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Abstract

Topologically non-trivial Hamiltonians with periodic boundary conditions are charac-
terized by strictly quantized invariants. Open questions and fundamental challenges
concern their existence, and the possibility of measuring them in systems with open
boundary conditions and limited spatial extension. Here, we consider transport in Hofs-
tadter strips, that is, two-dimensional lattices pierced by a uniform magnetic flux which
extend over few sites in one of the spatial dimensions. As we show, an atomic wave
packet exhibits a transverse displacement under the action of a weak constant force.
After one Bloch oscillation, this displacement approaches the quantized Chern number
of the periodic system in the limit of vanishing tunneling along the transverse direction.
We further demonstrate that this scheme is able to map out the Chern number of ground
and excited bands, and we investigate the robustness of the method in presence of both
disorder and harmonic trapping. Our results prove that topological invariants can be
measured in Hofstadter strips with open boundary conditions and as few as three sites
along one direction.
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1 Introduction

Quantum Hall systems and topological insulators are intriguing materials that are normal insu-
lators in the bulk, but present conducting states at their boundary [1–5]. Of particular interest
is the fact that both the number of edge states and the system’s conductance are quantized [6].
These measurable effects are the striking consequences of the topological properties of the
bulk [7,8] and can be understood in terms of Laughlin’s pumping argument [9]: a quantized
number of charges is transferred from one edge to the other when, after one period of the
pump, the magnetic flux is increased by one quantum. This kind of global behavior, known
as topological order, has led to a novel paradigm for phases and phase transitions [10, 11].
These materials not only have a fundamental interest, but also interesting technological im-
plications. For instance, the quantization of conductance is routinely exploited for metrology
applications. Moreover, the fact that the edge states can obey fractional statistics in presence of
interactions [12]makes them ideal candidates for topological quantum computation [13–15].

In recent years, quantum simulators have emerged as a powerful tool in the study of
topological phases. They give access to clean and highly controllable experimental systems,
where our theoretical understanding of topological physics can be benchmarked. Particu-
larly suitable platforms include ultracold atoms [16,17], photonic devices [18], and mechan-
ical systems [19]. Exploiting them, one dimensional (1D) models [20–28], the Hofstadter
model [29–35], and the Haldane model [36] have recently been realized.

Particularly promising systems are synthetic lattices, i.e., lattices which have a synthetic
dimension, which is obtained by coherently and sequentially coupling particles’ internal de-
grees of freedom. For atoms, this can be done exploiting internal (spin) states, which are
coupled using radiofrequency or Raman transitions [37, 38]. The latter naturally yield com-
plex tunneling amplitudes, whose phases are linearly dependent on the position of the atoms
in real space. This simple construction can be exploited for engineering Hofstadter mod-
els out of 1D lattices loaded with spinful atoms [38]. These Hofstadter strips present sharp
boundaries in the synthetic dimension, making them ideal for the experimental detection

2

https://scipost.org
https://scipost.org/SciPostPhys.3.2.012


SciPost Phys. 3, 012 (2017)

Figure 1: Sketch of the tunnelings of the Hofstadter Hamiltonian, Eq. (1). The site indices in
the x , y directions are m, n respectively. The total flux through each plaquette is Φ = 2πp/q.
Panel (a) depicts the usual 2D Hofstadter extended lattice, while panel (b) shows an Hofstadter
strip, which contains few states along the y direction (in the example shown, Ny = 3).

of edge states [34, 35, 39]. Synthetic lattices have also been experimentally realized ex-
ploiting atomic clock states [40–42], momentum states [25, 43–45], and in integrated pho-
tonic platforms [26, 27]. Theoretical proposals have investigated alternative implementa-
tions, exploiting modes of harmonically trapped atoms [46] or optical resonators [47–50].
Other studies have considered using them to engineer topological quantum walks [26,27,51],
study the properties of quantum systems on triangular and hexagonal lattices [52, 53], re-
alize Weyl semimetals [54], simulate 4D models [37] – in particular 4D quantum Hall phe-
nomena [55–57] – or lattices with complex topologies [58]. Finally, these systems open a
very promising route to the study of many-body phenomena, especially in topological sys-
tems [59–73].

Synthetic lattices are unique in that they present very few sites in one direction. Conse-
quently, one can wonder if the bulk-edge correspondence applies in the Hofstadter strips. It has
been shown that edge states may be identified even in systems as thin as a two- or three-leg lad-
ders, where the bulk is either absent, or composed of a single string of atoms [32,34,35,38,74].

In this work we take a complementary point of view, and analyze instead the bulk proper-
ties of these Hofstadter strips. We show that they can be probed efficiently by performing Bloch
oscillations under the action of a constant force, thereby extending the concept of Laughlin
pumping of filled bands to single particle dynamics. In particular, we prove that the transverse
displacement of a suitably initialized particle in the Hofstadter strip yields an accurate mea-
surement of the topological properties of the whole band structure. Additionally, we show that
the measurement is robust against static disorder and may be reliably performed even inside
a harmonic trap.

2 The model

2.1 Hofstadter model

The Hofstadter model [75], sketched in Fig. 1a, describes non-interacting spinless atoms in
a two-dimensional square lattice in presence of a uniform external artificial magnetic field.
For an effective flux Φ= 2πp/q per plaquette (with p and q coprime integers), in the Landau
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gauge (with the gauge field along y), the Hofstadter Hamiltonian on a Nx × Ny -torus takes
the form

Ĥ0 = −
∑

m,n

Jx ĉ†
m+1,n ĉm,n + Jy eimΦ ĉ†

m,n+1 ĉm,n +H.c., (1)

where ĉ†
m,n creates a particle at site (m, n), with m and n the site indices in the x and y

directions, and Jx , Jy > 0 the tunneling amplitudes. Within this gauge the magnetic unit cell
spans q sites in the x direction, so that the Brillouin zone has an extension of (2π/qd)×(2π/d)
along kx and ky , respectively, where d denotes the lattice spacing. The spectrum of Ĥ0 presents
q bands formed by Bloch eigenstates

�

�u j(k)
�

with energies E j(k) ( j = 1, . . . , q). The Hofstadter
Hamiltonian breaks time-reversal, particle-hole, and chiral symmetries, and therefore belongs
to the unitary class A [76]. In two spatial dimensions, the topology of each energy band j is
characterized by a Chern number C j ∈ Z

C j =
1

2π

∫

BZ
F j(k)d

2k, (2)

defined as the integral of the Berry curvature F j(k) = 2 Im〈∂ky
u j(k)|∂kx

u j(k)〉 over the Bril-
louin zone.

