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Abstract

Three-dimensional string models with half-maximal supersymmetry are believed to be in-
variant under a large U-duality group which unifies the S and T dualities in four dimensions.
We propose an exact, U-duality invariant formula for four-derivative scalar couplings of the
form F(Φ)(∇Φ)4 in a class of string vacua known as CHLZN heterotic orbifolds with N prime,
generalizing our previous work which dealt with the case of heterotic string on T6. We de-
rive the Ward identities that F(Φ) must satisfy, and check that our formula obeys them. We
analyze the weak coupling expansion of F(Φ), and show that it reproduces the correct tree-
level and one-loop contributions, plus an infinite series of non-perturbative contributions.
Similarly, the large radius expansion reproduces the exact F4 coupling in four dimensions,
including both supersymmetric invariants, plus infinite series of instanton corrections from
half-BPS dyons winding around the large circle, and from Taub-NUT instantons. The sum-
mation measure for dyonic instantons agrees with the helicity supertrace for half-BPS dyons
in 4 dimensions in all charge sectors. In the process we clarify several subtleties about CHL
models in D = 4 and D = 3, in particular we obtain the exact helicity supertraces for 1/2-BPS
dyonic states in all duality orbits.
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1 Introduction

In the absence of a first principle non-pertubative formulation of superstring theory, the study of
string vacua with extended supersymmetry continues to be one of the few sources of insight into
the strong coupling regime. By exploiting invariance under U-dualities, which the full quantum
theory is believed to enjoy [1, 2, 3, 4], as well as supersymmetric Ward identities, it is often pos-
sible to determine certain couplings in the low energy effective action exactly, for all values of
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the moduli (as demonstrated by [5] and numerous subsequent works). The expansion of these
couplings near boundaries of the moduli space, corresponding to cusps of the U-duality group,
then reveals, beyond power-like terms computable in perturbation theory, infinite series of expo-
nentially suppressed corrections interpreted as semi-classical contributions in the putative string
field theory. A particularly interesting class of examples is that of BPS saturated couplings in
three-dimensional string vacua: in the limit where a circle in the internal space decompactifies,
these couplings receive exponentially suppressed contributions from BPS states in four dimen-
sions, along with further suppressed contributions from Taub-NUT instantons. These couplings
can therefore be viewed as BPS black hole partitions, which encode the exact degeneracies (or
more precisely, helicity supertraces) of BPS black hole micro-states [6, 7, 8].

In the recent letter [7], we investigated the F(Φ)(∇Φ)4 and G(Φ)∇2(∇Φ)4 couplings in the
low energy effective action of three-dimensional string vacua with 16 supercharges, focussing on
the simplest example of such vacua, namely heterotic strings compactified on a torus T7, or equiv-
alently, type II strings compactified on K3×T3. Based on the known perturbative contributions to
these couplings, we conjectured exact formulae for the coefficients F(Φ) and G(Φ) for all values
of the moduli Φ, which satisfy the requisite supersymmetric Ward identities and are manifestly
invariant under U-duality. In the limit where one circle inside T7 decompactifies, we claimed that
these formulae reproduce the correct helicity supertraces for 1/2-BPS and 1/4-BPS states with
primitive charges, for all values of the moduli φ in four dimensions.

The goal of the present work is to demonstrate these claims in the case of the (∇Φ)4 cou-
pling,1 revisiting the analysis in [9], and extend our conjecture to a class of string vacua with 16
supercharges known as CHL orbifolds [10], restricting toZN orbifolds with N prime for simplicity.

In Section 2, after reviewing relevant aspects of heterotic CHL vacua with 16 supercharges in
four and three dimensions, we state the helicity supertraces of 1/2-BPS dyons with arbitrary charge
in four dimensions (referring to Appendix A for the derivation of the perturbative BPS spectrum),
and determine the precise form of the U-duality group G3(Z) in three dimensions, consistent with
S-duality and T-duality in four dimensions. We then propose a manifestly U-duality invariant
formula (2.27) for the coefficient Fabcd(Φ) of the (∇Φ)4 couplings, obtained by covariantizing the
known one-loop contribution under G3(Z), extending the proposal in [7] for the maximal rank
case (N = 1).

In Section 3, using superspace arguments we establish the supersymmetric Ward identities
(2.23) which constrain the coupling Fabcd(Φ), and show that the proposal (2.27) satisfies these
relations.

In Section 4, we analyze (2.27) in the limit where g3 → 0, and show that it reproduces the
known tree-level and one-loop contributions in heterotic perturbation theory, plus an infinite series
of NS5-brane, Kaluza–Klein monopole and H-monopole instanton corrections.

In Section 5, we similarly analyze (2.27) in the large radius limit R →∞, and show that it
reproduces the known F4 and R2 couplings in D = 4, along with an infinite series of exponen-
tially suppressed corrections of order e−RM(Q,P) with Q and P collinear, weighted by the helicity
supertraceΩ4(Q, P), and further exponentially suppressed corrections from Taub-NUT monopoles.

In most computations, we allow for lattices of arbitrary signature (p, q), before specifying
to the most relevant case (p, q) = (2k, 8) at the end. Details of some computations are rele-
gated to Appendices. The one-loop vacuum amplitude for heterotic CHL models, from which
the perturbative BPS spectrum, F4 and (∇Φ)4 couplings are easily read off, is constructed in Ap-
pendix §A. In §B we decompose the Ward identity on all Fourier modes in the degeneration limit

1An analysis of the ∇2(∇Φ)4 couplings will appear in a separate publication.
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O(p, q) → O(p − 1, q − 1), and show that all Fourier coefficients are uniquely determined up to
a moduli-independent summation measure. In §C and §D we collect some notations which arise
in the analysis of §4 and §5. In Appendix §E we obtain a Poincaré series representation of the
relevant genus-one modular integrals, and use the same method to construct Eisenstein series for
O(p, q,Z).

2 Dualities, BPS spectrum and (∇Φ)4 couplings in CHL vacua

In this section, we recall relevant aspects of heterotic CHL vacua with 16 supercharges in four
and three dimensions, restricting to the case of ZN orbifolds with N prime for simplicity. While
most of the results are well known, we pay special attention to the quantization conditions for the
electromagnetic charges of 4D dyons, and to the precise form of the U-duality groups in D = 4
and D = 3. Finally, we state our proposal for the non-perturbative (∇Φ)4 coupling, which is the
focus of the remainder of this work.

2.1 Moduli space and 1/2-BPS dyons in D = 4

Recall that in four-dimensional string vacua with 16 supercharges, the moduli space is locally a
product

M4 =
�

SL(2,R)
SO(2)

× Gr−6,6

�

/G4(Z) , (2.1)

where Gp,q ≡ O(p, q)/[O(p)×O(q)] denotes the orthogonal Grassmannian of positive q-planes in a
fiducial vector spaceRp,q of signature (p, q) (a real symmetric space of dimension pq), r is the rank
of the Abelian gauge group, and G4(Z) is an arithmetic subgroup of SL(2,R)×O(r − 6,6,R). In
heterotic string theory compactified on a torus T6, the first factor is parametrized by the axiodila-
ton S = b + 2πi/g2

4 , where b is the scalar dual to the Kalb-Ramond two-form, while the second
factor, with r = 28, is the Narain moduli space [11]. The U-duality group G4(Z) is then the prod-
uct of the S-duality group SL(2,Z), acting on S by fractional linear transformations S 7→ aS+b

cS+d
[1, 2], and of the T-duality group O(22,6,Z), which is the automorphism group of the even self-
dual Narain lattice Λ22,6 = E8⊕E8⊕ II6,6, where E8 denotes the root lattice of E8 and IId,d denotes d
copies of the standard hyperbolic lattice II1,1. The effective action is singular on real codimension-
6 loci where the projection QR of a vector Q ∈ Λ22,6 with norm Q2 = 2 on the negative 6-plane
parametrized by Gr−6,6 vanishes, corresponding to points of gauge symmetry enhancement. The
same moduli space (2.1) arises in type IIA string compactified on K3× T2, where the first factor
parametrizes the Kähler modulus of T2, while the second factor parametrizes the axiodilaton, the
complex modulus of T2, the K3 moduli and the holonomies of the RR gauge fields on T2 × K3.
These two string vacua are in fact related by heterotic/type II duality [12], which in particular
turns S-duality into a geometrical symmetry.

Vacua with lower values of r can be constructed as freely acting orbifolds of the maximal rank
model with r = 28 [10, 13, 14, 15]. On the heterotic side, one mods out by a ZN rotation of
the heterotic lattice Λ22,6 at values of the Narain moduli where such a symmetry exists, combined
with an order N shift along one circle inside T6. This projection removes 28 − r of the gauge
fields in 4 dimensions, along with their scalar partners. On the type II side, one can similarly mod
out by a symplectic automorphism of order N on K3, combined with an order N shift on T2. It is
convenient to label this action by the data {m(a), a|N} and the associated cycle shape

∏

a|N am(a)

such that
∑

a|N am(a) = 24, corresponding to the cycle decomposition of the ZN action on the
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N Cycle Shape k r Λk,8−k Λm
∼= Λ∗e |Λ∗m/Λm|

1 124 12 28 E8 ⊕ E8 ⊕ II6,6 1
2 1828 8 20 E8[2] E8[2]⊕ II1,1[2]⊕ II5,5 210

3 1636 6 16 D6[3]⊕ D2[−1] A2 ⊕ A2 ⊕ II3,3[3]⊕ II3,3 38

5 1454 4 12 D4[5]⊕ D4[−1] II3,3[5]⊕ II3,3 56

7 1373 3 10 D3[7]⊕ D5[−1]
�

−4 −1
−1 −2

�

⊕ II2,2[7]⊕ II2,2 75

Table 1: A class of ZN CHL orbifolds. Here k = 24/(N + 1) is the weight of the cusp form whose
inverse counts 1/2 BPS states, r = 2k + 4 is the rank of the gauge group and Λm is the lattice
of magnetic charges in four dimensions. The discriminant group Λ∗m/Λm is isomorphic to Zk+2

N .
Agreement between the lattice Λm listed here and Λr−6,6 defined in (2.2) follows from the lattice
isomorphisms (A.33).

even homology lattice Heven(K3)∼Z24. For simplicity we shall restrict ourselves to CHL orbifolds
with N prime and cycle shape 1kN k with k = 24/(N + 1). In this case, one can decompose
Λ22,6 = ΛNk,8−k ⊕ II1,1 ⊕ IIk−3,k−3, such that the ZN action acts on the first term by a ZN rotation,
on the second term by an order N shift, leaving IIk−3,k−3 invariant (see §A.2 for details on this
construction). We denote by Λk,8−k the quotient of ΛNk,8−k under the ZN rotation (see Table
1). The U-duality group G4(Z) includes Γ1(N) × eO(r − 6, 6,Z), where Γ1(N) is the congruence
subgroup of SL(2,Z) corresponding to matrices

�

a b
c d

�

with c = 0mod N , a = d = 1mod N , and
eO(r − 6,6,Z) is the restricted automorphism group of the lattice

Λr−6,6 = Λk,8−k ⊕ II1,1[N]⊕ IIk−3,k−3 , (2.2)

i.e. the subgroup of the automorphism group of Λr−6,6 which acts trivially on the discriminant
group Λ∗r−6,6/Λr−6,6. Here and below, for any lattice Λ, we denote by Λ[α] the same lattice with a
quadratic form rescaled by a factor α (which is equivalent to rescaling the lattice vectors by

p
α).

Note that the lattice (2.2) is still even, i.e. Q2 ∈ 2Z for Q ∈ Λr−6,6, but it is no longer unimodular,
rather it is a lattice of level N , in the sense that Q2 ∈ 2Z/N for any Q ∈ Λ∗r−6,6. Singularities now
occur on codimension-q loci where Q2

R = 0 for a norm 2 vector Q ∈ Λr−6,6, or for a norm 2/N
vector Q ∈ Λ∗r−6,6.

While the U-duality group G4(Z)must certainly include Γ1(N)× eO(r−6,6,Z), it may actually
be larger. Moreover, special BPS observables may well be invariant under an even larger group.
In particular the four-derivative couplings in D = 4 turn out to be invariant under the action of
the larger duality group Γ0(N)×O(r−6, 6,Z), where Γ0(N) is the subgroup of matrices

�

a b
c d

�

with
c = 0mod N and O(r − 6,6,Z) is the full automorphism group of the lattice Λr−6,6. For example,
the exact R2 coupling in the low-energy effective action is given by [19, 20, 21]

−
1

(8π)2

∫

d4 x
p

−g log(S k
2 |∆k(S)|2)(RµνρσRµνρσ − 4RµνRµν +R2) , (2.3)

where∆k is the unique cusp form of weight k under Γ0(N), nowhere vanishing except at the cusps
i∞ and 0,

∆k(τ) = η
k(τ)ηk(Nτ) . (2.4)
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In the weak coupling limit S2→∞, the expansion

− log(S k
2 |∆k(S)|2) = 4πS2 − k log S2 + k

∞
∑

m=1

 

∑

d|m

d +
∑

Nd|m

Nd

!

qm
S + q̄m

S

m
, (2.5)

with qS = e2πiS reveals, beyond the expected tree-level contribution and logarithmic mixing with
the non-local part of the effective action, an infinite series of exponentially suppressed corrections
ascribed to NS5-branes wrapped on T6 [19]. While not all Γ0(N)×O(r −6, 6,Z) transformations
are expected to be U-dualities of the full theory but only of the BPS sector, for brevity we shall
refer to them respectively as S- and T-dualities.

In [18] it was observed that the coupling (2.3) is in fact invariant under the larger group bΓ0(N),
obtained by adjoining to Γ0(N) the Fricke involution, which acts on modular forms of weight k
under Γ0(N) via fk(τ) 7→ f̂k(τ) = (−iτ

p
N)−k fk(−1/(Nτ)). Based on a detailed study of geometric

dualities in the type II dual description, it was conjectured2 that the full U-duality group in D = 4
also includes the so-called Fricke S-duality, which acts on the first factor in (2.1) by the Fricke
involution S 7→ −1/(NS), accompanied by a suitable action of O(r −6, 6,R) on the second factor.
Additional evidence for the existence of Fricke S-duality comes from the spectrum of BPS states,
to which we now turn.

Point-like particles in D = 4 carry electric and magnetic charges (Q, P) ∈ Λem under the r
Maxwell fields, where

Λem = Λe ⊕Λm , Λm = Λr−6,6 = Λ
∗
e . (2.6)

The lattice Λm is tabulated in the sixth column of Table 1, taken from [18]. It agrees with the
result (2.2) upon making use of the lattice isomorphisms (A.33). In view of the remarks below
(2.2), one has, for any (Q, P) ∈ Λem,

Q2 ∈
2
N
Z , P2 ∈ 2Z , P ·Q ∈Z . (2.7)

The last property in particular ensures that the Dirac-Schwinger-Zwanziger pairing Q ·P ′−Q′ ·P is
integer. Moreover, it was observed in [18] that the lattice Λm is in fact N -modular, i.e. it satisfies

Λ∗m ' Λm[1/N] . (2.8)

In other words, there exists an O(r − 6,6,R) matrix σ such that
p

Nσ maps the lattice Λm into
itself and such that

Λ∗m =
σ
p

N
Λm (⊃ Λm) . (2.9)

A simple example of N -modular lattice is Λd,d[N]⊕ Λd,d , which is relevant for N = 5 above. In
this case one can parametrize an element in the lattice in (Zd , NZd ,Zd ,Zd) and an element of
the dual lattice in (Zd/N ,Zd ,Zd ,Zd) and define σ ∈ O(2d, 2d,R) such that

σ
p

N
=

1
p

N









0 0 1p
N
1d,d 0

0 0 0
p

N1d,dp
N1d,d 0 0 0

0 1p
N
1d,d 0 0









=









0 0 1
N 1d,d 0

0 0 0 1d,d
1d,d 0 0 0

0 1
N 1d,d 0 0









.

(2.10)
2More generally, Fricke S-duality is conjectured to hold whenever the cycle shape satisfies the balancing condition

m(a) = m(N/a) for all a|N . [18]
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The map (2.9) defines the action (Q, P) 7→ (−σ · P/
p

N ,σ−1 ·Q
p

N) of the Fricke S-duality on
Λem, which maps (Q2, P2, P ·Q) 7→ (P2/N , NQ2,−P ·Q) and therefore preserves the quantization
conditions (2.7). It also allows to identify NΛ∗m as a sublattice of Λm

NΛ∗m =
p

NσΛm ⊂ Λm . (2.11)

Electric charge vectors Q ∈ Λm ⊂ Λe are called untwisted, while vectors Q ∈ Λe r Λm are called
twisted. More generally, we shall call dyonic charge vectors (Q, P) lying in Λm ⊕ NΛe ⊂ Λe ⊕Λm
untwisted, and twisted otherwise.3 Untwisted dyons are in particular such that

Q2 ∈ 2Z , P2 ∈ 2NZ , P ·Q ∈ NZ . (2.12)

Half-BPS states exist only when Q, P are collinear. Their mass is then determined in terms of
the charges via

M2(Q, P) =
2
S2
(QR − SPR) · (QR − S̄PR) , (2.13)

where, for a vector QI ∈Rp,q (I = 1 . . . p+q), we denote by Qa
L (a = 1 . . . p) and Qâ

R (â = 1 . . . q) its
projections on the positive p-plane and its orthogonal complement parametrized by the orthogonal
Grassmannian Gp,q, such that Q2 =Q2

L −Q2
R.

For primitive purely electric states (such that Q ∈ Λe but Q/d /∈ Λe for all d > 1), corresponding
to left-moving excitations in the twisted sectors of the perturbative heterotic string, it is known
that the helicity supertrace Ω4(Q, 0) is given by [22, 17, 24, 25, 23]

Ω4(Q, 0) = ck

�

−NQ2

2

�

,
1

∆k(τ)
=
∑

m∈Z
m≥−1

ck(m)q
m =

1
q
+ k+ . . . , (2.14)

where q = 22πiτ and ∆k(τ) is the same cusp form (2.4) which enters in the exact R2 coupling.
In Appendix A, we rederive this result by constructing the one-loop vacuum amplitude for the
CHL models under consideration, and show that primitive purely electric states corresponding to
left-moving excitations in the untwisted sector have an additional contribution (first observed for
N = 2 in [26])

Ω4(Q, 0) = ck

�

−Q2

2

�

+ ck

�

−NQ2

2

�

. (2.15)

Invariance under both Γ0(N) and Fricke S-duality implies that the same formulae apply to generic
primitive dyons with Q2 being replaced by 1

N gcd(NQ2, P2,Q · P). It follows that the helicity super-
trace for general 1/2 BPS primitive dyons is given by

Ω4(Q, P) = ck

�

−gcd(NQ2,P2,Q·P)
2

�

. (2.16)

for twisted electromagnetic charge (Q, P) ∈ (Λe ⊕Λm)r (Λm ⊕ NΛe), and by

Ω4(Q, P) = ck

�

−gcd(NQ2,P2,Q·P)
2

�

+ ck

�

−gcd(NQ2,P2,Q·P)
2N

�

. (2.17)

for untwisted charge (Q, P) ∈ Λm ⊕ NΛe. In contrast, primitive 1/2-BPS states of the maximal
rank theory have a single contribution

Ω4(Q, P) = c
�

−gcd(Q2,P2,Q·P)
2

�

,
1
∆(τ)

=
∑

m∈Z
m≥−1

c(m)qm =
1
q
+ 24+ . . . (2.18)

3Note that this terminology is defined to be consistent with Fricke and Γ0(N) S-duality, but twisted magnetic charges
do not correspond to any twisted sector in the conventional sense.
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2.2 Moduli space and 1/2-BPS couplings in D = 3

Upon further compactification on a circle, additional moduli arise from the radius R of the circle,
from the holonomies a1I of the r gauge fields, and from the scalars a2I ,ψ dual to the r Maxwell
fields and to the Kaluza–Klein gauge field in three dimensions, extending (2.1) to [27]

M3 = Gr−4,8/G3(Z) . (2.19)

The U-duality group G3(Z) includes G4(Z), the Heisenberg group of large gauge transformations
acting on aI ,i ,ψ, and the automorphism group O(r − 5, 7,Z) (or rather a subgroup containing
eO(r − 5,7,Z)) of the Narain lattice Λr−5,7 = Λr−6,6 ⊕ II1,1 corresponding to T-duality in heterotic
string compactified on T7. The action of these subgroups is most easily seen in the vicinity of the
cusps R→∞ and g3→ 0, corresponding to the decompactification limit to D = 4 and the weak
heterotic coupling limit in D = 3, where (2.19) reduces to

M3→

(

R+R ×M4 × T̃2r+1

R+
1/g2

3
×
�

O(r−5,7)
O(r−5)×O(7)/O(r − 5,7,Z)

�

× T r+2 (2.20)

Here, T̃2r+1 is a circle bundle over the torus T2r parametrized by the holonomies ai,I , with fiber
parametrized by the NUT potential ψ, while T r+2 corresponds to the scalars dual to the Maxwell
gauge fields after compactifying the heterotic string on T7. In heterotic perturbation theory, the
effective action in D = 3 is singular on codimension-7 loci where Q2

R = 0 for a norm 2 vector
Q ∈ Λr−5,7, or for a norm 2/N vector Q ∈ Λ∗r−5,7.

For the case r = 28, it is well-known that these subgroups generate the automorphism group
O(24,8,Z) of the ‘non-perturbative Narain lattice’ Λ24,8 = Λ22,6 ⊕ II2,2 [28]. To the extent of our
knowledge, the U-duality group for CHL models has not been discussed in the literature, but it is
natural to expect that it includes the restricted automorphism group eO(r−4, 8,Z) of an extended
Narain lattice of the form Λr−4,8 = Λm ⊕ Λ2,2. We find that the following choice reproduces the
correct S and T-dualities in D = 4:

Λr−4,8 = Λm ⊕ II1,1 ⊕ II1,1[N] , (2.21)

where II1,1[N] is the standard hyperbolic lattice with quadratic form rescaled by a factor of N , such
that Λ∗r−4,8/Λr−4,8 ' Zk+4

N . In terms of the usual construction of II2,2 by windings (n1, n2) ∈ Z2,
momenta (m1, m2) ∈ Z2 and quadratic form 2m1n1 + 2m2n2, we define II1,1 ⊕ II1,1[N] as the
sublattice of II2,2 where n2 is restricted to be a multiple of N . The restricted automorphism
group of II1,1 ⊕ II1,1[N] was determined in [18, 29], and includes σT↔S n [Γ1(N) × Γ1(N)],
acting by fractional linear transformations on the moduli (T, S) parametrizing G2,2, such that
|m1 + Sm2 + T n1 + ST n2|2/(S2T2) is invariant (see [20, §C], case V for N = 2, or [30, §3.1.3]
for arbitrary N). In the present context, T is interpreted as ψ+ iR2, while S is the heterotic ax-
iodilaton. Thus, eO(r−4,8,Z) contains the S-duality group Γ1(N) and T-duality group eO(r−6,6,Z)
in four dimensions. In addition, Fricke S-duality in four dimensions follows from the fact that the
non-perturbative lattice (2.21) is itself N -modular,

Λ∗r−4,8 ' Λr−4,8[1/N] . (2.22)

More evidence for the claim (2.21) will come from the analysis of BPS couplings in D = 3, to
which we now turn.

