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Abstract

This review presents an entry-level introduction to topological quantum computation –
quantum computing with anyons. We introduce anyons at the system-independent level
of anyon models and discuss the key concepts of protected fusion spaces and statisti-
cal quantum evolutions for encoding and processing quantum information. Both the
encoding and the processing are inherently resilient against errors due to their topolog-
ical nature, thus promising to overcome one of the main obstacles for the realisation
of quantum computers. We outline the general steps of topological quantum computa-
tion, as well as discuss various challenges faced by it. We also review the literature on
condensed matter systems where anyons can emerge. Finally, the appearance of anyons
and employing them for quantum computation is demonstrated in the context of a sim-
ple microscopic model – the topological superconducting nanowire – that describes the
low-energy physics of several experimentally relevant settings. This model supports lo-
calised Majorana zero modes that are the simplest and the experimentally most tractable
types of anyons that are needed to perform topological quantum computation.
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1 Introduction

Topological quantum computation is an approach to storing and manipulating quantum infor-
mation that employs exotic quasiparticles, called anyons. Anyons are interesting on their own
right in fundamental physics, as they generalise the statistics of the commonly known bosons
and fermions. Due to this exotic statistical behaviour, they exhibit non-trivial quantum evo-
lutions that are described by topology, i.e. they are abstracted from local geometrical details.
When anyons are used to encode and process quantum information, this topological behaviour
provides a much desired resilience against control errors and perturbations. To be more pre-
cise, the presence of certain kinds of anyons gives rise to a degenerate decoherence-free sub-
space, in which the state can only be evolved by moving the anyons adiabatically around each
other. While from the first sight anyons appear to be an over-complicated method for per-
forming quantum computation, they are profoundly linked to quantum error correction [1],
the algorithmic means we have in dealing with errors during quantum computation. In a sense,
anyonic quantum computers implement quantum error-correction at the hardware level, thus
becoming resilient to control errors and erroneous perturbations. This has augmented topo-
logical quantum computation from a niche field of research to a methodology that permeates
much of the research efforts in realising fault-tolerant quantum computation.

In this review we present a non-technical introduction to anyons and to the framework
for performing fault-tolerant quantum computation with them. The emphasis will be on the
key properties that define anyons and how they enable protected encoding and processing of
quantum information. As anyons can emerge in numerous microscopically distinct systems,
we discuss these concepts primarily at a platform-independent level of anyon models and
provide an extensive list of references for the interested reader to go deeper. Our aim is to
provide a clear and concise introduction to the underlying principles of topological quantum
computation without expertise in condensed matter theory. When condensed matter concepts
are needed, we introduce them in a heuristic level to give the reader a general understanding
without referring to the mathematical details. In doing so, we aim this review to be accessible
to anyone with a solid undergraduate understanding of quantum mechanics and the basics of
quantum information.

While several reviews have already been written on the topic, we aim this review to serve as
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an accessible starting point. Topological quantum computation with fractional quantum Hall
States is reviewed extensively by Nayak et al. [2], while Das Sarma et al. focus on quantum
computation with Majorana zero modes [3]. The book by Pachos can be viewed as an extended
version of the present review that goes deeper into the condensed matter topics [4], while
the book by Wang focuses on the more mathematical aspects and their connections to knot
theory [5]. The reader may also find useful the lecture notes by Roy and DiVincenzo [6]
and the classic lecture notes by Preskill [7]. This review concerns only topological quantum
computation where both the encoding and processing of quantum information is topologically
protected. Anyons have applications also to quantum memories and quantum error correction,
i.e. when only the encoding is topologically protected. For reviews on topological quantum
memories, we refer the interested reader to the reviews by Terhal [8] and Brown et al. [9].

This review is structured as follows. We begin in Section 1.1 by describing at a heuristic
level why topology can increase fault-tolerance and why the dimension of space is paramount
when looking for systems that support anyons. In Section 2 we discuss the different types
of topological order and the conditions under which they can support anyons. An extensive
list of known systems of anyons is provided and we also outline how the defining properties
of anyons manifest themselves in microscopic systems. In Section 3 we turn to the system
independent discussion of anyon models and describe how a minimal set of data captures all
the dynamics associated with a given anyon model. As examples we consider both Fibonacci
anyons (what we would like to have for topological quantum computation) and Ising anyons
(what we have so far). Section 4 is the core of the review where we explicitly discuss how Ising
anyons can be used to encode and process quantum information in a topologically protected
manner, while in Section 5 we illustrate how such quantum computation could be carried out
in a specific microscopic system. As an example we employ superconducting nanowire arrays
that support Majorana zero modes and that are currently the experimentally most promising
direction. We conclude with Section 6.

