)
1 (n) and FT |(4,1)

1 (n). This means we are now in a position to de-
termine all these functions and to investigate how our results apply to the study of the second
Rényi entropy.

3 Second Rényi entropy of the IMMF

From the definition (2) and the expansion (10) we know that the Rényi entropy may be ex-
pressed as an infinite sum involving integrals over the form factors of the twist field. In par-
ticular the first few contributions can be written as

S2(`)− S2(∞) = −
2
π

8
∑

a=1

|FT |(a,1)
1 (2)|2K0(ma`)

−
1

(2π)2

8
∑

a1,a2=1

2
∑

j=1

∫ ∞

−∞
dθ1

∫ ∞

−∞
dθ2h1 j

a1a2
(θ1,θ2; 2)e−ma1

` coshθ1−ma2
` coshθ2 + · · · (49)

where

h1 j
a1a2
(θ1,θ2; 2) := |FT |(a1,1)(a2, j)

2 (θ1,θ2; 2)|2 − |FT |(a1,1)
1 (2)|2|FT |(a2, j)

1 (2)|2. (50)
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and S2(∞) = −4∆2 log(mε)−2 log〈T 〉2 is the non-universal saturation constant. The expan-
sion above describes corrections to saturation which are exponentially decaying for large m1`.
If we consider all terms above, it becomes quickly apparent that some of the one-particle form
factor contributions are subleading compared to some of the two-particle form factor contri-
butions, for ` large. This is because, as mentioned earlier in the paper, the masses of particles
4, . . . , 8 are all larger than twice the mass of particle 1. In summary, this means that, the first
six leading form-factor corrections to saturation in order of importance are

S2(`)− S2(∞) = −
2
π

3
∑

a=1

|FT |(a,1)
1 (2)|2K0(ma`)

−
1

2π2

2
∑

j=1

∫ ∞

−∞
dθ h1 j

11(θ , 0; 2)K0(2m1` coshθ/2)−
2
π
|FT |(4,1)

1 (2)|2K0(m4`)

−
1

2π2

2
∑

j=1

∫ ∞

−∞
dθ h1 j

12(θ , 0; 2)K0(`
q

m2
1 +m2

2 + 2m1m2 coshθ )− · · · (51)

where

2
∑

j=1

h1 j
1a(θ , 0; 2) =

|FT |(1,1)(a,1)
2 (θ , 0; 2)|2 + |FT |(1,1)(a,1)

2 (−θ + 2πi, 0; 2)|2 − 2|FT |(1,1)
1 (2)|2|FT |(a,1)

1 (2)|2, (52)

and we have carried out one of the integrals in (49). For m1`� 1 the leading contribution to
the first integral in (51) can be written as:

1
2π2

2
∑

j=1

∫ ∞

−∞
dθ h1 j

11(θ , 0; 2)K0(2m1` coshθ/2)≈
√

√ π

m1`

e−2m1`

4π2

2
∑

j=1

∫ ∞

−∞
dθ

h1 j
11(θ , 0; 2)
q

cosh θ2
,

(53)
and similarly for the last integral

1
2π2

2
∑

j=1

∫ ∞

−∞
dθ h1 j

12(θ , 0; 2)K0(`
q

m2
1 +m2

2 + 2m1m2 coshθ )≈

√

√ π

2m1`

e−(m1+m2)`

2π2

2
∑

j=1

∫ ∞

−∞
dθ

h1 j
12(θ , 0; 2)

4

s

1+
m2

2

m2
1
+ 2 m2

m1
coshθ

, (54)

where the remaining integrals are convergent and can be easily evaluated numerically.

3.1 Numerical computation of the one-particle form factors

Although we are now in a position to solve equations (31)-(38) and (39)-(40) and therefore
obtain explicit formulae for the one- and two-particle form factors of interest, in practice these
equations are rather cumbersome and finding exact formulae is extremely difficult (even for
n= 2). They can however be very easily solved numerically for any given value of n.

An interesting observation from solving the equations numerically is that the solution is not
unique. This is mainly due to the equations (39)-(40) which are quadratic in the one-particle
form factors. There are in fact three solutions for each value of n. This obviously poses the
question as to which of these solutions is the correct one. It also indicates that the form factor
equations allow for several twist field solutions. This is not surprising as all operators enjoying
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Figure 3: The function ∆n =
1
48

�

n− 1
n

�

(dashed line) compared to values of ∆n obtained
by evaluating the ∆-sum rule (circles) including the first 6 leading contributions to the form
factor expansion (similar to (51)).

the twist-property should have form factors satisfying the same set of equations. Among those
operators there is the branch point twist field we are interested in, but also other twist fields,
such as the composite twist fields introduced in [46] and studied in [21, 47, 48]. These are
fields which are defined (at criticality) as the leading field in the OPE of the standard branch
point twist field and any other local field of the replica theory.