8

https://scipost.org
https://scipost.org/SciPostPhys.3.1.008


SciPost Phys. 3, 008 (2017)

In this work, we focus on the coupling of the form F(Φ)(∇Φ)4 in the low energy effective
action in D = 3, where F(Φ) is a symmetric rank four tensor Fabcd(Φ), and (∇Φ)4 is a shorthand
notation for a particular contraction of the pull-back of the right-invariant one-forms Paâ on Gr−4,8
to R2,1 (see (3.15)). As stated in [7], and further explained below, supersymmetry requires that
the coefficient Fabcd(Φ) satisfies the tensorial differential equations

D(e ĝD f ) ĝ Fabcd =
2−q

4 δe f Fabcd + (4− q)δe)(a Fbcd)( f + 3δ(ab Fcd)e f +
15k
(4π)2δ(abδcdδe f )δq,6 ,

(2.23a)

D[e [êD f ]
f̂ ]Fabcd = 0 , D[e âFa]bcd = 0 , (2.23b)

where the constant term in the first line occurs from the regularisation in q = 6 (see 3.57), and
where Dab̂ are the covariant derivatives in tangent frame on Gp,q. In fact, we shall show that all
components of the tensor Fabcd can be recovered from its trace Ftr(Φ) ≡ F ab

ab (Φ) by acting with
the differential operators Dab̂ (see (3.26)). Supersymmetry requires that Ftr(Φ) be an eigenmode
of the Laplacian on Gr−4,8 with a specified eigenvalue, while U-duality requires that it should be
invariant under eO(r−4,8,Z). (Note however that the second order differential equations satisfied
by Ftr(Φ) does not imply (2.23), so it should not be thought of as a prepotential for Fabcd .)

In CHL ZN orbifold of heterotic string on T7, Fabcd gets tree-level and one-loop contributions,
both of which are solutions of (2.23), invariant under the full T-duality group O(r − 5, 7,Z). As
we show in Appendix A, the one-loop contribution is given by a modular integral4

F (1-loop)

abcd = R.N.

∫

Γ0(N)\H

dτ1dτ2

τ2
2

ΓΛr−5,7
[Pabcd]

∆k(τ)
, (2.24)

where ∆k(τ) is the same cusp form (2.4) which appeared in the R2 couplings in D = 4, and
ΓΛp, q
[Pabcd] denotes the Siegel–Narain theta series for the lattice Λp,q,

ΓΛp, q
[Pabcd] = τ

q/2
2

∑

Q∈Λp,q

Pabcd(Q) e
iπQ2

Lτ−iπQ2
Rτ̄ , (2.25)

with an insertion of the polynomial

Pabcd(Q) =QL,aQL,bQL,cQL,d −
3

2πτ2
δ(abQL,cQL,d) +

3

16π2τ2
2

δ(abδcd), (2.26)

Γ0(N)\H is any fundamental domain for the action of Γ0(N) on the Poincaré upper half-plane H,
and R.N. denotes a suitable regularization prescription (see (3.30)). In view of the form of the
one-loop contribution, it is therefore natural to conjecture [9, 7] that the exact (∇Φ)4 coupling
is the obvious generalization of (2.24), where the Narain lattice ΓΛr−5,7

is replaced by its non-
perturbative extension (2.21),

Fabcd(Φ) = R.N.

∫

Γ0(N)\H

dτ1dτ2

τ2
2

ΓΛr−4,8
[Pabcd]

∆k(τ)
. (2.27)

A similar formula holds for the trace part Ftr(Φ)≡ δabδcd Fabcd(Φ),

Ftr(Φ) = R.N.

∫

Γ0(N)\H

dτ1dτ2

τ2
2

ΓΛr−4, 8
· D−k+2D−k

1
∆k(τ)

, (2.28)

4A similar computation for four-graviton couplings in CHL models was performed in [31].
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where Dw =
i
π(∂τ −

iw
2τ2
) is the Maass raising operator, mapping modular forms of weight w to

weight w+ 2. The proposals (2.27) and (2.28) are manifestly invariant (or covariant) under the
full automorphism group O(r − 4, 8,Z) of the non-perturbative lattice (2.21), which contains the
true U-duality group in D = 3. Moreover, since the latter is N -modular, ΓΛr−4, 8

is invariant under
the combined action of the Fricke involution on H and the rotation σ ∈ O(r − 4, 8,R) realizing
the isomorphism (2.22),

ΓΛr−4, 8
(Φ,τ)[Pabcd] =

�

−iτ
p

N
�−k
ΓΛr−4, 8

[Pabcd]
�

σ ·Φ,−
1

Nτ

�

. (2.29)

Since ∆k is also an eigenmode of the Fricke involution on H, and since the fundamental domain
Γ0(N)\H can be chosen to be invariant under this involution, it follows that Fabcd(Φ) (and there-
fore Ftr(Φ)) is covariant (invariant) under the action of σ on Gr−4,8. As already anticipated, this
action descends to Fricke S-duality in D = 4.

It is also important to note that the couplings (2.27) and (2.28) are singular on codimension-8
loci where Q2

R = 0 for some norm 2 vector Q ∈ Λr−4,8, or norm 2/N vector Q ∈ Λ∗r−4,8. When

the vector Q is of the form Q = (0, eQ, 0) ∈ Λr−4,8 with eQ ∈ Λr−5,7, this singularity is visible at the
level of the one-loop correction to the (∇Φ)4 coupling, and is due to additional states becoming
massless. However, the one-loop correction is singular in real codimension 7, while the full non-
perturbative coupling (assuming that (2.27) is correct) is singular in real codimension 8. Indeed,
the invariant norm Q2

R = eQ
2
R+

1
2 g2

3(eQ·a)
2 vanishes only when both eQ2

R = 0 and eQ·a = 0. This partial
resolution may be seen as an analogue of the resolution of the conifold singularity on the vector
multiplet branch in type II strings compactified on a CY threefold times a circle, or equivalently
on the hypermultiplet branch in the mirror description [32]. Singularities associated to generic
vectors Q ∈ Λr−4,8 are not visible at any order in perturbation theory, and are associated to ‘exotic’
particles in D = 3 becoming massless [33, 34].

3 Establishing and solving supersymmetric Ward identities

In this section, we establish the supersymmetric Ward identities (2.23), from linearized superspace
considerations, relate the components of the tensor Fabcd to its trace Ftr ≡ F ab

ab , and show that
the genus-one modular integral (2.27) obeys this identity. For completeness, we solve the first
equation of (2.23) in appendix B, and show that it is satisfied by each Fourier mode of Fabcd .

3.1 (∇Φ)4 type invariants in three dimensions

In three dimensional supergravity with half-maximal supersymmetry, the linearised superfield Wâa
satisfies the constraints [27, 35, 36]

Di
αWâa = (Γâ)

i ̂χα ̂a , Di
αχβ ̂a = −i(σµ)αβ(Γ

â) ̂
i∂µWâa , (3.1)

with â = 1 to 8 for the vector of O(8), i = 1 to 8 for the positive chirality Weyl spinor of Spin(8)
and ı̂ = 1 to 8 for the negative chirality Weyl spinor. The 1/2 BPS linearised invariants are defined
using harmonics of Spin(8)/U(4) parametrizing a Spin(8) group element ur

i , uri in the Weyl
spinor representation of positive chirality [37],

2ur(iu
r

j) = δi j , δi juriu
s

j = δ
s
r , δi jurius j = 0 , δi jur

iu
s

j = 0 , (3.2)
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ur ı̂, ur
ı̂ in the Weyl spinor representation of negative chirality,

2ur (̂ıu
r
̂) = δı̂ ̂ , δ ı̂ ̂ur ı̂u

s
̂ = δ

s
r , δ ı̂ ̂ur ı̂us ̂ = 0 , δ ı̂ ̂ur

ı̂u
s
̂ = 0 , (3.3)

and u+ â, urs
â, u− â in the vector representation,

2u+(âu− b̂) +
1
2
εrstuurs

âutu
b̂ = δâ b̂ , δâ b̂u+ âu− b̂ = 1 , δâ b̂urs

âutu
b̂ =

1
2
εrstu ,

δâ b̂u+ âu+ b̂ = 0 , δâ b̂u+ âurs
b̂ = 0 , δâ b̂u− âurs

b̂ = 0 , δâ b̂u− âu− b̂ = 0 , (3.4)

with r = 1 to 4 of U(4). They are related through the relations

u+ âuri(Γ
â)i ̂ =

p
2ur ı̂δ

ı̂ ̂ , urius ̂(Γâ)
i ̂ = εrstuutu

â , urs
âut i(Γ

â)i ̂ = 2δ[rt us]
ı̂δ

ı̂ ̂ ,

uriu
s
̂(Γâ)

i ̂ =
p

2u− âδ
s
r , ur

ius ̂(Γâ)
i ̂ =
p

2u+ âδ
r
s , ur

iu
s
̂(Γâ)

i ̂ = 2urs
â . (3.5)

The superfield W+
a ≡ u+âWâa then satisfies the G-analyticity property

ur
i D

i
αu+âWâa ≡ Dr

αW+
a = 0 . (3.6)

One can obtain a linearised invariant from the action of the eight derivatives Dαr ≡ uri D
i
α’s on

any homogeneous function of the W+
a ’s. After integrating over the harmonic variables with the

normalisation
∫

du= 1 and using

∫

duu− â1
. . . u− ân

W+a1 · · ·W+an =
6! n!

(6+ 2n)(5+ n)!
W a1

(a1
· · ·W an

an)′ , (3.7)

with the projection (â1 . . . ân)′ on the traceless symmetric component (recall that u− âu−â = 0),
one gets 5

(6+ 2n)(5+ n)!
6! n!

∫

duu− â1
. . . u− ân

[D8] 1
(n+4)! ca1...an+4

W+a1 . . . W+an+4

=
1
n!

ca1...anabcdW a1
(â1

W a2
â2

. . . W an
ân)′L

(0)abcd

+
1

(n− 1)!
ca1...anabcdW a2

(â2
W a3

â3
. . . W an

ân
L(0)a1abcd

â1)′
+ . . .

+
1

(n− 4)!
ca1...anabcdW a5

(â5
W a6

â6
. . . W an

ân
L(0)a1a2a3a4abcd

â1 â2 â3 â4)′
+ ∂ (. . . ) , (3.9)

5In particular for a single vector multiplet

[D8]
1

(n+ 4)!
(W+)n+4 =

1
n!
(W+)n

�

2∂µWrs∂νW
rs∂ µWtu∂

νW tu − ∂µWrs∂
µW rs∂νWtu∂

νW tu
�

−
8

(n+ 1)!
(W+)n+1∂µWrs∂νW

rs∂ µ∂ νW− +
8

(n+ 2)!
(W+)n+2∂µ∂νW

−∂ µ∂ νW− + . . . . (3.8)
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where the Ln+4
n are symmetric tensors consisting of a homogeneous polynomial of order 4+ n in

∂µW aâ, χαı̂a and ∂µχαı̂a, i.e.

L(0)abcd = 2∂µW (a
â∂
µW b

b̂∂νW
c|â∂ νW d)b̂ − ∂µW (a

â∂
µW b|â∂νW

c
b̂∂
νW d)b̂ + . . .

L(0)abcde
â ∼ 4×χ2(∂W )3 + 5×χ3∂ χ∂W

L(0)a1a2abcd
â1 â2

∼ 6×χ4(∂W )2 + 2×χ5∂ χ

L(0)a1a2a3abcd
â1 â2 â3

∼ χ6∂W

L(0)a1a2a3a4abcd
â1 â2 â3 â4

∼ χ8 , (3.10)

where we only wrote the bosonic part of the first polynomial, and only indicated the number
of independent structures for the others, such that χ8 is for example the unique Lorentz singlet
in the irreducible representation of O(8) with four symmetrised indices without trace and eight
symmetrised O(r − 8) indices. A total derivative has been extracted in (3.9) in order to remove
all second derivative terms ∂µ∂νW

aâ.
At the non-linear level, derivatives of the scalar fields only appear through the pull-back of the

right-invariant form Pab̂ defined from the Maurer–Cartan form

dg g−1 =

�

dpLa
IηI J pLb

J −dpLa
IηI J pRb̂

J

dpRâ
IηI J pLb

J −dpRâ
IηI J pRb̂

J

�

≡
�

−ωab Pab̂
Pbâ −ωâ b̂

�

, (3.11)

where ηI J is the O(r −8,8) metric and pL,a
I , pR,b̂

I are the left and right projections parametrised

by the Grassmaniann Gr−8,8. The right-invariant metric on Gr−8,8 is defined as Gµν = 2P
µab̂Pab̂

ν

and the covariant derivative in tangent frame acts on a symmetric tensor as

Dab̂Aa1...am,b̂1...b̂n
≡ P

µab̂Gµν(∂νAa1...am,b̂1...b̂n
+mων(a1

cAa2...am)c,b̂1...b̂n
+ nω

ν(b̂1

ĉAa1...am,|b̂2...b̂n)ĉ
) . (3.12)

The supersymmetry invariant associated to a tensor Fabcd on the Grassmanian defines a Lagrange
density L that decomposes naturally as

L= Fa1a2a3a4
La1a2a3a4 +D(a1

âFa2a3a4a5)L
a1...a5

â +D(a1
â1Da2

â2 Fa3a4a5a6)L
a1...a6

â1 â2

+D(a1
â1Da2

â2Da3
â3 Fa4a5a6a7)L

a1...a7
â1 â2 â3

+D(a1
â1Da2

â2Da3
â3Da4

â4 Fa5...a8)L
a1...a8

â1...â4
, (3.13)

where the Ln+4
n are O(r − 8,8) invariant polynomial functions of the following covariant fields:

Pµ ab̂ = ∂µφ
µP

µ ab̂ , χαîa , Dµχαı̂a =∇µχαı̂a + ∂µφ
µ
�

ωµ a
bχαı̂a +

1
4
ω

µ â b̂(Γ
â b̂ )̂ı

̂χα ̂a

�

, (3.14)

and the dreibeins and the gravitini fields. Because non-linear invariants define a linear invariant
by truncation to lowest order in the fields (3.14), the covariant densities L4+n

n reduce at lowest
order to homogeneous polynomials of degree n + 4 in the covariant fields (3.14) that coincide
with the linearised polynomials L(0)n+4

n , in particular

Labcd =
p

−g
�

2P(aµ âPµ b
b̂P c|â
ν Pν d)b̂ − P(aµ âPµ b|âP c

ν b̂Pν d)b̂ + . . .
�

. (3.15)

The important conclusion to draw from the linearised analysis is that the O(r−8,8) right-invariants
tensors Ln+4

n appearing in the ansatz (3.13) are symmetric in both sets of indices and traceless in
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the O(8) indices. Checking the supersymmetry invariance (modulo a total derivative) of L in this
basis, one finds that there is no term to cancel the supersymmetry variation

δFabcd =
�

εi(Γ
f̂ )i ̂χ e

̂

�

De f̂ Fabcd (3.16)

of the tensor Fabcd and of its derivative when open O(r − 8) indices are antisymmetrized, hence
the tensor Fabcd must satisfy the constraints

D[a[âDb]
b̂]Fcde f = 0 , D[e âFa]bcd = 0 . (3.17)

Similarly, because the Ln+4
n are traceless in the O(8) indices, the O(8) singlet component of

δ(DF)L5
1 can only be cancelled by terms coming from FδL4, i.e.

FabcdδLabcd +
1
8
De

âD f âFabcd(ε Γ
ĉχ e)Labcd f

ĉ ∼ 0 (3.18)

modulo terms arising from the supercovariantisation,6 so that the covariant components must
satisfy

δLabcd +
5b1

8
(ε Γ ĉχe)Labcde

ĉ +
5b2

8
(ε Γ ĉχ(a)Lbcd)e

ĉ e =∇µ(. . . ) (3.19)

and the tensor Fabcd an equation of the form

De
âD f âFabcd = 5b1δe( f Fabcd) + 5b2δ( f aFbcd)e , (3.20)

for some numerical constants b1, b2 which are fixed by consistency. In particular the integrability
condition on the component antisymmetric in e and f implies b2 = 2b1 + 4.

Before determining the constants bi , it is convenient to generalize Fabcd to a completely sym-
metric tensor F (p,q)

abcd on a general Grassmanian Gp,q, which would arise by considering a superfield
in D = 10− q dimensions with 3 ≤ q ≤ 6, with harmonics parametrizing similarly the Grassman-
nian Gq−2,2 [40]. The corresponding invariant takes the form L= F (p,q)

abcd L
abcd + . . . with

Labcd =
p

−g
�

F (aµνF b|νσF b
σρF d)ρµ −

1
4

F (aµνF b|µνF b
σρF d)σρ

+ (4F (aµσF b
ν
|σ −ηµνF (aσρF b|σρ)Pµ|c âPν|d)â

+ 2P(aµ âPµ b
b̂P c|â
ν Pν d)b̂ − P(aµ âPµ b|âP c

ν b̂Pν d)b̂ + . . .
�

(3.21)

where Fabcd is subject to the constraints (3.17) and

De
âD f âF (p,q)

abcd = b1δe f F (p,q)
abcd + 2b2δ f (aF (p,q)

bcd)e + (2b2 − q)δe(aF (p,q)
bcd) f + 3b3δ(abF (p,q)

cd)e f . (3.22)

with coefficients b1, b2, b3 a priori depending on p, q.
A first integrability condition for (3.22) is obtained through

0=De
â(D f âF (p,q)

abcd −D(a|âF (p,q)
bcd) f ) =

�

b1 −
2b2 − q

4

�

(δe f F (p,q)
abcd −δe(aF (p,q)

bcd) f )

+
3
2
(b2 − b3)(δ f (aF (p,q)

bcd)e −δ(abF (p,q)
cd)e f ) , (3.23)

6The same construction in superspace implies that the lift of L in superspace is d-closed [38], such that
dωLabcd = 15

16 P ĉ
e ∧ Labcde

ĉ − 5
8 P ĉ(a ∧ Lbcd)e

ĉ e, in agreement with equation (3.19). Therefore, the terms associated to
the variation of the gravitini that we disregard here do not spoil the argument [39].
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which implies b1 =
b2−q

4 and b3 = b2, consistently with (3.20). Similarly, considering

Dg
â
�

De
b̂D f b̂F (p,q)

abcd

�

−D f
â
�

De
b̂Dg b̂F (p,q)

abcd

�

= 2b1δe[ f Dg]
âF (p,q)

abcd + 2b2δa)[ f Dg]
âF (p,q)

e(bcd

= [Dg
â,De

b̂]D f b̂F (p,q)
abcd − [D f

â,De
b̂]Dg b̂F (p,q)

abcd

+De
b̂[D[g â,D f ]b̂]F

(p,q)
abcd

=
2− q

2
δe[ f Dg]

âF (p,q)
abcd + 2δa)[ f Dg]

âF (p,q)
e(bcd , (3.24)

and therefore b1 =
2−q

4 and b2 = 1 and so b3 = 1 so that

De
âD f âF (p,q)

abcd = 5
2− q

4
δe( f F (p,q)

abcd) + 5δ( f aF (p,q)
bcd)e . (3.25)

Taking traces of this equation one can show that the entire tensor is determined by its trace com-
ponent Ftr

(p,q) ≡ F (p,q)ab
ab through

F (p,q)
abcd =

1
(8+p−q)(6+p−q)

�

2D(a êDb|êDc
f̂ Dd) f̂ + (2q− 7)δ(abDc

êDd)ê +
3(q−2)(q−4)

8 δ(abδcd)

�

Ftr
(p,q) .
(3.26)

The function Ftr
(p,q) is an eigenmode of the Laplacian ∆Gp,q

≡ 2Dab̂D
ab̂ on Gp,q, and satisfies

∆Gp,q
Ftr
(p,q) = −

1
2
(p+ 4)(q− 6)Ftr

(p,q) , D[a[âDb]
b̂]Ftr

(p,q) = 0 . (3.27)

It is worth noting, however, that Eq. (3.25) for the tensor defined by (3.26) is an additional
constraint on the function Ftr, which does not follow by integrability from the two equations (3.27).

Finally, let us note that the discussion so far only applies to the local Wilsonian effective action.
As we shall see in the next subsection, the Ward identity satisfied by the renormalized coupling
F̂abcd is corrected in four dimensions (for q = 6) because of the 1-loop divergence of the super-
gravity amplitude [41], leading to the source term in (2.23).

3.2 The modular integral solves the Ward identities

In this subsection we shall prove that the modular integral (2.27) is a solution of the supersym-
metric Ward identities (2.23). More generally, we shall show that the modular integral

F (p,q)
abcd (Φ) = R.N.

∫

Γ0(N)\H

dτ1dτ2

τ2
2

ΓΛp, q
[Pabcd]

∆k(τ)
, (3.28)

where ∆k(τ) is the cusp form (2.4) of weight k under Γ0(N), Λp,q is a level N even lattice of
signature (p, q) with p−q

2 + 4= k, and P is the quartic polynomial (2.26), satisfies the constraints

(3.17) and (3.22). Moreover, its trace δabδcd F (p,q)
abcd (Φ) is given by

Ftr
(p,q)(Φ) = R.N.

∫

Γ0(N)\H

dτ1dτ2

τ2
2

ΓΛp, q
· D−k+2D−k

1
∆k(τ)

. (3.29)

Before going into the proof however, it will be useful to spell out the regularization prescription
which we use to define these otherwise divergent modular integrals. We follow the procedure
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developed in [42, 43, 44], whereby the integral is first carried out on the truncated fundamental
domain FN ,Λ = FN ∩ {τ2 < Λ} ∩ {

τ2
N |τ|2 > Λ}, where FN is the standard fundamental domain for

Γ0(N)\H, invariant under the Fricke involution τ 7→ −1/(Nτ), and then the limit Λ→∞ is taken
after subtracting any divergent term in Λ. In the case of the integral (3.28), the divergent term
originates from the contribution of the vector Q = 0 in ΓΛp, q

[Pabcd], so the regularized integral is
defined for q 6= 6 by

F (p,q)
abcd (Φ) = lim

Λ→∞

�

∫

FN ,Λ

dτ1dτ2

τ2
2

ΓΛp, q
[Pabcd]

∆k(τ)
−

3αk

16π2

Λ
q−6

2

q−6
2

δ(abδcd)

�

, (3.30)

where αk = (1+ υ)k = (1+ υ)ck(0) for CHL orbifolds with N > 1, and α12 = (1+ υ)
c(0)

2 in the
maximal rank case.7 For q < 6, no subtraction is necessary, as long as the integral is carried out
first along τ1 ∈ [−

1
2 , 1

2] in the region τ→∞. For q = 6, the integral is logarithmically divergent,
and the regularized integral is defined instead by

bF (p,6)
abcd (Φ) = lim

Λ→∞

�

∫

FN ,Λ

dτ1dτ2

τ2
2

ΓΛp, 6
[Pabcd]

∆k(τ)
−

3αk

16π2
logΛδ(abδcd)

�

. (3.31)

The logarithmic divergence at q = 6 is consistent with the expected divergence in the one-loop
scattering amplitude of four gauge bosons in D = 4 supergravity [41]. Equivalently, following
[45] one may consider the modular integral

F (p,q)
abcd (Φ,ε) =

∫

SL(2,Z)\H

dτ1dτ2

τ2−ε
2

∑

γ∈Γ0(N)\SL(2,Z)

ΓΛp, q
[Pabcd]

∆k(τ)

�

�

�

�

�

γ

, (3.32)

which converges for Re(ε)< 6−q
2 , and defines the renormalized integral as the constant term in the

Laurent expansion at ε= 0 of the analytical continuation of F (p,q)
abcd (Φ,ε). The result will then differ

from (3.31) by an irrelevant additive constant. In what follows, we shall often abuse notation and
omit the hat in F̂ (p,q)

abcd when stating properties valid for arbitrary q. It is also important to note that
while the regularized integral (3.30) or (3.31) is finite at generic points on Gp,q, it diverges on a
real codimension-q loci of Gp,q, where QR,â = 0 for a vector Q ∈ Λp,q with Q2 = 2, or for a vector
Q ∈ Λ∗p,q with Q2 = 2/N (see (E.12)).

