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Abstract

Random constraint satisfaction problems (CSP) have been studied extensively using sta-
tistical physics techniques. They provide a benchmark to study average case scenarios
instead of the worst case one. The interplay between statistical physics of disordered
systems and computer science has brought new light into the realm of computational
complexity theory, by introducing the notion of clustering of solutions, related to replica
symmetry breaking. However, the class of problems in which clustering has been stud-
ied often involve discrete degrees of freedom: standard random CSPs are random K-SAT
(aka disordered Ising models) or random coloring problems (aka disordered Potts mod-
els). In this work we consider instead problems that involve continuous degrees of free-
dom. The simplest prototype of these problems is the perceptron. Here we discuss in
detail the full phase diagram of the model. In the regions of parameter space where
the problem is non-convex, leading to multiple disconnected clusters of solutions, the
solution is critical at the SAT/UNSAT threshold and lies in the same universality class of
the jamming transition of soft spheres. We show how the critical behavior at the sat-
isfiability threshold emerges, and we compute the critical exponents associated to the
approach to the transition from both the SAT and UNSAT phase. We conjecture that there
is a large universality class of non-convex continuous CSPs whose SAT-UNSAT threshold
is described by the same scaling solution.
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1 Introduction

The exact description of the glassy phases of high-dimensional sphere systems and the discov-
ery that universal predictions at jamming match finite dimensional observations [1] has re-
newed the interest in the statistical physics of random constraint satisfaction problems (CSP)
with continuous variables. In CSPs, one seeks assignments of a set of N variables that satisfy a
system of constraints. Sphere systems clearly belong to this class: one needs to find the posi-
tions of N spheres inside a box with the conditions that the spheres do not overlap. Particularly
interesting in a statistical physics perspective is the case where the constraints are taken at ran-
dom from some ensemble [2–4]. In that case, quite generically in the limit of large systems
one observes a phase transition as the density of constraints is increased passing from a satis-
fiable (SAT) phase where admissible configurations exist to an unsatisfiable (UNSAT) phase,
where the minimum number of unsatisfied constraints is larger than zero. This SAT/UNSAT
threshold is clearly analogue to the jamming transition in soft-spheres [5,6], that separates the
low density region where spheres do not overlap from the high density one where no-overlap
configurations do not exist. The jamming transition in spheres has highly universal features,
with exponents that appear to be independent of the dimension and of the protocol used to
produce the jammed configurations [1,5–12]. While some exponents, like e.g. the ones relat-
ing the number of contacts or the pressure to the packing fraction in the UNSAT phase, take
simple semi-integer values [11], other exponents, e.g. the ones describing the distributions of
forces and the interparticle distances have non trivial, presumably non-rational values [13].

In order to understand the origin of this universality, it is important to study the SAT/UNSAT
transition in different CSP models. A crucial ingredient for jamming is the continuous nature
of variables. Jamming is the point where the volume of the set of solutions to the problem
continuously shrinks to zero, and in its vicinity scaling laws can emerge. To this aim, in [14]
it was suggested to study the random perceptron problem [15] as a prototype of a CSP with
continuous variables, generalized to a region of non-convex optimization. It was found that
the nontrivial criticality and universality of the SAT/UNSAT transition point was associated
to non-convexity. In the convex regime jamming is reached from a liquid, ergodic phase and
it is hypostatic and non-critical. In the non-convex regime jamming is reached from a glassy
phase, it is critical and in the same universality class of spheres. This led to the conjecture
that it exists a large set of continuous CSP that belong to the same universality class. The
perceptron emerges therefore as the simplest continuous CSP where glassy phenomena and
jamming can be studied. This paradigm has been fruitfully applied to study the vibrational
spectrum of glasses at low temperatures. In [16] the spectrum of the Hessian matrix of the
energy minima in the UNSAT phase of the perceptron has been computed showing that it cap-
tures essential features of the vibrations of low temperature glasses. Furthermore, in [17] it
has been shown how to study systematically the free energy landscape of the model using a
Thouless-Anderson-Palmer approach [18] to obtain, in particular, the vibrational spectrum in
the SAT phase. In [19], the avalanches characterizing the glassy phase around jamming have
also been studied. Thanks to these studies, the non-convex perceptron now emerges as the
simplest model that captures, at the mean field level, all the most important features of the
glass and jamming transitions.

The scope of this paper is to give a detailed account of the space of solutions of the random
perceptron model. In particular we carefully study the scaling behavior close to jamming,
coming both from the SAT and UNSAT phase. The paper is organized as follows. In Sec. 2 we
give a general formulation of continuous CSPs, we discuss the properties of the SAT-UNSAT
transition, and we briefly discuss the case of sphere packings to motivate some denominations
that are used throughout the paper. In Sec. 3 we define the random perceptron model, we
introduce the replica method to solve it, and we give the main equations needed for its study.
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In Sec. 4 we discuss the zero-temperature phase diagram of the model, and in Sec. 5 we
completely characterize the SAT/UNSAT transition (jamming) line and its critical properties.
Finally, we present concluding remarks and perspectives for future work.

2 Continuous constraint satisfaction problems

2.1 Thermodynamic free energy, and the space of solutions

In an abstract form continuous CSPs can be formulated in the following way: find a N -
dimensional vector ~X = {X i}i=1···N ∈ RN that satisfies the set of M constraints

hµ( ~X )> 0 , µ= 1, ..., M . (1)

The constraints are specified by some real functions hµ( ~X ) : RN → R, which can be either
deterministic or random (i.e. they may contain some quenched disorder). One can associate
this problem to an optimization one, defining a Hamiltonian function taking positive values
if at least one constraint is not satified and zero if all the constraints are satisfied. There is a
large choice for such a Hamiltonian; here in analogy with harmonic soft spheres [5]we choose

H[ ~X ] =
M
∑

µ=1

v(hµ( ~X )) =
1
2

M
∑

µ=1

hµ( ~X )
2θ (−hµ( ~X )) , v(h) =

1
2

h2θ (−h) . (2)

Other choices of v(h) can be considered, provided v(h > 0) = 0 and v(h < 0) > 0. The
analysis of the space of solutions can be performed, following Derrida and Gardner [15], from
the study of the partition function

Z =

∫

D ~X e−βH[ ~X ] =

∫

D ~X e−
β
2

∑M
µ=1 hµ( ~X )2θ (−hµ( ~X )) , (3)

where the measure D ~X may include some additional normalization constraint.
One is typically interested in the limit N →∞, with the number of constraints M scaled

appropriately to have a non-trivial limit. In this limit, a sharp SAT-UNSAT phase transition
emerges [2–4], and can be characterized by looking at the zero temperature limit of the par-
tition function. In the SAT phase, the ground state energy is equal to zero, and the partition
function reduces to the volume of the space of satisfying assignments (whose logarithm is the
entropy of solutions). The corresponding homogeneous measure on the space of the solutions
gives identical weights to all configurations that satisfy the constraints. In the UNSAT phase,
the ground state energy is non-zero and the partition function is dominated by the ground
state configurations.

One is usually interested in the free energy per particle,

f= −
T
N

log Z , (4)

where the overline indicates an average over the quenched disorder, if it is present in the
constraints. This quantity has a finite limit for N →∞ and allows one to extract easily all
the thermodynamic information; moreover, in presence of quenched disorder, the free energy
per particle is usually self-averaging [20], i.e. its fluctuations due to the disorder vanish for
N →∞. In general, f= e−Ts, where e is the thermodynamic energy and s the thermodynamic
entropy. In particular, in the SAT phase, when T → 0, e→ 0 and s has a finite limit; as a result
−βf→ s. On the contrary, in the UNSAT phase, when T → 0, e has a finite limit, and Ts→ 0,
and as a result f= e.
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Note that besides the thermodynamic (or “equilibrium”) SAT-UNSAT transition, defined as
above from the partition function in Eq. (3), one can study many other similar transitions that
happen out of equilibrium. Indeed, in the SAT phase at high enough density of constraints,
the equilibrium state of the system is a collection of distinct thermodynamic states [4]. One
can restrict the study to one of these states (also called the “state following” formalism [21–
24]) and study the SAT-UNSAT transition of the Boltzmann-Gibbs measure restricted to that
particular state. It has been shown for sphere systems that this does not change the critical
properties of the transition [24], hence in the following we restrict our study to the equilibrium
setting.

2.2 Distribution of gaps

Besides the free energy and its derived quantities, another interesting observable, in particular
in the context of jamming, is the probability distribution of “gaps”. In fact, it has been shown
that this quantity encodes important information about the marginal stability of jammed con-
figurations that we are going to discuss below [7].

A gap variable is just a constraint function hµ( ~X ) – the name “gap” originates from the
fact that hµ = 0 corresponds to a constraint being on the verge of becoming unsatisfied (or
a “contact”), and the value of hµ is thus the distance (“gap”) to this configuration. The gap
probability distribution ρ(h) is defined as

ρ(h) = 〈ρ̂(h)〉 , ρ̂(h) =
1
M

M
∑

µ=1

δ(h− hµ( ~X )) , (5)

where the brackets denote a thermodynamical average, while the overline denotes an average
over quenched disorder, if present. From ρ(h) one can derive

z ≡
∫ 0

−∞
dhρ(h) , (6)

which is the average fraction of unsatisfied constraints, or fraction of contacts. To compute
the distribution of gaps, we note that the partition function can be written as

Z =

∫

D ~X e−βH[ ~X ] =

∫

D ~X eM
∫

dhρ̂(h)[−β v(h)] . (7)

Hence, because −βf= log Z/N , we get

df
dv(h)

=
1
N

d log Z
d[−β v(h)]

= α〈ρ̂(h)〉= αρ(h) . (8)

In the SAT phase, there are no unsatisfied constraints, and ρ(h) = 0 for h < 0, so that z = 0,
while in the UNSAT phase ρ(h) is non-zero for h < 0 and z > 0. A particularly important
quantity is the limit value of z when one approaches the SAT-UNSAT transition coming from the
UNSAT phase where z > 0. This limit is usually strictly positive, hence z jumps discontinuously
at the transition. If this limiting value is such that the number of unsatisfied constraints is
exactly equal to the number of degrees of freedom, i.e. Mz = N , then the system is said to
be isostatic [6]. We can therefore define an isostaticity index c = (M/N)z, which is equal to
1 if the system is isostatic. More generally, the system is said to be hypostatic, isostatic or
hyperstatic whenever the total number of violated constraints is less (c < 1), equal (c = 1) or
higher (c > 1) than the total number of degrees of freedom.
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We will be particularly interested in observables of the form

O [ ~X ] = M−1
M
∑

µ=1

O (hµ)θ (−hµ), (9)

that are functions of the negative gaps. We define the thermodynamic and disorder average

[O (h)] = 〈O 〉 ≡
1
M

M
∑

µ=1

〈O (hµ)θ (−hµ)〉=
∫

dhρ(h)O (h)θ (−h) . (10)

Special cases of this class of observables are the thermodynamic energy e =



H[ ~X ]
�

/N , the
“pressure” p, and the fraction of contacts:

z = [1] , p = −[h] , e = α[v(h)] = α[h2]/2 . (11)

2.3 Some consequences of isostaticity: force distribution and soft modes

We now formulate in our abstract continuous CSP setting some well-known consequences of
isostaticity [8,10], i.e. the condition that the number of unsatisfied constraints is equal to the
number of degrees of freedom, and c = 1. We omit for notational simplicity the ~X -dependence
of the gaps hµ and we define, with respect to the Hamiltonian given in Eq. (2):