Fortunately, there is one simple way of telling such composite twist fields and the twist
fields we are interested in apart: composite twist fields have form factors which do not vanish
at n= 1 whereas the twist field T must reduce to the identity field at n= 1, hence all its form
factors vanish at n = 1. Imposing this condition we find a single solution with the desired
property of having vanishing form factors at n = 1. In addition, there are certain consistency
checks that we may further apply to test this solution. A common test is the ∆-sum rule
proposed in [49] which may be written as

∆n = −
1

2〈T 〉n

∫ ∞

0

dr r〈Θ(r)T (0)〉n, (55)

where Θ(r) is the energy-momentum tensor. Employing a standard form factor expansion, it
is then possible to recover the conformal dimension of the twist field (3) from its two-point
function with the energy-momentum tensor. This computation is possible thanks once more to
the results of [39] where the form factors of the energy-momentum tensor were obtained, in
particular all one- and two-particle form factors. Fig. 3 shows the numerically obtained values
of∆n employing (55). As can be seen it is possible to compute these values also for non-integer
n as the form factors as well-defined for all values of n. It is also noticeable that the saturation
of the∆-sum rule becomes worse the larger n is. This is a rather common feature of the branch
point twist field which is due to the fact that all form factor contributions to the expansion
are proportional to n and so the weight of further form factor corrections is increased as n
increases. We have also observed that the numerical determination of the constants u(n) and
v(n) in the asymptotics (44) becomes more difficult for larger n. Both constants are the result
of the numerical integration of a decaying but wildly oscillating function which is delicate. A
less precise knowledge of the values u(n) and v(n) may well also contribute to the worsening
agreement observed in Fig. 3. Fortunately though we have very good agreement for n = 2
which both confirms the one-particle form factors are correct and shows that including the six
first contributions to the form factor expansion leads to nearly exact results.
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Figure 4: One particle form factors associated to particle 1 (circles), particle 2 (squares),
particle 3 (triangles) and particle 4 (rombi).

The first four one-particle form factors FT |(a,1)
1 (n) for a = 1,2, 3,4 are all real numbers

and their values are presented in Fig. 4. All values are rather small and, in absolute value, are
smaller the higher the particle label. In particular:

FT |(1,1)
1 (2) = −0.169286, FT |(2,1)

1 (2) = 0.0687845,

FT |(3,1)
1 (2) = −0.0336516 and FT |(4,1)

1 (2) = 0.0230515. (56)

We can also numerically determine the values of the coefficients A1a
11(n), B11

1a(n) and C11
1a (n) for

a = 1,2. For n= 2 they are:

A11
11(2) = 0.0502866, A11

12(2) = −0.0387777,

B11
11(2) = 0.0000930, B11

12(2) = 0.0002876,

C11
11 (2) = 0.0091876, C11

12 (2) = −0.0043528. (57)

With these values, it is now possible to evaluate the integrals (53)-(54):
∫ ∞

−∞
dθ

h11
11(θ , 0; 2) + h12

11(θ , 0; 2)
q

cosh θ2
= 0.100857,

∫ ∞

−∞
dθ

h11
12(θ , 0; 2) + h12

12(θ , 0; 2)

4

s

1+
m2

2

m2
1
+ 2 m2

m1
coshθ

= 0.0181714. (58)

3.2 Exact corrections to saturation

Putting together all the numerical values found in the previous section, we see that the formula
(51) may be expressed as:

S2(`)− S2(∞) = −0.0182441K0(m1`)− 0.00301205K0(m2`)

− 0.000720926K0(m3`)−
1

2π2

2
∑

j=1

∫ ∞

−∞
dθ h1 j

11(θ , 0; 2)K0(2m1` coshθ/2)

− 0.000338282K0(m4`)

−
1

2π2

2
∑

j=1

∫ ∞

−∞
dθ h1 j

12(θ , 0; 2)K0(`
q

m2
1 +m2

2 + 2m1m2 coshθ ), (59)
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where the leading contributions to the integrals are 0.00452814 e−2m1`p
m1`

and 0.00115377 e−(m1+m2)`p
m1`

,

respectively. From (59) it is clear that the one-particle form factor contributions are led by
small coefficients (as the one-particle form factors are all small numbers). However, the two-
particle contributions are characterized by even smaller coefficients and are in fact strongly
suppressed (they are essentially negligible for m1` above 1), as shown in Fig. 5. Therefore

1.0 1.5 2.0 2.5 3.0 3.5 4.0

-0.008

-0.006

-0.004

-0.002

0.000

m1{

S2H{L-S2H¥L

Figure 5: The function (51) (solid curve). The dashed curve is the contribution
−0.0182441K0(m1`), that is the leading contribution to (51). Clearly the contribution pro-
portional to K0(m1`) is leading for the full range of values of ` considered here.

the suggestion put forward in [7] that the one-particle form factors are zero and therefore
not detectable in TCSA is mistaken. In the next section we will review how this suggestion
was arrived at in [7] and clarify the origin of this apparent mismatch between TCSA and form
factor results.