In order to establish that F (p,q)
abcd satisfies the constraints (3.22), we shall first establish differen-

tial equations for a general class of lattice partition functions

ΓΛp, q
[P] = τ

q
2
2

∑

Q∈Λp,q

P(Q) eiπQ2
Lτ−iπQ2

Rτ̄ , (3.33)

where the polynomial P(Q) is obtained by acting with the operator τn
2e−

∆
8πτ2 , with

∆≡
∑

a

�

∂

∂Qa
L

�2

+
∑

â

� ∂

∂Qâ
R

�2
, (3.34)

7υ is defined below (4.29) and depends on the volume of Λ∗p,q/Λ. υ = 1 for the perturbative Narain lattice, and
υ= 1/N for the non-perturbative Narain lattice (2.21).
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on a homogeneous polynomial of bidegree (m, n) in (QL ,QR), respectively. As shown in [45],
ΓΛp, q
[P] satisfies

ΓΛp, q
[P](−1/τ) =

(−i)
p−q

2 τ
p−q

2 +m−n

q

|Λ∗p,q/Λp,q|
ΓΛ∗p, q
[P](τ) , (3.35)

which implies that it transforms as a modular form of weight p−q
2 + m − n under Γ0(N). More

specifically, we shall consider ΓΛp, q

�

Pa1...am,b̂1...b̂n

�

with

Pa1...am,b̂1...b̂n
= τn

2e−
∆

8πτ2
�

QL,a1
. . .QL,am

QR,b̂1
. . .QR,b̂n

�

. (3.36)

The quartic polynomial Pabcd defined in (2.26) arises in the case (m, n) = (4, 0), so that
ΓΛp, q
[Pabcd] is a modular form of weight p−q

2 + 4 = k, ensuring the modular invariance of
the integrands in (3.28) and (3.29). Upon contracting the indices, it is easy to check that
δabδcdΓΛp, q

[Pabcd] = Dk−2Dk−4ΓΛp, q
[1], so the claim that (3.29) gives the trace of (3.28) follows

by integration by parts.
To obtain the differential equations satisfied by (3.28), we shall act with the covariant deriva-

tive Dab̂, defined in (3.11) and (3.12). As mentioned below (2.13), pL,a
I , pR,b̂

I are the left and
right orthogonal projectors on the Grassmaniann Gp,q = O(p, q)/ [O(p)×O(q)]. Using the deriva-
tive rules

Dab̂ pL,c
I =

1
2
δac pR,b̂

I , Dab̂ pR,ĉ
I =

1
2
δb̂ĉ pL,a

I , (3.37)

one can effectively define the action of the covariant derivative on a function that only depends
on QL and QR as

Dab̂ =
1
2

�

QL,a∂b̂ +QR,b̂∂a

�

, (3.38)

where ∂a =
∂
∂Qa

L
, ∂b̂ =

∂

∂Q b̂
R

. Acting with De ĝ on (3.33) we get

De ĝΓΛp, q

�

Pa1...am,b̂1...b̂n

�

= ΓΛp, q

�

�

De ĝ − 2πτ2 QL,eQR, ĝ

�

Pa1...am b̂1...b̂n

�

. (3.39)

Using (3.38), one computes the commutation relations

[∆,De ĝ] = 2∂e∂ ĝ , [∆,QL,eQR, ĝ] = 4De ĝ , (3.40)

[∆,QL,eQL, f ] = 2δe f + 4QL,(e∂ f ) , [∆,QL,(e∂ f )] = 2∂e∂ f . (3.41)

Using them along with the Baker-Campbell-Hausdorff formula

e
∆

8πτ2 O e−
∆

8πτ2 =O+ 1
8πτ2

[∆, O] + 1
2!

1
(8πτ2)2

[∆, [∆, O]] + . . . , (3.42)

one easily obtains

De ĝΓΛp, q

�

Pa1...am,b̂1...b̂n

�

= −2πτ2 ΓΛp, q

�

e−
∆

8πτ2

�

QL,eQR, ĝ −
1

(4πτ2)2
∂e∂ ĝ

�

e
∆

8πτ2 Pa1...am,b̂1...b̂n

�

. (3.43)

Note that the similarity transformation is such that the operator acts on the simple monomial in
Qa1

. . .Qam
Q b̂1

. . .Q b̂n
according to (3.36), such that it directly follows from (3.43) that

De ĝΓΛp, q

�

Pa1...am,b̂1...b̂n

�

= ΓΛp, q

�

− 2π Pea1...am, ĝ b̂1...b̂n
+ mn

8πδe(a1
Pa2...am),(b̂2...b̂n

δb̂1) ĝ

�

. (3.44)
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Upon antisymmetrizing in (e, a1), we get

D[e ĝΓΛp, q

�

Pa1]...am,b̂1...b̂n

�

=
1

8π2τ2
2

ΓΛp, q

�

e−
∆

8πτ2 ∂[e∂
ĝ e

∆
8πτ2 Pa1]...am,b̂1...b̂n

�

. (3.45)

which vanishes when n = 0 since e
∆

8πτ2 Pa1...am
does not depend on QR. Acting a second time with

Dab̂ and antisymmetrizing, we get

D[e [êD f ]
f̂ ]ΓΛp, q

�

Pa1...am,b̂1...b̂n

�

= −2ΓΛp, q

�

e−
∆

8πτ2 QL,[eQR
[ê∂ f ]∂

f̂ ] e
∆

8πτ2 Pa1...am,b̂1...b̂n

�

, (3.46)

which similarly vanishes when n= 0. Setting m= 4, we conclude that the modular integral (3.28)
satisfies

D[e âFa]bcd = 0 , D[e [êD f ]
f̂ ]Fabcd = 0 , (3.47)

which therefore establishes the last two equations in (2.23). Note that these two equations do not
rely on any particular property of the function 1/∆k.

Now, the first equation of (2.23) arises from applying the quadratic operator D2
e f ≡D(e ĝD f ) ĝ

on the partition function with polynomial insertion,

4D2
e f ΓΛp, q

�

Pa1...am,b̂1...b̂n

�

= ΓΛp, q

��

4D2
e f − 8πτ2QL,(eQR

ĝD f ) ĝ

+16π2τ2
2

�

QL,eQL, f −
δe f

4πτ2

��

Q2
R −

q
4πτ2

�

− qδe f

�

Pa1...am b̂1...b̂n

�

,
(3.48)

which gives, using (3.40) and (3.42)

4D2
e f ΓΛp, q

�

Pa1...am,b̂1...b̂n

�

= ΓΛp, q

�

e−
∆

8πτ2

�

16π2τ2
2 Q2

R QL,eQL, f +
∂e∂ f ∂

2
R

16π2τ2
2

−QL,(e∂ f )(2QR
ĝ∂ ĝ + q)−δe f (QR

ĝ∂ ĝ + q)
�

e
∆

8πτ2 Pa1...am b̂1...b̂n

�

(3.49)

The first term on the r.h.s. can be rewritten as the action of the Maass lowering operator
D̄w = −iπτ2

2∂τ̄ , mapping modular forms of weight w to weight w− 2. Indeed,

D̄wΓΛp, q

�

Pe f a1...am,b̂1...b̂n

�

=−π2τ2
2 ΓΛp, q

��

Q2
R −

q+2n
4πτ2

�

Pe f a1...am,b̂1...b̂n

�

+
1
16
ΓΛp, q

�

∆ Pe f a1...am,b̂1...b̂n

�

=ΓΛp, q

h

e−
∆

8πτ2
� 1

16∂
2

L − (πτ2QR)
2
�

e
∆

8πτ2 Pe f a1...am,b̂1...b̂n

i

.

(3.50)

where in the second line, we used the fact that ∆ commutes with e−
∆

8πτ2 . The r.h.s. of (3.49) can
thus be written as

4D2
e f ΓΛp, q

�

Pa1...am,b̂1...b̂n

�

= (2− (q+ n))δe f ΓΛp, q

�

Pa1...am,b̂1...b̂n

�

+m(4− (q+ 2n))δ|e)(a1
ΓΛp, q

�

Pa2...am)( f |,b̂1...b̂n

�

+m(m− 1)δ(a1a2
ΓΛp, q

�

Pa3...am)e f ,b̂1...b̂n

�

+ m(m−1)n(n−1)
16π2 δe(a1

δ| f |a2
ΓΛp, q

�

Pa3...am),(b̂1...b̂n−2

�

δb̂n−1 b̂n)
− 16D̄wΓΛp, q

�

Pe f a1...am,b̂1...b̂n

�

,

(3.51)

where only the last term remains to be computed explicitely. Specializing to the case of main
interest, we obtain

�e f · ΓΛp, q
[Pabcd] = −4D̄w ΓΛp, q

�

Pabcde f

�

(3.52)
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where, for any tensor Fabcd , we denote

�e f · Fabcd ≡D2
e f Fabcd +

(q− 2)
4

δe f Fabcd + (q− 4)δ(e|(aFbcd)| f ) − 3δ(abFcd)e f . (3.53)

We can now integrate both sides of (3.52) times 1/∆k on the truncated fundamental domain FN ,Λ,
leading to

�e f

∫

FN ,Λ

dτ1dτ2

τ2
2

ΓΛp, q
[Pabcd]

∆k
= −4

∫

FN ,Λ

dτ1dτ2

τ2
2

1
∆k

D̄k+2ΓΛp, q

�

Pabcde f

�

. (3.54)

The r.h.s. is a boundary term, because D̄−k(1/∆k) = 0 by holomorphicity. To compute the bound-
ary term we use Stokes’ theorem in the form

∫

∂FN ,Λ

f g dτ=

∫

FΛ
d( f g dτ) =

2
π

∫

FN ,Λ

dτ1dτ2

τ2
2

(D̄w f g + f D̄w′ g), (3.55)

where f and g are any modular forms of weight w and w′ = −w + 2 and 2dτ1dτ2 = idτ ∧ dτ̄.
By modular invariance, the boundary term reduces to an integral along the segment
{1/2 ≤ τ1 < 1/2, τ2 = Λ} , and its image under the Fricke involution (for N > 1). The lat-
ter can be mapped to the former upon using (3.35). At generic points on the Grassmannian Gp,q,
the contributions of non-zero vectors in Λp,q and Λ∗p,q are exponentially suppressed, leaving only
the contribution of Q = 0:

�e f

∫

FN ,Λ

dτ1dτ2

τ2
2

ΓΛp, q
[Pabcd]

∆k
= Λ

q−6
2

15αk

2(4π)2
δ(abδcdδe f ), (3.56)

where αk = (1 + υ)k was introduced below (3.30). Acting with the same operator D2
e f on the

subtraction in (3.30), we see that the term proportional to Λ(q−6)/2 cancels, except for q = 6
where the substraction in (3.31) leaves a finite remainder. Thus, we find, as claimed earlier, that
the modular integral (3.28) is annihilated by the second-order differential operator �e f defined
in (3.53), up to a constant source term present when q = 6,

�e f F (p,q)
abcd =

15αk

2(4π)2
δ(abδcdδe f )δq,6 . (3.57)

In B, as a consistency check we show that this equation is verified by each Fourier mode in the
degeneration limit O(p, q)→ O(p− 1, q− 1).

4 Weak coupling expansion of exact (∇Φ)4 couplings

In this section, we study the expansion of the proposal (2.27) in the limit where the heterotic
string coupling g3 goes to zero, and show that it reproduces the known tree-level and one-loop
amplitudes, along with an infinite series of NS5-brane, Kaluza–Klein monopole and H-monopole
instanton corrections. We start by analyzing the expansion of the tensorial modular integral defin-
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ing the coupling and its trace

F (p,q)
abcd (Φ) = R.N.

∫

Γ0(N)\H

dτ1dτ2

τ2
2

ΓΛp, q
[Pabcd]

∆k(τ)
, (4.1a)

Ftr
(p,q)(Φ) = R.N.

∫

Γ0(N)\H

dτ1dτ2

τ2
2

ΓΛp, q
D−k+2D−k

1
∆k(τ)

, (4.1b)

for a level N even lattice Λp,q of arbitrary signature (p, q), in the limit near the cusp where O(p, q)
is broken to O(1,1)×O(p− 1, q− 1), so that the moduli space decomposes into

Gp,q→R+ × Gp−1,q−1 nRp+q−2 . (4.2)

For simplicity, we first discuss the maximal rank case N = 1, p − q = 16, where the integrand
is invariant under the full modular group, before dealing with the case of N prime, where the
integrand is invariant under the Hecke congruence subgroup Γ0(N). The reader uninterested by
the details of the derivation may skip to §4.3, where we specialize to the values (p, q) = (r −4,8)
relevant for the (∇Φ)4 couplings in D = 3 and interpret the various contributions as perturbative
and non-perturbative effects in heterotic string theory compactified on T7. In §4.5 we discuss the
case (p, q) = (r − 7,5) relevant for H4 couplings in type IIB string theory compactified on K3.

4.1 O(p, q)→ O(p− 1, q− 1) for even self-dual lattices

We first consider the case where the lattice Λp,q is even self-dual and factorizes in the limit (4.2)
as

Λp,q→ Λp−1,q−1 ⊕ II1,1 . (4.3)

We shall denote by R the coordinate onR+ and by aI , I = 2 . . . p+q−1 the coordinates onRp+q−2.
R parametrizes a one-parameter subgroup eRH0 in O(p, q), such that the action of the non-compact
Cartan generator H0 on the Lie algebra sop,q decomposes into

sop,q ' (p+ q− 2)(−2) ⊕ (gl1 ⊕ sop−1,q−1)
(0) ⊕ (p+ q− 2)(2) . (4.4)

while the coordinates aI parametrize the unipotent subgroup obtained by expo-
nentiating the grade 2 component in this decomposition. A generic charge vector
QI ∈ Λp,q ' 1(−2)⊕(p+ q− 2)(0)⊕1(2) decomposes into QI = (m, eQ I , n)where (m, n) ∈ II1,1 =Z2

and eQ I ∈ Λp−1,q−1, such that Q2 = −2mn+ eQ2. The orthogonal projectors defined by QL ≡ pIL QI
and QR ≡ pIRQI decompose according to

pIL,1QI =
1

R
p

2

�

m+ a · eQ+
1
2

a · a n
�

−
R
p

2
n,

pIL,αQI =ep
I
L,α(eQ I + naI),

pIR,1QI =
1

R
p

2

�

m+ a · eQ+
1
2

a · a n
�

+
R
p

2
n,

pIR,α̂QI =ep
I
R,α̂(eQ I + naI),

(4.5)

where epI
L,α,epI

R,α̂ (α = 2 . . . d + 16, α̂ = 2 . . . d) are orthogonal projectors in Gp−1,q−1 satisfying

eQ2 = eQ2
L − eQ

2
R. In the following we shall denote |QR| ≡

q

eQ2
R.
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To study the behavior of (4.1) in the limit R� 1,8 it is useful to perform a Poisson resummation
on m. For a lattice partition function ΓΛp, q

with no insertion, as in the scalar integral (4.1b), this
gives

ΓΛp, q
= Rτ

q−1
2

2

∑

(m,n)∈Z2

∑

eQ∈Λp−1,q−1

e−
πR2 |nτ+m|2

τ2 e2πim(a·eQ+ 1
2 a·a n) q

1
2
eQ2

L q
1
2
eQ2

R . (4.6)

In the case of a lattice sum with momentum insertion, as in the tensor integral F (p,q)
abcd (4.1a), we

must distinguish whether the indices abcd lie along the direction 1 or along the directions α.
Denoting by h the number of indices along direction 1, the previous result generalizes to

ΓΛp, q

h

e−
∆

8πτ2
�

(QL,1)
hQL,α1

. . .QL,α4−h

�

i

= R
∑

(m,n)∈Z2

�

R(nτ̄+m)

iτ2
p

2

�h

e−
πR2 |nτ+m|2

τ2

× ΓΛp−1, p−1+na

�

e−
∆

8πτ2
�

eQL,α1
. . . eQL,α4−h

�

e2πim(eQ− 1
2 a n)·a

�

. (4.7)

In this representation, modular invariance is manifest, since a transformation τ 7→ aτ+b
cτ+d can be

compensated by a linear transformation (n, m) 7→ (n, m)
�

a b
c d

�

, under which the second line of
(4.7) transforms with weight 12− h. As a relevant example for what follows, consider the case
(n, m) = k(c, d), k = gcd(m, n), then using an transformation

�

a b
c d

�

∈ SL(2,Z)

∑

eQ∈Λp−1,q−1+kc a

e−
∆

8πτ2
�

eQL,α1
. . . eQL,α4−h

�

e2πi kd(eQ− 1
2 a kc)·a q

1
2
eQ2

L q̄
1
2
eQ2

R =

(cτ+ d)12−h
∑

eQ∈Λp−1,q−1

e−
∆

8πτ2
�

eQL,α1
. . . eQL,α4−h

�

e2πik eQ·a q
1
2
eQ2

L q̄
1
2
eQ2

R . (4.8)

We can therefore compute the integral using the orbit method [46, 47, 48], namely decompose the
sum over (m, n) into various orbits under SL(2,Z), and for each orbit O, retain the contribution of
a particular element ς ∈O at the expense of extending the integration domain F1 = SL(2,Z)\H
to Γς\H, where Γς is the stabilizer of ς in SL(2,Z),9 by using the identity

⋃

γ∈Γς\SL(2,Z)

γ ·F1 = Γς\H. (4.9)

The coset representative ς ∈ O, albeit arbitrary, is usually chosen so as to make the unfolded
domain Γς\H as simple as possible. In the present case, there are two types of orbits:

The trivial orbit (n, m) = (0,0) produces, up to a factor of R, the integrals (4.1) for the lattice
Λp−1,q−1, provided none of the indices abcd lie along the direction 1,

F (p,q),0
αβγδ

= R F (p−1,q−1)
αβγδ

, Ftr
(p,q),0 = R Ftr

(p−1,q−1) , (4.10)

while it vanishes otherwise (i.e. when h> 0).

8Since 1/∆ grows as e
2π
τ2 at τ2 → 0, the following treatment which relies on exchanging the sum and the integral

for unfolding is justified for R2 > 2.
9This unfolding procedure requires particular care since the integrand is not of rapid decay near the cusp. We

suppress these details here, and refer to [42, 45, 49, 43, 50, 44] for rigorous treatments.
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The rank-one orbit corresponds to terms with (n, m) 6= (0,0). Setting (n, m) = k(c, d), with
gcd(c, d) = 1 and k 6= 0, the doublet (c, d) can always be rotated by an element of SL(2,Z)
into (0, 1), whose stabilizer inside SL(2,Z) is Γ∞ = {

�

1 n
0 1

�

, n ∈ Z}. Thus, doublets (c, d) with
gcd(c, d) = 1 are in one-to-one correspondence with elements of Γ∞\SL(2,Z). For each k, one
can therefore unfold the integration domain SL(2,Z)\H to S = Γ∞\H =R+τ2

×(R/Z)τ1
, the unit

width strip, provided one keeps only the term (c, d) = (0,1) in the sum. The resulting contribution
to the tensor integral (4.1a) are

F (p,q),1
αβγδ

= R

∫

R+

dτ2

τ2
2

∫

R/Z

dτ1

∑

k 6=0

e−πR2k2/τ2
ΓΛp−1, q−1

�

P̃αβγδ e2πikaI
eQ I

�

∆
,

F (p,q),1
11γδ = R

∫

R+

dτ2

τ2
2

∫

R/Z

dτ1

∑

k 6=0

�

Rk

iτ2
p

2

�2

e−πR2k2/τ2
ΓΛp−1, q−1

�

P̃αβ e2πikaI
eQ I

�

∆
,

F (p,q),1
1111 = R

∫

R+

dτ2

τ2
2

∫

R/Z

dτ1

∑

k 6=0

�

Rk

iτ2
p

2

�4

e−πR2k2/τ2
ΓΛp−1, q−1

�

e2πikaI
eQ I

�

∆
,

(4.11)

where
P̃α1...α4−h

= e−
∆

8πτ2
�

eQL,α1
. . . eQL,α4−h

�

, (4.12)

while the contribution to its trace is

Ftr
(p,q),1 = R

∫

R+

dτ2

τ2
2

∫

R/Z

dτ1

∑

k 6=0

e−πR2k2/τ2 ΓΛp−1, q−1

�

e2πikaI
eQ I
�

D2
�

1
∆

�

. (4.13)

The integral over S can be computed by inserting the Fourier expansion

1
∆
=
∑

m∈Z
m≥−1

c(m)qm , D2 1
∆
= a2 c(0) +

∑

m∈Z−{0}
m≥−1

2
∑

`=0

a`m2−`c(m)qmτ−`2 (4.14)

where

a0 = 4 , a1 =
p− q+ 6
π

, a2 =
(p− q+ 6)(p− q+ 8)

16π2
. (4.15)

The integral over τ1 picks up the Fourier coefficient c(m) with m = −1
2
eQ2. The remaining inte-

gral over τ2 can be computed after expanding P̃α1...α4−h
=
∑

�4−h
2

�

`=0 P̃(`)α1...α4−h
τ−`2 , where P̃(`)α1...α4−h

is a

polynomial in eQ of degree 4− h− 2`, or zero when 2` > 4− h. Contributions with eQ = 0 lead to
power-like terms,

F (p,q),1,0
αβγδ

= Rq−6 ξ(q− 6)
3c(0)
8π2

δ(αβδγδ),

F (p,q),1,0
11αβ = Rq−6 ξ(q− 6) (7− q)

c(0)
8π2

δαβ ,

F (p,q),1,0
1111 = Rq−6 ξ(q− 6) (7− q)(9− q)

c(0)
8π2

,

(4.16)

while the result vanishes for an odd number of indices along the direction 1, and for its trace

Ftr
(p,q),1,0 = Rq−6 ξ(q− 6) (p− q+ 6)(p− q+ 8)

c(0)
8π2

. (4.17)
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Here we used P̃(2)abcd(0) =
3

16π2δ(abδcd), P̃(1)ab (0) = −
1

4πδab, and P̃(0) = 1. Note that (4.17) and
(4.16) have a simple pole at q = 6, which is subtracted by the regularization prescription men-
tioned below (3.32). For q = 7, the pole in (4.17), (4.16) cancels against the pole from the zero
orbit contribution (4.10).

In contrast, non-zero vectors eQ lead to exponentially suppressed contributions, which depend
on the axions through a phase factor e2πika·eQ. After rescaling eQ 7→ Q/k, we find that the Fourier
coefficient with charge Q ∈ Λp−1,q−1r {0} is given by

F (p,q),1,Q
αβγδ

= 4 c̄(Q)R
q−1

2

2
∑

`=0

P̃(`)
αβγδ

(Q)

R`

K q−3
2 −`

�

2πR
p

2|QR|2
�

p

2|QR|2
q−3

2 −`

F (p,q),1,Q
1αβγ = 4 c̄(Q)R

q−1
2

1
∑

`=0

P̃(`)
αβγ
(Q)

i
p

2R`

K q−5
2 −`

�

2πR
p

2|QR|2
�

p

2|QR|2
q−5

2 −`

...

F (p,q),1,Q
1111 = 4c̄(Q)R

q−1
2

P̃(0)

4

K q−11
2

�

2πR
p

2|QR|2
�

p

2|QR|2
q−11

2

(4.18)

for the tensor integral, and

Ftr
(p,q),1,Q = 4 c̄(Q)R

q−1
2

2
∑

`=0

a`
R`

�

−Q2

2

�2−` K q−3
2 −`

�

2πR
p

2|QR|2
�

p

2|QR|2
q−3

2 −`
(4.19)

for its trace. In either case,
c̄(Q) =

∑

d|Q

c
�

− Q2

2d2

�

dq−7 . (4.20)

The physical interpretation of these results will be discussed in §4.3, after generalizing them to
ZN orbifolds.

