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Abstract

We introduce a non-commutative generalization of the Gross-Pitaevskii equation for one-
dimensional quantum gasses and quantum liquids. This generalization is obtained by
applying the time-dependent variational principle to the variational manifold of contin-
uous matrix product states. This allows for a full quantum description of many body
system —including entanglement and correlations— and thus extends significantly be-
yond the usual mean-field description of the Gross-Pitaevskii equation, which is known
to fail for (quasi) one-dimensional systems. By linearizing around a stationary solution,
we furthermore derive an associated generalization of the Bogoliubov – de Gennes equa-
tions. This framework is applied to compute the steady state response amplitude to a
periodic perturbation of the potential.

Copyright J. Haegeman et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 05-12-2016
Accepted 30-05-2017
Published 28-07-2017

Check for
updates

doi:10.21468/SciPostPhys.3.1.006

Contents

1 Introduction 2

2 Quantum Gross-Pitaevskii Equation 3
2.1 Gauge invariance 4
2.2 Boundary Conditions 5
2.3 Symplectic structure 5
2.4 Numerical integration 6

3 Quantum Bogoliubov-de Gennes equations 6

4 Conclusion and outlook 7

A Derivation of the quantum Gross-Pitaevskii equation and the quantum Bogoliubov-
de Gennes equations 9

1

https://scipost.org
https://scipost.org/SciPostPhys.3.1.006
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.3.1.006&amp;domain=pdf&amp;date_stamp=2017-07-28
http://dx.doi.org/10.21468/SciPostPhys.3.1.006


SciPost Phys. 3, 006 (2017)

A.1 Quantum Gross-Pitaevskii equation 9
A.2 Derivation of the quantum Bogoliubov-de Gennes Equations 12

References 14

1 Introduction

In 1961, Gross and Pitaevskii developed the mean-field theory description of cold Bose gasses
[1–3], which resulted in the ubiquitous Gross-Pitaevskii equation (GPE)

i
∂ φ(x , t)
∂ t

= (−∆+ v(x ))φ(x , t) + 2g|φ(x , t)|2φ(x , t), (1)

where φ(x , t) is the order parameter of the Bose-Einstein condensate in a trapping potential
v(x). Ever since, this equation constitutes the cornerstone for the theoretical description of
cold atomic gasses [4–6]. Its success can be explained by the fact that the GPE agrees with
the full quantum solution for the three-dimensional problem in the weak-density limit, which
corresponds with the typical experimental setup of trapped dilute gasses (see Ref. [7] and
references therein). By linearizing around stationary solutions of the GPE, one obtains the
Bogoliubov – de Gennes equations (BdGE), which describe small scale excitations on top of
the background state and can be used to compute linear response to perturbations.

The GPE without trapping potential [v(x) = 0] is also known as the nonlinear Schrödinger
equation and appears in several areas of theoretical physics as it offers a canonical description
for slowly varying, quasi-monochromatic wave packets in dispersive, weakly nonlinear media
[8,9]. As such, it has also stimulated an abundance of mathematical research towards showing
the stability of its (solitary wave) solutions [10–12], as well as towards the development of
numerical integrators [13–17].

In the case of one spatial dimension [18,19], as realized in highly elongated traps [20–24],
both the GPE [25] and the full quantum mechanical problem known as the Lieb-Liniger model
[26–28] are integrable for constant potential, but the respective solutions do not agree. One-
dimensional Bose gasses have no condensation (only quasi long-range order) [29], show quasi-
fermionic behavior [30–33] and have excitations which cannot be predicted from Bogoliubov’s
theory [27, 34]. This behavior has no classical counterpart and is dominated by quantum
correlations. This paper develops a generalization of the one-dimensional GPE and the BdGE,
where quantum correlations are taken into account. They are formulated in terms of non-
commuting matrices and —following the typical nomenclature of integrable systems— are
referred to as the quantum Gross-Pitaevskii equation (QGPE) and quantum Bogoliubov – de
Gennes equations (QBdGE). We apply the latter to compute linear response behaviour in the
density profile when a periodic perturbation to the potential is applied.

The normal GPE can be derived by applying the Dirac-Frenkel time-dependent
variational principle (TDVP) [35–37] to a variational mean field ansatz |Ψ[φ]〉 in
the canonical [|Ψ[φ]〉 ∼ (

∫

φ(x)ψ̂†(x)dx)N |Ω〉 for N particles] or grand-canonical

[|Ψ[φ]〉 ∼ e
∫

φ(x)ψ̂†(x)dx |Ω〉] ensemble, where ψ̂†(x) is the bosonic field creation operator in
second quantization and |Ω〉 is the Fock vacuum. For one-dimensional bosonic systems, the
GPE is obtained by applying this ansatz to the Lieb Liniger Hamiltonian [26]
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Ĥ =

∫

dx
dψ̂†

dx
(x)

dψ̂
dx
(x) + v(x)ψ̂†(x)ψ̂(x) + gψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x). (2)

The variational manifold of continuous matrix product states (cMPS) [38–40] can be seen
as a generalization of this grand-canonical ansatz in which the variational function φ(x) is
replaced by a matrix valued function R(x):

|Ψ[R, v1, v2]〉= v†
1Pe

∫ x2
x1

R(x)⊗ψ̂†(x)dx v2 |Ω〉 . (3)

Here P denotes the path-ordered exponential and v1,2 are D-dimensional boundary vectors.
By choosing the bond dimensions D = 1, we clearly recover the mean field ansatz. The cMPS
ansatz was conceived as a continuum limit of the matrix product state (MPS) ansatz [41–
43], which underlies the highly successful density matrix renormalization group [44] for the
description of one-dimensional quantum spin systems. By enlarging the refinement parameter
D, the exact quantum state can be increasingly well approximated. Indeed, the cMPS ansatz
was shown to represent both the ground state [38] and the two types of elementary excitations
[45] of the Lieb-Liniger model very well for moderate values of D. The goal of this paper is
to apply the TDVP formalism to the cMPS manifold in order to derive the matrix or quantum
analogue of the GPE.