2.2 Hofstadter strips

As theoretically proposed in Ref. [38] and recently realized experimentally with ultracold
atoms [34, 35, 40–42], the Hofstadter model can be simulated with the help of synthetic lat-
tices. By interpreting the atoms’ spin as an extra dimension [37], the experiments realize an
elongated strip, subject to a uniform effective magnetic field. We review here the properties
of such systems. Let us consider a narrow strip with few sites in the y direction. For an easier
analytic understanding, it is useful to perform the gauge transformation ĉm,n −→ eimnΦ ĉm,n,
which transfers the phases along the x-direction, so that the magnetic unit cell extends along
the y direction.

The Hamiltonian of Eq. (1) with periodic boundary conditions along x and open along y
reads

Ĥ0(kx) = −
∑

n

2Jx cos(kx d − nΦ)ĉ†
kx ,n ĉkx ,n + (Jy ĉ†

kx ,n+1 ĉkx ,n +H.c.), (3)

with kx ∈ [−π/d,π/d] the quasi-momentum in the x direction. The dispersion relation of this
Hamiltonian is shown in Fig. 2 forΦ= 2π/3. For each value of kx , the spectrum is composed of
Ny discrete energy values. When the system has periodic boundary conditions along y (dashed
gray lines), these are grouped in q distinct bands, separated by band gaps ∆E j , j ∈ [1, q− 1],
and the Brillouin zone has an extension of (2π/d)× (2π/qd) along kx and ky . The solid lines
instead depict the spectrum of the system with open boundary along y . In Fig. 2a we set
Jy = Jx/5, and we see the appearance of states which bridge the band gap. Because these are
sharply localized at the edges of the system (as indicated by the line coloring), we will refer
to them as edge states. In Fig. 2b we choose instead isotropic tunnelings, Jy = Jx . Under
these conditions the two edge states largely overlap and hybridize, leading to hybridization
gaps ∆ε j <∆E j .

3 Measurement of the Chern number

In ultracold atomic systems, direct measurements of the Hall conductivity are challenging
since conventional transport experiments require specific setups [77]. Several schemes have
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Figure 2: Dispersion of an Hofstadter strip with Ny = 3 and fluxΦ= 2π
3 , for (a) Jy = Jx/5, and

(b) Jy = Jx . Dashed lines denote the dispersion relation with periodic boundary conditions.
Solid lines refer to open boundary conditions along y , and their color coding indicates the
mean eigenstates’ position in that direction. Well localized edge states exist in the gaps of the
periodic system, see inset of panel (a). Edge states overlap, giving rise to hybridization gaps
∆ε j <∆E j , where∆E j denote the band gaps. However, the effect is negligible when Jy � Jx .

however been developed to determine the Chern number or the Berry curvature of topological
Bloch bands, based either on time-of-flight measurements [78–81], or on the dynamics of the
center of mass of the cloud [36, 82–85]. In the strip geometry, earlier works proposed to
measure the Chern number by means of hybrid time-of-flight and in-situ measurements [86],
or exploiting the interplay of magnetic flux and strong interactions [61,62,70]. Another way
to observe the effects of Berry curvature is to consider 1D systems and to use time as an
extra dimension. For example, recent experiments with ultracold atoms realized Thouless
pumping [22,23], spin pumping [87], and geometrical pumping [88].

Here, we propose a simple scheme to measure the Chern number of a Hofstadter strip
which requires three main ingredients: the adiabatic preparation of an atomic wave packet in
the ground state of the lattice, the application of a force to realize the pumping, and the precise
measurement of the center-of-mass in the direction perpendicular to the force. In the follow-
ing, we specifically discuss the importance of the preparation of the initial state and explain
how the force allows one to scan the whole Brillouin zone and to reveal the Chern number.
Finally, we exploit the unique feature of synthetic dimensions, namely that the center-of-mass
dynamics in the transverse direction can be read out from spin populations. We start by show-
ing that, in a periodic 2D system which presents a filled band, the semi-classical dynamics are
determined by the band’s Chern number. We then proceed to show that the Chern number can
be deduced from the mean displacement even when the band is occupied by an atomic wave
packet, for instance a weakly-interacting Bose-Einstein condensate (BEC). We conclude the
Section by discussing in detail the experimental procedure needed to implement the proposed
method in a Hofstadter strip.

3.1 Semiclassical equations of motion and Chern number

Let us consider the Hofstadter Hamiltonian Ĥ0 with periodic boundary conditions, given by
Eq. (1), subject to an external constant force applied in the x direction

Ĥ= Ĥ0 − Fx X̂ = Ĥ0 − Fx

∑

m

m d ĉ†
m,n ĉm,n. (4)
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Translational invariance is broken by the force, which plays the role of an electric field. It can
be restored by performing the gauge transformation Û= exp(−iFx X̂ t/~). This is equivalent
to a time-dependent change of the magnetic flux, which is the situation normally considered
in the solid-state context [9]. For a wave packet initially occupying a single band, and in the
adiabatic approximation (i.e., no Landau-Zener transitions), the evolution of the momentum
of a Bloch state with initial momentum component k0 is given at the semi-classical level by

k(t) = k0 +
Fx t
~

ex , (5)

where e j is the unit vector, with j = x , y . Within linear response theory, the mean velocity of
the Bloch state can be written as [8]

v j(k) =
1
~
∂kE j(k) +

Fx

~
F j(k)ey . (6)

The first term in Eq. (6) is the band velocity, while the second term is the anomalous velocity,
which is proportional to both the force Fx and the Berry curvatureF j . For a filled energy band
j, i.e., when all its Bloch states are uniformly occupied, the contribution of the band velocity
averages to zero, and the velocity of the center of mass becomes proportional to the Chern
number in agreement with the celebrated TKNN formula [7],




v j

�

=
1

ABZ

∫

BZ
v j(k)d

2k=
2πFx

~ABZ
C jey . (7)

Here ABZ = (2π)2/(qd2) is the area of the Brillouin zone. Inspired by the above discussion, we
will now present a method to measure the Chern number from the displacement of an atomic
wave packet |ψ(r, t)〉. At all times, the velocity of its center of mass is given by

〈v(t)〉=
∑

j

∫

BZ
v j(k)ρ j(k, t)d2k, (8)

where ρ j(k, t) = |〈u j(k)|ψ(k, t)〉|2 is the probability density that the particle at time t occupies
a Bloch state of quasi-momentum k in the jth band.

From now on, we consider the special case of a wave packet which is initially strongly lo-
calized along y , while it presents a rather smooth and extended profile along x . In momentum
space, the corresponding wavefunction |ψ(k, t = 0)〉 will be sharply peaked in the x direction
around kx = 0, while it will occupy uniformly the Brillouin zone in the y direction. For t > 0
we may then write ρ j(k, t)≈ ρ j(kx(t)), which is peaked around kx = Fx t/~. We assume that
the wave packet occupies only the jth band, such that the sum over j disappears.