4.2 Extension to ZN CHL orbifolds

The degeneration limit (4.2) of the modular integrals (4.1) for ZN CHL models with N = 2, 3,5, 7
can be treated similarly by adapting the orbit method to the case where the integrand is invariant
under the Hecke congruence subgroup Γ0(N) [51, 52, 44]. In (4.1), ∆k is the cusp form of weight
k = 24

N+1 defined in (2.4), and ΓΛp, q
is the partition function for a lattice

Λp,q = Λ̃p−1,q−1 ⊕ II1,1[N] , (4.21)

where Λ̃p−1,q−1 is a level N even lattice of signature (p − 1, q − 1). The lattice II1,1[N] is ob-
tained from the usual unimodular lattice II1,1 by restricting the winding and momentum to be
(n, m) ∈ NZ⊕Z. After Poisson resummation on m, Eq. (4.6) and (4.7) continue to hold, except
for the fact that n is restricted to run over NZ. The sum over (n, m) can then be decomposed into
orbits of Γ0(N):10

10Since 1/∆k grows as e
2π

Nτ2 at τ2→ 0, the following treatment which relies on exchanging the sum and the integral
for unfolding is justified for NR2 > 2.
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Trivial orbit The term (n, m) = (0,0) produces the same modular integral, up to a factor of R,

F (p,q),0
αβγδ

= R F̃ (p−1,q−1)
αβγδ

, Ftr
(p,q),0 = R F̃tr

(p−1,q−1) , (4.22)

where F̃ (p−1,q−1)
αβγδ

, F̃tr
(p−1,q−1) are the integrals (4.1) for the lattice Λ̃p−1,q−1 defined by (4.21).

Rank-one orbits Terms with (n, m) = k(c, d) with k 6= 0 and gcd(c, d) = 1 fall into two different
classes of orbits under Γ0(N):

• Doublets k(c, d) such that c = 0 mod N and k ∈Z can be rotated by an element of Γ0(N) into
(0,1), whose stabilizer in Γ0(N) is Γ∞ = {

�

1 n
0 1

�

, n ∈Z}. For these elements, one can unfold
the integration domain Γ0(N)\H into the unit width strip S = Γ∞\H =R+τ2

× (R/Z)τ1
;

• Doublets k(c, d) such that c 6= 0 mod N and k = 0 mod N can be rotated by an element of
Γ0(N) into (1,0), whose stabilizer in Γ0(N) is S Γ∞,N S−1, where Γ∞,N = {

�

1 n
0 1

�

, n ∈ NZ}
and S =

�

0 −1
1 0

�

. One can unfold the integration domain Γ0(N)\H into S Γ∞,N S−1\H,
and change variable τ → −1/τ so as to reach SN = Γ∞,N\H = R+τ2

× (R/NZ)τ1
, the

width-N strip. Under this change of variable, the level-N weight-k cusp form transforms as
∆k(−1/τ) = N−

k
2 (−iτ)k∆k(τ/N), while the partition function for the sublattice Λ̃p−1,q−1

transforms as

ΓΛ̃p−1, q−1
[Pαβγδ](−1/τ) = υ̃N−

k
2−1(−i)

p−q
2 τk ΓΛ̃∗p−1, q−1

[Pαβγδ](τ) , (4.23)

where ΓΛ̃∗p−1, q−1
(τ) denotes the sum over the dual lattice Λ̃∗p−1,q−1, and

υ̃N−
k
2−1 =

�

�Λ̃∗p−1,q−1/Λ̃p−1,q−1

�

�

−1/2
. Note that υ̃ = N1−δq,8 for q ≤ 8 in the cases of

interest.

For the simplest component F (p,q),1
αβγδ

, the sum of the two classes of orbits then reads

F (p,q),1
αβγδ

= R

∫

R+

dτ2

τ2
2

∫

R/Z

dτ1
1

∆k(τ)

∑

k 6=0

e−πR2k2/τ2ΓΛ̃p−1, q−1

�

e2πikaI
eQ I Pαβγδ

�

+ R

∫

R+

dτ2

τ2
2

∫

R/(NZ)
dτ1

υ̃

N
1

∆k(τ/N)

∑

k 6=0
k=0 mod N

e−πR2k2/τ2ΓΛ̃∗p−1, q−1

�

e2πikaI
eQ I Pαβγδ

�

. (4.24)

The contributions from eQ = 0 lead to power-like terms,

F (p,q)(1,0)
αβγδ

= Rq−6ξ(q− 6)
�

1+ υ̃Nq−7
� 3ck(0)

8π2
δ(αβδγδ) ,

F (1,0)
11αβ = Rq−6 ξ(q− 6) (7− q)

�

1+ υ̃Nq−7
� ck(0)

8π2
δαβ ,

F (1,0)
1111 = Rq−6 ξ(q− 6) (7− q)(9− q)

�

1+ υ̃Nq−7
� ck(0)

8π2
,

(4.25)

for the tensor integral and

Ftr
(p,q)(1,0) = Rq−6ξ(q− 6)(p− q+ 6)(p− q+ 8)

�

1+ υ̃Nq−7
� ck(0)

8π2
(4.26)
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for its trace, where ck(0) = k is the constant term in 1/∆k. As in (4.17) and (4.16), the pole
at q = 6 is subtracted by the regularization prescription (3.30), while the pole at q = 7 cancels
against the pole from the zero orbit contribution (4.22).

The terms with non-zero vector eQ produce exponentially suppressed corrections of the same
form as in the maximal rank case (4.18), but with a different summation measure, namely

c̄k(Q) =
∑

d≥1,
Q/d∈Λ̃p−1,q−1

ck

�

−
Q2

2d2

�

dq−7 + υ̃
∑

d≥1,
Q/d∈N Λ̃∗p−1,q−1

ck

�

−
Q2

2Nd2

�

(Nd)q−7 , (4.27)

where the first term, arising from the first class of orbits, has support on Λ̃p−1,q−1, and the second
term, arising from the second class of orbits, has support on the sublattice N Λ̃∗p−1,q−1 ⊂ Λ̃p−1,q−1.
In the latter contribution, notice that one factor of N in the numerator of the Fourier coefficient
comes from the matching condition with 1/∆k(τ/N), and two factors of N in its denominator
come from all the divisors being originally multiples of N .

It will also be useful to consider a different degeneration limit of the type (4.2) where the
lattice decomposes as

Λp,q = Λp−1,q−1 ⊕ II1,1 , (4.28)

where II1,1 is the usual unimodular even lattice, with no restriction on the windings and momenta
(n, m), and Λp−1,q−1 is a level N even lattice of signature (p − 1, q − 1), not to be confused with
the lattice Λ̃p−1,q−1 above. The sum over (n, m) ∈ Z⊕Z can then be decomposed into orbits of

Γ0(N). The trivial orbit is similar to (4.22), but now F (p−1,q−1)
αβγδ

and Ftr
(p−1,q−1) are the modular

integrals for the lattice Λp−1,q−1. For the rank-one orbit, the discussion goes as before, except that
the second class of orbits (m, n) = k(c, d) with k = gcd(m, n) and c 6= 0 mod N has no restriction
on k. For the simplest component F (p,q),1

αβγδ
, the sum of the two classes of orbits then reads

F (p,q),1
αβγδ

= R

∫

R+

dτ2

τ2
2

∫

R/Z

dτ1
1

∆k(τ)

∑

k 6=0

e−πR2k2/τ2ΓΛp−1, q−1

�

e2πikaI
eQ I Pαβγδ

�

+ R

∫

R+

dτ2

τ2
2

∫

R/(NZ)
dτ1

1
∆k(τ/N)

υ

N

∑

k 6=0

e−πR2k2/τ2ΓΛ∗p−1, q−1

�

e2πikaI
eQ I Pαβγδ

�

, (4.29)

where υN−
k
2−1 =

�

�Λ∗p−1,q−1/Λp−1,q−1

�

�

−1/2
(which now simplifies to υ = N−δq,8 for q ≤ 8 in the

cases of interest). The contributions from eQ = 0 lead to power-like terms,

F (p,q)(1,0)
αβγδ

= Rq−6ξ(q− 6)
�

1+υ
�3ck(0)

8π2
δ(αβδγδ),

F (1,0)
11αβ = Rq−6 ξ(q− 6) (7− q)

�

1+υ
� ck(0)

8π2
δαβ ,

F (1,0)
1111 = Rq−6 ξ(q− 6) (7− q)(9− q)

�

1+υ
� ck(0)

8π2

(4.30)

for the tensor integral and

Ftr
(p,q)(1,0) = Rq−6ξ(q− 6)(p− q+ 6)(p− q+ 8)

�

1+υ
� ck(0)

8π2
(4.31)

for its trace, where ck(0) = k is the constant term in 1/∆k.
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The terms with non-zero vector eQ produce exponentially suppressed corrections of the same
form as in the maximal rank case (4.18), but with a different summation measure, namely

c̄k(Q) =
∑

d≥1,
Q/d∈Λp−1,q−1

ck

�

−
Q2

2d2

�

dq−7 + υ
∑

d≥1,
Q/d∈Λ∗p−1,q−1

ck

�

−
NQ2

2d2

�

dq−7, (4.32)

where the first term, arising from the first class of orbits, has support on Λp−1,q−1, and the second
term, arising from the second class of orbits, has support on the dual lattice Λ∗p−1,q−1. In the latter
contribution, notice that one factor of N in the numerator of the Fourier coefficient comes from
the matching condition with 1/∆k(τ/N).

4.3 Perturbative limit of exact (∇Φ)4 couplings in D = 3

Specializing to (p, q) = (2k, 8) = (r − 4, 8), and decomposing as Λ2k,8 = Λ2k−1,7 ⊕ II1,1[N], the
limit (4.2) studied in this section corresponds to the expansion of the exact (∇Φ)4 couplings in
D = 3 in the limit where the heterotic string coupling g3 = 1/

p
R becomes weak. To interpret

the resulting contributions in the language of heterotic perturbation theory, one should remember
that the U-duality function F (2k,8)

abcd (Φ) is the coefficient of the (∇Φ)4 coupling in the low-energy
action written in Einstein frame, such that the metric γE is inert under U-duality,

S3 =

∫

d3 x
p

−γE

�

R[γE]− (2δâ b̂δĉ d̂ −δâĉδb̂d̂)F
(2k,8)
abcd (Φ)γ

µρ
E γ

νσ
E Paâ

µ P bb̂
ν P cĉ

ρ Pdd̂
σ

�

+ . . . . (4.33)

In terms of the string frame metric γ= γE g4
3 , one finds

S3 =

∫

d3 x
p

−γ
�

1

g2
3

R[γ]− g2
3 (2δâ b̂δĉ d̂ −δâĉδb̂d̂)F

(2k,8)
abcd (Φ)γ

µργνσPaâ
µ P bb̂

ν P cĉ
ρ Pdd̂

σ

�

+ . . . .

(4.34)
Using ck(0) = k for CHL orbifolds with N > 1 or c(0) = 2k in the maximal rank case, and ξ(2) = π

6 ,
the results from §4.1 and §4.2 read

g2
3 F (2k,8)

abcd =
3

2πg2
3

δ(abδcd) + F (2k−1,7)
abcd +

′
∑

Q∈Λ2k−1,7

c̄k(Q)e
− 2π

p
2 |QR |
g2
3

+2πia·Q
P(∗)abcd , (4.35)

where we omit the detailed form of exponentially suppressed corrections, and the summation
measure is read off from (4.27)

c̄k(Q) =
∑

d≥1,
Q/d∈Λ2k−1,7

d ck

�

−
Q2

2d2

�

+
∑

d≥1,
Q/d∈NΛ∗2k−1,7

N d ck

�

−
Q2

2Nd2

�

, (4.36)

The first two terms in (4.35), originating from the zero orbit and rank-one orbit, respectively,
should match the tree-level and one-loop contributions, respectively. Indeed, the dimensional
reduction of the tree-level R2 + (TrF2)2 coupling in ten-dimensional heterotic string theory [53,
54] leads to a tree-level (∇Φ)4 coupling in D = 3, with a coefficient which is by construction
independent of N . A more detailed analysis of the ten-dimensional origin of this term will be
given in §5.3.1. The second term in (4.35) of course matches the one-loop contribution (2.24) by
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construction. The remaining non-perturbative terms can be interpreted as heterotic NS5-brane,
KK5-brane and H-monopoles wrapped on any possible T6 inside T7 [9]. More precisely, NS5-
brane and KK5-brane charges correspond to momentum and winding charges in the hyperbolic
part II1,1[N]⊕ IIk−2,k−2 of Λm⊕ II1,1, while H-monopoles correspond to charges in the gauge lattice
Λk,8−k (for the heterotic string compactification on T7, these sublattices must be replaced by II7,7
and E8 ⊕ E8 or D16, respectively). Note that [9] studied these corrections on a special locus in
moduli space, corresponding to T4/Z2 realization of K3 surfaces on the type II side, and did not
keep track of all gauge charges, which resulted in a different summation measure.

4.4 Decompactification limit of one-loop F4 couplings

For general (p, q) = (d + 2k − 8, d) = (d + r − 12, d) with q ≤ 7, the modular integral (4.1a)
is interpreted as the one-loop F4 amplitude in a heterotic CHL orbifold compactified down to
dimension D = 10− d. The decomposition (4.21) corresponds to the case (a) where the radius
R of a circle in T d orthogonal to the ZN orbifold action becomes large, while the limit (4.28)
corresponds to the case (b) where the radius R of the circle in T d singled out by the ZN orbifold
action becomes large in string units.

The power-like terms contributions in R come in part from the trivial orbit, and from the zero-
charge contribution to the rank-one orbit:

a) : F (p,q)
αβγδ

= RF (p−1,q−1)
αβγδ

+ Rq−6ξ(q− 6)
3(2k)
8π2

δ(αβδγδ) + . . .

b) : F (p,q)
αβγδ

= RF̃ (p−1,q−1)
αβγδ

+ Rq−6ξ(q− 6)
3k(1+ Nq−6)

8π2
δ(αβδγδ) + . . .

(4.37)

The first term reproduces, up to a volume factor of R, the one-loop F4 amplitude in
D + 1 dimensions (4.10), either in the same CHL model (case a), or in the full heterotic
string compactification (case b). Indeed, in the latter case, the partition function ΓΛp−1, q−1

factorizes into ΓIId+k−9, d+k−9
× ΓΛk, 8−k

. The fundamental domain Γ0(N)\H can be extended
to SL(2,Z)\H, at the expense of replacing ΓΛk,8−k

/∆k by the sum over its images under
Γ0(N)\SL(2,Z) = {1, S, TS, . . . , T N−1S}. As explained in §A, this sum reproduces ΓΛd+15, d−1

/∆,
the partition function for the maximal rank theory in dimension D+ 1.

The second term, originating from the zero-charge contribution to the rank-one orbit, can
instead be understood as the limit s → 0 of an infinite tower of terms of the schematic form
∑

m 6=0(
m2

R2 − s)3−
d
2 F4 in the low-energy effective action, where s is a Mandelstam variable, arising

from threshold contributions of Kaluza–Klein excitations of the massless supergravity states in
dimension D+1. In the limit R→∞, this infinite series along with the term m= 0 from the non-
local part of the action in dimension D sums up to the contribution of massless supergravity states
to the non-local part of the action in dimension D + 1. The pole at q = 6 in the second term of
(4.37) originates from the logarithmic infrared divergence in the local part of the string effective
action in dimension D = 4, and matches the expected ultraviolet divergence in 4-dimensional
supergravity. The apparent pole at q = 7 cancels against a pole in the first term, due to the same
logarithmic divergence. Indeed, the 1/ε pole of the full amplitude F (p,6)

abcd (Φ,ε) can be extracted
from its Laurent expansion at ε= 0, namely

F (p,6)
abcd (Φ,ε) = −

3(2k)
16π2ε

δ(abδcd) +O(1) (4.38)
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In addition, massive perturbative BPS states with non-vanishing charge Q ∈ Λd+2k−9,d−1 in dimen-
sion D+ 1 and mass M(Q) lead to exponentially suppressed terms of order e−2πRM(Q), weighted
by the helicity supertrace Ω4(Q), as expected on general grounds.

4.5 Perturbative limit of exact H4 couplings in type IIB on K3

Here we briefly consider the case q = 5, N = 1, corresponding to type IIB string theory compacti-
fied on K3. In Einstein frame, the low energy effective action takes the form

S6 =

∫

d6 x
p

−γE

�

R[γE]− F21,5
abcd(Φ)H

a
µνκH b

ρσ
κH cµνλHdρσ

λ

�

+ . . . , (4.39)

where the three-form Hα with α 6= 1 are the self-dual field-strengths of the reduction
of the RR two-form, four-form and six-form on the self-dual part of the homology lattice
Heven(K3) = E8 ⊕ E8 ⊕ II4,4 , while H1 is the self-dual component of the NS-NS two-form field-
strength. We shall restrict for simplicity to the components α,β ,γ,δ 6= 1. In terms of the string
frame metric γ = gsγE and setting Ha = gsH

a (since Ramond-Ramond field are normalized as
H ∼ 1/gs in type II perturbation theory), we get

S6 =

∫

d6 x
p

−γ
�

1
g2

s
R[γ]− 1

gs
F21,5
αβγδ

(Φ)HαµνκHβρσ
κHγµνλHδρσλ

�

+ . . . (4.40)

Identifying R= 1/gs, the large radius expansion of F21,5
αβγδ

becomes, schematically,

1
gs

F21,5
αβγδ

=
1
g2

s
F20,4
αβγδ

(Φ) +
3

2π
δ(αβδγδ) +

′
∑

Q∈Λ20,4

c̄(Q)e−
2π
p

2 |QR |
2

gs
−2πia·QP∗αβγδ . (4.41)

The first term proportional to F20,4
abcd is now recognized as a tree-level correction in type II on

K3, the second term is a one-loop correction which to our knowledge has not been computed
independently yet, and the remaining terms originate from D3, D1, D(-1) branes wrapped on K3
[55]. It is worth noting that decompactification limits of the form O(2k, 8)→ O(2k − 3, 5) exist
in principle for all CHL models listed in Table 1, however, they cannot be interpreted in terms of
six-dimensional chiral string vacua, due to anomaly cancellation constraints.

5 Large radius expansion of exact (∇Φ)4 couplings

In this section, we study the expansion of the proposal (2.27) in the limit where the radius R of
one circle in the internal space goes to infinity. We show that it reproduces the known F4 and
R2 couplings in D = 4, along with an infinite series of O(e−R) corrections from 1/2-BPS dyons
whose wordline winds around the circle, as well as an infinite series of O(e−R2

) corrections from
Taub-NUT instantons. We start by analyzing the expansion of genus-one modular integrals (4.1b)
and (4.1a) for arbitrary values of (p, q), in the limit near the cusp where O(p, q) is broken to
O(2,1)×O(p− 2, q− 2), so that the moduli space decomposes into

Gp,q→R+ ×
�

SL(2)
SO(2)

× Gp−2,q−2

�

nR2(p+q−4) ×R . (5.1)
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As in the previous section, we first discuss the maximal rank case N = 1, p − q = 16, where the
integrand is invariant under the full modular group, before dealing with the case of N prime. The
reader uninterested by the details of the derivation may skip to §5.3, where we specialize to the
values (p, q) = (r − 4,8) relevant for the (∇Φ)4 couplings in D = 3, and interpret the various
contributions arising in the decompactification limit to D = 4.

5.1 O(p, q)→ O(p− 2, q− 2) for even self-dual lattices

We first consider the case where the lattice Λp,q is even self-dual and factorizes in the limit (5.1)
as

Λp,q→ Λp−2,q−2 ⊕ II2,2 . (5.2)

In order to study the behavior of the modular integral (4.1a) in the limit (5.1), we denote by
R, S,φ, aI ,i ,ψ the coordinates for each factors in (5.1), where i = 1, 2 and I = 3, . . . , p+q−2. The
coordinate R (not to be confused with the one used in §4) parametrizes a one-parameter subgroup
eRH1 in O(p, q), such that the action of the non-compact Cartan generator H1 on the Lie algebra
sop,q decomposes into

sop,q ' . . . ⊕ (gl1 ⊕ sop−2,q−2)
(0) ⊕ (2⊗ (p+ q− 4))(1) ⊕ 1(2), (5.3)

while (ai I ,ψ) parametrize the unipotent subgroup obtained by exponentiating the grade 1 and
2 components in this decomposition. We parametrize the SO(2)\SL(2,R) coset representative
vµ

i and the symmetric SL(2,R) element M ≡ vT v by the complex upper half-plane coordinate
S = S1 + iS2

vµ
i =

1
p

S2

�

1 S1
0 S2

�

, M i j = δµνvµ
i vν

j =
1
S2

�

1 S1
S1 |S|2

�

. (5.4)

A generic charge vector QI ∈ Λp,q ' p+ q ' 2(−1) ⊕ (p+ q− 4)(0) ⊕ 2(1) decomposes into
Q = (mi , eQ I , n j), where (mi , ni) ∈ II2,2 and eQ I ∈ Λp−2,q−2 such that Q2 = −2mini + eQ2. The
projectors defined by QL ≡ pIL QI and QR ≡ pIRQI decompose according to

pIL,µQI =
v−1

iµ

R
p

2

�

mi + ai · eQ+ (ψεi j +
1
2

ai · a j)n j

�

−
R
p

2
vµ

ini

pIL,αQI =p̃ I
L,α(eQ I + nia

i
I)

pIR,µQI =
v−1

iµ

R
p

2

�

mi + ai · eQ+ (ψεi j +
1
2

ai · a j)n j

�

+
R
p

2
vµ

ini

pIR,α̂QI =p̃ I
R,α̂(eQ I + nia

i
I) ,

(5.5)

where p̃I
L,α, p̃I

R,α̂ (α = 3 . . . p, α̂ = 3 . . . q) are orthogonal projectors in Gp−2,q−2 which satisfy
eQ2 = eQ2

L − eQ
2
R.

In order to study the region R � 1 it is useful to perform a Poisson resummation on the
momenta mi along II2,2. Note that this analysis is in principle valid for a region containing R>

p
2.

In the case of the scalar integral (4.1b), one obtains

ΓΛp, q
= R2τ

q−1
2

2

∑

A∈Z2×2

ΓΛp−2, q−2

�

e
− π
τ2

R2
S2

�

�

�(1,S)A
�

τ
1

��

�

�

2
−2πi (ψ+iR2)det A+2πi mi(eQ·ai+ ai ·a j

2 n j)
�

, (5.6)
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where A=
�n1 m1

n2 m2

�

. In the case of (4.1a), we must distinguish whether the indices abcd lie along
the direction 1, 2 or along the directions α. Denoting by h the number of indices of the first kind,
we get

ΓΛp, q

�

e−
∆

8πτ2

� h
∏

i=1

(QL,µi
)QL,α1

. . .QL,α4−h

��

= R2
∑

A∈Z2×2

�

R

i
p

2

�h

× exp

�

−
π

τ2

R2

S2

�

�

�(1, S)A
�

τ
1

�

�

�

�

2
− 2πi T det A

� h
∏

k=1

�

1p
S2

�1 S1
0 S2

�

A
�

τ̄
1

�

�

µk

× ΓΛp−2, q−2+ni ai

�

e−
∆

8πτ2
�

eQL,α1
. . . eQL,α4−h

�

e2πi mi(eQ·ai− ai ·a j
2 n j)

�

(5.7)

In this representation, modular invariance is manifest, since a transformation τ → aτ+b
cτ+d can be

compensated by a linear action A→ A
�

d −b
−c a

�

, under which the last line of (5.7) transforms with
weight 12−h. We can therefore decompose the sum over A into various orbits under SL(2,Z) and
apply the unfolding trick to each orbit:

The trivial orbit A = 0 produces, up to a factor of R2, the integrals (4.1) or for the lattice
Λp−2,q−2, provided none of the indices abcd lie along the direction 1 or 2,

F (p,q),0
αβγδ

= R2 F (p−2,q−2)
αβγδ

, Ftr
(p,q),0 = R2 Ftr

(p−2,q−2) , (5.8)

while it vanishes otherwise (i.e. when h> 0).