2 Quantum Gross-Pitaevskii Equation

For a complex manifold, the TDVP can be understood as a replacement of Schrödinger’s equa-
tion by

i
d
dt
|Ψ〉= P̂Ψ Ĥ |Ψ〉 , (4)

where PΨ is a projector onto the tangent space of the variational manifold at the point |Ψ〉.
Whereas the Schrödinger equation would immediately take an initial state away from the
variational manifold, this extra projector assures that the evolution remains within the mani-
fold. The QGPE can thus be obtained by finding a time derivative ∂tR (and ∂t v1,2) such that
d |Ψ[R, v1, v2]〉/dt has the same inner product as Ĥ |Ψ〉 with any possible tangent vector. Us-
ing the expressions of tangent vectors and overlaps with Hamiltonians obtained in [40], we
obtain [see Supplementary Material for details]

i∂tR(x) =
�

−∂ 2
x + v(x)

�

R(x) + g
�

ρ−1
L (x)R

†(x)ρL(x)
�

R2(x) + gR2(x)
�

ρR(x)R
†(x)ρ−1

R (x)
�

−
�

ρ−1
L (x)R

†(x)ρL(x)
�

[R(x),∂xR(x)]− [R(x),∂xR(x)]
�

ρR(x)R
†(x)ρ−1

R (x)
�

,
(5)

where ρL(x) and ρR(x) are D× D reduced density matrices defined by the equations

ρL(x1) = v1v†
1, ∂xρL(x) = R†(x)ρL(x)R(x), (6a)

ρR(x2) = v2v†
2, −∂xρR(x) = R(x)ρR(x)R

†(x). (6b)

Note that the original GPE can be read off from the first line of (5) for D = 1, while the sec-
ond line —involving a commutator [R(x),∂xR(x)]— has no mean field analogue. Since the
non-vanishing of this term is tantamount to the presence of quantum correlations, it would be
extremely interesting to investigate its physical consequences in more detail.
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2.1 Gauge invariance

As is well known in the literature of MPS, efficient and robust algorithms make crucial use of
gauge transforms, i.e. transformations of the kind R(x) → G−1(x)R(x)G(x) for an arbitrary
matrix function G(x) that leaves the physics invariant. A manifestly gauge invariant QGPE is
obtained by introducing two more D × D matrix valued functions P(x) and Q(x), which can
be interpreted as the A0 and A1 components of a gauge potential. The spatial and temporal
derivates are then replaced by covariant derivatives

∂xR(x)→DxR(x)≡ ∂xR(x) + [Q(x), R(x)] (7a)

∂tR(x)→DtR(x)≡ ∂tR(x) + [P(x), R(x)]. (7b)

and the cMPS acquires the conventional form [38]

|Ψ[Q, R, v1, v2]〉= v†
1Pe

∫ x2
x1

Q(x)⊗ Î+R(x)⊗ψ̂†(x)dx v2 |Ω〉 .

The manifestly covariant QGPE becomes

iDtR(x) =
�

−D2
x + v(x)

�

R(x) + g
�

ρ−1
L (x)R

†(x)ρL(x)
�

R2(x) + gR2(x)
�

ρR(x)R
†(x)ρ−1

R (x)
�

−
�

ρ−1
L (x)R

†(x)ρL(x)
�

[R(x),DxR(x)]− [R(x),DxR(x)]
�

ρR(x)R
†(x)ρ−1

R (x)
�

(8)

in combination with a new equation for the time evolution of Q(x)

i∂tQ(x)− i∂x P(x)− i[Q(x), P(x)] = −ρL(x)
−1R(x)†ρL(x)×

�

gR(x)2 − [R(x),DxR(x)]
	

ρR(x)R(x)
†ρR(x)

−1. (9)

Note that the left hand side can be recognised as the only nonzero component F0,1 of the
antisymmetric field tensor. The defining equations for the density matrices ρL,R are changed
to ∂xρL(x) = Q(x)†ρL(x) + ρL(x)Q(x) + R†(x)ρL(x)R(x) and similarly for ρR(x). These
equations as well as the corresponding cMPS are invariant under arbitrary x- and t-dependent
gauge transformation G(x , t) ∈ GL(D)

ρL(x , t)→ G†(x , t)ρL(x , t)G(x , t)

ρR(x , t)→ G−1(x , t)ρR(x , t)G†−1(x , t)

R(x , t)→ G−1(x , t)R(x , t)G(x , t)

Q(x , t)→ G−1(x , t) (Q(x , t) + ∂x)G(x , t)

P(x , t)→ G−1(x , t) (P(x , t) + ∂t)G(x , t). (10)

A great benefit from working in this representation is that the matrices R(x , t),Q(x , t), P(x , t)
can be chosen to be independent of x for translational invariant systems, greatly reducing the
complexity of integrating the QGPE. Furthermore, it allows to fix the cMPS to remain in e.g.
the left canonical form ρL(x , t) = 1 [and thus Q(x)† +Q(x) + R(x)†R(x) = 0] by choosing
P(x) = −iR†(x)DxR(x)+ iF(x) with F(x) a hermitian matrix. This F(x) can be chosen freely
in the case of real time evolution, but has to properly chosen in the case of imaginary time
evolution. One particular choice is the solution of