As long as the characteristic energy associated to the force, |Fx |d, is much smaller than the
band gaps, interband transitions are strongly suppressed and the quasi-momentum increases
smoothly according to Eq. (5). The mean displacement after one period is

〈∆r〉 ≡ 〈r(T )− r(0)〉=
∫ T

0

〈v(t)〉dt =

∫

BZ
v j(k)

�

∫ T

0

ρ j (kx(t))dt

�

d2k. (9)

Since the probability density displaces with uniform velocity, the mean Bloch state occupation
over a period of the force is simply the uniform distribution,

1
T

∫ T

0

ρ j(kx(t))dt =
1

ABZ
. (10)
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Figure 3: (a) Initially, the Hamiltonian has no tunneling in the y direction. The state is local-
ized at y = 0. (b) The tunneling in the y direction is adiabatically turned on, opening gaps in
the band structure. (c) Once the adiabatic loading is completed, a force Fx is applied along x ,
and the wave packet performs Bloch oscillations. The black arrow depicts schematically the
motion of the center of mass over the first period of the force. After a complete period, the
wave packet returns to the same position along x , but it has moved along y of a number of
sites proportional to the Chern number of the corresponding energy band.

Substituting in Eq. (9) the general relation Eq. (6), and noting that the contribution from the
band velocity cancels over a complete period, one obtains

〈∆r〉=
T

ABZ

∫

BZ
v j(k)d

2k= sgn(Fx) dC j ey . (11)

Thus, a constant force along x displaces (pumps) particles in the y direction. For the initial
state considered here, the number of sites that the atomic center of mass is pumped after a
time T is exactly the Chern number [7,89].

We have derived the mean displacement after one pumping period, given by Eq. (11),
in the gauge of Eq. (1), the Landau gauge with the gauge field along the y direction.
Naively, we could expect this relation to change if we set the gauge field along x instead.
As discussed in Refs. [90–92], due to the symmetry of the lattice, both the energy spec-
trum and the Berry curvature are completely defined in the so-called reduced magnetic Bril-
louin zone −π/(qd) ≤ kx , ky ≤ π/(qd). Hence, during one complete period of the force,
T ≡ 2π~/(qd|Fx |), the wave packet explores the reduced magnetic Brillouin zone in its en-
tirety, thereby performing a complete Bloch oscillation. This is true regardless of the gauge
choice. Thus, we see that the relation between the mean displacement and the Chern number,
as given by Eq. (11), is independent of the gauge choice, as is always the case for physical
quantities.

3.2 Pumping on the Hofstadter strip

In this section, we will explain how the previous discussion can be applied to the Hofstadter
strip, which has open boundary conditions and few sites in the y direction. The state prepa-
ration is a crucial point in the measurement of the Chern number. The experimental protocol
we suggest is summarized in Fig. 3 for the case of a three-leg Hofstadter strip, subject to an
external magnetic flux of Φ per plaquette.

In order for the theory explained above to be applicable, we must ensure that all the dy-
namics takes place in a single band of the bulk. To this end, a wave packet with the following

7

https://scipost.org
https://scipost.org/SciPostPhys.3.2.012


SciPost Phys. 3, 012 (2017)

properties should be prepared: i) it occupies a small portion of a single band, ii) it is extended
along x , and iii) it is localized along y (i.e., the wave packet is spin-polarized). The state is
prepared in the lowest eigenstate located at y = 0 of the Hamiltonian with no tunneling in
the y direction (see Fig. 3a).

We then turn on the tunneling in the y direction, linearly from 0 to Jy , over a time which is
large compared to the inverse of the energy difference E2,1(kx = 0)≡ E2(kx = 0)−E1(kx = 0),
such that the process is adiabatic, and the transfer to the other bands is minimized (see Fig. 3b).
Since the atomic wave packet always occupies a minimum of the dispersion relation, the center
of mass is not displaced during the loading procedure.

At the end of the loading sequence (i.e., once the tunneling along y has reached the de-
sired value), a constant force is applied along x , and the resulting dynamics is studied. After a
complete period of the force, the quasi-momentum of the wave packet occupies the neighbor-
ing minimum of the dispersion relation. In real space this corresponds to a Bloch oscillation
along x , and a net transverse displacement along y by a number of sites corresponding to the
Chern number of the band (see Fig. 3c). Note that if the physical lattice has open boundary
conditions along x as well, Eq. (5) is only valid far away from these edges. As such, the lattice
should be sufficiently extended along x to accommodate a complete Bloch oscillation.

The different steps of this loading sequence can be readily realized in state-of-the-art ex-
periments. These are very similar to the schemes already used in experiments studying the
edge state dynamics of Hofstadter strips [34,35]. Our protocol requires as additional ingredi-
ent a constant force, which should be identical for all the spin states. It can be implemented
either by employing a moving optical lattice [93, 94], a linear potential realized optically, or
simply the projection of gravity along the lattice direction.

4 Pumping dynamics

4.1 Chern number measurement with Jy � Jx

We first consider the three-leg Hofstadter strip (Ny = 3) subject to a flux Φ= 2π/3 and with a
small tunneling ratio Jy/Jx = 1/5. The energy spectrum is shown in Fig. 2a and has an energy
gap ∆E1 = 0.42 Jx . Due to the small tunneling ratio, the edge states are each well localized
at n= ±1 and cross at kx = 0,±π/d. Initially, the wave packet is in the ground state of a box
potential with hard walls and extension wx = 30 sites in the x direction, and is fully polarized
with y = 0. At t = 0, a force Fx = 0.03∆E1/d is applied to the state in the x direction. In this
case, the hybridization gap is so small relative to all other energy scales in the system that its
effects can be neglected.

Figure 4 displays the results of the simulations: Fig. 4a shows the dynamics of the center of
mass, and Fig. 4b the populations of the energy bands/gaps. These were obtained by projecting
the evolved state on the eigenvectors of the Hamiltonian, Eq. (3). We define the lower (upper)
gap as the separation between bands at kx = π/3d (kx = 2π/3d), and assume that whatever
lies outside the gaps belongs to the corresponding band.

After one period of the force, the state is pumped from 〈y〉 = 0 to 〈y〉 = 0.99 (from A to
B), yielding a measured Chern number C1 = 0.99. This measurement of C1 agrees extremely
well with the value of 1 computed for a system with periodic boundary conditions using the
Fukui-Hatsugai-Suzuki (FHS) method [95].