Rank-one orbit: Matrices with det A = 0 but A 6= 0 can be decomposed into A =
�0 j
0 p

��a b
c d

�

,

where ( j, p) ∈ Z2 r (0,0) and
�a b

c d

�

∈ Γ∞\SL(2,Z). As before we can unfold the fundamental

domain SL(2,Z)\H to the strip S = Γ∞\H =R+τ2
× (R/Z)τ1

using (4.9), leading to

F (p,q),1
µ1...µhα1...α4−h

= R2
′
∑

( j,p)

h
∏

i=1

�

R

i
p

2

�h �
1p
S2

�1 S1
0 S2

�� j
p

�

�

µi

×
∫

R+

dτ2

τ2+h
2

∫

R/Z

dτ1
e−

π
τ2

R2
S2
| j+pS|2

∆
ΓΛp−2, q−2

�

P̃α1...α4−h
e2πi ( jeQ·a1+peQ·a2)

�

,

Ftr
(p,q),1 = R2

′
∑

( j,p)

∫

R+

dτ2

τ2+h
2

∫

R/Z

dτ1e−
π
τ2

R2
S2
| j+pS|2

ΓΛp−2, q−2

�

e2πi ( jeQ·a1+peQ·a2)
�

D2
�

1
∆

�

,

(5.9)

for the tensor integral with 0 ≤ h ≤ 4 indices along the large torus and its trace respec-
tively. Inserting the Fourier expansion (4.14), the integral over τ1 picks up the Fourier coeffi-
cient c(m) with m = −1

2
eQ2. The remaining integral over τ2 can be computed after expanding

P̃α1...α4−h
=
∑

�4−h
2

�

`=0 P̃(`)α1...α4−h
τ−`2 , where P̃(`)α1...α4−h

is a polynomial in eQ of degree 4 − h − 2` ≥ 0, or

29

https://scipost.org
https://scipost.org/SciPostPhys.3.1.008


SciPost Phys. 3, 008 (2017)

vanishing otherwise. The contribution of eQ = 0 produces power-like terms in R2,

F (p,q),1,0
αβγδ

= Rq−6 3c(0)
8π2

E?(8−q
2 , S)δ(αβδγδ),

F (p,q),1,0
µνγδ

= Rq−6 c(0)
4π2

�

8−q
4 δαβδµν −δαβDµν

�

E?(8−q
2 , S),

F (p,q),1,0
µνρσ = Rq−6 c(0)

2π2

�

D2
µνρσ −

10−q
2 δ(µνDρσ) +

�

8−q
2

��

10−q
2

�

3
8δ(µνδρσ)

�

E?(8−q
2 , S)

(5.10)

for the tensor integral, and

Ftr
(p,q),1,0 = Rq−6 c(0)

8π2
(p− q+ 6)(p− q+ 8)E?(8−q

2 , S) (5.11)

for its trace. Here, E?(s, S) is the completed weight 0 non-holomorphic Eisenstein series,

E?(s, S) =
1
2
π−s Γ (s)

′
∑

(m,n)∈Z2

Ss
2

|nS +m|2s
≡ ξ(2s)E(s, S) , (5.12)

Dµν is the traceless differential operator on SL(2,R)
SO(2) defined in appendix D, and

D2
µνρσ = D(µνDρσ) − 1

4δ(µνδρσ)DτκD
τκ is the traceless operator of degree 2 in the sym-

metric representation. The equalities used to write (5.10) are detailed in (D.9), and similar
expressions using non-holomorphic series of non-zero weight are given in (D.7). Recall that
E?(s, S) is invariant under s 7→ 1− s, and has simple poles at s = 0 and s = 1. As in the previous
section, the pole at q = 6 is subtracted by the regularization prescription mentioned below (3.32),
while the pole at q = 8 cancels against the pole from the zero orbit contribution (5.8).

Contributions of non-zero vectors eQ ∈ Λp−2,q−2, on the other hand, lead to exponentially
suppressed contributions, e.g. for the trace of the tensor integral

2R
q
2

′
∑

eQ∈Λp−2,q−2

′
∑

( j,p)

e2πi( jeQ·a1+peQ·a2)
2
∑

`=0

a`
R2`

�

− eQ
2

2

�2−`
c
�

− eQ
2

2

�

�

2eQ2
RS2

| j + pS|2

�

q−4−2`
4

× K q−4
2 −`

�

2π
r

2R2

U2
| j + pU ||eQR|

�

(5.13)

Defining (Q, P) = ( j, p)eQ, we see that the Fourier expansion with respect to (a1, a2) has support
on collinear vectors (Q, P) with Q, P ∈ Λp−2,q−2. Extracting the greatest common divisor of ( j, p),

we find that the Fourier coefficients with charge Q′i = (Q, P) and mass M(Q, P) =
Ç

2Q′iRQ′ jR Mi j
defined in (2.13) are given by

F (p,q),1,Q′

αβγδ
= 4R

q
2 c̄(Q′i)

2
∑

`=0

P(`)
αβδγ

(Q′i , S)

R2`

K q−4
2 −`

(2πRM(Q, P))

M(Q, P)
q−4

2 −`

F (p,q),1,Q′

µαβγ
= 4R

q
2 c̄(Q′i)

1
∑

`=0

P(`)
µαβδ

(Q′i , S)

i
p

2R2`

K q−6
2 −`

(2πRM(Q, P))

M(Q, P)
q−6

2 −`

...

F (p,q),1,Q′
µνρσ = 4R

q
2 c̄(Q′i)

P(0)µνσρ(Q
′i , S)

4

K q−12
2
(2πRM(Q, P))

M(Q, P)
q−12

2

(5.14)
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for the tensor integral, and

Ftr
(p,q),1,Q′ = 4 R

q
2 c̄(Q′i)

2
∑

`=0

a`
R2`

�

−
gcd(Q′i ·Q′ j)

2

�2−` K q−4
2 −`

(2πRM(Q, P))

M(Q, P)
q−4

2 −`
(5.15)

for its trace. The covariantized versions of Pabcd(Q) with respect to the torus’ metric,
P(`)
αβγδ

, . . . ,P(`)µνσρ are given in appendix C. Finally the degeneracy is given by

c̄(Q, P) =
∑

(Q,P)/d∈Λ⊕2
p−2,q−2

�

d2

gcd(Q2,Q · P, P2)

�

q−8
2

c
�

−gcd(Q2,Q·P,P2)
2d2

�

, (5.16)

with support (Q, P) ∈ Λp−2,q−2 ⊕Λp−2,q−2.

Rank-two orbit Finally, rank-two matrices can be uniquely decomposed as A =
�

k j
0 p

��

a b
c d

�

where k > j ≥ 0 and p 6= 0 and
�

a b
c d

�

∈ SL(2,Z). The matrices A can therefore be restricted

to A =
�

k j
0 p

�

, provided the integral is extended to the double cover of the upper half-plane H.
This leads to

F (p,q),1
µ1...µhα1...α4−h

= 2R2
∑

k> j≥0
p 6=0

�

R

i
p

2

�h

e−2πikp(ψ+iR2)

∫

R+

dτ2

τ2+h
2

∫

R

dτ1
e−

π
τ2

R2
S2
|kτ+ j+pS|2

∆

×
h
∏

l=1

�

1p
S2

�1 S1
0 S2

��kτ̄+ j
p

�

�

µl

ΓΛp−2, q−2+ni ai

�

Pα1...α4−h
e2πi( j(eQ− 1

2 ka1)·a1+p(eQ− 1
2 ka1)·a2)

�

(5.17)

for the tensor integral, and to

Ftr
(p,q),1 = 2R2

∑

k> j≥0
p 6=0

e−2πikp(ψ+iR2)

∫

R+

dτ2

τ2
2

∫

R

dτ1 e−
π
τ2

R2
S2
|kτ+ j+pS|2

× ΓΛp−2, q−2+ni ai

�

e2πi( j(eQ− 1
2 ka1)·a1+p(eQ− 1

2 ka1)·a2)
�

D2
�

1
∆

�

(5.18)

for its trace.
Inserting the Fourier expansion (4.14), the integral over τ1 is Gaussian while the integral over

τ2 is of Bessel type. The sum over 0≤ j < k enforces a Kronecker delta function modulo k,

k−1
∑

j=0

exp
�

2πi
j
k

�

eQ2

2 +m
�

�

=

¨

k if
eQ2

2 +m= lk, l ∈Z,

0 otherwise
(5.19)

Relabelling the charges as peQ → P, kp → −M1 and l p → −M2, and defining D = − P2

2 + M1M2
one obtains, for the trace of the tensor integral,

Ftr
(p,q),2 =

∑

M1 6=0,M2
P∈Λp−2,q−2

Ftr
(p,q),2,M1

�

P −M1a1, M2 − a1 · P +
1
2(a1 · a1)M1

�

× e2πi(P·a2+M1(ψ−
1
2 a1·a2)+(M2−a1·P+

1
2 (a1·a1)M1)S1) (5.20)
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where Ftr
(p,q),2,M1 is the non-Abelian Fourier coefficient,

Ftr
(p,q),2,M1(P, M2) = 4(R2S2)

q−2
2 c̄(M1, M2, P)

2
∑

`=0

a` D2−`

(R2S2)`

�

2π
Scl

�

q−5
2 −`

K q−5
2 −`
(Scl) , (5.21)

Scl is the classical action

Scl(M1, M2, P) = 2π
Ç

(R2M1 + S2M2)
2 + 2R2S2P2

R , (5.22)

and c̄(M1, M2, P) the summation measure

c̄(M1, M2, P) =
∑

d|(M1,M2)
P/d∈Λp−2,q−2

c
� D

d2

�

dq−7 . (5.23)

It is worth noting that (5.20) is the general expansion of a function of (S1, a1, a2,ψ) invariant
under discrete shifts Tb,ε1,ε2,κ acting as

(S1, a1, a2,ψ) 7→
�

S1 + b, a1 + ε1, a2 + ε2 + ba1,ψ+κ+ 1
2[ε2(a1 + ε1)− ε1(a2 + ba1)]

�

(5.24)

with b,κ ∈Z and ε1,ε2 ∈Zp−2,q−2. Invariance under Tb,0,ε2,κ is manifest, while invariance under
T0,ε1,0,0 is realized by shifting P 7→ P + M1ε1, M2 7→ M2 + ε1P + 1

2 M1ε
2
1, which leaves D and

M̃2 = M2 − a1 · P +
1
2(a1 · a1)M1 invariant. It is worth noting that in the special case p = 2, P2

R
vanishes identically so (5.22) simplifies to Scl = 2π|R2M1 + S2M2|.

Similarly, for the tensor integral, we get

F (p,q),2,M1
αβγδ

(P, M2) = 4 (R2S2)
q−2

2 c̄(M1, M2, P)
2
∑

`=0

P̃(`)
αβγδ

(P)

(R2S2)`

�

2π
Scl

�

q−5
2 −`

K q−5
2 −`
(Scl)

F (p,q),2,M1
2αβγ (P, M2) = 4 (R2S2)

q−2
2 c̄(M1, M2, P)

1
∑

`=0

P̃(`)
αβγ
(P)

i
p

2(R2S2)`−
1
2

�

2π
Scl

�

q−7
2 −`

K q−7
2 −`
(Scl)

...

F (p,q),2,M1
2222 (P, M2) = 4 (R2S2)

q−2
2 c̄(M1, M2, P)

P̃(0)

4(R2S2)−2

�

2π
Scl

�

q−13
2

K q−13
2
(Scl),

(5.25)

where we restricted to the cases µ,ν, . . .= 2 for simplicity.

5.2 Extension to ZN CHL orbifolds

The degeneration limit (5.1) of the modular integrals (4.1) for ZN CHL models with N = 2, 3,5, 7
can be treated similarly by applying the orbit method. In (4.1), ∆k is the cusp form of weight
k = 24

N+1 defined in (2.4), and ΓΛp, q
[Pabcd] is the partition function with insertion of Pabcd for a

lattice
Λp,q = Λp−2,q−2 ⊕ II1,1 ⊕ II1,1[N] , (5.26)

where Λp−2,q−2 is a lattice of level N . The lattice II1,1⊕ II1,1[N] is obtained from the usual unimod-
ular lattice II2,2 by restricting the windings and momenta to (n1, n2, m1, m2) ∈ Z⊕ NZ⊕Z⊕Z,
hence breaking the automorphism group O(2, 2,Z) to σS↔T n [Γ0(N) × Γ0(N)]. After Poisson
resummation on m2, Eq. (5.6) and (5.7) continue to hold, except for the fact that n2 is restricted
to run over NZ. The sum over A=

�

n1 m1
n2 m2

�

can then be decomposed into orbits of Γ0(N): 11

11Note that the subsequent analysis is valid in the region of the moduli space where NR2 > 2S2.
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Trivial orbit The contribution of A = 0 reduces, up to a factor of R2, to the integrals (4.1) for
the lattice Λp−2,q−2,

F (p,q),0
αβγδ

= R2 F (p−2,q−2)
αβγδ

, Ftr
(p,q),0 = R2 Ftr

(p−2,q−2) , (5.27)

Rank-one orbits Matrices A of rank-one fall into two different classes of orbits under Γ0(N). For
simplicity, let us first consider the case where (n2, m2) 6= (0,0), and denote (m2, n2) = p(n′2, m′2),
with p = gcd(n2, m2):

• Matrices with n′2 = 0mod N , as they are required to be rank-one, can be decomposed as
�n1 m1

n2 m2

�

=
�0 j
0 p

��a b
c d

�

with ( j, p) ∈ Z2 r {(0, 0)}, p 6= 0 and
�a b

c d

�

∈ Γ∞\Γ0(N). For
this class of orbit, one can thus unfold directly the domain Γ0(N)\H into the unit strip
S = Γ∞\H =R+τ2

× (R/Z)τ1
.

• Matrices with n′2 6= 0mod N can be decomposed as
�n1 m1

n2 m2

�

=
� j 0

p 0

��a b
c d

�

with

( j, p) ∈ Z ⊕ NZ r {(0, 0)} , p 6= 0 and
�a b

c d

�

∈ S Γ∞,N S−1\Γ0(N), where

Γ∞,N = {
�1 n
0 1

�

, n ∈ NZ}. One can then unfold the fundamental domain Γ0(N)\H into

S Γ∞,N S−1\H, and change variable τ → −1/τ as in the weak coupling case (4.24) to re-
cover the integration domain SN = Γ∞,N\H =R+τ2

× (R/NZ)τ1
, the width-N strip.

The remaining contributions A with (n2, m2) = (0, 0) belong to the two classes of orbits above.
Let (n1, m1) = j(n′1, m′1), where j = gcd(n1, m1) and j ∈Z, then contributions with n′1 = 0mod N
correspond to the cases ( j, p) = ( j, 0) in the first class above; contributions with n′1 6= 0mod N
correspond to ( j, p) = ( j, 0) in the second class above.

After unfolding and changing variable, the result for the simplest component F (p,q),1
αβγδ

reads
(similarly to (4.24))

F (p,q),1
αβγδ

= R2

∫

R+

dτ2

τ2
2

∫

R/Z

dτ1
1

∆k(τ)

′
∑

( j,p)∈Z2

e−
πR2
τ2 S2

| j+pS|2
ΓΛp−2, q−2

�

e2πi( jeQ·a1+peQ)·a2 Pαβγδ
�

+ R2

∫

R+

dτ2

τ2
2

∫

R/Z

dτ1
1

∆k(τ/N)
υ

N

′
∑

( j,p)∈Z2

p=0mod N

e−
πR2
τ2 S2

| j+pS|2
ΓΛ∗p−2, q−2

�

e2πi( jeQ·a1+peQ)·a2 Pαβγδ
�

,

(5.28)

where ΓΛ∗p−2, q−2
is the partition function of the dual lattice Λ∗p−2,q−2 and where

υ = N k/2+1|Λ∗p−2,q−2/Λp−2,q−2|−1/2 (which reduces to υ = N1−δq,8 for q ≤ 8 in the cases of in-

terest). The contributions from eQ = 0 thus give

F (p,q),1,0
αβγδ

= Rq−6 3(2ck(0))
8π2

1
2

�

E?8−q
2

(S) + vN
q−8

2 E?8−q
2

(NS)
�

δ(αβδγδ),

F (p,q),1,0
µνγδ

= Rq−6 2ck(0)
4π2

�

8−q
4 δαβδµν −δαβDµν

� 1
2

�

E?8−q
2

(S) + vN
q−8

2 E?8−q
2

(NS)
�

,

F (p,q),1,0
µνρσ = Rq−6 2ck(0)

2π2

×
�

D2
µνρσ −

10−q
2 δ(µνDρσ) +

�

8−q
2

��

10−q
2

�

3
8δ(µνδρσ)

� 1
2

�

E?8−q
2

(S) + vN
q−8

2 E?8−q
2

(NS)
�

,

(5.29)
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for the tensor integral, and

Ftr
(p,q),1,0 = Rq−6(p− q+ 6)(p− q+ 8)

2ck(0)
8π2

1
2

�

E?8−q
2

(S) + vN
q−8

2 E?8−q
2

(NS)
�

, (5.30)

for its trace. Recall ck(0) =
24

N+1 = k is the zero mode of 1/∆k =
∑

m ck(m)qm. As in (5.11) and
(5.10), the pole at q = 6 is minimally subtracted by the regularization prescription mentioned
below (3.32), while the pole at q = 8 cancels against the pole from the zero orbit contribution
(5.27).

The contributions with eQ 6= 0 are exponentially suppressed at large R, and have similar Fourier
coefficients as in the full rank case (5.14), except for a different summation measure. Let us label
the electromagnetic charges by (Q, P) = ( j, p)eQ = ( j′, p′)Q̂ where ( j′, p′) are coprime integers. It
will be useful to classify all possible rank-one charges (Q, P) in orbits of the S-duality group Γ0(N)
acting as

�Q
P

�

→
�a b

c d

��Q
P

�

, where
�a b

c d

�

∈ Γ0(N).

• Charges (Q, P) such that p′ = 0mod N are in the same orbit as purely electric charges (Q̂, 0).
Their Fourier coefficient gets contributions from both terms in (5.28) with d = gcd( j, p) and
Q̂
d = Q̃ ∈ Λp−2,q−2 in the first case and Q̂

d = Q̃ ∈ Λ∗p−2,q−2 in the second, such that they are
weighted by the measure

c̄k(Q, P) =
∑

d≥1
Q̂/d∈Λp−2,q−2

ck

�

−
Q̂2

2d2

�

�

d2

Q̂2

�

q−8
2

+ υ
∑

d≥1
Q̂/d∈Λ∗p−2,q−2

ck

�

−
NQ̂2

2d2

�

�

d2

NQ̂2

�

q−8
2

, (5.31)

where the first contribution has support Q ∈ Λp−2,q−2 ⊂ Λ∗p−2,q−2, while the second has sup-
port on Q ∈ Λ∗p−2,q−2. Notice that the latter is matched against 1/∆k(τ/N), which explains
the N factor in the argument of ck.

• Charges (Q, P) such that p′ 6= 0 mod N are in the same orbit as purely magnetic charges
(0, P̂), where we relabelled Q̂ as P̂ for convenience. Their Fourier coefficient gets contribu-
tions from both terms in (5.28) with d = gcd( j, p) and P̂

d = Q̃ ∈ Λp−2,q−2 in the first case

and Nd = gcd( j, p) (because j = 0 mod N) and P̂
Nd = Q̃ ∈ Λ∗p−2,q−2 in the second, such that

they are weighted by the measure

c̄k(Q, P) =
∑

d≥1
P̂/d ∈Λp−2,q−2

ck

�

−
P̂2

2d2

�

�

d2

P̂2

�

q−8
2

+ υ
∑

d≥1
P̂/d ∈NΛ∗p−2,q−2

ck

�

−
P̂2

2Nd2

�

�

Nd2

P̂2

�

q−8
2

, (5.32)

where the first contribution has support P ∈ Λp−2,q−2, while the second has
P ∈ NΛ∗p−2,q−2 ⊂ Λp−2,q−2. In the latter contribution, one N factor in the argument of ck
comes from the matching condition, and two N factors in its denominator come from all
divisors d being originally multiples of N .

Rank-two orbit For the rank-two matrices A, the two classes of orbits are similarly given by
studying (n2, m2) = p(n′2, m′2), where p = gcd(n2, m2).
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• Contributions for which (n′2, m′2) = (0, 1)mod N can be decomposed as A =
�k j
0 p

��a b
c d

�

,

0 ≤ j < k, p ∈ Zr {0} and
�a b

c d

�

∈ SL(2,Z), where its representative has trivial stabilizer.
For this first class of orbits, the fundamental domain can be unfolded to the full upper half-
plane H =R+τ2

×Rτ1
.

• Contributions for which (n′2, m′2) = (1,0)mod N can have A =
� j k

p 0

��a b
c d

�

, 0 ≤ j < Nk,

p ∈ NZ r {0} and
�a b

c d

�

∈ SL(2,Z), where representative has trivial stabilizer. For this

second class of orbits, the fundamental domain can be unfolded to H = R+τ2
×Rτ1

as well
and the integrand can be brought back to the standard lattice sum representation using a
transformation τ→−1/τ, in the spirit of (5.28).

Both classes of contributions lead to the same type of non-Abelian Fourier coefficient as in the
unorbifolded case (5.21) and (5.25), except for a different summation measure c̄(M1, M2, P). The
first class have support (M1, M2, P) ∈ Z ⊕Z ⊕ Λp−2,q−2, whereas the second class have support
(M1, M2, P) ∈ NZ⊕ NZ⊕ NΛ∗p−2,q−2. In fine the summation measure reads

c̄k(M1, M2, P) =
∑

d|(M1,M2)
P/d∈Λp−2,q−2

ck

� D
d2

�

dq−7 + υ
∑

Nd|(M1,M2)
P/d∈NΛ∗p−2,q−2

ck

� D
Nd2

�

(Nd)q−7, (5.33)

where we recall that D = −1
2 P2 + M1M2. For the second class of orbits, one factor of N in the

argument of ck comes from the matching condition, and two factors of 1/N come from the fact
that all divisors were originally multiples of N .

5.3 Large radius limit and BPS dyons

Specializing to (p, q) = (2k, 8) = (r − 4, 8), and choosing Λp−2,q−2 = Λm, the degeneration stud-
ied in this section corresponds to the limit of the exact (∇Φ)4 amplitude in heterotic string on
T7 in the limit where a circle inside T7, orthogonal to the ZN action, decompactifies. The co-
ordinate R is identified as the radius of the large circle in units of the four-dimensional Planck
length lP = g4lH . The contributions from the various orbits discussed in §5.1 and §5.2 are then
interpreted as follows:

5.3.1 Effective action in D = 4

In the large R limit, F (2k,8)
αβγδ

should reproduce the exact four-dimensional F4 coupling, up to expo-
nentially suppressed corrections. As already mentioned below (5.10) and (5.29), the contribution
of the vector eQ = 0 to the rank-one orbit has a pole at q = 8. Using the regularisation (3.32), that
formally sets q = 8+ 2ε, one obtains

F (2k,8),1,0
αβγδ

(ε) = R2+2ε 3(2k)
(4π)2

�

E?−ε(S) + NεE?−ε(NS)
�

δ(αβδγδ) (5.34)

= R2 3
2(2π)2

�k
ε
− log(S k

2 |∆k(S)|2) + k
�

log
� R2

4π

�

− γ
��

δ(αβδγδ) +O(ε) ,

However, this pole cancels against the pole (4.38) in the trivial zero-orbit contribution (5.8),
(5.27), leaving the finite result

F (2k,8)
αβγδ

= R2
�

−
3

2(2π)2
�

log(S k
2 |∆k(S)|4)− 2k log R

�

δ(αβδγδ) + F̂ (2k−2,6)
αβγδ

(Φ)
�

+ . . . (5.35)
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where F̂ (2k−2,6)
αβγδ

is the renormalized 1-loop coupling, up to an irrelevant additive constant, and the
dots denote exponentially suppressed terms.