∂x F −Q†F − FQ− R†FR= (DxR)†(DxR) + v(x)R†R+ g(R†)2R2 , (11)

which ensures that ∂tQ(x) + R(x)†∂tR(x) = 0.
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2.2 Boundary Conditions

For finite systems, the QGPE needs to be supplemented with appropriate boundary conditions
to fully specify the problem. These will also affect the evolution equation for the boundary
vectors v1,2, which we derive presently. As the TDVP can be obtained from extremizing an
action, there are only two types of self-consistent boundary conditions (similar to e.g. the
classical wave equation for a vibrating string), unless explicit boundary terms are included
in the Hamiltonian from Eq. (2). These can be derived by considering the quantized field
operator ψ̂(x) and expressing stability with respect to variations of ψ̂†(x). When the value of
ψ̂(x) is fixed at the boundaries, Dirichlet conditions are obtained:

ψ̂(x1) = a ⇒ v†
1R(x1) = av†

1, (12a)

ψ̂(x2) = b ⇒ R(x2)v2 = bv2. (12b)

Alternatively homogenous Neumann or mixed boundary conditions could be used. While the
resulting boundary conditions for the variational parameters R are inherently gauge invariant,
they only correspond to D instead of D2 equations each. In e.g. the case of Dirichlet conditions,
they only fix one eigenvalue and eigenvector of the matrix R. In fact, the other directions of R
at the boundary do not appear in physical expectation values and can thus not be fixed from
physical considerations. In order to eliminate any interplay with the gauge transformation,
we will ‘promote’ the boundary conditions in a gauge invariant manner by imposing them as
identity matrix, e.g. R(x1) = a1D in the case of Eq. (12a). Note that there are no separate
boundary condition on Q(x), as these degrees of freedom can be interpreted as pure gauge
degrees of freedom. The boundary conditions then also affect the TDVP equation for the
boundary vectors. For the case of Dirichlet conditions [R(x1) = a1D and R(x2) = b1D], we
find

i∂t v
†
1 − iv†

1 P(x1) = −av†
1DxR(x1) (13a)

i∂t v2 + iP(x2)v2 = +bDxR(x2)v2 (13b)

where the left hand side contains the covariant time derivative in the conjugate and fundamen-
tal representation, respectively. These equations are also valid for the Neumann conditions,
where the right hand side becomes zero.

2.3 Symplectic structure

Let us now discuss in more detail the mathematical structure of the QGPE. Since it contains
the quantities ρL,R(x), which are defined by integrating Eq. (6), it forms a set of coupled non-
linear partial integro-differential equations1 containing first order time derivatives and second
order space derivatives. It is a non-commutative generalization of the normal GPE in that it
is defined in terms of matrix variables. Indeed, the normal GPE is recovered from Eq. (8) in
the limit D = 1 by setting R(x) = φ(x) and observing that commutators then vanish. In that
limit,

∫ x2

x1
Q(x)dx acts as on overall scalar factor (norm and phase) that can be absorbed in

the boundaries.
Just like the normal GPE and essentially any TDVP equation, the real-time QGPE evolution

forms a classical Hamiltonian system where 〈Ψ[Q, R, v1, v2]|Ĥ|Ψ[Q, R, v1, v2]〉 plays the role
of the classical Hamiltonian. The resulting differential equations are therefore symplectic and
the energy expectation value is a constant of motion when Ĥ is time-independent [37]2. When

1One can also formulate time evolution differential equations for ρL,R(x) in order to make it into a larger set of
ordinary non-linear partial differential equations.

2The symplectic and geometric structure are only compatible for complex submanifolds of Hilbert space, which
are automatically Kähler with the Hermitian metric determined by the physical overlap of any two tangent vectors
to the manifold
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using the QGPE with imaginary time evolution t →−iτ to find a cMPS approximation for the
quantum ground state, this symplectic structure is of course lost and the energy expectation
value decreases monotonically until convergence.

2.4 Numerical integration

Developing a stable numerical integration scheme for the QGPE is challenging. Firstly, there
are the inherent complexities associated with solving a set of non-linear partial integro-diffe-
rential equations. Because of the second order spatial derivative and first order time deriva-
tive, the Courant-Friedrichs-Levy condition limits the time step of explicit schemes. A typical
workaround for the GPE is to use a splitting scheme [13, 15, 17], where the evolution is de-
composed into the local terms (external potential and interaction) and the kinetic term. The
linearity of the latter allows for a solution using a Crank-Nicolson method [46] or in Fourier
space [47]. While the QGPE is still linear in the second order spatial derivative, it has non-
linear terms containing first-order spatial derivatives, which cannot easily be integrated in
Fourier space. Another complication of the QGPE, as formulated in Eq. (13), is that it depends
on the inverses of the density matrices ρL(x) and ρR(x). These become rank deficient near
respectively the left and right boundary, as is clear from the definition in Eq. (6). It is well
known in the tensor network community that the gauge degrees of freedom in the underlying
matrix product state have to be exploited to transform these density matrices into identity
matrices [48]. This was implemented only recently for the TDVP equation for matrix product
states [49], using a non-trivial decomposition of the tangent space projector that allows to
split the non-linear differential equation for all variables into a set of linear differential equa-
tions for the individual MPS tensors [50], which is made possible by the fact that the MPS
parameterization is multilinear. Here too, we have to face complications introduced by the
intrinsic nonlinearity in the cMPS parameterization. A final challenge is to develop suitable
continuum analogous of the factorization routines such as the QR- or singular value decompo-
sition, which are exploited in the MPS simulations to robustly implement the required gauge
transformations. Note, in addition, that in order to exploit gauge freedom, the discretization
of the QGPE should not break gauge invariance. Hereto, ideas from lattice gauge theory can
serve as inspiration. In the translation invariant setting (when Q and R become x-independent
matrices), several of these difficulties disappear.