Fi = −
dH
dX i
=

M
∑

µ=1

[−hµθ (−hµ)]
dhµ
dX i

=
∑

µ∈C
Sµi fµ ,

fµ = −hµθ (−hµ) ,

Sµi =
dhµ
dX i

,

(12)

where the set of “contacts” C = {µ : hµ < 0} is the set of unsatisfied constraints, of size
|C | = Mz = Nc, the matrix S has dimension Mz × N , and the “contact force” vector ~f has
dimension Mz because we consider only the non-zero components fµ. We therefore have
~F = S T ~f . At zero temperature, we are especially interested in minima of the Hamiltonian,
which correspond to vanishing “total forces” ~F = S T ~f = ~0. Furthermore, one is often inter-
ested in the small harmonic vibrations around a minimum, which are described by the Hessian
matrix

Hi j =
d2H

dX idX j
=
∑

µ∈C

dhµ
dX i

dhµ
dX j

+
∑

µ∈C
hµ

d2hµ
dX idX j

. (13)

It is particularly interesting to consider the above structure in the jamming limit, i.e. at
the SAT-UNSAT transition. Note that “contacts”, i.e. constraints for which hµ < 0 in the
UNSAT phase close to the transition, must then become marginally satisfied, i.e. hµ = 0,
right at the transition. Moreover, the average contact force is proportional to the pressure,
|C |−1

∑

µ∈C fµ = −[h]/[1] = p/[1], which indeed vanishes at jamming. For contacts, one can
thus define scaled forces f s

µ = [1] fµ/p, that remain finite at the jamming transition. These

scaled forces still satisfy the condition S T ~f s = 0, where the matrix S is calculated at the
jamming point. Although by definition bothS and ~f are fully determined by the configuration
~X , one can ask in general how many solutions ~f toS T ~f = ~0 can be found, for fixedS . Because
this is a linear equation, for hypostatic systems (c < 1) there are in general no solutions, while
for hyperstatic systems (c > 1) there are in general N(c−1) solutions, and for isostatic systems
(c = 1) there is a single solution. Therefore, for an isostatic system, the vector of scaled forces
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must necessarily coincide with the unique solution of S T ~f s = ~0. This is particularly useful
for numerical calculations, because the force vector vanishes at jamming and it is therefore
difficult to evaluate the scaled forces with high precision, while the matrix S remains finite
and determining its unique zero mode requires much lower precision [10]. Moreover, while in
the SAT phase in principle the contact forces vanish, one can still define effective contact forces
by following the procedure outlined in [25]. Then, one finds that the scaled contact forces also
converge to the zero mode of S when approaching jamming from the SAT phase. Finally, one
can consider the Hessian matrix at jamming. The second term in Eq. (13) vanishes because
hµ = 0 for contacts, and therefore H = S TS . From this one can deduce that in general H
has N(1 − c) zero modes for hypostatic systems, while it has no zero modes for hyperstatic
systems; therefore at jamming, which separates the two situations, one finds a large number
of very small eigenvalues of the Hessian (“soft modes”) [8].

We have seen in this section that, for general continuous CSPs, isostaticity at jamming
implies that the contact forces are fully determined by the matrix S , that also determines
the soft modes of the Hessian. This mathematical structure has many other interesting con-
sequences. We will not provide further details on these aspects. The interested reader can
consult Ref. [10, Supplementary Information] for a detailed review of the properties of S in
the context of spheres, Ref. [16] for a study of the Hessian in the perceptron, and Ref. [7, 8]
for a discussion of soft modes in sphere packings.

2.4 Sphere packing as a constraint satisfaction problem

In order to motivate the interest for the observables discussed above (and their names), we
discuss here more explicitly the sphere packing problem and its formulation as a continuous
CSP. The d-dimensional sphere packing problem is indeed a special case of the general setting
discussed above. One considers n points in a d dimensions volume, ~x i ∈ V ⊂ Rd , i = 1, · · · , n,
hence the total number of degrees of freedom is N = dn. There are M = n(n−1)/2 constraints
corresponding to all possible distinct particle pairs µ= 〈i, j〉 (e.g. with i < j), of the form

hµ( ~X ) = |~x i − ~x j| −σi j , σi j =
σi +σ j

2
. (14)

In this case, σi can be interpreted as the diameter of particle i, and then h〈i, j〉 is precisely
the physical gap between particles i, j. In particular, if h〈i, j〉 < 0, then the two particles i, j
overlap and thus feel a repulsive interaction. This justifies the name “gap” given to hµ, and the
name “fraction of contacts” given to z. Note that the fraction of contacts defined in Eq. (6) is
normalized to the total number of constraints; in particle systems, it is customary to consider
instead the average number of contacts per particle,

zp =
2Mz

n
=

2Nc
n
= 2d c . (15)

Hence, an isostaticity index c = 1 corresponds to zp = 2d contacts per particle. The Hamil-
tonian H[ ~X ] in Eq. (2), with the choice v(h) = h2θ (−h)/2, is precisely the Hamiltonian of a
system of soft harmonic repulsive spheres [5, 6]; the partition function in Eq. (3) is the ther-
modynamical canonical partition function of the model, and f the associated free energy per
particle. The distribution of gaps is simply related to the “radial distribution function” of the
particle system, and the average gap is related to the pressure. Finally, fµ defined in Eq. (12)
is precisely the modulus of the contact force associated to the particle pair 〈i j〉, and the ma-
trix S encodes the network of contacts in the particle packing [10]. In this case, one is then
interested in the limit n, |V | →∞ with fixed density n/|V |.

Note that in this case, in the SAT phase at T → 0, the Boltzmann-Gibbs measure becomes a
uniform measure over all the configurations satisfying the non-overlapping constraint, which
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coincides with the equilibrium Boltzmann-Gibbs distribution of a system of hard spheres. In
the UNSAT phase (which cannot exist for hard spheres) there are overlaps and, at zero tem-
perature, one has instead a mechanically stable assembly of soft repulsive spheres.

In the sphere packing problem, at least when σi j = σ (all particles are identical), there
is an additional complication because, even within the SAT phase, the system can form a
crystal, a phase in which the particles are arranged over a regular lattice in Rd . Crystals
are usually denser than disordered arrangements, and therefore the SAT-UNSAT transition
usually happens within the crystal phase, although the situation is somewhat uncertain in large
dimensions [26]. In this case, the SAT-UNSAT transition (also called “close packing” point) has
very different properties with respect to the same transition in disordered assemblies. Yet, one
can restrict to the study of disordered configurations and in that case the SAT-UNSAT transition
(also called “jamming transition” or “random close packing” in this case) has robustly universal
critical properties [6,27].

3 Definition of the model and basic equations

Following [14], in this paper we want to study the properties of the simplest continuous CSP
that exhibits a phenomenology similar to that of spheres (once one restricts to their disor-
dered phase). While spheres do not have quenched disorder (the constraints are deterministic
functions), the perceptron model has quenched disorder. The presence of quenched disorder
eliminates any possible crystal phase and one can then study the equilibrium properties of the
model in the disordered phase. Before getting into the study of the phase diagram, and its
critical properties at the SAT-UNSAT transition, in this section we give the basic definition of
the model and the main equations needed for its study.

3.1 Definition of the model and free energy

The perceptron model, on which we concentrate in the rest of this paper, is defined by the
linear functions

hµ( ~X ) =
1
p

N
~X · ~ξµ −σ, (16)

with the normalization ~X · ~X = N . The vectors ~ξµ, that following the neural network litera-
ture [15] we call “patterns”, have components ξµi which are independent Gaussian variables
of zero average and unit variance. The partition function reads

Z =

∫

D ~X e−βH[ ~X ] =

∫

D ~X
M
∏

µ=1

�∫

drµe−β v(rµ−σ)δ
�

rµ − N−1/2 ~X · ~ξµ
�

�

, (17)

where the measure D ~X contains the constraint ~X · ~X = N , i.e. it is the uniform measure on
the N -dimensional sphere of radius

p
N . For positive σ the model can be interpreted as a

classifier of the random patterns ~ξµ, and defines a convex optimization problem. For negative
σ the model cannot be interpreted as a classifier. It still is a legitimate CSP, but it is non-
convex. It has been observed in [14] that this is the interesting regime to describe jamming
and glassy phases. In both cases one considers the thermodynamic limit N , M →∞ for values
of α= M/N fixed.

The disorder average of the free energy can be computed via the replica method:

f= −
T
N

log Z = −
T
N

lim
n→0

∂nZn . (18)
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The free energy f is obtained through standard manipulations [20] from the expression of Zn

for integer n. At the end of a computation sketched in Appendix A, the free energy can be
written as a saddle point over the n× n “replica overlap matrix”

Qab =
1
N
〈 ~Xa · ~X b〉 , (19)

where ~Xa are replicas of the configurations of the system. Notice that the spherical contraint
on the ~X implies Qaa = 1. The explicit expression for the free-energy is

f= −T lim
n→0

s.p.∂nS(Q) , (20)

where s.p. denotes the saddle point over the values Qab and

S(Q) =
1
2

logdetQ+α log

 

e
1
2

∑n
ab Qab

∂ 2
∂ ha∂ hb

n
∏

a=1

e−β v(ha)

�

�

�

�

�

ha=−σ

!

(21)

is the replicated free energy. The saddle point equation for Qab, a 6= b, is thus

0=
�

Q−1
�

ab +αβ
2〈v′(ha)v

′(hb)〉 (22)

where we have defined

〈O(ha, hb, . . .)〉=

e
1
2

∑n
ab Qab

∂ 2
∂ ha∂ hb O(ha, hb, . . .)

∏n
a=1 e−β v(ha)

�

�

�

�

ha=−σ

e
1
2

∑

ab Qab
∂ 2

∂ ha∂ hb
∏n

a=1 e−β v(ha)

�

�

�

�

ha=−σ

. (23)

Finding the solution of such kind of equations is an extremely difficult task. Furthermore, once
the solution is found a sensible analytic continuation down to n→ 0 must be taken, which is an
additional complication. The solution to both difficulties is provided by the use of hierarchical
matrices. Here we do not review in detail this construction, which can be found in several
reviews, e.g. [20].