1.1 Topology, stability and anyons

In mathematics, topology is the study of the global properties of manifolds that are insensitive
to local smooth deformations. The overused, but still illustrative example is the topological
equivalence between a donut and a coffee cup. Regardless of the local details that give them
rather different everyday practicalities, both are mathematically described by genus one man-
ifolds meaning that there is a single hole in both. Small smooth deformations, such as taking a
bite on the side of the donut or chipping away a piece of the cup will change the object locally,
but the topology remains unchanged. Only global violent deformations, such as cutting the
donut in half or breaking the cup handle, will change the topology by removing the hole.

However, in real world small deformations matter. Quite spectacular salesmanship is re-
quired to sell a donut from which someone has already taken a bite. Something similar occurs
also in quantum mechanics. To store and evolve a pure quantum state coherently, one must
take exceptional care that no outside noise interferes and that the evolution is precisely the
desired one. This is the key fundamental challenge in quantum computation: to robustly
store quantum states for long times and evolve them according to specific quantum gates.
Were quantum information encoded in topological properties of matter, and were the quan-
tum gates dependent only on the topology of the evolutions, then both should be inherently
protected from local perturbations. Such topological quantum computation would exhibit in-
herent hardware-level stability that ideally would make elaborate schemes of quantum error-
correction redundant.

This idea was first floated by Kitaev in connection to surface codes for quantum error
correction [1,10]. He realized that certain codes could be viewed as spin lattice models, where
the elementary excitations are anyons – quasiparticles with statistics interpolating between
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Figure 1: Exchange statistics in 2D vs. 3D. In 3D the path λ2 describing two particle exchanges
is continuously deformable to λ1 by taking it behind or front of the right-most particle, and
in turn λ1 is contractible to a point. Hence, all the paths have the same topology and thus
correspond to the same statistical quantum evolution. In 2D, however, the paths λ2 and λ1
are topologically inequivalent since λ2 can not be deformed through the right-most particle,
while λ1 is still contractible to a point. Hence, the paths now have different topology and
different statistical quantum evolutions can be assigned to each.

those of bosons and fermions [11]. By manipulating these excitations, quantum states could
be encoded in the global properties of the system and manipulated by transporting the anyons
along non-contractible paths. The local nature of the paths would be irrelevant – any two
paths that were topologically equivalent implemented the same quantum gate. This insight
put the study of anyons at the center of topological quantum computation. Importantly, it gave
significant renewed incentive to condensed-matter physicists to look for realistic systems that
could give rise to them.

The reason why anyons can exist in general can be traced back to the simple, but far reach-
ing realization that local physics should remain unchanged when two identical particles are
exchanged. In three spatial dimensions (3D) this dictates that only bosons and fermions can
exist as point-like particles. A wave function describing the system of either types of particles
acquires a +1 or a −1 phase, respectively, whenever they are exchanged. However, when one
goes down to two spatial dimensions (2D), a much richer variety of statistical behaviour is
allowed. In addition to bosonic and fermionic exchange statistics, arbitrary phase factors, or
even non-trivial unitary evolutions, can be obtained when two particles are exchanged. This
fundamental difference between 2D and 3D arises due to the different topology of space-time
evolutions of point-like particles. Consider the exchange processes of two particles illustrated
in Figure 1. In 3D the path λ2 drawn by the encircling particle is always continuously de-
formable to the path λ1 that does not encircle the other particle (the path can be deformed to
pass behind the other particle). This loop, in turn, is fully contractible to a point, which means
that the wave function of the system must satisfy

3D : |Ψ(λ2)〉= |Ψ(λ1)〉= |Ψ(0)〉 . (1)

As one particle encircles the other twice, the evolution of the system can be represented by the
exchange operator R such that |Ψ(λ2)〉 = R2 |Ψ(0)〉. The contractibility of the loop requires
that R2 = 1, which has only the solutions R= ±1 that correspond to the exchange statistics of
either bosons or fermions. This means that the order and the orientation of the exchanges are
not relevant and the statistics of point-like particles in 3D are mathematically described by the
permutation group.

This contrasts with 2D, where the path λ2 is no longer continuously deformable (the path
is not allowed to pass through the encircled particle) to the fully contractible path λ1. This
means that the final state |Ψ(λ2)〉 no longer needs to equal the initial state |Ψ(0)〉

2D : |Ψ(λ2)〉 6= |Ψ(λ1)〉= |Ψ(0)〉 . (2)
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Figure 2: Toy model for anyons as charge-flux composites where magnetic flux Φ confined
to a tube that is encircled by a ring of electric charge q. When one such composite object
moves around the other, its charge (flux) circulates the flux (charge) of the other anyon. The
Aharonov-Bohm effect gives rise to the complex phase e2iqΦ, which describes the mutual statis-
tics of the composite objects. If 2qΦ is not an integer multiple of 2π, the composite objects are
Abelian anyons.

Hence the exchange operator R is no longer constrained to square to identity either. Instead, it
can be represented by a complex phase, or even a unitary matrix. In the first case the anyons
are called Abelian anyons due to their exchange operators commuting, while in the latter case
the anyons are referred to as non-Abelian anyons. Since one no longer demands R = R−1, the
order and orientation of the exchanges are physical and the only constraints on the exchange
operator R are given by consistency conditions for distinct evolutions. These derive from a
mathematical structure known as the braid group, which describes all topologically distinct
evolutions of point-like particles in two spatial dimensions. It is this description of the 2D
statistics by the braid group, instead of the permutation group, that allows anyons to exist.