3 Quantum Bogoliubov-de Gennes equations

In the case of small perturbations around a translational invariant Hamiltonian, it might there-
fore be useful to linearize the QGPE around the translation invariant cMPS. The ensuing equa-
tions are “quantum” versions of the Bogoliubov-de Gennes equations. As an example, let us
assume that we have found a variational minimum R0,Q0 and corresponding ρL0 = Î and
ρR0 for the ground state of a translation invariant Hamiltonian H0. We now wish to study the
response of the system when applying an external potential εV (x , t). We can readily expand
the arguments of the QGPE (13) to first order R(x , t) = R0+εR̃(x , t), Q(x , t) =Q0+εR̃(x , t),
ρR(x , t) = ρR0 + ερ̃R(x , t) and obtain linear equations for all new variables. As the QGPE
mixes R with its conjugate, the corresponding equations decouple all different Fourier modes
from each other except those with opposite momenta, leading to a simple linear set of equa-
tions with 2D2 unknowns. In particular, if we consider a time-dependent perturbation of the
form Ĥ1 =

∫

d x v(t) cos (kx −ωt)ψ†(x)ψ(x), the equation for R̃= ei(kx−ωt)R++e−i(kx−ωt)R−

6
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becomes 3
�

ω 0

0 −ω

��

R+
R†
−

�

=

�

Heff Meff

M†
eff Heff

�

�

R+
R†
−

�

+

�

v1
v2

�

. (14)

The matrix appearing on the right hand side of the above expression is (the momentum ±k
block of) the Hessian of the energy functional E(R0,Q0, R0,Q0) = 〈Ψ[Q0, R0]|Ĥ0|Ψ[Q0, R0]〉,
whereas the inhomogeneous vector

�

v1 v2
�

contains the driving terms from Ĥ1. Note that
Eq. (14) reduces to a normal eigenvalue problem when Ĥ1 = 0 and is related to the ansatz
for excitations introduced in Ref. [45], which is capable of faithfully reproducing Type II Lieb-
Liniger excitations.

As an application, let us use this formalism to compute the change in particle density
δ 〈ρ(x)〉= 〈ρ(x)〉−ρ on top of translation invariant Lieb Liniger solutions with constant den-
sity ρ for a small static (ω = 0) perturbation with varying wave vector k, for different values
of the interaction strength g. Because we have linearized the QGPE in order to arrive at the
above equation, the density fluctuation δ 〈ρ(x)〉 will be directly proportional to the strength
v of the perturbation in the potential, which we set equal to unit value for convenience. We
study the linear response amplitude as function of the interaction strength γ = g/ρ and as
a function of the wave vector k of the perturbation. This response should be observable in
experiments akin to those of Refs. [51–53]. Our simulation results are presented in Fig. 1.

The Bogoliubov mean field result is given by

〈δρ(x)〉= −
2ρk2

k4 + 4γρ2k2
v cos(kx), (15)

with the fraction representing the mean field result for the response amplitude α shown in the
top panel of Fig. 1. It only matches our solution for small values of γ. For larger values of γ
(stronger interactions), our results indicate a strong response around k = 2kF , with kF = πρ
the Fermi momentum. This can be well understood from the Tonks-Girardeau limit γ →∞
[30]. This response peak is thus a clear signature of the effect of Lieb’s Type II excitations
[27], which effectively arise on top of the strongly correlated ground state induced by the
interactions and cannot be captured by Bogoliubov’s theory. In contrast, the mean field result
is dominated by the Type I excitations. Indeed, the mean field dispersion relation appears
in the denominator of the fraction in Eq. (15). In summary, our framework provides results
which are consistent throughout the whole range of interaction strengths.

4 Conclusion and outlook

We have developed a natural generalization of the GPE based on the formalism of cMPS suited
for the study of one-dimensional quantum systems where entanglement plays an important
role and the mean-field ansatz underlying the GPE is not justified. While it would be interest-
ing to have a complete mathematical study of the existence, uniqueness (up to gauge trans-
formations) and stability of the solutions of the QGPE for given boundary conditions, this is
beyond the goal and scope of this paper. It would also be enlightening to investigate whether
there exist quantum generalization of certain exact solutions of the GPE, such as the dark
soliton solution, and how they relate to the integrability of the full Lieb-Liniger Hamiltonian
or to the topological excitations constructed using the related ansatz of Ref. [45]. Note that
integrable matrix versions of the GPE were already formulated for the mean-field description
of multicomponent Bose-Einstein condensates [54–56]. In addition, it would be instructive
to compare the predictions of the QGPE to existing beyond-mean field studies such as e.g.

3See Supplementary Material for further details.
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Figure 1: Top: The response amplitude α = maxx δ 〈ρ(x)〉 for different values of γ = g/ρ
as a function of the momentum k. The dashed and solid line without markers are the clas-
sical Bogoliubov results for γ = 0.17 and γ = 1.35 respectively. Bottom: Density fluctuation
δ 〈ρ(x)〉 = 〈ρ(x)〉 − ρ at γ = 311.5 and k = 2kF. All calculations in both panels were done
with cMPS bond dimension D = 64.