3.2 Hierarchical ansatz for the saddle point solution

The general solution of Eq. (23), in the limit n → 0, is given in terms of a continuous Parisi
hierarchical matrix. In this case the matrix Qab is parametrized by a function q(x) in the
interval x ∈ [0,1] whose general form is plotted in Fig. 1. For a hierarchical matrix, the first
term of S(Q) reads [28]

lim
n→0

1
n

log detQ = log(1− qM ) +
qm

λ(0)
+

∫ 1

0

dx
q̇(x)
λ(x)

, (24)

where the dot denotes differentiation with respect to x , and

λ(x) = 1− xq(x)−
∫ 1

x
dy q(y) . (25)

Note that λ̇(x) = −xq̇(x), and therefore when q(x) is constant also λ(x) is constant; further-
more, λ(0) = λ(xm) = 1−

∫ 1
0 dxq(x), while λ(1) = λ(xM ) = 1− qM . The second term can be

written as [29]

lim
n→0

1
n

log e
1
2

∑

ab Qab
∂ 2

∂ ha∂ hb

∏

a

e−β v(ha)

�

�

�

�

�

ha=−σ

= γqm
? f (0, h)|h=−σ, (26)
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qm

xm xM0

q(x)

x

qM

fullRSB

1

Figure 1: The expected form of the function q(x) in the fullRSB phase.

where we have defined the convolution

γq ? g(h) =

∫ ∞

−∞

dy
p

2πq
e−

y2

2q g(h− y). (27)

The function f (x , h) verifies the Parisi equation (the dot represents a x-differentiation, while
the prime a h-differentiation):

ḟ (x , h) = −
1
2

q̇(x)
�

f ′′(x , h) + x f ′(x , h)2
�

, xm < x < xM , (28)

while for x /∈ [xm, xM ] one has q̇(x) = 0 and ḟ (x , h) = 0, hence f (x , h) is independent of x .
The boundary condition for f (x , h) at x = 1 (or, equivalently, at x = xM ) is:

f (1, h) = logγ1−qM
? e−β v(h) . (29)

It is useful to introduce the inverse function of q(x), called x(q), which is defined for
q ∈ [qm, qM ]where qm and qM are defined in Fig. 1. Defining f (q, h)≡ f (x(q), h), Eqs. (28,29)
become

¨

f (qM , h) = logγ1−qM
? e−β v(h)

ḟ (q, h) = −1
2

�

f ′′(q, h) + x(q) f ′(q, h)2
�

, qm < q < qM .
(30)

where now the dot represents q-differentiation. Thus, for a given function x(q) and qm and
qM we can solve Eq. (30) to compute f (q, h). Then the replicated free energy computed on
this particular function is

−βf[x(q)]≡ lim
n→0

∂nS(Q) =
1
2

�

log(1− qM ) +
qm

λ(qm)
+

∫ qM

qm

dq
λ(q)

�

+αγqm
? f (qm, h)|h=−σ ,

(31)
where we have introduced λ(q) = λ(x(q)), given by

λ(q) = 1− qM +

∫ qM

q
dp x(p) . (32)

The next step is to find the variational equations for the function x(q), or equivalently q(x).
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3.3 Variational equations

In order to obtain the equations that determine the function x(q) we need to impose that the
function f (q, h) that appears in Eq. (31) satisfies Eq. (30). A simple way to impose Eq. (30) is
to add a Lagrange multiplier P(q, h) to s[x(q)]. The new variational free energy thus becomes

−βf[x(q)] =
1
2

�

log(1− qM ) +
qm

λ(qm)
+

∫ qM

qm

dq
λ(q)

�

+αγqm
? f (qm, h)|h=−σ

−α
∫

dh P(qM , h) [ f (qM , h)− logγ1−qM
? e−β v(h)] (33)

+α

∫

dh

∫ qM

qm

dq P(q, h)
§

ḟ (q, h) +
1
2

�

f ′′(q, h) + x(q) f ′(q, h)2
�

ª

.

Taking the variational equation with respect to P(qM , h) and P(q, h) gives back Eq. (30).
Now we can take the variational equations with respect to f (q, h), f (qm, h), and x(q) [20].
The resulting equations are:

¨

P(qm, h) = γqm
(h+σ)

Ṗ(q, h) = 1
2

�

P ′′(q, h)− 2x(q)(P(q, h) f ′(q, h))′
�

, qm < q < qM ,
(34)

and
qm

λ(qm)2
+

∫ q

qm

dp
1

λ(p)2
= α

∫

dhP(q, h) f ′(q, h)2 . (35)

Note that P(q, h) is normalised to 1 for all q. Whenever x(q) has a continuous part (i.e.
ẋ(q) 6= 0), one can differentiate Eq. (35) w.r.t. q; the first and second derivatives lead, respec-
tively, to explicit expressions of λ(q) and x(q) as functions of f (q, h) and P(q, h):

1
λ(q)2

= α

∫

dhP(q, h) f ′′(q, h)2 , (36)

and

x(q) =
λ(q)

2

∫

dhP(q, h) f ′′′(q, h)2
∫

dhP(q, h)[ f ′′(q, h)2 +λ(q) f ′′(q, h)3]
. (37)

We stress once again that Eqs. (36) and (37) only hold whenever ẋ(q) 6= 0.

3.4 Iterative solution of the saddle point equations

The thermodynamic value of the free-energy at given values of the parameters (σ,α) can be
obtained from the numerical solution of the variational equations. This can be obtained by
iteration according to the following procedure:

1. Start with a guess for x(q), qm ≤ q ≤ qM;

2. Use Eqs. (30) and (34) to obtain an estimate of f (q, h) and P(q, h);

3. Get qm from the ratio of Eqs. (35) and (36), computed in q = qm;

4. Obtain a new guess for qM from Eqs. (36) and (32) computed in q = qM;

5. Use Eq. (32) to obtain λ(q) and Eq. (37) to obtain x(q);

6. Iterate from 2 until convergence.

The numerical solution of the partial differential equations (30) and (34) can be obtained
by discretizing the profile x(q) through a stepwise function with K steps (this is known as the
KRSB approximation) and then increasing K until convergence. The details of this procedure
are described in Appendix B.

11

https://scipost.org
https://scipost.org/SciPostPhys.2.3.019


SciPost Phys. 2, 019 (2017)

3.5 Distribution of gaps and contacts

From the general relation in Eq. (8), and using Eq. (33) we get

ρ(h) =
1
α

df
dv(h)

= e−β v(h)

∫

dzP(qM , z)e− f (qM ,z)γ1−qM
(z − h) . (38)

Note that ρ(h) is correctly normalized so that
∫

dhρ(h) = 1. Note also that for an observable
that is a function of the gaps, we have from Eq. (10):

[O ] =
∫

dhρ(h)O (h)θ (−h) =

∫

dhP(qM , h)
γ1−qM

? [e−β v(h)O (h)θ (−h)]

γ1−qM
? e−β v(h)

. (39)

In particular the fraction of contacts is given by

z =

∫

dhρ(h)θ (−h) =

∫

dh P(qM , h)
γ1−qM

? [e−β v(h)θ (−h)]

γ1−qM
? e−β v(h)

. (40)

4 The zero temperature phase diagram

The formulae derived in Sec. 3 hold for any value of the control parameters: the density of
constraints α, the parameter σ that enters into the constraints, and the inverse temperature
β . As a function of these control parameters, the order parameter function q(x) has different
forms, giving rise to several distinct phases and phase transitions. To simplify the study of this
phase diagram, here we specialise to the zero temperature limit where a sharp SAT-UNSAT
(or, equivalently, jamming) phase transition is found. Note that at finite temperature there is
always a finite probability of violating some constraint, and the transition is smoothed out.
The zero temperature phase diagram of the perceptron has been discussed for σ ≥ 0 in [15],
and for σ < 0 (but |σ| not too large) in [16]. Here, we discuss the complete phase diagram
for all values of σ and α, with the result given in Fig. 3, and characterize all the phases and
phase transitions that appear.

4.1 The replica symmetric ansatz

The solution of replica equations like the ones derived in Sec. 3 is usually obtained through
a series of steps. One starts by the simplest possible solution, called the “replica symmetric”
(RS) solution. It corresponds to a constant q(x) = qM , in which case the matrix Qab = qM
for all a 6= b. Because q̇(x) = 0, one also has f (q, h) = f (qM , h) = logγ1−qM

? e−β v(h) and
P(q, h) = P(qM , h) = γqM

(h+σ). Thus, at the RS level we have

−βfRS(qM ) =
1
2

�

log(1− qM ) +
qM

1− qM

�

+αγqM
? f (qM , h)|h=−σ . (41)

When we take the zero temperature limit of this expression, we need to specify whether we
are in a SAT or UNSAT phase. We should note that the RS ansatz amounts to assume that the
space of solutions form a unique connected component, or equivalently that the free energy
has a single minimum [4, 20]. In the SAT phase the value of qM remains finite for T → 0:
because qM measures the similarity between two solutions, when the volume of the space of
solutions is finite, two typical solutions differ and thus qM < 1. Instead, in the UNSAT phase,
under the assumption that there is a unique minimum, all the replicas converge towards the
same state when T → 0 and therefore one has q→ 1 in that limit.
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4.1.1 The SAT phase

Taking the zero temperature limit with constant qM < 1, we get

f (qM , h) = lim
β→∞

logγ1−qM
? e−β v(h) = logγ1−qM

? θ (h)

= log

∫ h

−∞

dz
p

2π(1− qM )
e−

z2

2(1−qM ) ≡ logΘ

�

h
p

2(1− qM )

�

≡ fSAT(qM , h) ,
(42)

where

Θ(x) =
1
2
(1+ erf(x)) . (43)

Note that in this case the function −βfRS(qM ) in Eq. (41) has a finite limit for T → 0, which
gives the entropy of the system, s(qM ) = limT→0[−βfRS(qM )], i.e. the logarithm of the volume
of the space of solutions.

The saddle point equation for qM can be obtained either by taking the derivative of Eq. (41)
with respect to qM or by considering explicitly the RS ansatz in Eq. (35). In the last case we
obtain

qM

(1− qM )2
= α

∫ ∞

−∞

dh
p

2πqM
e−

(σ+h)2
2qM

�

d
dh

logΘ

�

h
p

2(1− qM )

��2

. (44)

One can solve Eq. (44) numerically, and in the SAT phase it is found, as expected, that qM < 1.
Within this solution, the SAT-UNSAT transition point is reached when qM → 1. Taking this
limit in Eq. (44), using the asymptotic properties of the error function, we get the equation for
the critical satisfiability threshold αJ (σ) within the replica symmetric ansatz:

αJ(σ) =

�∫ σ

−∞

dh
p

2π
e−

h2
2 (h−σ)2

�−1

. (45)

Forσ > 0, our optimization problem is convex, the RS solution is always stable (see Sec. 4.1.3),
and Eq. (45) gives the correct result for the SAT-UNSAT transition line [15], as shown in Fig. 3.

4.1.2 The UNSAT phase

Within the RS ansatz, in the UNSAT phase, there is a unique energy minimum and the free
energy converges to its energy. Correspondingly, qM → 1. At very low temperature, the sys-
tem performs harmonic vibrations around that minimum, and in that case one can show that
qM = 1 − χT + O(T2). We thus take the T → 0 limit with 1 − qM = χT → 0 at the same
time. Plugging this scaling in f (qM , h) = logγ1−qM

? e−β v(h), with v(h) = h2θ (−h)/2, we get
at leading order in β (see Appendix C)

f (1−χ/β , h)' −
βh2

2(1+χ)
θ (−h) , (46)

Therefore, the ground state energy is

eRS = lim
T→0

fRS(qM = 1−χT ) = −
1

2χ
+

α

2(1+χ)

∫ σ

−∞

dh
p

2π
e−

h2
2 (h−σ)2 . (47)

and the saddle point equation for χ is given by

1
χ2
=

α

(1+χ)2

∫ σ

−∞

dh
p

2π
e−

h2
2 (h−σ)2 ⇔

�

1+
1
χ

�2

=
α

αJ (σ)
, (48)
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Figure 2: Isostaticity index c on the jamming line, computed on the RS solution for σ ≥ 0, and
on the fullRSB solution for σ < 0. The system is hypostatic for σ > 0 and isostatic for σ ≤ 0.

where αJ (σ) is given in Eq. (45). Eq. (48) has a solution for χ only for α > αJ (σ), which
indeed defines the UNSAT phase. In the SAT phase, qM remains less than one for T → 0, while
in the UNSAT phase we have qM = 1 − χT . To match the two scalings, when α → αJ (σ)
from the UNSAT phase, we should have that χ →∞, which indeed follows from Eq. (48).
Furthermore, inserting the saddle point equation (48) in the expression of the energy Eq. (47),
we obtain

eRS =
1

2χ2
=

1
2

�√

√ α

αJ (σ)
− 1

�2

. (49)

For fixed σ and α= αJ(σ) +δα, Eq. (48) shows that χ−1 ∼ δα when δα→ 0, and therefore,
close to the jamming line, the energy goes as e ∼ δα2. A similar result is obtained at fixed α
as a function of δσ: the energy always scales as the square of the distance from the jamming
line.