4 Comparison to TCSA results

A good way to gain at least a qualitative understanding of how the TCSA results and the form
factor results compare is to display them in the same graph. This is what is shown in Fig. 6.
More precisely, the next-to-leading order corrections to the second Rényi entropy obtained

à
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à

à à
à

à
à à à à à à
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æ
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æ æ æ æ æ æ
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ì
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-0.004

-0.002

0.000

m1{

S2H{L-S2H¥L

Figure 6: The function (51) (solid curve), compared to TCSA results obtained in [7] for a
system of length m1 L = 8 (rombi), m1 L = 7 (circles) and m1 L = 6 (squares) and to the fit
(60) (dashed curve).
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from TCSA and from form factors are presented. Let us describe the data in some detail:

• The black solid line represents such corrections as are obtained from an exact form factor
calculation which includes the first six terms of the form factor expansion as shown
in equation (51). As shown in Fig. 5 out of these six contributions, the first one is
very dominant, with subsequent contributions being strongly suppressed. This suggests
that the solid curve in Fig. 6 provides a nearly exact description of the corrections to
saturation of the entropy of a subsystem of size m1` in an infinite system.

• The numerical data in the Fig. 6 represented by squares, circles and rombi are the TCSA
results for finite systems of lengths m1` = 6, 7 and 8, respectively. These are the same
data as employed in [7] but where the saturation value has been subtracted1. Since the
TCSA approach (by construction) can only deal with finite systems, the expectation is
that a match with a form factor computation will only be achieved for large system sizes
(how large will typically depend on the quantity that is being computed). Observing
Fig. 6 we can conclude that agreement with the form factor data is indeed better as
volume increases (as expected) and is already very good for the data corresponding to
m1`= 8.

• The final element of Fig. 6 is the dashed curve which depicts the function

f (`) = −0.04e−2m1`. (60)

This function is the result of fitting the numerical TCSA data corresponding to m1` = 6
with a decaying exponential2. A similar fit of the m1` = 5 data was used in [7] to
deduce the rate of decay of the exponential corrections to saturation. This fit plays an
important role as it is from this single evidence that the author of [7] concludes there
are no corrections to entanglement of the form e−m1` and therefore the one-particle form
factors must be zero.

From Fig. 6 and the points above it would seem that two contradictory conclusions follow:
the TCSA data and the form factor data agree rather well, yet the exponential decay identified
in [7] disagrees with the form factor calculation. Where does this mismatch come from?

This question is easy to answer and the answer lies in the manner in which the exponential
decay of the TCSA data was (wrongly) identified. This wrong identification is due to the fact
that the fit (60) is a good fit of the m1`= 6 data but clearly not a good fit of the larger system
size data. The correct manner of identifying the exponential decay from TCSA would have
been to first find a reasonable infinite volume extrapolation of the data and then find a fit of
that extrapolation. We would expect such a procedure to give a result much more in tune with
the form factor analysis.

5 Conclusions

In this paper we have carried out an in depth study of the second Rényi entropy in the trans-
verse field Ising model or E8 minimal Toda field theory employing the branch point twist field
approach developed in [24]. This work, follows on from a stream of works where the entan-
glement of various particular integrable models has been studied [24,25,51–54] by the same

1I would like to thank Tamás Pálmai for sharing with me these numerical data.
2This fit was carried out by Tamás Pálmai who shared it with me in private communications. The fit is alluded

to in [7] but not given explicitly there.
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method. Our results provide the fist detailed form factor study of the entanglement of an inter-
acting theory with a complicated particle content and no internal symmetries so that all twist
field form factors are non-vanishing. We have compared our results to those obtained by a
new method for the evaluation of measures of entanglement developed by T. Pálmai [7]. This
new method is based on the use of the truncated conformal space approach [29] to massive
integrable quantum field theories.

One of the motivations for this work was to check the veracity of the claim that the leading
corrections to saturation of the second Rényi entropy are not those predicted by the twist field
approach. This claim was put forward in [7] based on the analysis of some TCSA data. In
this paper we have shown that the leading corrections to saturation are indeed those expected
from a twist field form factor analysis and that there was instead a fault in the interpretation
of the TCSA data. The main conclusion about the exponential decay of entanglement had
been reached based on data for relatively small system sizes and, not surprisingly, these data
did not reproduce correctly the infinite size behaviour described by the form factor approach.
Once this point is clarified there is in fact no contraction between the form factor and TCSA
approaches and, based on the data at our disposal, we can say that they agree reasonably well
already for systems sizes of the order of m1`= 8.

We conclude from this analysis that it is actually rather difficult to correctly identify sub-
leading exponential corrections to entanglement purely from a TCSA analysis, as this requires
the ability to extrapolate numerical data to the infinite size limit with great precision. In cases
where this is possible, TCSA is a good numerical alternative to the form factor approach which,
although leading to exact results, can be hard to use in complicated models. The lengthy com-
putations needed to arrive at (51) illustrate this point rather well.
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