Thus, the conjectural formula (2.27) for the exact (∇Φ)4 coupling in D = 4 predicts that the
exact F4 coupling in four dimensions should be given by

−
3

8π2
log(S k

2 |∆k(S)|2)δ(abδcd) + F (2k−2,6)
abcd (Φ) , (5.36)

where for convenience we renamed the indices α,β , . . . into a, b, . . . running from 1 to 2k − 2.
Indeed, it is known that half-maximal supersymmetry in D = 4 allows for two types of super-
symmetry invariants with four derivatives: the first one is determined in terms of a holomorphic
function of S, the second depends on the G2k−2,6 moduli only, as described in (3.21), and both
contribute to F4 couplings [56]. The first term in (5.36) corresponds the first invariant, which
also includes the R2 coupling (2.3), while the second was considered in [55], it is by construction
exact at 1-loop and includes a four-derivative scalar couplings studied in [57].

The relative coefficient of the two invariants in (5.36) is in fact fixed by unitarity. Indeed,
the logarithmic dependence of the one-loop amplitude with respect to the Mandelstam variables
(s1 = s, s2 = t, s3 = u) is determined by the 1-loop divergence of the four-photon supergravity
amplitude [41]. Because the genus-one string theory amplitude F (2k−2,6)

abcd (Φ, si) is finite in the ultra-
violet, the corresponding supergravity amplitude pole in dimensional regularisation D = 4 − 2ε
cancels by construction the pole of the coupling F (2k−2,6)

abcd (Φ,ε) regularised according to (3.32)
(corresponding formally to q = 6+ 2ε). Thus, in the low energy limit −` 2

s si � 1 12

F (2k−2,6)
abcd (Φ, si)∼ F (2k−2,6)

abcd (Φ,ε) +
3(2k)
(4π)2

�1
ε
−

1
3

3
∑

i=1

log(−` 2
s si)

�

δ(abδcd) (5.37)

∼ F̂ (2k−2,6)
abcd (Φ)−

3
8π2

log(S k
2 )δ(abδcd) −

2k
(4π)2

3
∑

i=1

log(−` 2
P si)δ(abδcd) ,

up to a fixed constant, where we used the relation S2
2π`

2
P = `

2
s between Planck length and string

length. Therefore, the relative coefficient of the two invariants in (5.36) is indeed such that the
logarithm of S2 in the coupling disappears in string frame, consistently with the fact that string
amplitudes depend analytically on the string coupling constant when formulated in string frame
[58].

The overal normalisation of the 4-photon amplitude can be determined from the 1-loop diver-
gence as [41, 59] (with t8 f 4 = fµν f νσ fσρ f ρµ − 1

4( fµν f µν)2)

A4(S,Φ, si) =
κ4

8

�

3
8π2

log(S k
2 |∆k(S)|2)δ(abδcd) − F (2k−2,6)

abcd (Φ, si)
�

t8F aF bF c F d . (5.38)

12Recall that 2k− 2 is the number of vector multiplets in D = 4.
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More precisely, the 1PI effective action includes the local terms

S4 =

∫

d4x
p

−g
�

1
2κ2

R−
S2

32π
(F a
µνFµνa + F â

µνFµνâ ) +
S1

64πp-g
εµνρσ(F a

µνFρσ a − F â
µνFρσ â)

+
κ4

8

� 3
8π2

log(S k
2 |∆k(S)|2)δ(abδcd) − F̂ (2k−2,6)

abcd (Φ)
�

tµνρσκλϑτ
� S2

8π

�2
F a
µνF b

ρσF c
κλF d

ϑτ

−
1

(8π)2
log(S k

2 |∆k(S)|2)(RµνρσRµνρσ − 4RµνRµν +R2) (5.39)

−
κ2

(8π)2
Rµνρσ

�

D log(S k
2 |∆k(S)|2)

S2

8π
F â−
µν F−ρσâ +D log(S k

2 |∆k(S)|2)
S2

8π
F â+
µν F+

ρσâ

�

−
κ4

(8π)2
D2 log(S k

2 |∆k(S)|2)
� S2

8π

�2�
2F â−
µν F−ρσâFµν

b̂−
Fρσ b̂
− + F â−

µν Fµνâ− Fρσ
b̂−

F b̂−
ρσ

�

−
κ4

(8π)2
D2

log(S k
2 |∆k(S)|2)

� S2

8π

�2�
2F â+
µν F+

ρσâFµν
b̂+

Fρσ b̂
+ + F â+

µν Fµνâ+ Fρσ
b̂+

F b̂+
ρσ

�

+ . . .
�

,

which includes in particular the exact R2 coupling (2.3). The components of (5.10), (5.29) with
µ,ν indices correspond to scalar field parametrizing the circle radius R, the scalar field ψ dual
to the Kaluza–Klein vector, and the axiodilaton scalar field S in four dimensions. The compo-
nents involving the derivative of the function of S depend on the complex (anti)selfdual field
F â±
µν ≡

1
2 F â
µν ±

i
4
p

-g εµν
ρσF â

ρσ, with the covariant derivative D defined as in Appendix D with

D ≡D0 and D2 ≡D2D0.
Let us now discuss the decompactification limit of the 1PI effective action to ten dimensions,

focussing for simplicity on the maximal rank case where the lattice decomposes as

Λ22,6 = D16 ⊕ II6,6, (5.40)

where D16 is the weight lattice of Spin(32)/Z2. Identifying S2 =
2π(2πR)6

g 2
s

, with gs the heterotic
string coupling constant in 10 dimensions, one obtains for a, b, c, d along D16,

−
3

8π2
log(S k

2 |∆k(S)|2)δ(abδcd) + F̂ (2k−2,6)
abcd (Φ) = (2πR)6

� 3
g 2

s
δ(abδcd) +

1
2π5

δabcd

�

+ . . . (5.41)

up to a threshold contribution and exponentially suppressed terms. Here δabcd = 1 if all indices
are identical, and zero otherwise, and we used

∫

SL(2,Z)\H

d2τ

τ2
2

ΓD16
[Pabcd]

∆
=

∫

SL(2,Z)\H

d2τ

τ2
2

�

� E 3
4 −2Ê2E4E6+Ê 2

2 E 2
4

48∆ − 24
�

δ(abδcd) + 48δabcd

�

= 32πδabcd . (5.42)

This equation follows from known results about the elliptic genus of the heterotic string [60]. Us-
ing an orthogonal basis for a Cartan subalgebra of SO(32), one easily computes that this coupling
gives the following trace combination in the vector representation of SO(32)

� 3
g 2

s
δ(abδcd) +

1
2π5

δabcd

�

t8F aF bF c F d =
(2πR)6

4
t8

� 3
g 2

s
(TrF2)2 +

1
π5

TrF4
�

. (5.43)

37

https://scipost.org
https://scipost.org/SciPostPhys.3.1.008


SciPost Phys. 3, 008 (2017)

Using κ2 = 4α′ and reabsorbing the (2πR)6α′ 3 into the 6-torus volume one obtains in Einstein
frame

S10 =

∫

d10 x
p

−g
�

1
8α′ 4

R+ 1
8α′ 3

e−
1
2φ
�

TrFµνFµν +RµνρσRµνρσ − 4RµνRµν +R2
�

−
1

2α′
t8

�

3e−
3
2φTrF2TrF2 +

1
π5

e
1
2φTrF4

�

+ . . .
�

, (5.44)

which reproduces the tree level R2 and (TrF2)2 coupling computed in [53] upon identifying
φ =

p
2κD− 6 log 2, and the 1-loop TrF4 coupling computed in [61, 62].

5.3.2 BPS dyons

The contributions of non-zero vectors to the rank-one orbit yield exponentially suppressed cor-
rections of order e−2πRM(Q,P) (5.14), where M is the mass of a 1/2-BPS state of electromagnetic
charge (Q, P) in four dimensions. The phase e2πi(a1Q+a2P) multiplying (5.14) is the expected min-
imal coupling of a dyonic state with charge (Q, P) to the holonomies of the electric and mag-
netic gauge fields along the circle. The corresponding instanton is a saddle point of the three-
dimensional Euclidean supergravity theory obtained by formal reduction along a time-like Killing
vector, in the duality frame where the axionic scalars a1, a2 are dualized into vector fields. Fol-
lowing the same steps as [63], one finds that the classical action is then Scl = 2πRM(Q, P).

In the maximal rank case, the summation measure (5.16) is given by

c̄(Q, P) =
∑

d≥1
(Q,P)/d ∈Λem

c
�

−gcd(Q2,P2,Q·P)
2d2

�

, (5.45)

where c(m) are the Fourier coefficients of 1/∆. For (Q, P) primitive, this agrees with the helicity
supertrace (2.18) of 1/2-BPS states with charges (Q, P). In the case of CHL models, the summation
measure is instead given by (5.31) or (5.32) with q = 8, υ̃ = 1, depending whether the dyon is
related by Γ0(N), acting as

�Q
P

�

→
�a b

c d

��Q
P

�

, to a purely electric or a purely magnetic state. It
is interesting to note that these two formulas can be combined as follows. We first notice using
the decomposition (Q, P) = ( j′, p′)Q̂ and (Q, P) = ( j′, p′)P̂ when (Q, P) belong the electric and
magnetic orbit respectively, with ( j′, p′) = 1, one obtains

Q̂
d
∈ Λm⇒

(Q, P)
d
∈ Λm ⊕ NΛm ,

P̂
d
∈ NΛe⇒

(Q, P)
d
∈ NΛe ⊕ NΛe , (5.46)

such that in both cases (Q, P)/d ∈ Λm⊕NΛe. Moreover, if (Q, P)/d ∈ Λm⊕NΛe, then Q̂/d ∈ Λm or
P̂/d ∈ NΛe, depending of the orbit to which (Q, P) belongs to, therefore one has the equivalence

(Q, P)
d
∈ Λm ⊕ NΛe ⇔

Q̂
d
∈ Λm or

P̂
d
∈ NΛe , (5.47)

for (Q, P) conjugate to either an electric charge Q̂ or a magnetic charge P̂. Similarly,

Q̂
d
∈ Λe⇒

(Q, P)
d
∈ Λe ⊕ NΛe ,

P̂
d
∈ Λm⇒

(Q, P)
d
∈ Λm ⊕Λm , (5.48)
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such that
(Q, P)

d
∈ Λe ⊕Λm ⇔

Q̂
d
∈ Λe or

P̂
d
∈ Λm , (5.49)

for (Q, P) conjugate to either an purely electric charge (Q̂, 0) or a purely magnetic charge (0, P̂).
Moreover, we have that gcd(NQ2, P2,Q ·P) = NQ̂2 for a dyon in the Γ0(N) orbit of a purely electric
charge, because then gcd(N j′2, p′2, j′p′) = N since p′ = 0 mod N , and gcd(NQ2, P2,Q ·P) = P̂2 for
a dyon in the Γ0(N) orbit of a purely magnetic charge, because then gcd(N j′2, p′2, j′p′) = 1 since
p′ 6= 0 mod N . Putting these observations together we conclude that the summation measure for
a general 1/2 BPS dyon is given by

c̄k(Q, P) =
∑

d≥1
(Q,P)/d ∈Λe⊕Λm

ck

�

− gcd(NQ2,P2,Q·P)
d2

�

+
∑

d≥1
(Q,P)/d ∈Λm⊕NΛe

ck

�

− gcd(NQ2,P2,Q·P)
2Nd2

�

. (5.50)

It is worth noting that gcd(NQ2, P2,Q · P) is invariant under Γ0(N) and Fricke S-duality, so
that each term in (5.50) is separately invariant under Fricke duality. Further noticing that
Λm ⊕ NΛe ' Λe[N]⊕Λm[N] , (5.50) can be rewritten in a more suggestive way as

c̄k(Q, P) =
∑

a|N

∑

d≥1
(Q,P)/d ∈Λem[a]

ck

�

− gcd(NQ2,P2,Q·P)
2a d2

�

. (5.51)

Most importantly, (5.51) agrees with the helicity supertrace Ω4(Q, P) of a half-BPS dyon with
primitive charge (Q, P) which was determined in (2.16) and (2.17).

5.3.3 Taub-NUT instantons

Finally, the rank-two orbit (5.25) yields contributions schematically of the form

∑

M1 6=0,M2,P

c̄(M1, M2, P) e−2π
Ç

(R2M1+S2M̃2)2+2R2S2 P̃2
R+2πi(P·a2+M1(ψ−

1
2 a1·a2)+M̃2S1) , (5.52)

where the summation measure (5.33) is given by

c̄k(M1, M2, P) =
∑

d|(M1,M2)
P/d∈Λm

d ck

� D
d2

�

+
∑

Nd|(M1,M2)
P/d∈NΛe

Nd ck

� D
Nd2

�

, (5.53)

and we denoted M̃2 = M2 − a1 · P + 1
2(a1 · a1)M1, P̃ = P − M1a1, and D = −1

2 P2 + M1M2.
These O(e−2πR2|M1|) contributions are characteristic of an Euclidean Taub-NUT solution of the
form TNM1

× T6, where the Taub-NUT space asymptotes to R3 × S1(R) at spatial infinity [64].
The detailed semi-classical interpretation of these effects is complicated by the fact that in a

Taub-NUT background, similarly to the case of NS5-branes, large gauge transformations of the
electric and magnetic holonomies a1 and a2 do not commute, thus cannot be diagonalized simul-
taneously. The representation (5.20) corresponds to the case where translations in a2 and ψ are
diagonalized. Accordingly, the argument of the exponential in (5.52) should be interpreted as
the classical action in the duality frame in which the fields ψ, S1, a2 associated to the conserved
charges M1, M2 and P are dualized into vector fieldsω, B, A in three dimensions. In order to reach
a positive definite action after dualization, one should first analytically continue the non-linear
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sigma model on O(2k,8)
O(2k)×O(8) into O(2k,8)

O(2k−1,1)×O(7,1) by taking ψ, S1, a2 to be purely imaginary. Equiva-
lently, this is the non-linear sigma model obtained by reduction of a Euclidean four-dimensional
theory. Denoting by U ,φ,ζ the scalar fields whose asymptotic values are given by log R,−1

2 log S2
and a1, the Lagrange density in three dimensions is

L=|dU |2 +
1
4

e4U |dω|2 + |dφ|2 +
1
4

e−4φ |dB − (ζ, dA) + 1
2(ζ,ζ)dω|2

+
1
4

e2U−2φ g(dA− ζdω, dA− ζdω) +
1
4

e−2U−2φ g(dζ, dζ) + Pab̂ ? Pab̂ ,
(5.54)

where we denote | f |2 = f ∧ ? f , g(F, F) ≡ F a
L ? FLa + F â

R ? FRâ. For simplicity we shall consider
only instantons for which the electromagnetic fields vanish, dA= ζ = 0. One can then write the
Lagrangian as a sum of squares

L= 1
4

e4U
�

�

�?de−2U ±dω
�

�

�

2
±

1
2

d(e2Udω)+
1
4

e−4φ
�

�

�?de2φ±dB
�

�

�

2
±

1
2

d(e−2φdB)+ Pab̂ ? Pab̂ . (5.55)

The corresponding 1/2-BPS solutions describe M2 Euclidean NS5-branes on a self-dual Taub-NUT
space of charge M1, with M1M2 ≥ 0.13 For simplicity we consider the NS5-branes at the tip of the
Taub-NUT space, with

e−2U =
1
R2
+
|M1|

r
, e2φ =

1
S2
+
|M2|

r
, ω= −M1 cosθ dϕ , B = −M2 cosθ dϕ , (5.56)

and the fields Φ on the Grassmannian Gr−6,6 are uniform. The action then reduces to the boundary
term Scl = 2π(R2|M1|+S2|M2|) = 2π|R2M1+S2M2|. Note that the measure factor (5.53) vanishes
for P = 0 unless M1M2 ≥ −1. We shall refrain from constructing 1/2-BPS instantons with generic
magnetic charge P such that D ≥ 0, although we expect that their action will reproduce Scl in
(5.22).

6 Discussion

In this work, we have proposed a formula (2.24) for the exact (∇Φ)4 coupling in a class of three-
dimensional string vacua obtained as freely acting orbifolds of the heterotic string on T7 under a
ZN action with N prime. Our formula is manifestly invariant under the U-duality group G3(Z),
which unifies the S and T-duality in D = 4 along with Fricke duality. We derived the supersym-
metric Ward identities that the exact coupling function Fabcd(Φ) must satisfy, and showed that
the formula (2.24) satisfies this constraint. Furthermore, we analyzed its behavior in the weak
coupling regime g3 → 0 and large radius regime R→∞, and found that it correctly reproduces
the known tree-level and one-loop contributions in D = 3, and the correct non-perturbative F4

couplings in D = 4. In addition, we extracted the exponential corrections to these power-like
terms in both regimes, corresponding to non-zero Fourier coefficients with respect to parabolic
subgroups R+ × G2k−1,7 nR2k+6 and R+ × [SL(2)/SO(2)× G2k−2,6]nR2×(2k+4) ×R, and found
agreement with the expected form of the contributions of NS5-brane, Kaluza–Klein monopoles
and H-monopole instantons as g3 → 0, and the contributions of half-BPS dyons and Taub-NUT
instantons as R → ∞. In the case of half-BPS dyons, we found a precise match between the

13Solutions with M1M2 ≤ 0 exist but do not preserve eight supercharges.
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summation measure c̄k(Q, P) and the helicity supertrace Ω4(Q, P), at least when the charge vector
(Q, P) is primitive. This vindicates the general expectation that BPS saturated couplings in dimen-
sion D encode BPS indices in dimension D + 1. It would be interesting to determine the helicity
supertrace Ω4(Q, P) when (Q, P) is not primitive (which requires a careful treatment of threshold
bound states), and compare with the summation measure c̄k(Q, P).

It is natural to ask whether our formula (2.27) is the unique solution to the Ward identities
(2.23) which is invariant under G3(Z), and reproduces the correct power-like terms in the weak
coupling and large radius expansions g3→ 0 and R→∞. Typically, theorems in the mathematical
literature guarantee that smooth automorphic forms on K\G/G(Z) which vanish at all cusps and
have sufficiently sparse Fourier coefficients (in mathematical terms, are attached to a sufficiently
small nilpotent orbit) necessarily vanish; so that the only smooth automorphic functions satisfying
to (3.27) are necessary Eisenstein series. However, these theorems are typically concerned with
Chevalley subgroups of reductive groups in the split or quasi-split real form, which is not the case
here (G3(Z) is a proper subgroup of the Chevalley group of O(2k, 8) for N > 1), and smoothness
away from the cusps is essential.

As far as the support of Fourier coefficients is concerned, the Ward identities (3.27), imply
that the trace of the modular integral (3.29) is attached to the vectorial character of O(p, q),
corresponding to the next-to-minimal orbit. However, the constraints imposed by the differential
equations (3.17), (3.20) are stronger than (3.27), e.g. we show in Appendix B that the tensor
Fabcd derived from the scalar Eisenstein series defined in Appendix E.2 is not a solution to (3.20).
The general form of the Fourier coefficients is in fact very reminiscent of the one for automorphic
forms attached to the minimal orbit of O(p, q): it allows for only two power-like terms at the
cusp, rather than three for the next-to-minimal orbit; they involve ordinary Bessel function of one
single variable, similarly to A1 Whittaker vectors, rather than more complicated functions of two
variables or the typical 2A1 Whittaker vectors which appear in the Fourier coefficients of generic
vectorial Eisenstein series [65].

However, as we emphasized repeatedly, (3.28) has singularities in the bulk of Gp,q on codi-
mension q loci where the projection P â

R of a vector P in Λp,q with norm 2 (or the projection Qâ
R

of a vector Q in Λ∗p,q with norm 2/N) vanishes. In order to argue for uniqueness, it is crucial to
ensure that the modular integral (2.24) correctly captures the behavior of the (∇Φ)4 coupling at
all singular loci. Since (2.24) reproduces correctly the one-loop contribution to (∇Φ)4, it is clear
that it correctly captures the singular behavior on the loci associated to vectors P,Q in the ‘pertur-
bative Narain lattice’ Λr−5,7 ⊂ Λr−4,8, at least in the weak coupling limit. Presumably, this suffices
to guarantee agreement on all singular loci, but we do not know how to prove this rigorously.

Let us note finally that, independently of our proposed identification of the U-duality group in
three dimensions, the general solution to the Ward identities (3.17), (3.20) derived in Appendix
B implies that the exact coupling must be of the form (4.35), up to the determination of the
measure factor c̄k(Q). The property that we recover the exact coupling in four dimensions implies
that the mesure factor is correct for null vectors by O(r − 5,7,Z) T-duality. Indeed, for Q2 = 0,
the summation measure in (4.36) reproduces the summation measure for NS5-brane instantons
in (2.5). The computation of the BPS index associated to an arbitrary NS5-brane, Kaluza–Klein
monopole, H-monopole instanton, would therefore give a direct proof of our result.

Clearly, it would be interesting to generalize our construction to the complete class of het-
erotic CHL models, whose duality properties and BPS spectrum in 4-dimensions are by now well
understood. It is natural to conjecture that the duality group in D = 3 will still be given by the au-
tomorphism group of the non-perturbative Narain lattice (2.21), which naturally incorporates the
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S and T-duality symmetries in D = 4. More pressingly however, the present study was a warm-up
towards the more challenging problem of understanding the 1/4-BPS saturated coupling∇2(∇Φ)4

in four dimensions, which we shall address in forthcoming work.
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A Perturbative spectrum and one-loop F4 couplings in heterotic CHL
orbifolds

In this section, we construct the one-loop vacuum amplitude in CHL models obtained as a freely
acting ZN -orbifold of the standard heterotic string on T d with N prime. From this, we deduce the
helicity supertrace for perturbative BPS states, and the one-loop contribution to the F4 and (∇Φ)4

couplings. We start with the simplest model with N = 2, and then generalize the construction to
N = 3,5, 7.

A.1 Z2 orbifold

The simplest CHL model is obtained by orbifolding the E8×E8 heterotic string compactified on T d ,
by an involution σ which exchanges the two E8 gauge groups and performs a translation by half
a period along one circle in T d [14]. This perturbative BPS spectrum in this model was further
studied in [66, 26]. The symmetry σ exists only on a codimension 8d space inside the Narain
moduli space Gd+16,d and preserves only a U(1)2d+8 subgroup of the original U(1)2d+16 gauge
symmetry, corresponding to the usual 2d Kaluza–Klein and Kalb-Ramond gauge fields, and the
Cartan torus of the diagonal combination of the two E8 gauge groups. To implement the quotient
by σ, it is simplest to work at the point in Gd+16,d where the lattice factorizes as

Λd+16,d = E8 ⊕ E8 ⊕ IId,d . (A.1)

The integrand of the one-loop vacuum amplitude of the original heterotic string is then

A= ZE8×E8
× ΓIId, d

×
1
2

∑

α,β∈{0,1}

(−1)αβ+α+β
ϑ

4�α
β

�

τ4
2η

8η12 , (A.2)

where

ZE8×E8
=





∑

Q1∈E8
q

1
2 Q2

1

η8









∑

Q2∈E8
q

1
2 Q2

2

η8



=
[E4(τ)]2

η16
(A.3)

is the partition function of the 16 chiral bosons on the E8×E8 root lattice, and the last factor in (A.2)
represents the contribution of the transverse bosonic and fermionic oscillators, while the sum over
α,β implements the GSO projection. As a consequence of space-time supersymmetry, the integral
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(A.2) vanishes pointwise, but it will no longer be so in the presence of vertex operators. Note that
the right-moving part in (A.2) will not play any role in our case, and will be later replaced by an
insertion of the polynomial Pabcd (2.26).