Plugging the RS ansatz in Eq. (40), and using the asymptotic scaling of f (qM , h) in Eq. (46),
one gets the fraction of contacts in the UNSAT phase (at the replica symmetric level):

z =

∫ 0

−∞

dh
p

2π
e−

(h+σ)2
2 = Θ

�

σ
p

2

�

. (50)

The isostaticity condition is c = αz = 1, and the isostaticity index c is reported in Fig. 2 along
the jamming line. For σ > 0 the system is hypostatic on the jamming line, while it becomes
isostatic at σ = 0 [16].

4.1.3 Stability of the RS solution

After the RS solution, and the associated phase diagram, has been discussed, one should in-
vestigate the stability of this solution towards replica symmetry breaking (RSB). RSB can be
associated to a continuous de Almeida-Thouless (dAT) instability [20], or to the discontinuous
appearance of a RSB solution, usually called a “Random First Order Transition” (RFOT) [30].
In this section we concentrate on the first mechanism, which is the relevant one for the tran-
sition in the UNSAT region and in the SAT region at moderately negative values of σ.
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The dAT continuous instability of the RS solution can be discussed by computing the eigen-
values of the Hessian matrix, defined as [20]

Hab;cd =
d2S[Q]

dqabdqcd

�

�

�

�

qa 6=b=qM

(51)

on the RS saddle point solution qa 6=b = qM , where qM satisfies the RS saddle point equation.
The continuous breaking of replica symmetry is associated to the vanishing of an eigenvalue
of the Hessian matrix.

Here, instead of computing explicitly the eigenvalues of Hab;cd , we follow an equivalent
procedure that makes use of the fullRSB equations derived in Sec. 3. Replica symmetry break-
ing means that the function q(x) is not a constant; continuous RSB means that q(x) becomes
non-constant in a continuous way, and therefore close to the instability q(x) is very close to a
constant. Usually, the deviation from a constant is localized around a particular point x . We
thus assume that there is a single value of x where q̇(x) is continuously becoming different
from zero. Slightly in the unstable phase, around this point x , Eq. (36) holds. Upon ap-
proaching the instability point from the unstable phase, the function q(x) tends to a constant
and Eq. (36) reduces to its expression computed on the RS solution:

1
(1− qM )2

= α

∫ ∞

−∞
dhγqM

(h+σ)

�

d2

dh2
lnγ1−qM

? e−β v(h)

�2

. (52)

This expression, computed on the value of qM that satisfies the RS saddle point equation,
gives a condition on (α,σ) that must be satisfied at the dAT instability, hence defining the
instability line αdAT(σ) in the phase diagram. Note that computing Eq. (37) on this line gives
the “breaking point”, i.e. the value of x at which the instability occurs.

In the SAT phase (T → 0 at finite qM ), Eq. (52) reduces to

1
(1− qM )2

= α

∫ ∞

−∞
dhγqM

(h+σ)

�

d2

dh2
lnΘ

�

h
p

2(1− qM )

��2

. (53)

In the UNSAT phase (T → 0 with qM = 1−χT), it instead becomes

1
χ2
=

α

(1+χ)2

∫ σ

−∞

dz
p

2π
e−z2/2 , (54)

and using Eq. (48) that gives the value of χ, we get that the transition line corresponds to
σ = 0, ∀α > αJ(σ = 0) = 2. Thus, there are two dAT transition lines where replica symmetry
spontaneously breaks, one in the SAT and one in the UNSAT phase; they are reported in Fig. 3.
An important conclusion of this study, which is consistent with Ref. [15], is that in the whole
region σ > 0 the RS solution is stable; in particular, in that region the jamming transition
happens in the RS phase and the system is hypostatic at jamming.

4.2 The nature of the RSB phase

We have seen in Sec. 4.1.3 that replica symmetry must be spontaneously broken in the region
delimited by the dAT instability, reported in the phase diagram of Fig. 3. We now characterize
the nature of the RSB transition and of the broken symmetry phase. We follow a recipe based
on experience with this kind of transitions, along the following logical steps:

1. The first step is to determine the point at which the RS solution is unstable; this is the dAT
line αdAT(σ) determined in Sec. 4.1.3. At the dAT line, the function q(x) is not constant
anymore. As mentioned in Sec. 4.1.3, the breaking point m of the RSB solution, i.e. the
point x = m where q̇(x) becomes different from zero, can be computed plugging the RS
ansatz into Eq. (37).
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2. The next step is to evaluate whether m< 1 or m> 1. In fact, because the function q(x)
is defined for x ∈ [0, 1], a consistent RSB solution requires m< 1. If this is not the case,
then the dAT line cannot be a transition line, it must be preceded by a discontinuous
transition of the RFOT kind. In fact one can show that the case m = 1 separates the
two regimes. When m= 1, the dAT instability splits into two RFOT-like transition lines:
a “dynamical transition” where a 1RSB solution appears discontinuously but the free
energy remains analytical, and a Kauzmann (or condensation) transition which corre-
sponds to a true phase transition to a spin glass phase [4, 30]. We will discuss further
this situation in Sec. 4.3.

3. If m < 1, the dAT instability corresponds to a true continuous phase transition between
a “paramagnetic” RS and a “spin glass” RSB phase. However, the dAT instability can
give rise either to a fullRSB phase, with a continuous q(x) for x ∈ [xm, xM ], or to a
1RSB phase, with xm = xM = m and q(x) = qm for 0 < x < m and q(x) = qM for
m < x < 1. To determine which one is the case, the final step is to investigate the
value of q̇(m). In fact, a fullRSB solution requires q̇(m) > 0, because q(x) must be an
increasing function1 of x . If this is not the case, then the transition is a continuous
transition to a 1RSB solution. To compute q̇(m), we derive Eq. (37), expressed as a
function of x , with respect to x . We get

q̇(x) =

�

λ3(x)

�

α

2

∫

dhP(x , h)A(x , h)−
3x2

λ4(x)

��−1

,

A(x , h) = f ′′′′(x , h)2 − 12x f ′′(x , h) f ′′′(x , h)2 + 6x2 f ′′(x , h)4 .

(55)

By evaluating Eq. (55) on the RS solution, with x = m, we obtain the desired result.

These steps can be performed for both dAT instabilities, in the SAT and UNSAT phases, leading
to a full characterization of the RSB transition.

4.2.1 The SAT phase

In the SAT phase, the breaking point is

m=
1− qM

2

∫

dhγqM
(h+σ) f ′′′SAT(qM , h)2

∫

dhγqM
(h+σ) f ′′SAT(qM , h)2

�

1+ (1− qM ) f ′′SAT(qM , h)
� , (56)

where fSAT(qM , h) is defined in Eq. (42), and qM is the solution of the saddle point equation
(44) computed at α = αdAT(σ). A numerical evaluation of m as a function of σ < 0, on the
dAT line in the SAT phase, shows that close enough to σ = 0 one has m< 1, while m increases
upon decreasing σ towards more negative values. At σ = σRFOT one has m = 1. Beyond that
point, for σ < σRFOT, one has m > 1 and the transition becomes discontinuous, in the RFOT
universality class. In order to compute the properties of the phase diagram for σ < σRFOT we
need to study the 1RSB solution more carefully, see Sec. 4.3.

Furthermore, the analysis of q̇(m) on the same transition line shows that close enough to
σ = 0, for σ > σ1RSB, one has q̇(m)> 0 and the dAT instability leads to a fullRSB phase, while
for σ ∈ [σRFOT,σ1RSB] one has q̇(m) < 0 and the instability leads to a continuous transition
from a RS phase towards a 1RSB phase. These results are shown in the phase diagram of
Fig. 3.

1See [31] for an attempt of interpreting decreasing solutions in the replica formalism.
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4.2.2 The UNSAT phase

Defining

F (x)≡ ln

∫ ∞

−∞

dz
p

2πχ
exp

�

−
(x − z)2

2χ
−

1
2

z2θ (−z)

�

, (57)

in the zero temperature limit in the UNSAT phase the breaking point is

m'
p

Tχ(1+χ)3
∫

dx
p

2π
F ′′′(x)2 ≡ m̂

p
T . (58)

The breaking point thus tends to zero proportionally to
p

T , and therefore in the UNSAT phase
the dAT instability always leads to a consistent continuous phase transition (a discontinuous
transition is never present in this case). We remark that the scaling of the breaking point along
the dAT line, m∝

p
T , is different from the one observed in the Sherrington-Kirkpatrick model

in the zero temperature limit, where instead the breaking point remains finite. The origin of
this difference will be clarified in Sec. 5.

Moreover, the zero temperature limit of the slope q̇(m) at the breaking point, in the UNSAT
phase, is given by

q̇(m)'
�

αχ3

2
1
p

T

∫

dx
p

2π
F ′′′′(x)2

�−1

≥ 0 , (59)

which is of order
p

T and always positive. This implies that the dAT instability line in the
UNSAT phase is a transition from a RS solution to a fullRSB one [16], see Fig. 3. We will see
in Sec. 5 that the scaling with T of both m and q̇(m) is in perfect agreement with the complete
scaling form of q(x) in the UNSAT phase.

4.3 The 1RSB free-energy in the SAT phase

In Sec. 4.2 we have shown that for σ < σRFOT the solution for q(x) in the SAT phase becomes
of the RFOT type (i.e. a discontinuous 1RSB solution) [30]. In order to characterize this part
of the phase diagram we need to consider explicitly a general 1RSB ansatz. The 1RSB free
energy is characterized by three numbers q0 = qm, q1 = qM and m, the function q(x) being
equal to qm for x ∈ [0, m] and to qM for x ∈ [m, 1] (see Appendix B for a general KRSB
solution). At zero temperature, in the SAT phase where both q0 < 1 and q1 < 1, the function
−βf[x(q)] has a finite limit, which coincides with the 1RSB entropy, given by

s1RSB(q1, q0, m) =
m− 1
2m

log(1− q1) +
1

2m
log(1+m(q1 − q0)− q1) +

q0

2(1+m(q1 − q0)− q1)

+
α

m

∫

dt
p

2πq0

e−
t2

2q0 log

�

γq1−q0
? Θm

�

t −σ
p

2(1− q1)

��

. (60)

The variational equations always admit the RS solution q1 = q0. For any given σ this is
the unique solution for sufficiently small α. For fixed σ < σRFOT and upon increasing α,
there is a point, called the dynamical transition αdyn(σ), where a non-trivial solution with
q1 6= q0 appears for m → 1. We do not discuss in details the properties of this transition,
for which we refer to [4, 30, 32]. In short, at αdyn(σ) the Boltzmann-Gibbs measure on the
space of solutions splits into an exponential number of clusters of solutions [4]. These clusters
can be classified according to their internal entropy that measures their typical size. At the
dynamical transition point, the clusters that dominate the Boltzmann-Gibbs measure are the
most numerous ones, meaning the ones with higher complexity (or configurational entropy).
It is important to note that the free energy remains analytic upon crossing αdyn(σ), which is
thus not a thermodynamic phase transition [4,30]. Increasing α, the complexity of the relevant
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Figure 3: The zero temperature phase diagram of the perceptron. αJ (σ) is the jamming tran-
sition (or SAT/UNSAT threshold) within the replica symmetric approximation. The replica
symmetric solution is stable for all σ > 0. Thus the jamming transition line is exact only for
σ > 0. αdAT(σ) are the lines where replica symmetry breaks. In the non-convex region and for
σ ∈ [σ1RSB, 0], αdAT is a transition from a replica symmetric phase to a continuous fullRSB one.
For σ ∈ [σRFOT,σ1RSB] the dAT line is a continuous transition from a replica symmetric phase
to a stable 1RSB phase. For σ < σRFOT a RFOT type phenomenology is observed. Keeping
σ fixed and increasing α, one has first a dynamical transition for α = αdyn(σ), then a Kauz-
mann transition for α= αK(σ), and finally a Gardner transition for α= αG(σ). In the UNSAT
phase, the instability line αdAT(σ) represents the transition from a replica symmetric phase to
a continuous fullRSB one for all α > 2. Therefore, fullRSB occurs in the region delimited by
the αdAT(σ) and αG(σ) lines, which contains the whole jamming line for σ < 0.

clusters decreases and vanishes at the Kauzmann (or condensation) transition α = αK(σ) [4,
30,32]. At this point, the clusters that dominate the Boltzmann-Gibbs measure are no longer
exponentially many, and the system undergoes a thermodynamic phase transition. Note that
this two-transition scenario, also called RFOT, is at the basis of the mean field theory of glasses
(see [27,33–36] for reviews).