Ref. [57]. Like the phase space methods here proposed, the QGPE might similarly be restricted
to short simulation times for dynamical problems. The underlying physical reason is however
completely different and caused by the growth of entanglement in such settings, which cannot
be captured by the underlying variational cMPS ansatz.

As the cMPS ansatz is a versatile variational ansatz that can readily be extended to bosonic
and fermionic systems with e.g. multiple particle species [40,58–60], the QGPE equations gen-
eralize straightforwardly to such systems. Moreover, the approach described in this paper is in
no way restricted to the Lieb-Liniger Hamiltonian, but is applicable to arbitrary Hamiltonians
in one spatial dimension. cMPS methods have already been used to study (1+1) dimensional
relativistic theories for fermions [58] and bosons [61] in a translationally invariant setting.
Using the regularisation method described in Ref. [61], the derivation of the QGPE presented
in this paper extends straightforwardly to such systems, enabling in principle the study of
general bosonic non-linear σ-models with boundaries. Non-linear σ-models are of signifi-
cant interest for the high energy physics community, for example, providing the underlying
description of bosonic strings [62, 63] propagating on curved backgrounds. Given that cMPS
methods are intrinsically non-perturbative, the approach of this paper has the potential to be
particularly useful in the study of such models in the limit of large curvature, when pertur-
bative quantization schemes fail. It is furthermore very encouraging that the implementation
of Dirichlet and Neumann conditions in the quantum theory is straightforward, and we thus
expect that the boundary condition implementation described in this paper can be used “as is”
for the description of strings with either freely propagating endpoints, or with endpoints re-
stricted to lie on D-branes [64,65]. Finally, a challenging open problem would be to construct a
higher-dimensional generalization of this QGPE. This would arise as the TDVP equation for the
variational set of continuous projected-entangled pair states [66], which are less well studied
and understood.
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A Derivation of the quantum Gross-Pitaevskii equation and the
quantum Bogoliubov-de Gennes equations

A.1 Quantum Gross-Pitaevskii equation

We start from the fully generic cMPS definition

|Ψ[Q, R, v1, v2]〉= v†
1Pe

∫ x2
x1

Q(x)⊗1̂+R(x)⊗ψ̂†(x)dx v2 |Ω〉 , (16)

with virtual dimension D, and the Lieb-Liniger Hamiltonian

Ĥ =

∫ x2

x1

dx
dψ̂†

dx
(x)

dψ̂
dx
(x) + v(x)ψ̂†(x)ψ̂(x) + gψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x). (17)

The energy expectation value was computed in Refs. [38,40] and is given by

〈Ψ|Ĥ|Ψ〉=
∫

dx 〈ρL(x)|DxR(x)⊗DxR(x) + v(x)R(x)⊗ R(x) + gR(x)2 ⊗ R(x)
2
|ρR(x)〉

(18)
with the left and right density matrices ρL(x) and ρR(x) defined by

ρL(x1) = v1v†
1,

dρL

dx
(x) =Q(x)†ρL(x) +ρL(x)Q(x) + R(x)†ρL(x)R(x), (19a)

ρR(x2) = v2v†
2,

dρR

dx
(x) = −

�

Q(x)ρR(x) +ρR(x)Q(x)
† + R(x)ρR(x)R(x)

†
�

(19b)

and with

DxR(x) =
dR
dx
(x) + [Q(x), R(x)] (20)

the spatial covariant derivative of R(x).
To facilitate the rest of the derivation, we also introduce the notation

M̂(y, z) = Pe
∫ z

y dx Q(x)⊗1̂+R(x)⊗ψ̂†(x). A general tangent vector is obtained by computing
the variation in the state |Ψ[Q, R, v1, v2]〉 under a generic variation Q(x) → Q(x) + δQ(x),
R(x)→ R(x) +δR(x), v1,2→ v1,2 +δv1,2. The result is denoted as the state |Φ〉 given by

|Φ[δQ,δR,δv1,δv2]〉=
∫ x2

x1

v†
1 M̂(x1, x)

�

δQ(x)⊗ 1̂+δR(x)⊗ ψ̂†(x)
�

M̂(x , x2) |Ω〉 dx

+δv†
1 M̂(x1, x2)v2 |Ω〉+ v†

1 M̂(x1, x2)δv2 |Ω〉 . (21)

To properly deal with the boundary conditions, it is useful to derive the QGPE following the
general recipe of the TDVP, i.e. as the Euler-Lagrange equations corresponding to extremizing
the classical action

S[Q, R, v1, v2] =

∫

dt

∫ x2

x1

dx 〈Ψ[Q, R, v1, v2]|i
d
dt
− Ĥ|Ψ[Q, R, v1, v2]〉 (22)
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We can easily derive the Euler-Lagrange equations by considering variations with respect to
the complex conjugates of the variational parameters, which are treated as independent and
appear only in the bra. Using our definition of tangent vectors, this immediately leads to the
condition (using dots for time derivatives)

i 〈Φ[δQ,δR,δv1,δv2]|Φ[Q̇, Ṙ, v̇1, v̇2]〉= 〈Φ[δQ,δR,δv1,δv2]|Ĥ|Ψ[Q, R, v1, v2]〉 (23)

for any possible variation. This is indeed equivalent to the geometric formulation of the TDVP
in Eq. (3) of the main text. More generally, it tells us that we can find the tangent space projec-
tion |Φ[V, W, w1, w2]〉= P̂Ψ |Θ〉 of an arbitrary state |Θ〉—not necessarily Ĥ |Ψ[Q, R, v1, v2]〉—
by choosing V (x), W (x) and w1,2 such that