Following standard rules, the one-loop partition function of the orbifold by σ is obtained
by replacing A by a sum 1

2

∑

h,g∈{0,1}A
� h

g

�

, where A
� h

g

�

is obtained by twisting the boundary

conditions of the fields by σg along the spatial direction of the string, and σh along the Euclidean
time direction, so that 1

2(A
�0

0

�

+A
�0

1

�

) counts σ-invariant states in the untwisted sector, while
1
2(A

�1
0

�

+A
�1

1

�

) counts σ-invariant states in the twisted sector. Modular invariance permutes the
three blocks

�0
1

�

,
�1

0

�

,
�1

1

�

according to

A
� h

g

� � aτ+b
cτ+d

�

=A
� ah+cg

bh+gd

�

(τ) , (A.4)

where h, g are treated modulo 2. In particular, the block
�0

1

�

is invariant under the Hecke con-
gruence subgroup Γ0(2), and all other blocks can be obtained by acting on it with elements of
SL(2,Z)/Γ0(2) = {1, S, ST}.

In the case at hand, the involution σ exchanges Q1 ↔ Q2 and the corresponding oscillators,
so σ-invariant states must have Q1 =Q2 and the same oscillator state on both factors, thus

ZE8×E8

�0
1

�

(τ) =

∑

Q∈E8
qQ2

η8(2τ)
. (A.5)

The two remaining orbifold blocks are then fixed by modular covariance,

ZE8×E8

�0
0

�

=
E2

4(τ)

η16(τ)
, ZE8×E8

�0
1

�

=
E4(2τ)
η8(2τ)

,

ZE8×E8

�1
0

�

=
E4(

τ
2 )

η8(τ2 )
, ZE8×E8

�1
1

�

=
E4(

τ+1
2 )

e2iπ/3η8(τ+1
2 )

,

(A.6)

As for the action of σ on the torus T d , it can be taken into account by replacing the partition
function ΓIId, d

by

ΓIId, d

� h
g

�

= τd/2
2

∑

Q∈IId,d+
h
2δ

(−1)g δ·Q q
1
2 Q2

L q̄
1
2 Q2

R . (A.7)

where δ must be null modulo 2, and depends on the choice of circle S1 inside T d . The resulting
one-loop vacuum amplitude is then the modular integral of

Aorb =
1
2

∑

h,g∈{0,1}

ZE8×E8

� h
g

�

ΓIId, d

� h
g

�

×
1
2

∑

α,β∈{0,1}

(−1)αβ+α+β
ϑ

4�α
β

�

τ4
2η

8η12 , (A.8)

where the one-half factor is explained above (A.4). Now, a key observation is that the numerator
in the blocks ZE8×E8

� h
g

�

for (h, g) 6= (0,0) can be written as a partition functions for the lattice
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Λ= E8[2] and for its dual Λ∗ = E8[1/2],

ZE8×E8

�0
1

�

=
1

η8(2τ)

∑

Q∈E8[2]

q
1
2Q2

ZE8×E8

�1
0

�

=
1

η8(τ2 )

∑

Q∈E8[1/2]

q
1
2Q2

ZE8×E8

�1
1

�

=
1

e2iπ/3η8(τ+1
2 )

∑

Q∈E8[1/2]

(−1)Q
2
q

1
2Q2

.

(A.9)

Moreover, the untwisted, unprojected partition function satisfies

ZE8×E8

�0
0

�

=
E4(2τ)
η8(2τ)

+
E4(

τ
2 )

η8(τ2 )
+

E4(
τ+1

2 )

e2iπ/3η8(τ+1
2 )

=ZE8×E8

�0
1

�

+ ZE8×E8

�1
0

�

+ ZE8×E8

�1
1

�

.

(A.10)

This relation can be checked using the explicit form of the blocks ZE8×E8

�0
1

�

, but more conceptually,

it follows by decomposing ZE8×E8

�0
0

�

, the character of the level 1 representation of Ê8 ⊕ Ê8, into
characters of level 2 representations of the diagonal Ê8 [67]. It follows from (A.9), (A.10) that
the one-loop amplitude (A.8) can be written as

Aorb =
1
2

′
∑

h,g∈{0,1}

eΓd+8,d

� h
g

�

∆8

� h
g

�
×

1
2

∑

α,β∈{0,1}

(−1)αβ+α+β
ϑ

4�α
β

�

τ4
2η

12 (A.11)

where the sum over (h, g) no longer includes (0, 0). Here, we defined the eta products

∆8

�0
1

�

= η8(τ)η8(2τ) = 2−4η12ϑ4
2 ≡∆8(τ)

∆8

�1
0

�

= η8(τ)η8(τ2 ) = η
12ϑ4

4 =∆8(
τ
2 ),

∆8

�1
1

�

= e2iπ/3η8(τ)η8(τ+1
2 ) = −η

12ϑ4
3 =∆8(

τ+1
2 ), ,

(A.12)

satisfying
∆8

�0
1

�

(−1/τ) = 2−4τ8∆8

�1
0

�

(τ) , ∆8

�1
0

�

(τ+ 1) =∆8

�1
1

�

(τ) , (A.13)

and the partition functions eΓd+8,d are defined over Λ̃d+8,d = E8[2] ⊕ IId,d and its dual
Λ̃∗d+8,d = E8[1/2]⊕ IId,d , as:

eΓd+8,d

�0
1

�

= τd/2
2

∑

Q∈Λ̃d+8,d

�

1+ (−1)δ·Q
�

q
1
2Q2

L q̄
1
2Q2

R

eΓd+8,d

�1
0

�

= τd/2
2

� ∑

Q∈Λ̃∗d+8,d

+
∑

Q∈Λ̃∗d+8,d+
1
2δ

�

q
1
2Q2

L q̄
1
2Q2

R

eΓd+8,d

�1
1

�

= τd/2
2

� ∑

Q∈Λ̃∗d+8,d

+
∑

Q∈Λ̃∗d+8,d+
1
2δ

�

(−1)Q
2
q

1
2Q2

L q̄
1
2Q2

R

(A.14)

These relations were derived at the special point where the lattice Λ̃d+8,d is factorized, but it is
now clear that they hold at arbitrary points on the moduli space Gd+8,d ⊂ Gd+16,d where the Z2
symmetry exists.
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Choosing δ = (0d ; 0d−1, 1), so that the involution σ acts by a translation along the d-th circle
by a half period, this can be further written as

ΓΛd + 8, d
≡ τd/2

2

∑

Q∈Λd+8,d

q
1
2Q2

L q̄
1
2Q2

R =
1
2
eΓd+8,d

�0
1

�

(25/τ4)ΓΛd + 8, d
(−1/τ) = ΓΛ∗d + 8, d

≡ τd/2
2

∑

Q∈Λ∗d+8,d

q
1
2Q2

L q̄
1
2Q2

R = eΓd+8,d

�1
0

�

ΓΛ∗d + 8, d

�

(−1)Q
2�

≡ τd/2
2

∑

Q∈Λ∗d+8,d

(−1)Q
2
q

1
2Q2

L q̄
1
2Q2

R = eΓd+8,d

�1
1

�

(A.15)

where Λd+8,d is related to Λ̃d+8,d by rescaling a II1,1 summand14,

Λd+8,d = E8[2]⊕ II1,1[2]⊕ IId−1,d−1 . (A.16)

Here II1,1[2] is the usual sum over momentum md and winding nd , with md running only over
even integers. The dual lattice is

Λ∗d+8,d = E8[1/2]⊕ II1,1[1/2]⊕ IId−1,d−1 , (A.17)

where II1,1[1/2] is the usual sum over momentum md and winding nd , with nd running over Z/2.
For d = 6, since Λ14,6 ⊂ Λ∗14,6, we see that the electric charges carried by excitations of the het-
erotic string lie in the lattice Λe = Λ∗14,6, in agreement with the result stated in Table 1. Moreover,
it is apparent that the degeneracy of perturbative BPS states with charge Q ∈ Λ∗d+8,d , Q /∈ Λd+8,d

in the twisted sector is given by the coefficient of q−Q2/2 in 1/∆8

�1
0

�

= 1/∆8(τ/2), or equiva-

lently the coefficient of q−Q2
in 1/∆8, while the degeneracy of perturbative BPS states with charge

Q ∈ Λd+8,d ⊂ Λ∗d+8,d has an additional contribution from the coefficient of q−Q2/2 in 1/∆8, in
agreement with (2.14) and (2.15), and the analysis in [66, 26].

At last, we can turn to the one-loop F4 amplitude in this model. As is the case in the usual
heterotic string, the insertion of four vertex operators replaces the right-moving contribution in
the vacuum amplitude (A.11) by an insertion of the polynomial Pabcd in (2.26). Thus, we get

F (1-loop)

abcd = R.N.

∫

SL(2,Z)\H

dτ1dτ2

τ2
2

∑

γ∈Γ0(2)\SL(2,Z)

ΓΛd + 8, d
[Pabcd]

∆8

�

�

�

�

�

γ

, (A.18)

where ΓΛd + 8, d
[Pabcd] denotes the lattice partition function ΓΛd + 8, d

� h
g

�

with an insertion of the
polynomial P as in (2.25). Equivalently, we can unfold the integral over a fundamental domain
Γ0(2)\H for the action of Γ0(2) on H, at the expense of keeping only the identity in the sum over
cosets,

F (1-loop)

abcd = R.N.

∫

Γ0(2)\H

dτ1dτ2

τ2
2

ΓΛd + 8, d
[Pabcd]

∆8
, (A.19)

which demonstrates (2.24) in this case.

14Note that this rescaling implies an extra volume factor upon Poisson resummation, namely
ΓΛ∗d + 8, d

(τ) = (25/τ4)ΓΛd + 8, d
(−1/τ).
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A.2 ZN orbifold with N = 3, 5,7

The construction detailed in the previous section can be easily generalized to ZN orbifolds, pro-
vided one can find a point in the moduli space Gd+16,d where ZN acts on the lattice Λd+16,d by a
permutation with cycle shape 1kN k. It turns out that for N = 3, 5,7, such a lattice can be obtained
by applying a Wick rotation on the Niemeier lattices D4

6 , D6
4 and D8

3 , respectively. Indeed, recall
that given an even self-dual Euclidean lattice

Λ= ∪(λ,λ′)∈G(Dk +λ)⊕ (Λ′ +λ′) (A.20)

of dimension n, where the glue code G is a given sublattice of D∗k/Dk ⊕Λ′∗/Λ′, one can obtain an
even self-dual lattice of dimension n− 8, by replacing Dk by Dk−8, while keeping the same glue
code G, using the fact that Gk = D∗k/Dk is invariant under k 7→ k− 815,

Λ̂= ∪(λ,λ′)∈G(Dk−8 +λ)⊕ (Λ′ +λ′) . (A.21)

If 1≤ k < 8, then Dk−8 should be understood as D8−k[−1], so that the new lattice is a Lorentzian
lattice with signature (n − k, 8 − k) [68, §A.4]. In this way, starting from the Niemeier lattice
Λ= DN+1

k for N = 3, 5,7, which is symmetric under cyclic permutations of the N+1 Dk factors, we
obtain an even self-dual lattice Λ̂ = DN

k ⊕ D8−k[−1] of signature (Nk, 8− k) with a ZN symmetry
σ acting by cyclic permutations of the N Dk factors. Using the explicit description of the glue
code for Niemeier lattices given in [69, Table 16.1], it is possible to check that the only elements
(λ1, . . .λN+1) in the glue code G ⊂ GN+1

k which are invariant under ZN are those of the form
(λ, . . . ,λ) with λ running over Gk. The partition function of the lattice Λ̂ with an insertion of the
element σg with g 6= 0mod N is thus

ZΛ̂
� 0

g

�

=
ϑk

3+ϑ
k
4

2ηk (Nτ)
ϑ8−k

3 +ϑ8−k
4

2η8−k +
ϑk

3−ϑ
k
4

2ηk (Nτ)
ϑ8−k

3 −ϑ8−k
4

2η8−k

+
ϑk

2+ϑ
k
1

2ηk (Nτ)
ϑ8−k

2 +ϑ8−k
1

2η8−k +
ϑk

2−ϑ
k
1

2ηk (Nτ)
ϑ8−k

2 −ϑ8−k
1

2η8−k .

(A.22)

The other blocks are obtained by modular covariance, leading for h 6= 0 mod N to

ZΛ̂
�h

0

�

=
ϑk

3+ϑ
k
2

2ηk

� τ

N

�ϑ8−k
3 +ϑ8−k

2
2η8−k +

ϑk
3−ϑ

k
2

2ηk

� τ

N

�ϑ8−k
3 −ϑ8−k

2
2η8−k

+
ϑk

4+ϑ
k
1

2ηk

� τ

N

�ϑ8−k
4 +ϑ8−k

1
2η8−k +

ϑk
4−ϑ

k
1

2ηk

� τ

N

�ϑ8−k
4 −ϑ8−k

1
2η8−k ,

(A.23)

while the remaining blocks with g 6= 0mod N follow by acting with τ→ τ+ 1,

ZΛ̂
� h

g

�

(τ) = ZΛ̂
�h

0

�

(τ+ gh−1) (A.24)

where h−1 is the inverse of h in the multiplicative group ZN . The untwisted, unprojected block is
then

ZΛ̂
�0

0

�

= ZΛ̂
�0

1

�

+
N−1
∑

g=0

ZΛ̂
� 1

g

�

, (A.25)

15Indeed, Gk = Z2 ⊕Z2 is k is even, or Z4 is k is odd, with the 4 elements in one-to-one correspondence with the
highest weights 0, s, v, c of the adjoint, spinor, vector and conjugate spinor representations.
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i.e. a sum over images of ZΛ̂
�0

1

�

under Γ0(N)\SL(2,Z) = {1, S, TS, . . . , T N−1S}. As a consistency
check, one can verify that the analogous sum for the Euclidean lattice Λ reproduces the partition
function of the Niemeier lattice,

ΘDN+1
k

η24
= ZΛ

�0
1

�

+
N−1
∑

g=0

ZΛ
� 1

g

�

=
E3

4

η24
+ 48k− 768 , (A.26)

where ZΛ
�0

1

�

is obtained by replacing ϑ8−k
i /η8−k by (ϑi/η)k in (A.22).

The integrand of the one-loop vacuum amplitude follows in the same way as in the previous
subsection, by combining the orbifold blocks ZΛ̂

� h
g

�

(τ) for the lattice Λ̂ with the shifted partition
function for the remaining d − 8+ k compact directions (where d is assumed to be greater that
8− k)

Γd−8+k,d−8+k

� h
g

�

= τ
d−8+k

2
2

∑

Q∈Λd−8+k,d−8+k+
h
N δ

(−1)
2
N g δ·Q q

1
2Q2

L q̄
1
2Q2

R . (A.27)

After eliminating ZΛ̂
�0

0

�

using (A.25), grouping terms into an orbit of Γ0(N)\SL(2,Z), and rescal-
ing a II1,1 factor in Λd+2k−8,d as16

Λd+2k−8,d = Dk[N]⊕ D8−k[−1]⊕ II1,1[N]⊕ IId+k−9,d+k−9 , (A.28)

with a glue code {(0, 0), (s, s), (v, v), (c, c)} for the first two factors, we find

Aorb =





ΓΛd + 2k− 8, d

∆k

�0
1

� +
1
N

N−1
∑

g=0

ΓΛ∗d + 2k− 8, d
[(−1)gQ2

]

∆k

� 1
g

�



×
1
2

∑

α,β∈{0,1}

(−1)αβ+α+β
ϑ

4�α
β

�

τ4
2η

12 , (A.29)

where we defined the eta products

∆k

�0
1

�

= η(τ)k η(Nτ)k , ∆k

� 1
g

�

= e
iπgk
12 η(τ)k η

�τ+g
N

�k
(A.30)

and

ΓΛd + 2k− 8, d
= τ

d
2
2

∑

Q∈Λd+2k−8,d

q
1
2Q2

L q̄
1
2Q2

R

ΓΛ∗d + 2k− 8, d

�

(−1)gQ2�

= τ
d
2
2

∑

Q∈Λ∗d+2k−8,d

(−1)gQ2
q

1
2Q2

L q̄
1
2Q2

R .
(A.31)

From this description, it is apparent that the degeneracy of twisted perturbative BPS
states with charge Q ∈ Λ∗d+2k−8,d , Q /∈ Λd+2k−8,d is given by the coefficient of q−Q2/2 in

1/∆k

�1
0

�

= 1/∆k(τ/N) , or equivalently the coefficient of q−NQ2/2 in 1/∆k, while the degeneracy
of perturbative BPS states with charge Q ∈ Λd+2k−8,d ⊂ Λ∗d+2k−8,d has an additional contribution

from the coefficient of q−Q2/2 in 1/∆k, in agreement with (2.14) and (2.15). For four-dimensional
vacua (d = 6), we see that the electric charges carried by perturbative BPS states lie in the lattice
Λe = Λ∗m where

16Note that this rescaling implies ΓΛ∗d + 2k− 8, d
(τ) = (N

k
2+1/τk−4)ΓΛd + 2k− 8, d

(−1/τ).
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N = 3 : Λm = D6[3]⊕ D2[−1]⊕ II1,1[3]⊕ II3,3

N = 5 : Λm = D4[5]⊕ D4[−1]⊕ II1,1[5]⊕ II1,1

N = 7 : Λm = D3[7]⊕ D5[−1]⊕ II1,1[7]
(A.32)

This is in fact in agreement with the results stated in Table 1, thanks to the isomorphisms

D6[3]⊕ D2[−1]' A2 ⊕ A2 ⊕ II2,2[3]

D4[5]⊕ D4[−1]' II2,2[5]⊕ II2,2

D3[7]⊕ D5[−1]'
�

−4 −1
−1 −2

�

⊕ II1,1[7]⊕ II2,2

(A.33)

Indeed, both lattices on each line have the same genus, in particular the same discriminant group
L∗/L = Zk

N . For N = 2 (hence k = 8), Eq. (A.28) continues to hold with the understanding that
D8[2]⊕ D0[−1]≡ E8[2].

Finally, we can obtain the one-loop F4 amplitude by replacing the last factor in (A.29) by an
insertion of the polynomial Pabcd in (2.26), and then integrating over the fundamental domain
H/SL(2,Z). As before, the integral can be unfolded onto a fundamental domain Γ0(N)\H for the
action of Γ0(N) on H, at the expense of keeping only the block

�0
1

�

,

F (1-loop)

abcd = R.N.

∫

Γ0(N)\H

dτ1dτ2

τ2
2

ΓΛd + 2k− 8, d
[Pabcd]

∆k
, (A.34)

where ∆k ≡∆k

�0
1

�

, thus establishing (2.24) for this class of models.

B Ward identity in the degeneration O(p, q)→ O(p− 1, q− 1)

In section 3.2, we proved that the differential equations (3.17) and (3.22) are satisfied by the one-
loop modular integral Fabcd defined in (3.28). Here, we verify explicitly that the differential equa-
tion in (3.22) is verified by each Fourier mode in the degeneration limit O(p, q)→ O(p−1, q−1),
and that the solution is uniquely determined up to a moduli-independent summation measure.

Using the decomposition (4.4) and changing variable R = e−φ for the non-compact Cartan
generator of O(p, q), the metric on moduli space reads

2Pab̂Pab̂ = 2dφ2 + 2Pαβ̂ Pαβ̂ + e2φ
�

pLα I pL
α

J + pR α̂ I pR
α̂

J

�

daI daJ (B.1)

with
P00̂ = −dφ , P0α̂ =

1
p

2
eφpR α̂ I daI , Pα0̂ =

1
p

2
eφpLα I daI . (B.2)

Beware that in this section we use the same notations pL and pR for both O(p, q) and O(p−1, q−1),
so pLα IQ

I is not pL aIQI for a = α.
One can compute the covariant derivative in tangent frame such that

dZa = 2P bĉ∂bĉ Za = 2P bĉ(Dbĉ Za − Bbĉ a
d Zd), (B.3)
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and similarly for hatted indices. This way one computes that, for any tensor Fa = (F0, Fα, Fα̂, F0̂),
Fb = (F0, Fβ , Fβ̂ , F0̂), ...