To compute αdyn(σ) and αK(σ), we are therefore led to consider the 1RSB entropy for
m≈ 1, where we can write to the leading order

s1RSB(q1, q0, m) = sRS(q0) + (m− 1)δsRSB(q0, q1) , (61)
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with sRS given in Eq. (41), and

δsRSB(q0, q1) =− sRS(q0)−
q2

0

2(1− q0)2
+

q1(1− 2q0)
2(1− q0)2

+
1
2

log(1− q1) +α

∫

dt
p

2πq0

e−
t2

2q0×

∫

du
p

2π(q1 − q0)
e−

u2

2(q1−q0)

Θ

�

u+t−σp
2(1−q1)

�

Θ

�

t−σp
2(1−q0)

� logΘ

�

u+ t −σ
p

2(1− q1)

�

. (62)

When m→ 1, q0 can be obtained by setting to zero the derivative of Eq. (41), which gives the
saddle point equation (44). The dynamical transition point αdyn(σ) corresponds to the lowest
value of α where the variational equation for q1, obtained by setting the derivative of Eq. (62)
to zero, admits a solution q1 > q0. At the Kauzmann transition point αK(σ), the breaking
point m, obtained by setting the derivative with respect to m of Eq. (60) to zero, first becomes
smaller than one. Upon further increasing α, it can be shown that the 1RSB solution becomes
unstable and undergoes a Gardner transition towards a fullRSB phase [37]. The equation that
controls the Gardner instability of the 1RSB solution can also be obtained using the fullRSB
equations, similarly to what has been done in Sec. 4.1.3 for the RS solution. In the following
we assume that the continuous part of q(x) appears in correspondence to the value q1, as it
usually happens at a Gardner transition [37] (the stability towards a continuous breaking at
q0 can be discussed along similar lines). If q1, q0 and m satisfy the saddle point conditions,
the instability point αG(σ) of the 1RSB transition is given by the following condition:

1

λ2
1RSB(1)

= α

∫

dh P1RSB(1, h) f ′′1RSB(1, h)2 , (63)

where

λ1RSB(1) = 1− q1 ,

f1RSB(1, h) = logΘ

�

h
p

2(1− q1)

�

,

P1RSB(1, h) = Θm

�

h
p

2(1− q1)

�

γq1−q0
?
�

γq0
(h+σ)e−mf1RSB(m,h)

�

,

f1RSB(m, h) =
1
m

log

�

γq1−q0
?Θm

�

h
p

2(1− q1)

��

.

(64)

The dynamical, the Kauzmann and Gardner transition lines are plotted in Fig. 3.

5 The SAT-UNSAT transition and its critical properties

Having established the phase diagram of the zero temperature random perceptron model
(Fig. 3), we discuss here the critical properties of the jamming (or SAT-UNSAT) transition
line. The jamming line at σ > 0 has been discussed already in [14, 15] and it is known to
be non-critical, in the sense that the system is hypostatic (see Fig. 2), which according to the
analysis of [7] does not lead to marginal stability. In this section we want to describe the jam-
ming transition for σ < 0, which falls in the fullRSB phase (Fig. 3): in this case, the system
is isostatic at jamming and a non-trivial critical behavior appears [14]. The jamming point
can be approached both from the SAT and UNSAT phase. From the SAT (unjammed) phase,
upon approaching the transition the volume of the space of solutions shrinks to zero and the
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self-overlap in a cluster of solutions is asymptotically close to one. From the UNSAT (jammed)
phase, the energy goes to zero upon approaching the transition. In both cases, universality
naturally emerges with a set of nontrivial critical exponents that characterize the scaling of
physical quantities on both sides of the transition. We did not attempt to solve numerically the
fullRSB equations (see [13] for a numerical study of the equations in the hard sphere case);
in fact, the values of the critical exponents can be extracted analytically via a scaling analysis
of the equations, that we discuss in the rest of this section.

5.1 Asymptotes of f (q, h) and P(q, h)

For later use let us discuss the asymptotic behavior of f (q, h) and P(q, h) for h→±∞ which
are generically valid, in particular in the scaling solutions of our interest. For h → ±∞ the
boundary condition for f (q, h) reduces to

f (qM , h→∞) = 0 and f (qM , h→−∞) = −
h2

2
β

1+ β(1− qM )
. (65)

Using Eq. (30) one readily finds

f (q, h→∞) = 0 , f (q, h→−∞)∼ −
h2

2
β

1+ βλ(q)
. (66)

For h→∞, Eq. (34) becomes simply Ṗ = P ′′/2, which has a unique solution compatible with
the boundary condition

P(q, h→∞) = γq(h+σ) . (67)

For h→−∞ the equation is slightly more complicated; but still, a Gaussian form of the kind
P(q, h)∼

p

D(q)e−D(q)h2
satisfies Eq. (34) for large negative h, where D(q) verifies

Ḋ(q) = −2D(q)2 + 2D(q)
β x(q)

1+ βλ(q)
,

D(qm) =
1

2qm
. (68)

5.2 Approaching jamming from the SAT phase

In the SAT phase we can take the limit T = 1/β → 0 by simply replacing e−β v(h) → θ (h).
The volume of the space of solutions is finite and the resulting equations are well defined and
give a value qM < 1. This is due to the fact that zero-energy configurations are not isolated:
they form clusters where two typical solutions have overlap qM < 1. Solutions that belong
to different clusters have overlap q < qM whose statistical properties are described by the
function x(q): it represents the (average) probability that two configurations have an overlap
smaller than q [20]. In the jamming limit, the cluster volumes go to zero and therefore the
self-overlap of a cluster, qM , goes to one.

5.2.1 Scaling form of the solution close to jamming

Close to jamming the fullRSB equations develop a scaling regime, as can be deduced from a
numerical analysis [13] (see Sec. 3.4 and Appendix B for details on how to solve the fullRSB
equations numerically). In the scaling regime, it is convenient to make the following change
of variables:

y(q) = ε−1 x(q) ,

bf (q, h) = ε f (q, h) ,

bλ(q) = ε−1λ(q) ,

(69)
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where ε is the linear distance from the jamming line (either in α or σ). In addition we assume
that qM = 1− εκ where κ is an exponent to be determined by the equations. In the jamming
limit ε→ 0, one has y ∈ [0, 1/ε]→ [0,∞) and q ∈ [qm, qM ]→ [qm, 1].

We wish to show that a scaling solution exists in this limit, when y is large and q ∼ 1. It
has the following form:

y(q)∼ yJ (1− q)−1/κ

P(q, h)∼















(1− q)(1−κ)/κp−[h(1− q)(1−κ)/κ] for h∼ −(1− q)(κ−1)/κ

(1− q)−a/κp0

�

hp
1−q

�

for |h| ∼
p

1− q

p+(h) for h�
p

1− q

(70)

m(q, h) = bλ(q)bf ′(q, h) = −
p

1− qM
�

h
p

1− q

�

, M (t →∞) = 0, M (t →−∞) = t .

While the functions p− and p+ and the equations that they verify are peculiar of the perceptron
model and depend on the parameters σ and α, on the jamming line the function p0 as well as
the exponents a and κ are universal (i.e. independent of the precise location on the jamming
line). In Sec. 5.2.2 we show that the universal equations determining p0 and the critical
exponents also coincide with the ones obtained for the jamming transition of hard spheres in
high dimension. Note that for finite ε, the scaling solution (70) is cutoff when q ∼ qM = 1−εκ

and y ∼ yM = Yε−1. Finally, note that while we will be able to prove the existence of the
scaling solution, and compute the values of a and κ, we will not be able to prove that ε is
proportional to the distance from the jamming line: at present, this follows from the numerical
solution of the equations [13].

5.2.2 Proof of the scaling form

The scaling analysis is carried out along the lines of [13,14,38].

Scaling of f (q, h) – The function m(q, h) introduced in Eq. (70) satisfies the equation

ṁ(q, h) = −
1
2

m′′(q, h)−
y(q)
bλ(q)

m(q, h)[1+m′(q, h)] ,

m(q, h→−∞)' −h , m(q, h→∞)' 0 , (71)

where the differential equation comes from Eq. (30) and the asymptotes from Eq. (66). Let
us inspect the value of y(q)

bλ(q)
for ε→ 0 and q→ 1, according to Eq. (70):

y(q)
bλ(q)

=
yJ (1− q)−1/κ

εκ−1[1− yJ
κ
κ−1] + yJ

κ
κ−1(1− q)1−1/κ

. (72)

This expression has a crossover for 1− q ∼ εκ, when the two terms in the denominator are of
the same order. The scaling form is obtained for 1− q� εκ, in which case we have

y(q)
bλ(q)

=
κ− 1
κ

1
1− q

. (73)

Plugging this result and the scaling form (70) in Eq. (5.2.2), we obtain a scaling equation for
the functionM (t):

M (t)− tM ′(t) =M ′′(t) + 2
κ− 1
κ
M (t)[1−M ′(t)] ,

M (t →∞) = 0 , M (t →−∞) = t . (74)
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This non-linear equation, with boundary conditions at t →±∞, admits a unique solution for
each value of κ.

Scaling of P(q, h) – The existence of the functions p− and p+ and the corresponding scaling
variables can be obtained by the analysis of the equation for P at large negative and positive
arguments, respectively. From Eq. (67) it follows that for h → ∞, P(q, h) remains a finite
Gaussian, P(q, h → ∞) ∼ γq(h + σ). For finite h > 0, the Gaussian will be deformed to a
finite function p+(h) as it appears in Eq. (70). For h→−∞, on the other hand, we have from
Eq. (68) that for β →∞ and in the scaling regime of Eq. (73):

Ḋ(q) = −2D(q)2 + 2D(q)
y(q)
bλ(q)

= −2D(q)2 + 2D(q)
κ− 1
κ

1
1− q

. (75)

If κ < 2 (which, we will see, is the case), this equation admits a scaling solution

D(q)∼ DJ (1− q)−2(κ−1)/κ, (76)

where the term 2D(q)2 is negligible. One concludes therefore that in the scaling regime,
P(q, h→−∞)∼

p

D(q)e−D(q)h2
has the form

P(q, h)∼ (1− q)(1−κ)/κp−[h(1− q)(1−κ)/κ] (77)

which has been proven asymptotically for h→−∞ but can be extended to the whole regime
where q ∼ 1 and |h| ∼ (1− q)(κ−1)/κ, as in Eq. (70). Note that even if it has a scaling form,
the function p− is not uniquely determined by the scaling regime, and remains non-universal,
see [38].