〈Φ[V ′, W
′
, w ′1, w ′2]|Φ[V, W, w1, w2]〉= 〈Φ[V

′
, W
′
, w ′1, w ′2]|Θ〉 (24)

for all possible V
′
(x) = δQ(x), W

′
(x) = δR(x) and w ′1,2 = δv1,2. The left hand side contains

the overlap of two different tangent vectors and is given by

〈Φ[V ′, W ′, w ′1, w ′2]|Φ[V, W, w1, w2]〉=
∫ x2

x1

dx 〈ρL(x)|W (x)⊗W
′
(x)|ρR(x)〉

+

∫ x2

x1

dx

∫ x2

x

dy 〈ρL(x)|
�

V (x)⊗1+W (x)⊗ R(x)
�

E(x , y)
�

1⊗ V
′
(y) + R(y)⊗W

′
(y)

�

|ρR(y)〉

+

∫ x2

x1

dx

∫ x

x1

dy 〈ρL(y)|
�

1⊗ V
′
(y) + R(y)⊗W

′
(y)

�

E(y, x)
�

V (x)⊗1+W (x)⊗ R(x)
�

|ρR(x)〉

+

∫ x2

x1

dx[v†
1 ⊗ w ′†1 ]E(x1, x)

�

V (x)⊗1+W (x)⊗ R(x)
�

|ρR(x)〉

+

∫ x2

x1

dx 〈ρL(x)|
�

V (x)⊗1+W (x)⊗ R(x)
�

E(x , x2)[v2 ⊗ w ′2]

+

∫ x2

x1

dy [w †
1 ⊗ v†

1]E(x1, y)
�

1⊗ V
′
(y) + R(y)⊗W

′
(y)

�

|ρR(x)〉+ [w
†
1 ⊗ w ′†1 ] |ρR(x1)〉

+ [w †
1 ⊗ v†

1]E(x1, x2)[v2 ⊗ w ′2]

+

∫ x2

x1

dy 〈ρL(y)|
�

1⊗ V
′
(y) + R(y)⊗W

′
(y)

�

[w2 ⊗ v2] + 〈ρL(x2)| [w2 ⊗ w ′2]

+ [v†
1 ⊗ w ′†1 ]E(x1, x2)[w2 ⊗ v2],

where the terms on the first 5 lines corresponds to all contributions of non-zero V and W , and
the terms on lines 6 and 7 correspond to non-zero w1 and non-zero w2, respectively. Here, we
have introduced a new notation

E(x , y) = Pexp

�∫ y

x
Q(z)⊗1+1⊗Q(z) + R(z)⊗ R(z)dz

�

. (25)

It is the continuum equivalent of the (product of) MPS transfer matrices and allows to e.g.
write

〈ρL(x)|= [v
†
1 ⊗ v†

1]E(x1, x), |ρR(x)〉= E(x , x2)[v2 ⊗ v2]. (26)

Let us now first compute Ĥ |Ψ[Q, R, v1, v2]〉 itself. Using the rules from Ref. [40] and by
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applying partial integration to the kinetic energy term, we obtain

Ĥ |Ψ[Q, R, v1, v2]〉=
∫ x2

x1

v†
1 M̂(x1, x)

�

−D2
xR(x) + v(x)R(x)

�

⊗ ψ̂†(x)M̂(x , x2)v2 |Ω〉 dx

+

∫ x2

x1

v†
1 M̂(x1, x)

�

gR(x)2 − [R(x),DxR(x)]
�

⊗
�

ψ̂†(x)
�2

M̂(x , x2)v2 |Ω〉 dx

− v†
1DxR(x1)⊗ψ†(x1)M̂(x1, x2)v2 |Ω〉+ v†

1 M̂(x1, x2)DxR(x2)⊗ψ†(x2)v2 |Ω〉 . (27)

Given the linearity of the tangent space projector, we can compute the projection of the 4
different terms separately and add the result:

1. The first term of Eq. (27) is already in the explicit form of a tangent vector
|Φ[V, W, w1, w2]〉 with W (x) = −D2

xR(x) + v(x)R(x) and V (x) = 0, w1,2 = 0. It does
not need to be projected.

2. The second term is of the form |Θ〉=
∫ x2

x1
v†

1 M̂(x1, x)B(x)⊗
�

ψ̂†(x)
�2

M̂(x , x2)v2 |Ω〉 dx ,

where B(x) = gR(x)2 − [R(x),DxR(x)]. We obtain

〈Φ[V ′, W ′, w ′1, w ′2]|Θ〉=
∫ x2

x1

dx 〈ρL(x)|B(x)⊗
�

R(x)W
′
(x) +W

′
(x)R(x)

�

|ρR(x)〉

+

∫ x2

x1

dx

∫ x2

x
dy 〈ρL(x)|

�

B(x)⊗ R(x)2
�

E(x , y)
�

1⊗ V
′
(y) + R(y)⊗W

′
(y)

�

|ρR(y)〉

+

∫ x2

x1

dx

∫ x

x1

dy 〈ρL(y)|
�

1⊗ V
′
(y) + R(y)⊗W

′
(y)

�

E(y, x)
�

B(x)⊗ R(x)2
�

|ρR(x)〉

+

∫ x2

x1

dx[v†
1 ⊗ w ′†1 ]E(x1, x)

�

B(x)⊗ R(x)2
�

|ρR(x)〉

+

∫ x2

x1

dx 〈ρL(x)|
�

B(x)⊗ R(x)2
�

E(x , x2)[v2 ⊗ w ′2]

One can easily verify that by choosing

V (x) = −ρL(x)
−1R(x)†ρL(x)B(x)ρR(x)R(x)

†ρR(x)
−1

W (x) = +ρL(x)
−1R(x)†ρL(x)B(x) + B(x)ρR(x)R(x)

†ρR(x)
−1

w †
1 = 0

w2 = 0

every single line of 〈Φ[V ′, W ′, w ′1, w ′2]|Θ〉 matches with the corresponding line in the
first lines of 〈Φ[V ′, W ′, w ′1, w ′2]|Φ[V, W, w1, w2]〉, whereas the last two lines of the latter
vanish because of the choice of w1,2 = 0.