D00̂Fa = −
1
2
∂

∂ φ
Fa ,

Dα0̂Fa =
1
p

2
e−φv-1I

α

∂

∂ aI
Fa +

1
2

�

Fα,−δαβ F0, 0, 0
�

D0α̂Fa =
1
p

2
e−φv-1I

α̂

∂

∂ aI
Fb +

1
2

�

0,0,−δαβ F0̂, Fα̂
�

, (B.4)

and finally the operator Dαβ will only be acting on the moduli fields through the projectors pI
L γ,

pI
R γ̂:

Dαβ̂ pI
L γ =

1
2δαγpI

R β̂ , Dαβ̂ pI
L γ̂ =

1
2δβ̂ γ̂pI

Rα . (B.5)

Recall the differential equation (2.23)

D ĉ
(eD f ) ĉ Fabcd =

2− q
4
δe f Fabcd + (4− q)δa)(eF f )(bcd + 3δ(abFcd)e f . (B.6)

For brevity we define the vector

~F =
�

F1111, F111α, F11αβ , F1αβγ, Fαβγδ
�ᵀ

(B.7)

and ~FQ such that ~F =
∑

Q
~FQe2πiQ·a. The first component (e, f ) = (0,0) gives

4D0
ĉD0ĉ ~FQ = (∂φ(∂φ + q− 1)− 8π2e−2φQ2

R)~FQ = −











5(q− 6)F1111
4(q− 5)F111α

3(q− 4)F11αβ − 2δαβ F1111
2(q− 3)F1αβγ − 6δ(αβ F111γ)
(q− 2)Fαβγδ − 12δ(αβ F11γδ)











. (B.8)

Then the action of the differential operator

2D0
ĉDηĉ ~FQ + 2Dη ĉD0ĉ ~FQ = −2πi

p
2e−φ(QLη(∂φ + q− 2) + 2QR α̂Dηα̂)~FQ

−(∂φ +
q− 2

2
)











4F111η
3F11αη −δηαF1111

2F1αβη − 2δη(αF111β)
Fαβγη − 3δη(αF11βγ)
−4δη(αF1βγδ)











, (B.9)

allows to obtain the second component (e, f ) = (0,α) of the differential equation

−2πi
p

2e−φ(QLη(∂φ + q− 2) + 2QR α̂Dηα̂)~FQ

=











4(∂φ + 4)F111η
3(∂φ + 3)F11αη −δηα(∂φ + q− 3)F1111

2(∂φ + 2)F1αβη − 2δη(α(∂φ + q− 3)F111β) + 2δαβ F111η
(∂φ + 1)Fαβγη − 3δη(α(∂φ + q− 3)F11βγ) + 6δ(αβ F11γ)η

−4δη(α(∂φ + q− 3)F1βγδ) + 12δ(αβ F1γδ)η











. (B.10)
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The final differential operator for (e, f ) = (η,ϑ)

4D(η ĉDϑ)ĉ ~FQ = (4D(ηγ̂Dϑ)γ̂ +δηϑ∂φ − 8π2e−2φQLηQL ϑ)~FQ

+4πi
p

2e−φQL (η











4F111ϑ)
3F11α|ϑ) −δϑ)αF1111

2F1αβ |ϑ) − 2δϑ)(αF111β)
Fαβγ|ϑ) − 3δϑ)(αF11βγ)
−4δϑ)(αF1βγδ)











(B.11)

+











12F11ηϑ − 4δηϑF1111
6F1αηϑ − 3δηϑF111α − 7δα(ηF111ϑ)

2Fαβηϑ − 2δηϑF11αβ − 10δα)(ηF11ϑ)(β + 2δα)(ηδϑ)(β F1111
−δηϑF1αβγ − 9δα)(ηF1ϑ)(βγ + 6δα)(ηδϑ)(β F111γ

−4δα)(ηFϑ)(βγδ + 12δα)(ηδϑ)(β F11γδ











,

gives a third differential equation

(4D(ηγ̂Dϑ)γ̂ +δηϑ∂φ − 8π2e−2φQLηQL ϑ)~FQ + 4πi
p

2e−φQL (η











4F111ϑ)
3F11α|ϑ) −δϑ)αF1111

2F1αβ |ϑ) − 2δϑ)(αF111β)
Fαβγ|ϑ) − 3δϑ)(αF11βγ)
−4δϑ)(αF1βγδ)











= −











(q− 6)δηϑF1111
(q− 5)δηϑF111α + (q− 11)δα(ηF111ϑ)

(q− 4)δηϑF11αβ − 2δαβ F11ηϑ + 2(q− 9)δα)(ηF11ϑ)(β + 2δα)(ηδϑ)(β F1111
(q− 3)δηϑF1αβγ − 6δ(αβ F1γ)ηϑ + 3(q− 7)δα)(ηF1ϑ)(βγ + 6δα)(ηδϑ)(β F111γ
(q− 2)δηϑFαβγδ − 12δ(αβ Fγδ)ηϑ + 4(q− 5)δα)(ηFϑ)(βγδ + 12δα)(ηδϑ)(β F11γδ











(B.12)

One can then check that the only exponentially suppressed solution to the three equations
(B.8), (B.10) and (B.12) is given, up to a moduli-independent prefactor, by

~FQ =















F (4)1

QLαF (3)1

QLαQL β F (2)1 +δαβ F (2)2

QLαQL βQL γF (1)1 +δ(αβQL γ)(Q)F
(1)
2

QLαQL βQL γQLδF (0)1 +δ(αβQL γQLδ)F
(0)
2 +δ(αβδγδ)F

(0)
3















, (B.13)

F (k)1 =
� i
p

2

�k
2

q−2
2 (2π)

q−3−2k
2 R

q−1
2

q

2|QR|2
2k+3−q

2
K 2k+3−q

2
(2πR

q

2|QR|2)

F (k)2 = −
� i
p

2

�k
2

q−4
2
(4− k)(3− k)

2
(2π)

q−5−2k
2 R

q−3
2

q

2|QR|2
2k+5−q

2
K 2k+5−q

2
(2πR

q

2|QR|2)

F (0)3 = 3× 2
q−6

2 (2π)
q−7

2 R
q−5

2
Æ

2|QR|2
7−q

2 K 7−q
2
(2πR

q

2|QR|2) , (B.14)

In particular, the tensorial part of the function ~FQ is polynomial in QLα, . . ., and the rest only
depends on the moduli through Q2

R and R = e−φ . We conclude that the Fourier coefficient ~FQ for
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a fixed Q is uniquely determined by the differential equations (3.17) and (3.22) up to an overal
constant corresponding to the measure factor.

The power-low terms satisfy to the same equations for Q = 0. One easily computes that the
only two solutions are such that

~F =











(7− q)(9− q)c0Rq−6

0
(7− q)c0Rq−6δαβ

0
3c0Rq−6δ(αβδγδ) + RF p−1,q−1

αβγδ











, (B.15)

for an arbitrary constant c0 and a solution F p−1,q−1
αβγδ

to (3.17) and (3.22) on Gp−1,q−1.

C Polynomials appearing in Fourier modes

In the degeneration limit O(p, q) → O(p − 1, q − 1) studied in §4, the monomials
P̃(`)αh+1...α4

(Q) with `≥ 0 are of degree 4− 2`− h in Q, and defined by

∑

`≥0

P̃(`)
αβγδ

(Q =QL,αQL,βQL,γQL,δ −
3

2π
δ(αβQL,γQL,δ) +

3
16π2

δ(αβδγδ),

∑

`≥0

P̃(`)
αβγ
(Q) =QL,αQL,βQL,γ −

3
4π

QL,(αδβγ),

∑

`≥0

P̃(`)
αβ
(Q) =QL,αQL,β −

1
4π
δαβ ,

∑

`≥0

P̃(`)α (Q) =QL,α,

∑

`≥0

P̃(`)(Q) = 1.

(C.1)

In the degeneration limit O(p, q) → O(p − 2, q − 2) studied in §5, the monomials
P(`)µ1...µh αh+1...α4

(Q′i , S) with `≥ 0 are of degree 4− 2`− h in Q′i , and defined by

∑

`≥0

P(`)
αβγδ

(Q′i , S) =Q′iL,(αQ′ jL,βQ′kL,γQ
′l
L,δ)Mi j Mkl −

3
2π
δ(αβQ′iL,γQ

′ j
L,δ)Mi j +

3
16π2

δ(αβδγδ),

∑

`≥0

P(`)
µαβγ

(Q′i , S) =Q′L,µ(αQ′iL,βQ′ jL,γ)Mi j −
3

4π
Q′L,µ(αδβγ),

∑

`≥0

P(`)
µναβ

(Q′i , S) =Q′L,µαQ′L,νβ −
1

4π
δαβ

Q′µ ·Q
′
ν

Q′τ ·Q′τ
,

∑

`≥0

P(`)µνρα(Q
′i , S) =Q′L,µα

Q′ν ·Q
′
ρ

Q′τ ·Q′τ
,

∑

`≥0

P(`)µνρσ(Q
′i , S) =

Q′(µ ·Q
′
νQ′µ ·Q

′
σ)

(Q′τ ·Q′τ)2
,

(C.2)

where Mi j = viµvµ j is the torus metric (5.4), and Q′µ ·Q
′
ν =

1
S2

�

(Q+ S1P)2 (Q+ S1P)S2P
(Q+ S1P)S2P S2

2 P2

�

.
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D Tensorial Eisenstein series

In the degeneration limit O(p, q)→ O(p − 2, q − 2) studied in §5, the power-like terms in (5.29)
involve tensorial Eisenstein series that we rewrote as tensorial derivatives of real analytic Eisen-
stein series, using Dµν the traceless differential operator on SL(2,R)/O(2). Here we exhibit these
relations, and show how this operator can be rewritten in terms of lowering and raising operators
Dw and Dw.

The non-holomorphic Eisenstein series

Es,w(S) =
1

2ζ(2s)

∑

(c,d)∈Z2r{0,0}

Ss
2

(c + dS)s+
w
2 (c + dS̄)s−

w
2

(D.1)

has modular weight (w
2 ,−w

2 ) under SL(2,Z). The raising and lowering operators, Dw = 2iS2∂S+
w
2

and Dw = −2iS2∂S̄ −
w
2 act on Es,w(S) according to

Dw Es,w =
�

s+
w
2

�

Es,w+2, Dw Es,w =
�

s−
w
2

�

Es,w−2. (D.2)

Non-holomorphic Eisenstein series are thus eigenmodes of the laplacian ∆w = D̄w+2Dw with
eigenvalue

�

s+ w
2

��

s− w
2 − 1

�

.
Alternatively, one can denote the momenta and winding along a torus as zµ = mi v

i
µ with

(m1, m2) = (c, d), vµ
i is the vielbein defined in (5.4), such that zµzµ = 1

S2
|c + dS|2 is invariant

under SL(2,Z). The traceless differential operator Dµν acts as

Dµνzρ =
1
2
δρ(µzν) −

1
4
δµνzρ. (D.3)

One can show that they are related to the lowering and raising operator through

Dµν = −
1
2
σ+µνDw −

1
2
σ−µν D̄w (D.4)

where σ± = 1
2(σ3 ± iσ1) and σi are the Pauli matrices. By acting on non-holomorphic Eisenstein

series of weight 0 with Dµν and D(µνDρσ), one obtains the relations

s
2
σ+µνEs,2 +

s
2
σ−µνEs,−2 =

s
2ζ(2s)

′
∑

( j,p)

1
(zτzτ)s

� zµzν
zτzτ

−
1
2
δµν

�

×
s(s+ 1)

4
σ+(µνσ

+
ρσ)Es,4 +

s(s− 1)
4

σ−(µνσ
−
ρσ)Es,−4 + s(s− 1)

�

σ+(µνσ
−
ρσ) −

1
8
δ(µνδρσ)

�

Es,0

=
s(s+ 1)
2ζ(2s)

′
∑

( j,p)

1
(zτzτ)s

�

zµzνzρzσ
(zτzτ)2

−
δ(µνzρzσ)

zτzτ
+

1
8
δ(µνδρσ)

�

(D.5)

where the second line is traceless.
Now, the components F (p,q),1,0

αβµν
and F (p,q),1,0

µνρσ in (5.10) were obtained originally as

F (p,q),1,0
αβµν

= Rq−6 c(0)
4π2

�8− q
2

� 1
2ζ(8− q)

′
∑

( j,p)

1

(zτzτ)
8−q

2

zµzν
zτzτ

,

F (p,q),1,0
µνρσ = Rq−6 c(0)

2π2

�8− q
2

��10− q
2

� 1
2ζ(8− q)

′
∑

( j,p)

1

(zτzτ)
8−q

2

zµzνzρzσ
(zτzτ)2

(D.6)
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They can be written as in (5.10) by rewritting the relations above, for s 6= −1

s
2ζ(2s)

′
∑

( j,p)

1
(zτzτ)s

zµzν
zτzτ

=
s
2

�

δµνEs,0 +σ
+
µνEs,2 +σ

−
µνEs,−2

�

,

s(s+ 1)
2ζ(2s)

′
∑

( j,p)

1
(zτzτ)s

zµzνzρzσ
(zτzτ)2

=
s(s+ 1)

4
σ+(µνσ

+
ρσ)Es,4 +

s(s− 1)
4

σ−(µνσ
−
ρσ)Es,−4

+
s(s+ 1)

2

�

δ(µνσ
+
ρσ)Es,2 +δ(µνσ

−
ρσ)Es,−2

�

+
s2

2

�

σ+(µνσ
−
ρσ) −

1
4
δ(µνδρσ)

�

Es,0 +
3s(s+ 1)

8
δ(µνδρσ)Es,0

(D.7)

In other words, all the tensorial series in (5.29) appearing as low-energy propagators on the torus

can be rewritten a combination of Es,0, DEs,0, DEs,0, D2Es,0 and D2Es,0. This is used extensively
to rewrite the 1-PI effective action in four dimensions (5.39).

Similarly, they can also be rewritten using traceless differential operators Dµν and

D2
µνρσ =D(µνDρσ) − 1

4δ(µνδρσ)DτκD
τκ (D.8)

as

s
2ζ(2s)

′
∑

( j,p)

1
(zτzτ)s

zµzν
zτzτ

=
� s

2
δµν −Dµν

�

Es,0

s(s+ 1)
2ζ(2s)

′
∑

( j,p)

1
(zτzτ)s

zµzνzρzσ
(zτzτ)2

=
�

D2
µνρσ − (s+ 1)δ(µνDρσ) +

3
8

s(s+ 1)δ(µνδρσ)
�

Es,0

(D.9)

E Poincaré series and Eisenstein series for O(p, q,Z)

In this section, we evaluate the modular integrals (3.28) and (3.29) using the method developed
in [50, 44], which keeps invariance under the automorphism group O(p, q,Z) of the lattice Λp,q
manifest. The result is expressed as a sum over lattice vectors with fixed norm, which is a special
type of Poincaré series for O(p, q,Z). In §E.2, we use a similar method to construct Eisenstein
series for O(p, q,Z).

E.1 Poincaré series representation of F p,q

The method developed in [50, 44] relies on expressing the factor multiplying the lattice sum in
the integrand in terms of a special type of Poincaré series for Γ0(N), known as the Niebur-Poincaré
series of weight w ∈ 2Z,

FN (s,κ, w;τ) =
1
2

∑

γ∈Γ∞\Γ0(N)

Ms,w(−κτ2) e
−2πiκτ1 |wγ , (E.1)

where Ms,w(y) is the Whittaker function defined in [50, Eq. (2.7)], and |wγ is the Petersson
slash operator, [ f |wγ](τ) = (cτ + d)−k f ( aτ+b

cτ+d ) for γ =
�

a b
c d

�

. The series converges absolutely
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for Re(s) > 1, grows as Γ (2s)
Γ (s+

w
2 )

q−κ near the cusp τ → i∞ and is regular at the cusp τ = 0. It

transforms under the Maass raising and lower operators according to

DFN (s,κ, w) = 2κ
�

s+ w
2

�

FN (s,κ, w+ 2) ,

D̄FN (s,κ, w) =
1

8κ

�

s− w
2

�

FN (s,κ, w− 2) ,
(E.2)

which implies that it is an eigenmode of the weight w Laplacian on H with the eigenvalue
(s− w

2 )(s−1+ w
2 ). In particular, for w< 0 and s = 1− w

2 , FN (s,κ, w) is a harmonic Maass form of
weight w. In cases where there exists no cusp form of weight 2− w, it is actually a weakly holo-
morphic modular form of weight w [49]. The Fourier expansion of FN (s,κ, w) ≡ F∞(s,κ, w;τ)
around the cusps at∞ and at 0 is given in [44, Eq. (5.8-10)], in terms of the Kloosterman sums
Z∞∞(m, n; s) and Z0∞(m, n; s) defined in Eq. A.3 and A.4 of loc. cit.
For N = 1, one has, by matching the residue of the pole at τ= i∞,

1
∆(τ)

= lim
s→7

F1(s, 1,−12;τ)
Γ (2s)

. (E.3)

For N = 2, 3,5, 7, using the fact that ∆k is invariant under the Fricke involution, one has instead

1
∆k(τ)

= lim
s→1+ k

2

�

FN (s, 1,−k;τ) + F̂N (s, 1,−k;τ)
�

Γ (2s)
, (E.4)

where F̂N (s,κ, w;τ) is the image of FN (s,κ, w;τ) under the Fricke involution.17

We shall compute the family of integrals

F (p,q)(Φ, s,κ) =
1
Γ (2s)

∫

Γ0(N)\H

dτ1dτ2

τ2
2

ΓΛp, q
FN (s,κ,− p−q

2 ;τ) ,

F (p,q)
abcd (Φ, s,κ) =

1
Γ (2s)

∫

Γ0(N)\H

dτ1dτ2

τ2
2

ΓΛp, q
[Pabcd]FN (s,κ,− p−q

2 − 4;τ) ,

(E.5)

which converges absolutely for Re(s) > p+q
4 . Here, ΓΛp, q

[Pabcd] is the partition function of
a N -modular lattice Λp,q of signature (p, q). It follows from the N -modularity property that
|Λ∗p,q/Λp,q|= N (p+q)/2, and that ΓΛp, q

[Pabcd] satisfies

ΓΛp, q
[Pabcd](Φ,τ) =

�

−iτ
p

N
�−4− p−q

2 ΓΛp, q
[Pabcd]

�

σ ·Φ,−
1

Nτ

�

(E.6)

whereσ is the O(p, q,R) transformation realizing the isomorphism Λ∗p,q ' Λp,q[1/N]. The desired
integrals (4.1) are then obtain by taking a limit

F (p,q)(Φ) =
1
8

lim
s→1+ k

2

�

F p,q(Φ, s, 1) + F (p,q)(σ ·Φ, s, 1)
�

F (p,q)
abcd (Φ) = lim

s→1+ k
2

�

F (p,q)
abcd (Φ, s, 1) + F (p,q)

abcd (σ ·Φ, s, 1)
�

.
(E.7)

17 For N = 7, 1/∆3 is a modular form of odd weight with character χ = ( ·7 ), so the Petersson slash operator |wγ in
(E.1) involves an additional factor of χ(d)−1. This results in additional factors of χ(d)−1 and χ(c)−1 in the Kloosterman
sums Z∞∞(m, n; s) and Z0∞(m, n; s), respectively.
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By unfolding the integration domain against the sum over γ, one obtains, for Re(s)> p+q
4 ,

F (p,q)
abcd (s,κ) =

1
Γ (2s)

∑

Q∈Λp,q

∫

S
dτ1dτ2τ

q/2−2
2 Pabcd eiπ(τp2

L−τ̄p2
R)Ms,w(−κτ2) e

−2πiτ1κ, (E.8)

where S denotes the strip −1
2 < τ1 <

1
2 ,τ2 > 0. The integral over τ1 enforces the BPS condition

Q2 =Q2
L −Q2

R = 2κ. Decomposing

Pabcd(Q,τ2) =
∑

0≤`≤2

P̃abcd,`(Q)τ
−`
2 , (E.9)

where P̃abcd,` is a polynomial of degree 4− 2` in Q, and integrating over τ2, we get

F (p,q)
abcd (s,κ) =

1
Γ (2s)

∑

0≤`≤2

(4πκ)`+1− q
2

∑

Q∈Λp,q
Q2=2κ

P̃abcd,`(Q)

�

Q2
L

2κ

�`+1−s−
q−w

2

× Γ
�

s+ q−w
2 − `− 1

�

2F1

�

s+ w
2 , s+ q−w

2 − `− 1; 2s;
2κ

Q2
L

�

=
1
Γ (2s)

∑

1≤k≤3

(4πκ)`+1− q
2

∑

Q∈Λp,q
Q2=2κ

P̃abcd,`(Q)

�

Q2
R

2κ

�`+1−s−
q−w

2

× Γ
�

s+ q−w
2 − `− 1

�

2F1

�

s− w
2 , s+ q−w

2 − `− 1; 2s;−
2κ

Q2
R

�

(E.10)

where in the second line, we used Pfaff’s equality 2F1(a, b; c; z) = (1 − z)−b
2F1(b, c − a; c; z

z−1).
Similarly, for the scalar integral we get

F (p,q)(s,κ) =
(4πκ)1−

q
2

Γ (2s)

∑

Q∈Λp,q
Q2=2κ

�

Q2
R

2κ

�1−s− p+q
4

2F1

�

s+ q
4 , s+ p+q

4 − 1; 2s;−
2κ

Q2
R

�

(E.11)

For q < 6, the series (E.10) and (E.11) are absolutely convergent at s = 1+ k
2 , so the limit (E.7)

can be taken term by term. For q ≥ 6, the limit must be taken after analytically continuing the
sum, and subtracting the pole when q = 6. In either case, the series (E.10) and (E.11) correctly
encode the singular behavior of the integral at codimension-q singularities in Gp,q where P2

R → 0
for a norm 2κ in Λp,q or Q2

R → 0 for a norm 2κ/N vector in Λ∗p,q. Near these loci, the leading
singular behavior of (E.10) is given, for κ= 1, by

F (p,q)
abcd ∼

Γ
� q−2

2

�

(2π)
q−2

2





QL,aQL,bQL,cQL,d

(Q2
R)

q−2
2

−
6

q− 4

δ(abQL,cQL,d)

(Q2
R)

q−4
2

−
3

(q− 6)(q− 4)

δ(abδcd)

(Q2
R)

q−6
2



 (E.12)

and similarly for F (p,q).
Using the same argument as in (3.51) and making use of (E.2), it is easy to show that the

integrals (E.5) satisfy the differential equation

D2
e f F (p,q)

abcd (s) = (2− q)δe f F (p,q)
abcd (s) + (16− 4q)δe)(a F (p,q)

bcd)( f (s) + 12δ(ab Fcd)e f (s)

+

∫

Γ0(N)\H

dτ1dτ2

τ2
2

2(2s+ k)
2κΓ (2s)

FN (s,κ,−k− 2) ΓΛp, q
[Pabcde f ]

(E.13)
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The modular integral on the second line can again by evaluating by the unfolding trick, as a sum
over vectors Q ∈ Λp,q with Q2 = 2κ . For the relevant value s = 1 + k

2 with small |k|, such that
FN (s,κ,−k) is weakly holomorphic, FN (s,κ,−k−2) vanishes so the sum over Q must vanish. We
have checked that this is indeed the case in the Euclidean case q = 0, N = 1, such that only a finite
number of vectors Q contribute.

E.2 Eisenstein series for O(p, q,Z)

While the modular integrals (E.5) result into automorphic forms with singularities on Gp,q, due to
the pole of order κ in the Niebur-Poincaré series FN (s,κ, w;τ), it is useful to consider the analogue

E(p,q)(Φ, s) =

∫

Γ0(N)\H

dτ1dτ2

τ2
2

ΓΛp, q
EN (s,−

p−q
2 ;τ) , (E.14)

where FN (s,κ, w;τ) is replaced by the non-holomorphic Eisenstein series for Γ0(N),

EN (s, w;τ) =
1
2

∑

γ∈Γ∞\Γ0(N)

τ
s−w

2
2 |wγ , (E.15)

which can be obtained formally by taking the limit κ → 0 in (E.1). The integral converges for
Re(s) > p+q−2

2 , and can be computed using the unfolding trick, leading to a standard vectorial
Eisenstein series for O(p, q,Z), the automorphism group of Λp,q,

E(p,q)(Φ, s) = π−s′ Γ (s′)
∑

P∈Λp,qr{0}
P2=0

1

(P2
L + P2

R )s
′ , (E.16)

with s′ = s + p+q
4 − 1. Another Eisenstein series for the same group is obtained by replacing

EN (s, w;τ) by its image under the Fricke involution, which amounts to changing Φ 7→ σ · Φ in
(E.16). Unlike (E.5), both Eisenstein series are smooth automorphic forms on Gp,q. Their behavior
in the degeneration limits O(p, q)→ O(p−1, q−1) and O(p, q)→ O(p−2, q−2) is easily obtained
by applying the same methods as in §4 and §5. In particular, the constant terms proportional to

τ
s−w

2
2 and to τ

1−s−w
2

2 in the Fourier expansion of EN (s, w;τ) lead to power-like terms proportional
to R2s′ and Rp+q−2−2s′ in the degeneration limit O(p, q)→ O(p− 1, q− 1).

By direct computation, or using the fact that EN (s, w;τ) is an eigenmode of the weight w
Laplacian on H with eigenvalue (s− w

2 )(s− 1+ w
2 ), one sees that

∆Gp,q
E(p,q)(Φ, s) = s′(2s′ − p− q+ 2) E(p,q)(Φ, s) . (E.17)

For s′ = p+4
2 , corresponding to s = 3+ p−q

2 , the eigenvalue coincides with the eigenvalue of F (p,q)

in (3.27) (the other value s′ = q−6
2 , s = −2 − p−q

2 lies outside the fundamental domain, and is
related to the former by the functional equation s 7→ 1− s). Moreover, using the same methods as
in §3.2 it is easy to check that E(p,q)(Φ, s) satisfies the second constraint in (3.27). It is thus natural
to ask if the exact (∇Φ)4 coupling could involve an extra term proportional to E(p,q)(Φ, 3+ p−q

2 )
in addition to the proposed formula (2.27). However, it turns out that the latter contains terms of
order Rp+4 and Rq−6 in the degeneration limit O(p, q)→ O(p−1, q−1)with a non-zero coefficient,
respectively, and the first term Rp+4 is ruled out by the differential equation (3.22).
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