For systems with Jy � Jx , the Chern number can actually be directly read off from Fig. 2a
[7, 96]. Indeed, Eq. (5) shows how the mean momentum is displaced over time due to the
force. For any given kx , the color coding of Fig. 2a depicts the eigenstates’ mean position
along y . By combining these two pieces of information, it is therefore possible to estimate the
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Figure 4: (a) Mean position of the atomic cloud along the x and y directions and (b) popu-
lations ρ of bands and band gaps as a function of time, for Jy = Jx/5 and Φ = 2π

3 . The red
dots labeled A− F indicate the corresponding positions in the dispersion relation, as displayed
in the inset of (a). The inset of (b) shows a close-up of the populations in the vicinity of the
band crossing. Time is measured in units of the period of the force, T = 2π~/(qd|Fx |).

wave packet’s mean y displacement over a complete period of the force and extract the Chern
number. Related methods to determine the Chern number have been proposed in Refs. [61,
70, 86], where the required quasi-momentum change of 2π/d was obtained exploiting time-
of-flight expansion, a temporal variation of the magnetic flux or a force for a partially filled
band.

Once the state reaches the edge along y , it is pumped along the edge states to the second
band. During this period, the displacement saturates at the edge value 〈y〉 ≈ 1. Thus, this
measurement of the Chern number is robust to small errors in the determination of the period
of the force, or in the preparation of the wave packet. While the edge state is populated, we
observe a rapid displacement of the wave packet’s center of mass in the x direction. Assum-
ing that there is vanishing overlap between the edge states, we can calculate the mean edge
velocity from Eq. (3)

〈vx〉=
1
~
∂ E(kx)
∂ kx

�

�

�

�

kx=
π
d ,n=1

≈
p

3Jx d
~

, (12)

which is within 4% of the slope of 〈x〉 between t = 3T/2 and t = 2T (measured from Fig. 4a).
At t = 1.75T , the mean quasi-momentum of the state is centered at point C in Fig. 2a; it is
subsequently pumped to point D, which is reached at t = 2.75T . We can deduce the Chern
number of the second band by measuring the center of mass positions at these times; this
provides the estimate C2 ≈ −1.94, which is to be compared with the value of −2 given by
the FHS algorithm. Subsequently, almost all the density is promoted to the third band along
the n = −1 edge state. Between times t = 3.5T and t = 4.5T , the atomic density is pumped

Band Formula Value
j = 1 〈y〉t=T − 〈y〉t=0 C1 ≈ 0.99
j = 2 〈y〉t=2.75T − 〈y〉t=1.75T C2 ≈ −1.94
j = 3 〈y〉t=4.5T − 〈y〉t=3.5T C3 ≈ 0.97

Table 1: Chern numbers extracted from the data in Fig. 4.
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Figure 5: Center of mass position in the x (top) and y (bottom) directions for Jy = Jx and
Φ = 2π

3 . During the first period of the force (from A to B), the wave packet displaces by
approximately one lattice site, in correspondence with the expected value of C1 = 1. Due to
the large hybridization of the edge states, the dynamics is always constrained to the ground
band, and it is therefore periodic with period 3T .

from point E to F in Fig. 4a. As previously, we estimate the Chern number of the third band,
yielding: C3 ≈ 0.97, in good agreement with the value 1 given by the FHS algorithm. These
measurements are summarized in Table 1. A total of qNy = 9 periods are necessary for the
system to return to its initial state.

4.2 Chern number measurement with Jy = Jx

We now consider a three-leg Hofstadter strip (Ny = 3 sites in the synthetic direction) with a
tunneling ratio of Jy/Jx = 1. The dispersion relation for this system is represented in Fig. 2b;
in the presence of periodic boundary conditions, the lowest energy gap equals ∆E1 = 2.45Jx .
When the system has open boundary condition and isotropic tunneling amplitudes, the edge
states are not strongly localized at the edge of the system and are able to hybridize, yielding
a strong modification of the band structure (compare colored lines with gray ones in Fig. 2b).
Initially, the state is confined to a region wx = 30 sites wide, and is fully polarized (i.e., it
occupies only the y = 0 sites). Then, the tunneling along y is turned on linearly, and a force
Fx = 0.01∆E1/d is applied to the state in the x direction. Note that, due to the increased first
band gap, this force is much larger than the one considered in Sec. 4.1.

The dynamics of the center of mass is presented in Fig. 5. In the first period of the motion
(i.e., from A to B), the center of mass is pumped to the n = 1 edge, resulting in the mean
displacement 〈y(T )〉 − 〈y(0)〉 = 0.88. Thus, the measurement, although still quite accurate,
underestimates the Chern number. In the next subsection, we will show that this deviation is
mainly caused by the delocalization of the edge states in spin space.

4.3 Effect of the tunneling ratio on the Chern number measurement

As we have seen in the previous subsection, the accuracy of the method decreases with increas-
ing Jy/Jx . We now discuss the effects which affect our measurement of the Chern number as
we move away from the Jy � Jx limit. We identify the hybridization of spin states, i.e., the
fact that the Hamiltonian’s eigenstates become delocalized in spin space, as the main cause of
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deviations of the measurement from the ideal result, at least when the assumption of adiabatic
pumping is valid. In the following, we first calculate the mean atomic displacement over one
period using perturbation theory, which we then compare to numerical results.

4.3.1 Bloch wavefunctions to second order in perturbation theory

By treating λ ≡ Jy/Jx as a small parameter, we can use perturbation theory to find the ap-
proximate eigenstates of Ĥ0(kx), given by Eq. (3). For simplicity, we restrict ourselves to the
case Ny = 3 and Φ = 2π/3. When Jy = 0, the eigenstates of Ĥ0(kx) are simply given by |n〉
for all kx , i.e, the spin polarized state, with n ∈ {−1,0, 1}. For arbitrary Jy , let |ϕn(kx)〉 be the
eigenstate of Ĥ0(kx) which converges to |n〉 in the limit Jy −→ 0.

We initiate the system in the state with well defined momentum |Ψ0〉= |ϕ0(kx = 0)〉, which
is an eigenstate of Ĥ0 whose eigenvalue corresponds to point A in Fig. 4a. After a period of
the force, the atomic wave packet is adiabatically pumped to |ΨT 〉=

�

�ϕ1(kx =
2π
3d )
�

(point B).
The total displacement in the y direction over one period of the force is therefore simply given
by

〈∆y〉= 〈ΨT | n̂ |ΨT 〉 − 〈Ψ0| n̂ |Ψ0〉 , (13)

where n̂ is the position operator in the spin direction. Note that, due to the symmetry of the
Hofstadter strip around n= 0, the mean spin of |ϕ0〉 is always zero, such that 〈Ψ0| n̂ |Ψ0〉= 0.