3. Next we deal with the third term |Θ〉= −v†
1DxR(x1)⊗ψ†(x1)M̂(x1, x2)v2 |Ω〉, resulting

in

〈Φ[V ′, W ′, w ′1, w ′2]|Θ〉= −[v
†
1 ⊗ v†

1]DxR(x1)⊗W
′
(x1) |ρR(x1)〉

−
∫ x2

x1

dy[v†
1 ⊗ v†

1]DxR(x1)⊗ R(x1)E(x1, y)
�

1⊗ V
′
(y) + R(y)⊗W

′
(y)

�

|ρR(y)〉

− [v†
1 ⊗ w ′†1 ]DxR(x1)⊗ R(x1) |ρR(x1)〉

− [v†
1 ⊗ v†

1]DxR(x1)⊗ R(x1)E(x1, x2)[v2 ⊗ w ′2]
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Now we have to consider the effect of the boundary conditions. If R(x1) is fixed
as R(x1) = a1 (Dirichlet condition), then the corresponding variation W

′
(x1) = 0

such that the first term vanishes and the remaining terms match the sixth line of
〈Φ[V ′, W ′, w ′1, w ′2]|Φ[V, W, w1, w2]〉 by choosing

V (x) = 0, W (x) = 0, w †
1 = −av†

1DxR(x1), w2 = 0.

Indeed, this boundary condition corresponds to fixing the value of the
field operator ψ̂(x1) = a, so that |Θ〉 can explicitly be rewritten as
|Θ〉= −av†

1DxR(x1)M̂(x1, x2)v2 |Ω〉, which exactly equals the tangent vector
|Φ[V, W, w1, w2]〉 for this choice of the parameters.

Alternatively, if we do not fix R(x1), then the variation W
′
(x1) automatically enforces

the Neumann conditions v†
1DxR(x1) = 0 at any point in time, provided that ρR(x1) is

full rank. Under this condition, we also obtain |Θ〉 = 0, which corresponds to inserting
DxR(x1) = 0 in the parameters above.

4. The last term of Eq. (27) can be dealt with similarly and is an explicit tangent vector
corresponding to the choice

V (x) = 0, W (x) = 0, w †
1 = 0, w2 = bDxR(x2)v2.

in case of the Dirichlet condition R(x2) = b1. In the case of the Neumann condition, it
is also zero.

Hence, for the boundary conditions here considered, only the second term of Eq. (27) needed
to be projected onto the tangent space and, when considering the full Schrödinger equation,
would be responsible for taking the exact evolution out of the manifold.

Grouping everything together gives rise to |Φ[V, W, w1, w2]〉= P̂Ψ Ĥ |Ψ[Q, R, v1, v2]〉 with

V (x) =−ρL(x)
−1R(x)†ρL(x)

�

gR(x)2 − [R(x),DxR(x)]
�

ρR(x)R(x)
†ρR(x)

−1

W (x) =−D2
xR(x) + v(x)R(x) +ρL(x)

−1R(x)†ρL(x)
�

gR(x)2 − [R(x),DxR(x)]
�

+
�

gR(x)2 − [R(x),DxR(x)]
�

ρR(x)R(x)
†ρR(x)

−1

w †
1 =− av†

1DxR(x1)

w2 =+ bDxR(x2)v2 ,

which we have to equate to i |Φ[Q̇, Ṙ, v̇1, v̇2]〉. Matching the parameters as Q̇ = V etc gives
rise to the gauge covariatn QGPE of the main text for the specific choice of P = 0, though this
choice is not unique. Indeed, one can note that the physical tangent vector |Φ[V, W, w1, w2]〉
does not change under a substitution

V (x)→ V (x) + [P(x), Q(x)], W (x)→W (x) + [P(x), R(x)],

w †
1 → w †

1 − v†
1 P(x1) , w2→ w2 + P(x2)v2, (28)

which is how the fully gauge covariant formulation of the QGPE is obtained.

A.2 Derivation of the quantum Bogoliubov-de Gennes Equations

A stationary solution Q0 and R0 of the QGPE parameterizes a variationally optimal cMPS
ground state approximation for a given Hamiltonian Ĥ0. Upon applying a perturbation Ĥ1
(possibly time-dependent), we can expand the QGPE to first order around Q0 and R0. In the fol-
lowing, we set Ĥ0 equal to the translation invariant Lieb-Liniger Hamiltonian (v(x) = v0 = −µ
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with µ the chemical potential) in the thermodynamic limit, so that the stationary solution
correspond to x (and t) independent matrices Q0 and R0, which we assume to be in the left-
canonical form, i.e. Q0+Q†

0+R†
0R0 = 0. Associated with this solution is a right density matrix

ρR,0 satisfying
Q0ρR,0 +ρR,0Q†

0 + R0ρR,0R†
0 = 0

and a matrix P0 = −iR†
0[Q0, R0] + iF0 where F0 is the solution of the linear system

−Q†
0F0 − F0Q0 − R†

0F0R0 = [Q0, R0]
†[Q0, R0]−µR†

0R0 + g(R†
0)

2R2
0.