The “matching” regime with p0(t) must be introduced in Eq. (70) to smoothly match the
two regimes for negative and positive h. Here is where universality appears. Matching p0 and
p+ requires that

p+(t → 0+)∼ t−γ , p0(t →∞)∼ t−γ , γ=
2a
κ

. (78)

Matching p− and p0 requires that

p−(t → 0−)∼ |t|θ , p0(t →−∞)∼ |t|θ , θ =
1−κ+ a
κ/2− 1

. (79)

The scaling variable t = h/
p

1− q appearing in the matching regime is naturally the same as
for f (q, h). This is in fact the only choice that leads, once plugged in Eq. (34), to a non-trivial
equation for p0(t), namely:

a
κ

p0(t) +
1
2

t p′0(t) =
1
2

p′′0 (t) +
κ− 1
κ
(p0(t)M (t))′ ,

p0(t →∞) = t−2a/κ , p0(t →−∞) = |t|(1−κ+a)/(κ/2−1) . (80)

Recall that in Eq. (5.2.2), M (t) depends on κ; it turns out that Eq. (5.2.2) also admits a
unique solution for p0(t) satisfying the correct asymptotic conditions, but only for a given
choice of a = a(κ). For a given κ, Eqs. (5.2.2) and (5.2.2) thus determineM (t), p0(t) and a.

Determination of the exponent κ – The exponent κ can be fixed using Eq. (37) which can
be equivalently written as

y(q)
bλ(q)

=
1
2

∫

dhP(q, h)m′′(q, h)2
∫

dhP(q, h)m′(q, h)2[1+m′(q, h)]
. (81)
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In the scaling regime, Eq. (73) gives the left hand side. In the right hand side, we can note
that m′′(q, h) and m′(q, h)2[1 + m′(q, h)] both vanish outside the scaling regime, because of
the asymptotic behavior of m(q, h). Therefore, the right hand side only receives contribution
from the regime h∼

p

1− q. We obtain

κ− 1
κ
=

1
2

∫

dt p0(t)M ′′(t)2
∫

dt p0(t)M ′(t)2[1+M ′(t)]
. (82)

Because bothM (t) and p0(t) depend on κ, this is an equation for κ. The numerical solution of
the system of Eqs. (5.2.2), (5.2.2) and (82), gives κ= 1.41574 . . . while within the numerical
precision one finds the relation [38]

a = 1−
κ

2
⇒ γ=

2−κ
κ

, θ =
3κ− 4
2−κ

and γ=
1

2+ θ
. (83)

The importance of these “scaling” relations will be further discussed in Sec. 5.5 and Sec. 5.6.

5.3 Zero temperature fullRSB solution in the UNSAT phase

We now turn to the analysis of the approach to the jamming transition from the UNSAT phase.
Before doing that, however, we need to study the behavior of the fullRSB solution for T → 0
in the UNSAT phase. In Sec. 4.2 we have shown that in the UNSAT phase, close to the dAT
instability line (σ = 0,α > 2) of the RS solution, the solution q(x) has the following properties:

• The Edwards-Anderson order parameter is qM = 1−χT

• The breaking point at the instability transition line is m= m̂
p

T

• The slope of q(x) at the breaking point on the instability line is q̇(m)∼
p

T

Additionally, here we want to show that, like in the Sherrington-Kirkpatrick model [20,39]:

• P(q, h) is smooth and regular at zero temperature

• The function β x(q) admits a finite zero temperature limit

For small temperature in the UNSAT phase, the initial condition for f (qM , h) is given by (Ap-
pendix C):

f (qM , h) =

¨

− βh2

2(1+χ)θ (−h) for |h| �
p

T ,

F (h/
p

T ) for |h| ∼
p

T ,
(84)

withF (x) defined in Eq. (57). In the fullRSB region, as in the RS case, we define qM = 1−χT
and we introduce

y(q) =
β

χ
x(q) , bf (q, h) = Tχ f (q, h) , bλ(q) =

β

χ
λ(q) = 1+

∫ 1

q
dp y(p) . (85)

As in Sec. 5.2.2, we introduce m(q, h) = bλ(q)bf ′(q, h) = λ(q) f ′(q, h), which satisfies Eq. (5.2.2)
with the modification m(q, h→−∞) = −hχbλ(q)/(1+χbλ(q)) and initial condition

m(1, h) = −
hχ

1+χ
θ (−h) . (86)

The equation for P(q, h) is still Eq. (34). Finally, Eq. (36) becomes

1
χ2
= α

∫

dhP(1, h)θ (−h)

(1+χ)2
, (87)
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and Eq. (37) becomes identical to Eq. (81). The distribution of gaps, given in Eq. (38), becomes

ρ(h) =

¨

P(1, h(1+χ))(1+χ) for h< 0 ,

P(1, h) for h> 0 .
(88)

Because the breaking point m= x(qM )∝
p

T , one has y(qM )∼ 1/
p

T and thus y(q) extends
up to infinity in the zero temperature limit. The scaling behavior of y(q) for q→ 1 is expected
to be [39]:

y(q)'
yχ

p

1− q
. (89)

We now check that this scaling is consistent. First of all, this implies that q(x) ∼ 1− AT2/x2

for some constant A. For x = m̂
p

T , we get qM = 1− χT which matches the behavior on the
instability line. Also, one has q̇(x)∝ T2/x3 and then q̇(m)∝

p
T , as it is the case along the

instability line. The final check can be obtained from Eq. (81). We assume that the scaling
behavior of m(q, h) for q→ 1 is

m(q, h)∼ −
χ

1+χ

p

1− qM
�

h
p

1− q

�

, M (t →∞) = 0 , M (t →−∞) = t , (90)

which agrees with the initial condition (86). Plugging this ansatz inside Eq. (81) we get

y(q) =
1
2

1+χ
p

1− q

P(1,0)
∫∞
−∞ dt(M ′′(t))2

∫ 0
−∞ dhP(1, h)

⇒ yχ =
1
2
(1+χ)

P(1,0)
∫∞
−∞ dt(M ′′(t))2

∫ 0
−∞ dhP(1, h)

,

(91)
which confirms the consistency of Eq. (89) and provides an explicit expression of yχ . The only
point left to verify is that P(1,0), and more generally P(1, h) are finite. First, we note that for
h→∞ we have P(q, h)→ γq(h+σ), which suggests that for h→∞, P(1, h) is finite and has
smooth corrections in q. Next, we can observe that Eq. (68) becomes for q→ 1:

Ḋ(q) = −2D(q)2 + 2D(q)

�

yχ
p

1− q
+ · · ·

�

⇒ D(q) = D0 − 4D0 yχ
p

1− q+ · · · (92)

which therefore indicates that for h→−∞, P(1, h) is finite and has corrections proportional
to
p

1− q. Plugging P(q, h) ∼ P(1, h) +
p

1− qδP(h) in Eq. (34), and using Eq. (90), we
obtain

δP(h) =− 2yχ
χ

1+χ
lim
q→1

d
dh

�

P(1, h)
p

1− qM
�

h
p

1− q

��

=− 2yχ
χ

1+χ
θ (−h)[hP ′(1, h) + P(1, h)] (93)

which satisfies the condition
∫

dhδP(h) = 0 and shows that there are
p

1− q corrections only
in the region h< 0.

5.4 The jamming limit from the UNSAT phase

The jamming limit from the UNSAT phase is obtained by considering the T = 0 equations of
Sec. 5.3 in the limit χ →∞, as in the RS case. This is because qM is finite in the SAT phase
when T = 0, while in the UNSAT phase qM = 1− χT for T → 0: matching the two regimes
for T ∼ 0 requires the divergence of χ at the jamming point.
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We know that in the UNSAT phase for q→ 1 we have, from Eq. (89) and (85):

y(q)
bλ(q)

∼
yχ/

p

1− q

1+ 2yχ
p

1− q
. (94)

If χ is finite and q→ 1, then in the denominator the factor 1 dominates and y/bλ∼ (1− q)−1/2:
in this regime we recover the “regular” zero temperature solution of the UNSAT phase de-
scribed in Sec. 5.3. Conversely, for χ →∞, the coefficient yχ →∞. In fact, from Eq. (91)

we obtain yχ ∝ χP(1, 0) observing thatM (t) is finite and that
∫ 0
−∞ dhP(1, h) must remain

finite because P(1, h) is normalized to 1. In this case, for all q < 1, at large enough χ the
second term in the denominator of Eq. (94) dominates and one has

y(q)
bλ(q)

∼
1

2(1− q)
, for q ∼ 1 and yχ

p

1− q ∼ χP(1,0)
p

1− q� 1 . (95)

In this regime, we must have a different scaling solution in which y/bλ∝ 1/(1−q): but this is
exactly the jamming scaling solution that was already derived in Sec. 5.2, which indeed must
emerge from the regular zero temperature UNSAT solution upon approaching the jamming
point.

To summarize, when χ →∞ and in the region of q → 1, we expect two different scal-
ing solutions: when 1 − q � 1 − q∗, we have the “regular” UNSAT scaling of Sec. 5.3; for
1− q� 1− q∗ we have instead the “jamming” scaling solution of Sec. 5.2. The matching
point q∗ is determined by the condition that χP(1,0)

p

1− q∗ ∼ 1, and the value of y(q∗) is
then simply

y(q∗) =
χP(1,0)
p

1− q
∼

1
1− q∗

. (96)

Note that in the jamming solution, Eq. (70), we have P(q∗, 0) ∼ (1 − q∗)−a/κ, and we know
from Eq. (93) that in the regular solution P(q, h) changes by a very small amount, ∼

p

1− q,
when q→ 1. We conclude that P(1,0)∼ (1− q∗)−a/κ and more generally

P(1, h)∼ (1− q∗)
(1−κ)/κp−((1− q∗)

(1−κ)/κh) , (97)

for negative values of h. We obtain therefore

χP(1, 0)
p

1− q∗ ∼ χ(1− q∗)
1/2−a/κ ∼ 1 ⇒ χ ∼ (1− q∗)

a/κ−1/2 ⇒ 1− q∗ ∼ χ
2κ

2a−κ ,
(98)

which concludes the analysis of the matching between the two scaling solutions on the UNSAT
side of the transition.

5.5 Scaling relations between exponents

The relation a = 1− κ/2, and its consequences that are given in Eq. (83), has been found in
Ref. [13]within numerical precision by solving the equations for the critical exponents derived
in Sec. 5.2.2. Eq. (83) is physically very important: in fact, the relation γ= 1/(2+θ ) has been
proven in [7] to be a direct consequence of marginal stability (in the perceptron, the same
marginal stability argument is discussed in [14]). It would therefore be nice to have a more
direct analytical proof of the relation a = 1−κ/2, that does not rely on a numerical calculation.

While in principle it must be possible to obtain such a proof directly from the properties
of the equations of Sec. 5.2.2, that define all the critical exponents, here we give an inde-
pendent argument by showing how the matching condition between the two asymptotic so-
lutions allows one to derive analytically this relation. To this aim, we focus on the pressure
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p = −[h]. In Appendix D, we show that p∝ 1/χ2 in the jamming limit χ →∞. Using now
P(1, h)≈ (1−q∗)(1−κ)/κp−((1−q∗)(1−κ)/κh) for h< 0, which was derived in Sec. 5.4, together
with Eq. (88), we find

ρ(h< 0)∼ χ(1− q∗)
(1−κ)/κp−[χ(1− q∗)

(1−κ)/κh] ⇒ [h]∼
1

χ(1− q∗)(1−κ)/κ
. (99)

Because we know that [h]∝ 1/χ2, we must have

χ ∼ (1− q∗)
(1−κ)/κ . (100)

This is compatible with (98) only if a = 1−κ/2, which gives an independent proof of Eq. (83).
Finally, recalling that P(q∗, h)∼ P(1, h), and using Eq. (100) into Eq. (70), we obtain

P(1, h)∼ P(q∗, h)∼











χ p−(hχ) for h∼ −χ−1

χ−
2−κ

2(1−κ) p0

�

hχ−
κ

2(1−κ)
�

for |h| ∼ χ
κ

2(1−κ)

p+(h) for h� χ
κ

2(1−κ)

(101)

which holds on the UNSAT side upon approaching jamming.