In this setting, it is therefore sufficient to find the approximate expression of the eigenstate
|ΨT 〉 to find the mean transverse displacement over a period. Because this state does not occur
at a degeneracy point, we can do this using non-degenerate perturbation theory. By defining

E2,1 =
E2,1

Jx
= 2

�

cos(kx d −
2π
3
)− cos(kx d)

�

�

�

�

�

kx=
2π
3d

= 2
�

1− cos
2π
3

�

= 3, (14)

we have

|ΨT 〉=

�

1−
λ2

2

�

1

E2
2,1

+ 2Re 〈v|n= 1〉

��

�

|n= 1〉+
λ

E2,1
|n= 0〉+λ2 |v〉

�

+O
�

λ3
�

, (15)

where the first factor comes from the normalization and |v〉 is the (unnormalized) second
order correction to |n= 1〉. Substituting into Eq. (13) and expanding to second order in λ, we
find

〈∆y〉= 〈ΨT | n̂ |ΨT 〉

=

�

1−λ2

�

1

E2
2,1

+ 2Re 〈v|n= 1〉

��

�

1+ 2λ2Re 〈v|n= 1〉
�

+O
�

λ3
�

= 1−λ2 1

E2
2,1

+O
�

λ3
�

�

�

�

kx=
2π
3d

= 1−
� Jy

3Jx

�2

+O
� Jy

Jx

�3

. (16)

Our treatment can be readily generalized to the case of an arbitrary Ny -leg Hofstadter
strip with flux Φ. Indeed, we observe that 〈ϕn| n̂ |ϕn〉 = n(1+ O

�

λ4
�

) for a state in the bulk,

|n| < Ny−1
2 , whereas 〈ϕn| n̂ |ϕn〉 = n(1−

�

λ
E2,1

�2
+ O

�

λ4
�

), with E2,1 = 2(1− cosΦ), for a state

in the edge, |n|= Ny−1
2 .

Thus, at the crossings of the dispersion relation, the band gaps open at first order in λ, such
that∆E j ∝ Jy . The hybridization gaps, however, only open at order λ2. We conclude that the
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Figure 6: Measured Chern number as a function of Jy/Jx , for Φ = 2π
3 and Ny = 3. We

compare the results of mean position measurements, calculated by using Eq. (11), to the ones
obtained by diagonalizing Ĥ0(kx), Eq. (3), by using perturbation theory Eq. (16), and by the
FHS algorithm.

hybridization gaps are subleading relative to the gap. This allows us not only to identify edge
states –states living in the gap and polarized towards the edge of the synthetic dimension [38]–
but also to define bulk topological properties which can be revealed by adiabatic pumping.
Assuming that none of the gaps close up when λ is varied [7], the result obtained is the same
as for a large system pierced by the same magnetic flux Φ.

4.3.2 Comparison to the measured Chern number

We now compute the Chern numbers from the mean transverse displacement for a broad range
of Jy/Jx values, and plot these as blue dots for Ny = 3 in Fig. 6. For these simulations, we
used a Hofstadter strip subject to a magnetic flux Φ = 2π/3. At the beginning of the loading
sequence, the atoms are spin polarized with y = 0, and are spatially constrained to a region
of wx = 30 sites, then we load the lattice by linearly ramping up Jy . At t = 0, we apply a force
with small amplitude Fx = 0.02∆E1/d, such that the single band approximation is applicable.

In Sec. 4.3.1 we calculated analytically the mean spin value of the lowest energy eigenstate
of Ĥ0(kx =

2π
3d ) using second order perturbation theory. To confirm its validity we diagonalize

the Hamiltonian Eq. (3), and plot in Fig. 6 the mean spin value of its lowest energy eigenstate
at kx =

2π
3d together with the result from perturbation theory. For sufficiently small Jy/Jx , both

approaches yield the same result, and are also in excellent agreement with our Chern num-
ber measurement, as displayed in Fig. 6. We conclude that the coupling between different
spin states is responsible for the reduced y displacement which we observe in Fig. 5. Impor-
tantly, we see that our data smoothly converge to the expected Chern number C1 = 1 when
Jy/Jx → 0.

It is important to understand that the corrections to the wave packet’s displacement which
we are observing are in fact an edge effect. Indeed, our measurement of the Chern number
relies on a correlation between the atomic quasi-momentum kx and its mean spin value. This
correlation is not destroyed when the bulk eigenstates of Ĥ0 are delocalized in the synthetic
dimension. When the eigenstates have amplitude at the edges of the system, however, de-
localization in the spin direction is highly anisotropic. The consequence, as we observed in
Sec. 4.3.1, is that their mean position becomes dependent on the tunneling amplitude in the
spin direction.
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Figure 7: Spectrum of a Hofstadter strip with Φ = 4π/5. The coloring of the lines indicate
the mean eigenstates’ position along y for a system with Ny = 5 in panel (a), and with Ny = 4
in panel (b). The dashed gray lines indicate in both cases the dispersion relation of a strip
with Ny = 5 and periodic boundary conditions. The inset in panel (a) highlights a band gap
appearing at kx =

π
5d , and a pair of well localized edge states crossing at kx =

3π
5d . In the

dynamics described in the text, the momentum of the wave packet evolves from point A to B.

4.4 Measurement of higher Chern numbers

Strikingly, our method can be extended to study Hofstadter strips which present a Chern num-
ber |C1| > 1. In these systems, the Chern numbers calculated using the FHS method can
become dependent on the system’s size. Despite this, we show that we can still relate our
measurement to the Chern number of the infinite system. To this aim, we will choose a flux
of Φ = 4π/5, which, in the limit of an extended system, yields C1 = −2. For definiteness,
in the remainder of this subsection we will consider a system with Jy = Jx/2, which yields a
lowest energy gap ∆E1 = 0.11Jx . For the adiabatic approximation to be valid, we apply an
extremely weak force, with amplitude Fx = 0.01∆E1/d. While this value is comparable to
the first hybridization gap, this will not cause any measurement errors because the scheme we
suggest in this section does not populate the edge states.

4.4.1 Five-leg strip

Let us start by considering a strip with Ny = 5, whose dispersion relation is presented in Fig. 7a.
The periodic system, plotted in gray, presents five bands. Two pairs of edge states are clearly
visible between the first and second bands, which cross at kx = ±

3π
5d (see inset). These can be

found either by inspecting the dispersion relation or through analytical calculations [97].
In order to study the pumping dynamics, we initiate our system with a state which occupies

wx = 50 sites in the spatial direction, and occupies only the n = 0 site in the spin dimension.
This initial state corresponds to a superposition of eigenstates narrowly centered around the
point A in Fig. 7a. The atomic wave packet is subsequently pumped to the n = −2 site of the
bottom band during the first period of evolution, which is annotated by point B. Importantly,
the dynamics takes place without the wave packet leaving the periodic system’s bottom band,
thereby allowing us to measure this band’s Chern number. We do this as described in Sec. 3.1,
by measuring the displacement of the atomic center of mass in the y direction, which yields
C1 ≈ −1.98, which is in excellent agreement with the expected value.