We now consider a perturbation given by Ĥ1(t) = ε
∫

dx ṽ(x, t)ψ̂†(x)ψ̂(x). The ansatz for
the new solution of the QGPE is then given by

R(x , t) = R0 + εR̃(x , t), Q(x , t) =Q0 + εQ̃(x , t),

ρR(x , t) = ρR,0 + ερ̃R(x , t), ρL(x , t) = 1+ ερ̃L(x , t), (29)

where ρL,R(x , t) are the left and right density matrices. By expanding the relevant equations
to first order in ε, we obtain

∂x ρ̃L(x , t)−Q†
0ρ̃L(x , t) + ρ̃L(x , t)Q0 + R†

0ρ̃L(x , t)R0 =

Q̃(x , t) + Q̃†(x , t) + R†
0R̃(x , t) + R̃†(x , t)R0 (30)

∂x ρ̃R(x , t) +Q0ρ̃R(x , t) + ρ̃R(x , t)Q†
0 + R0ρ̃R(x , t)R†

0 =

−
�

Q̃(x , t)ρR,0 +ρR,0Q̃†(x , t) + R̃(x , t)ρR,0R†
0 + R0ρR,0R̃†(x , t)

�

. (31)

We furthermore choose

P(x , t) = P0 + εP̃(x , t) = P0 + ε
�

− iR̃†[Q0, R0]− iR†
0R̃kin(x , t) + iF̃(x , t)

�

with R̃kin(x , t) = [Q̃(x), R0] + [Q0, R̃(x)] + ∂x R̃(x) and F̃(x , t) the solution of

∂x F̃ = F̃Q0 + F0Q̃+ Q̃†F0 +Q†
0 F̃ + R̃†F0R0 + R†

0 F̃R0 + R†
0F0R̃+ [Q0, R0]

†R̃kin + R̃†
kin[Q0, R0]

+ g
�

R̃†R†
0R0R0 + R†

0R̃†R0R0 + R†
0R†

0R̃R0 + R†
0R†

0R0R̃
�

+ v0R̃†R0 + v0R†
0R̃+ ṽR†

0R0, (32)

where we henceforth omit the (x , t) dependence of the ·̃ quantities. With this choice, we are
assured that ∂tQ̃ + R†

0∂t R̃ = 0 and, integrating this from the initial time when Q̃ = R̃ = 0, we
obtain Q̃ + R†

0R̃ = 0. This equality assures that Q(x) and R(x) form a left canoncial represen-
tation to first order in ε. In particular, this makes the right hand side of Eq. (30) equal to zero,
so that the solution of that equation is given by ρ̃L = 0.

The linearized QGPE itself is then given by

i∂t R̃ρR,0 =− ∂ 2
x R̃ρR,0 − 2[Q0,∂x R̃]ρR,0 − [∂xQ̃, R0]ρR,0

− [Q̃, [Q0, R0]]ρR,0 − [Q0, [Q̃, R0]]ρR,0 − [Q0, [Q0, R̃]]ρR,0 − [Q0, [Q0, R0]]ρ̃R

+ g
�

(R̃†R2
0 + R†

0R̃R0 + R†
0R0R̃)ρR,0 + R†

0R2
0ρ̃R+ R̃R0ρR,0R†

0 + R0R̃ρR,0R†
0 + R2

0ρ̃RR†
0 + R2

0ρR,0R̃†
�

+ v0R̃ρR,0 + v0R0ρ̃R+ ṽR0ρR,0

+
�

R̃kin, R0

�

ρR,0R†
0 +

��

Q0, R0

�

, R̃
�

ρR,0R†
0 +

��

Q0, R0

�

, R0

�

ρ̃RR†
0 +

��

Q0, R0

�

, R0

�

ρR,0R̃†

+
�

R̃, R†
0

��

Q0, R0

�

ρR,0 +
�

R0, R̃†
��

Q0, R0

�

ρR,0 +
�

R0, R†
0

�

R̃kinρR,0 +
�

R0, R†
0

��

Q0, R0

�

ρ̃R

+
�

F̃ , R0

�

ρR,0 +
�

F0, R̃
�

ρR,0 +
�

F0, R0

�

ρ̃R (33)
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where we can further substitute Q̃ = −R†
0R̃. Equations (31), (32) and (33) form a set of linear

partial differential equations with as only source term the perturbed potential ṽ(x , t) and with
mixing between R̃ and R̃†. Therefore, if ṽ(x , t) = cos(kx −ωt) for certain k and ω, we can
make the ansatz

R̃(x) = ei(kx−ωt)R+ + e−i(kx−ωt)R−, F̃(x) = ei(kx−ωt)F+ + e−i(kx−ωt)F−,

ρ̃R(x) = ei(kx−ωt)ρ+ + e−i(kx−ωt)ρ−.

Note that both F̃(x) and ρ̃R(x) are hermitian matrices which means that F†
− = F+ andρ†

− = ρ+.
Inserting this ansatz into the relevant equations allows to express everything in terms of R±
and finally gives rise to the quantum Bogoliubov-de Gennes equation [Eq. (10) in the main
text]. This equation can be iteratively solved at a computational cost of O (D3). The same
approach still works if ṽ(x , t) contains N different Fourier modes, where the complexity will
increase linearly with N .
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