5.6 Scaling of several interesting observables at the jamming transition

We have now fully characterized the scaling of the basic quantities, x(q), λ(q), f (q, h), and
P(q, h), in the vicinity of the jamming transition, both on the SAT and on the UNSAT side. On
the SAT side, our main results are Eqs. (69) and (70), together with Eqs. (78), (79) and (83).
On the UNSAT side, our main results are Eqs. (85), (87), (88) and (101). From these results,
the scaling of all the interesting observables can be derived. In this section, we focus on some
of the most studied observables in the context of jamming, and we show that all the known
results are reproduced by the scaling solution.

5.6.1 Energy, pressure, number of contacts

We start by considering the energy, the pressure and the number of contacts defined in Eq. (11).
From Eqs. (88) and (101), we deduce that in the jamming limit from the UNSAT (jammed)
phase,

ρ(h< 0)∼ χ2p−(χ
2h) ⇒ [hn]∝ χ−2n . (102)

In particular, the energy and pressure scale as

p = −[h]∼ χ−2

∫ 0

−∞
dt p−(t)|t| , e =

α

2
[h2]∼

α

2
χ−4

∫ 0

−∞
dt p−(t)t

2∝ p2 . (103)

Note also that from Eq. (87) we have for the isostatic index:

c = αz = α[1] =
�

1+
1
χ

�2

∼ 1+
2
χ

. (104)

We deduce that at jamming the system is isostatic, and that the excess of contacts in the jammed
phase scales like c−1∝ χ−1∝ p1/2. To obtain the complete phenomenology of jamming, one
should also prove that the pressure p∝ χ−2 vanishes linearly in the distance from jamming
in the (α,σ) plane: we did not find a proof of this relation, which at present must be derived
from the numerical solution of the equations. Apart from that, the scaling relations e∝ p2 and
c − 1∝ p1/2 perfectly agree with numerical observations in jammed sphere packings [5,6].
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In the SAT phase, at zero temperature, there are by definition no negative gaps, ρ(h< 0) = 0;
consequently pressure, energy, and contacts all vanish. However, one can study the limiting
values of these quantities when T → 0. As an example, let us consider the pressure, which is a
standard observable in particle systems. In the perceptron, it can be written as the derivative
of the free energy with respect to σ, as it can be checked directly from the definition of the
partition function in Eq. (17). Using the replica expression of the free energy in Eq. (31), one
then obtains:

p =− [h] =
1
α

df
dσ

=− T
d

dσ

∫

dhγqm
(h) f (0, h−σ) = T

∫

dhγqm
(h) f ′(0, h−σ)

=T

∫

dhP(0, h) f ′(0, h) . (105)

Using the equations for P and f , it is possible to show that

0=
d

dx

∫

dhP(x , h) f ′(x , h) ⇒ p = T

∫

dhP(1, h) f ′(1, h) . (106)

The proof is obtained by writing the derivative as
∫

dh(Ṗ f ′ + P ḟ ′), using the equations for
P and f and integrating by parts [24]. Therefore, in the SAT phase the pressure vanishes
proportionally to T , a standard result for hard spheres (which correspond to the T → 0 limit
of soft spheres in the SAT phase). However approaching the jamming line the ratio p/T (also
called “reduced pressure” or “compressibility factor” in the hard spheres literature) diverges.
Inserting the scaling form given by Eq. (70), noting that λ(1) = 1− qM = εκ, one has

p = T

∫

dhP(1, h)
m(1, h)
λ(1)

=
T
εκ

∫

dhP(1, h)m(1, h) . (107)

The scaling form in Eq. (70) is cutoff when 1− q ∼ εκ, and therefore the same scaling holds
for P(1, h) and m(1, h) with 1− q → εκ. Then, in the ε→ 0 limit the region h > 0 does not
contribute to the integral because m(1, h)→ 0 while P(1, h) stays finite. One can check that
the matching region also gives a subdominant contribution. The leading term is associated to
the h< 0 region, where m(1, h)→−h and

p =
T
εκ

∫ 0

−∞
dhε1−κp−(hε

1−κ)|h|=
T
ε

∫ 0

−∞
dt p−(t)|t| . (108)

We conclude that the reduced pressure p/T diverges proportionally to ε−1, and therefore
1 − qM ∝ (p/T )−κ, a result that has been numerically tested in hard sphere systems [13].
This provides a physical meaning for the exponent κ. In a similar way one can study the
scaling of the energy and the number of contacts in the SAT phase.

5.6.2 Force and gap distributions

In the UNSAT (jammed) phase, positive gaps correspond to satisfied constraints, while negative
gaps can be associated to contact forces according to Eq. (12). The distribution of small positive
gaps and small contact forces has been associated with important properties of the packings,
including marginal stability [7,8]. In this section we discuss these distributions. They can be
straightforwardly derived from Eq. (88) and Eq. (101) which together imply, for χ � 1:

ρ(h)∼

¨

χ2p−(χ2h) for h< 0 ,

p+(h) for h> 0 .
(109)
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At jamming, when χ →∞, the distribution of gaps concentrates on h ≥ 0, where it is given
by

ρ(h) = [1]δ(h) + p+(h) , h≥ 0 , (110)

where [1] =
∫ 0
−∞ dhρ(h) =

∫ 0
−∞ dt p−(t) = 1/α according to Eq. (104). Isostaticity is ex-

pressed by the presence of a delta peak in ρ(h) whose weight is the fraction of contacts. More-
over, this implies that the distribution of small positive (satisfied) gaps, according to Eq. (78),
behaves as a power-law ρ(h → 0+) ∼ h−γ with γ = (2 − κ)/κ = 0.41269 . . .. Similarly, the
normalized probability distribution of scaled contact forces f s

µ = −[1]hµ/p, with p/[1] given
by Eq. (103), can be deduced from ρ(h< 0) and reads

p( f ) = α f̄ p−
�

− f f̄
�

, f̄ = α

∫ ∞

0

dt p−(−t) t ,
1
α
= [1] =

∫ ∞

0

dt p−(−t) . (111)

Note that
∫∞

0 d f p( f ) =
∫ 0
−∞ d f p( f ) f = 1. This implies, according to Eq. (79), that the distri-

bution of small forces behaves as a power-law, p( f → 0+)∼ f θ , with θ = 1/γ−2= 0.42311 . . .
These results give a physical interpretation to the critical exponents γ and θ , and connect with
the results of [7–10,12]. Similar results can be obtained upon approaching the jamming tran-
sition from the SAT phase, with the only difference that in that case one has to define the
forces by separating the positive gaps into those who become contacts at jamming and those
who stay positive [9, 25, 38]. As a check of the theoretical predictions we have extended the
numerical simulations of [14] to large systems: in Fig. 4 we compare the cumulative distri-

bution C f =
∫ f

0 d f̃ p( f̃ ) for sizes from N = 50 to N = 1600 with the theoretical prediction.

0.0001

0.001

0.01

0.1

1

10

0.1 1 10

C
f

f

N = 50
N = 100
N = 200
N = 400
N = 800

N = 1600
Cf ∼ f1+θ

Figure 4: Plot of the cumulative of the force distribution C f =
∫ f

0 d f̃ p( f̃ ) for N = 50, . . . 1600.
The line is proportional to the theoretical prediction C f ∼ f 1+θ .
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We conclude by mentioning that one can also study the vibrational spectrum, both in the
SAT and UNSAT phases [16, 17], to discuss the presence of soft modes associated to both
fullRSB and jamming, and connect the density of states with these critical exponents as it is
also observed in sphere packings [40]. Also, it has been shown in [19] that the asymptotic
behavior of the function y(q), related to the exponent κ, controls the scaling of the avalanches
at the jamming point, which is therefore different than the scaling in the UNSAT phase.

6 Conclusions

In this work we have formulated the jamming problem as a general constraint satisfaction
problem with continuous variables (Sec. 2). We have then specialized on the random percep-
tron, a well known machine learning model, which is a prototype of this class of problems
(Sec. 3). In the non-convex regime, the model shows a complex zero temperature phase dia-
gram in the plane of the two control parameters (α,σ), which has been fully characterized in
Sec. 4. In particular, we have shown that for σ < 0 and large enough |σ|, the phase diagram
as a function of α shows the characteristic phenomenology associated with the Random First
Order Transition (RFOT) mean field theory of glasses [27,33–36]. Our main result is that the
jamming transition, which can be seen as the SAT/UNSAT threshold, is always associated with
full replica symmetry breaking in the non-convex regime. In Sec. 5, we have thus discussed
the scaling behavior of the fullRSB equations around the jamming transition. We have shown
that approaching jamming from the SAT phase, one obtains the same critical exponents of the
jamming transition of hard spheres in high dimension, thus reproducing the results of [13].
Furthermore we have extended the study of [13] by analyzing the model in the UNSAT phase,
where we have obtained the scaling solution of the fullRSB equations, showing that it repro-
duces the critical behavior of soft spheres, when approaching the transition from the jammed
phase [5]. We have provided a complete matching between the scaling solutions in the SAT
and UNSAT phases, and derived scaling relations between the critical exponents, also showing
their physical interpretation as the exponents that control the gap and force distributions at
jamming [7]. Our results are also consistent with the scaling analysis of [11]. These results,
together with the results on the vibrational spectrum obtained in [16, 17], and the study of
avalanches performed in [19], provide a complete study of all the properties of the random
perceptron that are relevant for the study of the glass and jamming transition at the mean field
level.