Let us note here that the detection scheme proposed above would not work if the wave
packet was initially prepared at kx = −4π/5d, since the following dynamics would displace
the momentum density along the dispersion relation through the tiny gap∝ (Jy/Jx)2 located
at kx = −3π/5d, and the wave packet would be transferred to the next band. The scheme
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Figure 8: We estimate the lowest band Chern number for Φ= 4π/5 and Ny ∈ [3,9], measured
using atomic pumping (blue dots) and with the FHS algorithm (orange squares). For Ny > 5,
both results agree, but differ for for Ny < 5. This is due to the breakdown of the FHS method.

proposed above would instead work if the wave packet was initialized at kx = −2π/5d, since
the first gap crossed during the dynamics is much larger,∝ (Jy/Jx), so that the wave packet
remains in the ground band during a complete period T .

4.4.2 Generalization to q > Ny : four-leg strips

The Hofstadter strip with Ny = 4 (so that n takes one of the four discrete values
{-3/2, -1/2, 1/2, 3/2}) and flux Φ = 4π/5 is particularly interesting because, at every given
quasi-momentum kx , the Hamiltonian Ĥ0(kx), Eq. (3), has a number of eigenstates which is
smaller than the number of bands of the corresponding extended model (i.e., Ny < q). The
dispersion relation of this system is plotted in Fig. 7b.

Interestingly, it is still possible to measure the lowest band’s Chern number, provided we
ensure that all of the dynamics takes place in this band. As previously, we load the lattice in
the bottom band with an atomic wave packet which occupies wx = 50 sites in the x direction,
and is completely localized at n = 1/2. It is therefore in a superposition of states narrowly
centered around the point A in Fig. 7b.

By applying the constant force to the system, we pump the atomic density adiabatically
from the n = 1/2 site (point A) to the n = −3/2 site (point B). As can be seen by inspecting
the dispersion relation, all the eigenstates explored during this pumping sequence can be as-
sociated to the bottom band of the periodic system. This means that, in this setting, we are
again able to measure the first band’s Chern number from the atomic displacement, yielding
the value of C1 ≈ −1.96.

4.4.3 Comparison to the FHS algorithm results

Using the same initial state as in the previous subsections, we measure the Chern number in
this system for Ny ∈ [4,9]. These are plotted as blue dots in the Fig. 8. As Ny is increased, we
observe that the measured value tends asymptotically to C1 = −2.

Alongside these estimates, we plot with orange squares the Chern number calculated using
the FHS algorithm. When Ny < 5, the latter deviates from the Chern number of the infinite
systems. This is simply because, for very small systems, the Berry flux (the integral of the Berry
curvature) through some plaquettes can exceed±π, such that the FHS algorithm cannot record
them accurately [95]. It is interesting to observe, however, that the Chern number measured
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Figure 9: Chern number of the ground band measured for Φ= 2π/3 and Ny = 3, in presence
of static onsite disorder in both the spatial and synthetic dimensions, with amplitude δmax.
Each data point is an average of 20 realizations.

through the wave packet’s transverse displacement still yields a very good estimate of the
extended lattice value even when Ny = 4. We conclude that the Chern number calculated
using the FHS algorithm is not related to the system’s transverse conductance in this limit.

5 Robustness of the method

In this Section, we study the robustness of our measurement against two types of experimen-
tally relevant perturbations: static spatial disorder and harmonic trapping.

5.1 Static disorder

A fundamental property of topologically non-trivial systems is their robustness to local per-
turbations. The study of the interplay of disorder and topological phases is an extremely rich
area of research [98,99].

To understand to which extent disorder may affect our scheme, let us consider a Hofstadter
strip in presence of random onsite energy shifts

Ĥdis = Ĥ+ V̂dis = Ĥ+
∑

m,n

δm,n ĉ†
m,n ĉm,n, (17)

where δm,n is uniformly distributed in the interval [0,δmax] and corresponds to uncorrelated
disorder in both the spatial and synthetic dimensions. We take Ny = 3, a magnetic flux of
Φ = 2π/3, and Jy/Jx = 1/5. The system is then adiabatically loaded with spin polarized
atoms in the n = 0 state, constrained to wx = 60 sites in the x direction. The band gap has
amplitude ∆E1 = 1.65Jx , and we subject the atoms to the constant force Fx = 0.03∆E1/d.

In Fig. 9, we plot the measured Chern number of the lowest band, averaged over 20 real-
izations, as a function of δmax. For increasing amplitudes of the random potential, the mea-
surement of the Chern number deviates steadily from the expected result, and we identify the
broadening of the wave packet as the main source of error. Remarkably, even for disorder
amplitudes as high as δmax = ∆E1/4, we still measure a Chern number which is within 94%
of its actual value. We conclude that, as is generally the case in topological systems, disor-
der does not significantly affect topological measurements in Hofstadter strips up to disorder
amplitudes comparable to the band gap.

15

https://scipost.org
https://scipost.org/SciPostPhys.3.2.012


SciPost Phys. 3, 012 (2017)

Figure 10: Pumping dynamics in a trap. We consider the case of a flux Φ = 2π
3 and Ny = 3.

(a) Spin populations ρn (top panel) and mean displacement along y (bottom panel), plotted
as a function of time, in a trap of strength V = 5× 10−3Jx . (b) Measured ground band Chern
number as a function of the trap depth V .

5.2 Harmonic trap

In ultracold atom experiments the gas is contained in a harmonic trap. The Hamiltonian for
atoms of mass M then reads

Ĥho = Ĥ+ V̂ = Ĥ+ V
∑

m,n

(m− Nx/2)
2 ĉ†

m,n ĉm,n, (18)

where V = Mω2d2/2 denotes the trap characteristic energy. To ensure that this potential
does not disturb our measurement, we must ensure that the corrections to the dynamics it
induces are negligible on the time scale of a Bloch oscillation, T . Specifically, the force might
become spatially dependent, blurring some observables [100], or even inducing dipole oscilla-
tions competing with the Bloch oscillations [101] on which our protocol relies. To limit these
detrimental effects, we impose the experimental condition ω/2π� 1/T , therefore placing a
lower bound on the force Fx .

For concreteness, let us consider 41K atoms in an optical lattice with lattice spacing d = 532
nm. Typical spatial tunneling amplitudes and trap frequencies correspond to Jx/h ∼ 100 Hz
and ω/2π∼ 30 Hz, leading to characteristic trapping energies on the order of 10−3Jx .

Let us consider V = 5×10−3Jx and estimate the Chern number for a wave packet in a lattice
with Ny = 3, subject to an external magnetic flux of Φ= 2π/3, Jy/Jx = 0.7 (corresponding to
a band gap ∆E1 = 1.65Jx), and a force Fx = 0.1∆E1/d, giving T−1 ≈ 50 Hz�ω/2π.

As in previous sections, we adiabatically load the lattice with a wavefunction spin polarized
with n = 0. Due to the presence of the harmonic trap, however, we do not need to spatially
constrain the initial state along x to obtain a well localized state. In Fig. 10a, we plot typical
spin populations ρn, n ∈ {−1,0, 1} and the mean displacement along y as a function of time.
From the mean y displacement over a period we obtain an estimate of the Chern number
C1 = 0.87. Once again this is in very good agreement with the expected value of 1.

As shown in Fig. 10b, the extracted Chern number only weakly depends on the character-
istic trap energy V , proving that the proposed measurement of the Chern number is robust to a
wide range of trap amplitudes. This study shows that our protocol is experimentally realistic,
and can provide an accurate measurement of the Chern number with present day technology.
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6 Conclusions and Outlook

In this work, we showed that, somewhat counterintuitively, quantized topological features are
present even when an extended 2D lattice is drastically reduced in size in one direction. In
particular, we proposed a scheme to explore the topological properties of Hofstadter strips.
The method relies on three main ingredients: the adiabatic loading of an atomic wave packet
well localized in the short direction in the ground state of the lattice, the application of a
force in the long direction, and the measurement of the center-of-mass position after a Bloch
oscillation.

Despite the limited extension of the strip in one direction, we showed that the transverse
displacement of the center of mass of a wave packet prepared in any given band converges, in
the limit of small transverse tunneling, to the corresponding quantized Chern number of the
extended system. We discussed how the hybridization of edge states affects the measurement
of the Chern number and showed that the latter can be quantitatively characterized with sec-
ond order perturbation theory. We showed that our detection scheme can also probe Chern
numbers of the ground band which are larger than one. Remarkably, our protocol remains
valid even for strips that are so narrow along one direction that the FHS algorithm breaks
down. In order to test the experimental feasibility of the protocol, we verified that an accurate
measurement of the Chern number is also possible in presence of disorder, and for realistic
harmonic traps.

Hofstadter strips are presently of great experimental relevance, given that ultracold atoms
in synthetic lattices naturally realize such geometries. In this case, the transverse displacement
corresponds to the mean spin polarization, which can be directly read out in standard time-
of-flight measurements. Nonetheless, the physics discussed here may be probed in other, very
different setups, such as in photonic or optomechanical platforms. This work can be readily
generalized to measure Chern numbers in other strips geometries [52, 68] and Z2 invariants
of T -symmetric strip insulators [3, 86]. Alternatively, the effect of strong interactions on our
protocol could also be analyzed [61,70], building on recent studies of interacting phases and
Laughlin-like states in real and synthetic ultracold atom ladders [102–105]. Our study sug-
gests a relation between large systems and their strip geometry counterparts. It would be
interesting to find out if this relation extends to other classes of topological insulators in two
and higher dimensions. Our method could, for instance, be extended to measure the second
Chern number in synthetic quantum Hall systems with a short extra dimension. This invariant
has been measured recently in optical lattices by exploiting a 2D extension of the Thouless
pump [106].
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M. Lewenstein, Synthetic gauge fields in synthetic dimensions, Phys. Rev. Lett. 112,
043001 (2014), doi:10.1103/PhysRevLett.112.043001.

[39] A. Celi and L. Tarruell, Probing the edge with cold atoms, Science 349, 1450 (2015),
doi:10.1126/science.aac7605.

[40] M. L. Wall, A. P. Koller, S. Li, X. Zhang, N. R. Cooper, J. Ye and A. M. Rey, Synthetic
spin-orbit coupling in an optical lattice clock, Phys. Rev. Lett. 116, 035301 (2016),
doi:10.1103/PhysRevLett.116.035301.

[41] L. F. Livi, G. Cappellini, M. Diem, L. Franchi, C. Clivati, M. Frittelli, F. Levi,
D. Calonico, J. Catani, M. Inguscio and L. Fallani, Synthetic dimensions and spin-
orbit coupling with an optical clock transition, Phys. Rev. Lett. 117, 220401 (2016),
doi:10.1103/PhysRevLett.117.220401.

[42] S. Kolkowitz, S. L. Bromley, T. Bothwell, M. L. Wall, G. E. Marti, A. P. Koller, X. Zhang,
A. M. Rey and J. Ye, Spin–orbit-coupled fermions in an optical lattice clock, Nature 542,
66 (2017), doi:10.1038/nature20811.

[43] B. Gadway, Atom-optics approach to studying transport phenomena, Phys. Rev. A 92,
043606 (2015), doi:10.1103/PhysRevA.92.043606.

[44] E. J. Meier, F. A. An and B. Gadway, Atom-optics simulator of lattice transport phenomena,
Phys. Rev. A 93, 051602 (2016), doi:10.1103/PhysRevA.93.051602.

[45] F. A. An, E. J. Meier and B. Gadway, Direct observation of chiral currents
and magnetic reflection in atomic flux lattices, Sci. Adv. 3, e1602685 (2017),
doi:10.1126/sciadv.1602685.

20

https://scipost.org
https://scipost.org/SciPostPhys.3.2.012
http://dx.doi.org/10.1038/nphoton.2013.274
http://dx.doi.org/10.1038/nphys2998
http://dx.doi.org/10.1038/nphys3421
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1103/PhysRevLett.108.133001
http://dx.doi.org/10.1103/PhysRevLett.112.043001
http://dx.doi.org/10.1126/science.aac7605
http://dx.doi.org/10.1103/PhysRevLett.116.035301
http://dx.doi.org/10.1103/PhysRevLett.117.220401
http://dx.doi.org/10.1038/nature20811
http://dx.doi.org/10.1103/PhysRevA.92.043606
http://dx.doi.org/10.1103/PhysRevA.93.051602
http://dx.doi.org/10.1126/sciadv.1602685


SciPost Phys. 3, 012 (2017)

[46] H. M. Price, T. Ozawa and N. Goldman, Synthetic dimensions for cold atoms from shaking
a harmonic trap, Phys. Rev. A 95, 023607 (2017), doi:10.1103/PhysRevA.95.023607.