This work opens the way to the study of the jamming transition in other ensembles of
random constraint satisfaction problems with continuous variables. The outcome of this study
is that the non-convex jamming transition lies always in a fullRSB phase and we conjecture
that this happens in a large class of CCSP. Although we are not able to prove it we note that
this is what happens not only in the model we have analyzed but also in Hard-Spheres in high
dimension [13]. Another natural question that arises is to what extent the scaling behavior that
we have found is universal. The fact that the critical exponents at the jamming transition for
the random perceptron and hard spheres coincide support the conjecture that in non-convex
random CSPs, the jamming point is highly universal. This conjecture has been tested and
confirmed in generalized perceptron models with multibody interaction [41]. There could be,
however, different universality classes: understanding which features of the models determine
them is a very important direction for future work. Going beyond the mean field, infinite
dimensional level, for example by considering random dilute versions of the perceptron, is
another interesting direction for future research.
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A Derivation of the replicated free energy

In this Appendix, we give a detailed derivation of the replica equations for the perceptron
model. Starting from the partition function in Eq. (17), and neglecting proportionality con-
stants, the replicated partition function can be written as

Zn∝
∫ �

∏

a

D ~Xa

�

�

∏

a,µ

drµa d r̂µa

�

e
∑

aµ i r̂µa (r
µ
a−N−1/2 ~Xa·~ξµ)

∏

aµ

e−β v(rµa−σ) , (112)

where a = 1 · · ·n and µ = 1 · · ·M ; one can check that integrating over r̂µa produces delta
functions that fix rµa as in the original partition function. Next, the Gaussian integral over the
quenched disorder ~ξµ gives

e−N−1/2
∑

aµ i r̂µa ~Xa·~ξµ = e−
1
2

∑

abµ r̂µa r̂µb Qab , Qab =
1
N
~Xa · ~X b . (113)

We obtain then

Zn∝
∫ �

∏

a

D ~Xa

��∫ �

∏

a

drad r̂a

�

e
∑

a i r̂a ra−
1
2

∑

ab r̂a r̂bQab−β
∑

a v(ra−σ)
�M

∝
∫

dQabe
N
2 log detQ

�∫ �

∏

a

drad r̂a

�

e
∑

a i r̂a ra−
1
2

∑

ab r̂a r̂bQab−β
∑

a v(ra−σ)
�M

,

(114)

where we made a change of variables from ~Xa to Qab, with Jacobian exp(N
2 log detQ). Finally,

one can easily show by developing both sides in powers of Qab that

e−
1
2

∑

ab r̂a r̂bQab = e
1
2

∑

ab Qab
∂ 2

∂ ka∂ kb e−
∑

a ka i r̂a

�

�

�

�

ka=0
, (115)

and therefore
∫ �

∏

a

drad r̂a

�

e
∑

a i r̂a ra−
1
2

∑

ab r̂a r̂bQab−β
∑

a v(ra−σ) (116)

=

∫ �

∏

a

drad r̂a

�

e
1
2

∑

ab Qab
∂ 2

∂ ka∂ kb e
∑

a(ra−ka)i r̂a−β
∑

a v(ra−σ)
�

�

�

�

ka=0
(117)

∝ e
1
2

∑

ab Qab
∂ 2

∂ ka∂ kb e−β
∑

a v(ka−σ)
�

�

�

�

ka=0
, (118)

where to obtain the last line we integrated over r̂a to obtain a δ(ra − ka) and then integrated
over ra. Introducing ha = ka − σ and setting α = M/N , we obtain the final result for the
replicated partition function

Zn =

∫

dQeNS(Q) , (119)

S(Q) =
1
2

logdetQ+α log

 

e
1
2

∑

ab Qab
∂ 2

∂ ha∂ hb

∏

a

e−β v(ha)

�

�

�

�

�

ha=−σ

!

, (120)

that is reported in Eq. (21).
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B Numerical solution of the equations

4RSB

m1 m2 m30 m0 = m

q(x)

x

q1

q2

q3

q4

q0

m4 = 1

Figure 5: An example of the parametrization of the matrix Qab for a 4RSB case. The reader
should keep in mind that we use the convention m0 ≡ m, mk+1 ≡ 1.

In this Appendix, we derive the equations corresponding to a discrete KRSB ansatz, illus-
trated in Fig. 5. This is particularly useful for the numerical solution.

For a function q(x) with KRSB form, the free energy of Eq. (31) is

s[q(x)] = lim
n→0

1
n

S(Q) =
1
2

�

log(1− 〈q〉) +
qm

1− 〈q〉
+

∫ 1

0

dy
y2

log
�

λ(y)
1− 〈q〉

�

�

+α fS(−σ) (121)

with 〈q〉 =
∫ 1

0 dx q(x), and λ(x) is also a piecewise constant function whose values can be
derived from q(x). The function f (mi , h) is the discrete version of f (q, h) and it satisfies the
discrete version of Eq. (30):











f (1, h) = logγ1−qk
? e−β v(h) ,

f (mi , h) = 1
mi

log
�

γqi+1−qi
? emi f (mi+1,h)

�

, i = k− 1, · · · , 0 ,

fS(h) = γq0
? f (m0, h) .

(122)

The saddle point equation is

Q−1
cd = −α

�

e
1
2

∑

ab Qab
∂ 2

∂ ha∂ hb
∂ 2

∂ hc∂ hd

∏

a e−β v(ha)

�

�

�

�

ha=−σ

�

�

e
1
2

∑

ab Qab
∂ 2

∂ ha∂ hb
∏

a e−β v(ha)

�

�

�

�

ha=−σ

� ≡ −αMcd , (123)

and the matrix Mab is also a hierarchical matrix whose components can be written as

Mi =

∫

dhP(mi , h) f ′(mi , h)2 , (124)

with
¨

P(m0, h) = γq0
(h+σ)

P(mi , h) = emi−1 f (mi ,h)γqi−qi−1
?
�

P(mi−1, h)e−mi−1 f (mi−1,h)
�

, i = 1, · · · , k ,
(125)
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which provides a discrete version of Eq. (34). Note that all the P(mi , h) are normalized to 1.
The saddle point equation for a hierarchical matrix are therefore

q−1
i = −αMi = −α

∫

dhP(mi , h) f ′(mi , h)2 . (126)

To close the equations, we now need to express qi as a function of q−1
i .

We start from the exact relations (note that here qd = 1 is the diagonal element and
[q](x) = xq(x)−

∫ x
0 dyq(y)):

λ(x)≡ qd − xq(x)−
∫ 1

x
dyq(y) ⇔ q(x) = qd −

λ(x)
x
+

∫ 1

x

dy
y2
λ(y) ,

(q−1)d =
1
λ(0)

�

1−
∫ 1

0

dy
y2

[q](y)
λ(y)

−
q(0)
λ(0)

�

,

(q−1)(x) = −
1
λ(0)

�

q(0)
λ(0)

+
[q](x)
x λ(x)

+

∫ x

0

dy
y2

[q](y)
λ(y)

�

= −
q(0)
λ(0)2

−
∫ x

0

dy
λ(y)2

q̇(y) .

(127)

The above equalities are obtained by showing that the derivatives with respect to x , as well as
the values in x = 0 or x = 1 coincide. From these one can derive several useful identities:

(q−1)d −



q−1
�

− [q−1](x) =
1

qd − 〈q〉 − [q](x)
⇒ (q−1)d −




q−1
�

=
1

qd − 〈q〉
. (128)

From the last Eq. (127) we get (q−1)(0) = − q(0)
λ(0)2 . Collecting these two relations we get

λ(0) =

√

√

−
q(0)
(q−1)(0)

,
1
λ(x)

=
1
λ(0)

− [q−1](x) . (129)

This relations allows one to reconstruct λ(x) from (q−1)(x) and using the first Eq. (127) we
can obtain q(x) from λ(x). In the discrete case one has [q]i =

∑i−1
j=0 m j(q j+1 − q j) and then

these equations become

λ0 =
√

√

−
q0

q−1
0

,
1
λi
=

1
λi−1

−mi−1(q
−1
i − q−1

i−1) .

qi = 1−
λi

mi
−

k
∑

j=i+1

�

1
m j
−

1
m j−1

�

λ j .

(130)

The procedure to solve these equations is therefore (for a fixed grid of mi): (i) start from a
guess for qi , (ii) solve Eqs. (122) and (125) to obtain f (mi , h) and P(mi , h), (iii) from Eq. (126)
compute q−1

i , and (iv) use Eqs. (130) to compute the new qi .

C Asymptotic behavior in the UNSAT phase

In this Appendix we discuss the asymptotic behavior of f (qM , h) in the UNSAT phase where
qM = 1−χT . This is given by the zero temperature limit of

f (qM , h) = log

∫ ∞

−∞

dz
p

2πχT
exp

�

−
(h− z)2

2χT
−

z2

2T
θ (−z)

�

. (131)
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For T → 0 and h ∼ O (1) we can compute the integral using a saddle point approximation.
The saddle point equation is

z − h
χ
+ zθ (−z) = 0 . (132)

Its solutions are given by

z∗(h) = h , for h> 0 ,

z∗(h) =
h

1+χ
, for h< 0 .

(133)

Thus, defining t = z − z∗(h) obtain

f (qM , h) = log

�

θ (h)

∫ ∞

−∞

dt
p

2πχT
e−t2/(2χT ) + θ (−h)e−h2/(2(1+χ)T )

∫ ∞

−∞

dt
p

2πχT
e−

1+χ
2χT t2

�

'
�

−
h2

2(1+χ)T
−

1
2

ln(1+χ)

�

θ (−h) . (134)

D Scaling of the pressure in the UNSAT phase

In this Appendix, we prove that the pressure satisfies the relation p = −[h]∝ 1/χ2, a relation
used to prove the scaling relation a = 1 − κ/2 in Sec. 5.5. To this aim, let us modify the
problem by replacing the hard spherical constraint by a Lagrange multiplier µ, and consider
the following exact relation

0=
1

ZN

∫

d ~X
N
∑

i=1

∂

∂ X i







X i exp



−β

 

H[ ~X ]−
µ

2

N
∑

j=1

(X 2
i − 1)

!











, (135)

from which it follows that
µ= −T + [h2] +σ[h] . (136)

We will prove below that in the zero temperature limit and in the fullRSB phase, µ= 1/χ2, so
that the following exact zero temperature relation holds:

1= χ2
�

[h2] +σ[h]
�

. (137)

Because close to jamming [h2]� [h] this reduces to limχ→∞χ
2σ[h] = 1 at jamming, which

proves [h]∝ 1/χ2.
We now compute µ using the replica method. Because X 2 is not constrained, we have that

Qaa = qd and we need to find an additional variational equation for qd . Let us write down the
free energy as a function of qd and µ. We have

s[qd , q(x)] =
1
2

�

log (qd − qM ) +
qm

qd − 〈q〉
+

∫ 1

0

dx
q̇(x)
λ(x)

�

+αγqm
? f (0, h)|h=−σ +

1
2
βµ(qd − 1)

−α
∫

dh P(qM , h) [ f (qM , h)− logγqd−qM
? e−β v(h)]

+α

∫

dh

∫ qM

qm

dq P(q, h) [ ḟ (q, h) +
1
2

�

f ′′(q, h) + x(q) f ′(q, h)2
�

]. (138)

33

https://scipost.org
https://scipost.org/SciPostPhys.2.3.019


SciPost Phys. 2, 019 (2017)

where now

λ(x) = qd − xq(x)−
∫ 1

x
dyq(y)

λ(q) = qd − qM +

∫ qM

q
dpx(p) .

(139)

The variational equation for q(x), f (q, h) and P(q, h) do not change except for the initial
condition for f which is

f (qM , h) = logγqd−qM
? e−β v(h) (140)

and λ(q) is given by Eq. (139). Note that the variational equation with respect to µ fixes the
spherical constraint qd = 1. At this point we can take the variation with respect to qd to get
the following equation

0=
1
2

�

1
qd − qM

−
qm

(qd − 〈q〉)
2 −

∫ 1

0

du
q̇(u)
λ2(u)

�

+α

∫

dhP(qM , h)
∂

∂ qd
logγqd−qM

?e−β v(h)+
βµ

2
.

(141)
It is very easy to show that the last term of the equation above can be rewritten as

α

∫

dhP(qM , h)
∂

∂ qd
logγqd−qM

? e−β v(h) =
α

2

∫

dhP(qM , h)
�

m′(qM , h) +m2(qM , h)
�

(142)

where again m(qM , h) = ∂ f (qM , h)/∂ h. At this point we can use the saddle point equations
(35) and (36) to write

qm

λ2(qm)
+

∫ qM

qm

dp
λ2(p)

= α

∫

dhP(qM , h)m2(qM , h) ,

1
(qd − qM )2

= α

∫

dhP(qM , h)
�

m′(qM , h)
�2

.

(143)

Using that the variational equation over µ gives qd = 1, that qM = 1−χT and that

m′(qM , h) = −
β

1+χ
θ (−h) (144)

we get µ= 1/χ2.
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