[47] T. Ozawa, H. M. Price, N. Goldman, O. Zilberberg and I. Carusotto, Synthetic dimensions
in integrated photonics: From optical isolation to four-dimensional quantum Hall physics,
Phys. Rev. A 93, 043827 (2016), doi:10.1103/PhysRevA.93.043827.

[48] Q. Lin, M. Xiao, L. Yuan and S. Fan, Photonic Weyl point in a two-dimensional res-
onator lattice with a synthetic frequency dimension, Nature Commun. 7, 13731 (2016),
doi:10.1038/ncomms13731.

[49] T. Ozawa and I. Carusotto, Synthetic dimensions with magnetic fields and lo-
cal interactions in photonic lattices, Phys. Rev. Lett. 118, 013601 (2017),
doi:10.1103/PhysRevLett.118.013601.

[50] L. Yuan, Y. Shi and S. Fan, Photonic gauge potential in a system with a synthetic frequency
dimension, Opt. Lett. 41, 741 (2016), doi:10.1364/OL.41.000741.

[51] S. Mugel, A. Celi, P. Massignan, J. K. Asbóth, M. Lewenstein and C. Lobo, Topologi-
cal bound states of a quantum walk with cold atoms, Phys. Rev. A 94, 023631 (2016),
doi:10.1103/physreva.94.023631.

[52] D. Suszalski and J. Zakrzewski, Different lattice geometries with a synthetic dimension,
Phys. Rev. A 94, 033602 (2016), doi:10.1103/PhysRevA.94.033602.

[53] A. Celi, Different models of gravitating Dirac fermions in optical lattices, Euro. Phys. J.
Spec. Top. 226, 2729 (2017), doi:10.1140/epjst/e2016-60390-y.

[54] D.-W. Zhang, S.-L. Zhu and Z. D. Wang, Simulating and exploring Weyl semimetal physics
with cold atoms in a two-dimensional optical lattice, Phys. Rev. A 92, 013632 (2015),
doi:10.1103/PhysRevA.92.013632.

[55] S.-C. Zhang and J. Hu, A four-dimensional generalization of the quantum Hall effect,
Science 294, 823 (2001), doi:10.1126/science.294.5543.823.

[56] J. M. Edge, J. Tworzydło and C. W. J. Beenakker, Metallic phase of the quan-
tum Hall effect in four-dimensional space, Phys. Rev. Lett. 109, 135701 (2012),
doi:10.1103/PhysRevLett.109.135701.

[57] H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto and N. Goldman, Four-dimensional
quantum Hall effect with ultracold atoms, Phys. Rev. Lett. 115, 195303 (2015),
doi:10.1103/PhysRevLett.115.195303.

[58] O. Boada, A. Celi, J. Rodríguez-Laguna, J. I. Latorre and M. Lewenstein, Quantum sim-
ulation of non-trivial topology, New J. Phys. 17, 045007 (2015), doi:10.1088/1367-
2630/17/4/045007.

[59] T. Graß, A. Celi and M. Lewenstein, Quantum magnetism of ultracold atoms
with a dynamical pseudospin degree of freedom, Phys. Rev. A 90, 043628 (2014),
doi:10.1103/PhysRevA.90.043628.

[60] T. Graß, C. Muschik, A. Celi, R. W. Chhajlany and M. Lewenstein, Synthetic magnetic
fluxes and topological order in one-dimensional spin systems, Phys. Rev. A 91, 063612
(2015), doi:10.1103/PhysRevA.91.063612.

21

https://scipost.org
https://scipost.org/SciPostPhys.3.2.012
http://dx.doi.org/10.1103/PhysRevA.95.023607
http://dx.doi.org/10.1103/PhysRevA.93.043827
http://dx.doi.org/10.1038/ncomms13731
http://dx.doi.org/10.1103/PhysRevLett.118.013601
http://dx.doi.org/10.1364/OL.41.000741
http://dx.doi.org/10.1103/physreva.94.023631
http://dx.doi.org/10.1103/PhysRevA.94.033602
http://dx.doi.org/10.1140/epjst/e2016-60390-y
http://dx.doi.org/10.1103/PhysRevA.92.013632
http://dx.doi.org/10.1126/science.294.5543.823
http://dx.doi.org/10.1103/PhysRevLett.109.135701
http://dx.doi.org/10.1103/PhysRevLett.115.195303
http://dx.doi.org/10.1088/1367-2630/17/4/045007
http://dx.doi.org/10.1088/1367-2630/17/4/045007
http://dx.doi.org/10.1103/PhysRevA.90.043628
http://dx.doi.org/10.1103/PhysRevA.91.063612


SciPost Phys. 3, 012 (2017)

[61] T.-S. Zeng, C. Wang and H. Zhai, Charge pumping of interacting fermion
atoms in the synthetic dimension, Phys. Rev. Lett. 115, 095302 (2015),
doi:10.1103/PhysRevLett.115.095302.

[62] S. Barbarino, L. Taddia, D. Rossini, L. Mazza and R. Fazio, Magnetic crystals and
helical liquids in alkaline-earth fermionic gases, Nature Comm. 6, 8134 (2015),
doi:10.1038/ncomms9134.

[63] T. Bilitewski and N. R. Cooper, Synthetic dimensions in the strong-coupling
limit: Supersolids and pair superfluids, Phys. Rev. A 94, 023630 (2016),
doi:10.1103/PhysRevA.94.023630.

[64] S. K. Ghosh, U. K. Yadav and V. B. Shenoy, Baryon squishing in synthetic di-
mensions by effective SU(m) gauge fields, Phys. Rev. A 92, 051602 (2015),
doi:10.1103/PhysRevA.92.051602.

[65] S. Barbarino, L. Taddia, D. Rossini, L. Mazza and R. Fazio, Synthetic gauge fields in syn-
thetic dimensions: interactions and chiral edge modes, New J. Phys. 18, 035010 (2016),
doi:10.1088/1367-2630/18/3/035010.

[66] S. K. Ghosh, S. Greschner, U. K. Yadav, T. Mishra, M. Rizzi and V. B. Shenoy, Unconven-
tional phases of attractive Fermi gases in synthetic Hall ribbons, Phys. Rev. A 95, 063612
(2017), doi:10.1103/PhysRevA.95.063612.

[67] S. K. Ghosh and U. K. Yadav, Synthetic-gauge-field-induced resonances and Fulde-Ferrell-
Larkin-Ovchinnikov states in a one-dimensional optical lattice, Phys. Rev. A 94, 043634
(2016), doi:10.1103/PhysRevA.94.043634.
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