While the possibility of something to exist is not equivalent to it actually existing, this
simple analysis gives the key hint for where to look for anyons – systems that are 2D. As we
are living in a 3D world, no genuine 2D systems exist. Nevertheless, many systems can be
constrained to exhibit effective 2D behavior, such as electron gases at 2D interfaces of 3D ma-
terials, isolated sheets of atoms such as graphene or 2D optical lattices of cold atoms. One
should keep in mind though that 2D only enables anyons to exist, but by no means guarantees
that. In fact, the emergence of anyons requires further special conditions, that can be illus-
trated using an intuitive toy model for anyons [12]. Consider a composite particle that consists
of a magnetic flux Φ confined inside a small solenoid and a ring of electric charge q around
it, as illustrated in Figure 2. If one such quasiparticle encircles the other, then its charge q
goes around the flux Φ, and vice versa. Due to the celebrated Aharonov-Bohm effect [13], the
wave function of the system acquires a phase factor e2iqΦ, even if there is no direct interaction
between the quasiparticles. Since all the magnetic flux is confined to the solenoid, this phase
factor does not depend in the local details of the path, which makes it topological in nature.
Thus the wave function will evolve exactly in the same way as a system of two particles with
exchange statistics described by R= eiqΦ. If

qΦ 6= πn, n= 1,2, . . . , (3)

then the composite particles are Abelian anyons. For instance, if the flux is given by half of a
flux quantum Φ = π, then any fractionalized charge q 6= n (in units of the electron charge)
makes the flux-charge composites anyons. While this is a toy picture, it hints of an intimate
connection between anyons and fractionalisation.

Whether fractionalized quasiparticles emerge in a given microscopic system is a model
specific question that has no universal answer. Most of the known systems require strong
interactions between the elementary particles, such as electrons. However, also defects in
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certain non-interacting states can give rise to anyons, as is the case with superconducting
nanowires that we discuss in Section 5. We now turn to discuss different types of 2D topological
states of matter and review the literature on those that either support or are proposed to
support anyons.

2 Topological order and anyons in condensed matter systems

Nowadays it is impossible to talk of distinct phases of matter without talking about topology.
Topological insulators and superconductors, Weyl or Dirac semi-metals, both integer and frac-
tional quantum Hall states and spin liquids are all instances of topological states of matter.
Without going into the details, mathematically every topological state of matter is character-
ized by some topological invariant, that can be calculated from the ground state wavefunction
and that takes different values in different states. However, when it comes to supporting
anyons, not all topological states are equal. In this subsection we give a brief overview of
distinct topological states of matter, the general features required for them to support anyons
and list those for which there is either theoretical or experimental evidence. We conclude
the section by outlining how the defining properties of anyons manifest themselves in such
microscopic systems.

Topological states of matter come in two broad distinct classes. The first class consists
of states that are topological only given that some protecting symmetry is respected. If the
symmetry is broken, the states immediately become trivial. Hence, such states are com-
monly referred to as symmetry-protected topological (SPT) states. They include all integer
quantum Hall states and topological insulators and superconductors (for reviews we refer
to [14, 15]), that have been classified based on the fundamental symmetries of time-reversal
and charge-conjugation [16] as well as based on symmetries arising from the underlying crys-
tal lattice [17–20]. All these are systems of non-interacting fermions, but SPT states can also
emerge in bosonic systems, such as spin chains or lattice models, and in the presence of inter-
actions [21–23]. While SPT states exhibit interesting phenomena, such as protected surface
currents even if the bulk is an insulator, they do not support anyons as intrinsic quasiparti-
cle excitions. However, there is an exception to this rule if the systems are allowed to have
defects, such as domain walls between different states of matter, vortices in a superconduc-
tor or lattice dislocations. These may bind localized zero energy modes that can behave as
anyons. In particular, in topological superconductors localized zero energy modes are de-
scribed by Majorana (real) fermions that can be viewed as fractionalized halves of complex
fermion modes [27,28,54]. For all practical purposes Majorana zero modes behave like non-
Abelian anyons, but they are also the most complex kind of anyonic quasiparticles that can
emerge in SPT states of free fermions. Unfortunately, they are not universal for quantum com-
putation by purely topological means, but as the most experimentally accessible anyons, they
have been the subject of intense research efforts. We review briefly these developments below
and in Section 5 employ them to illustrate how topological quantum computation could be
carried out in an array of topological superconducting nanowires.

The second class consists of states with intrinsic topological order that does not require any
symmetries to be present. This class includes the strongly interacting fractional quantum Hall
states and spin liquids. These states always support different kinds of anyons as intrinsic quasi-
particle excitations (no defects are required and anyons beyond Majorana zero modes are in
principle available), some of which are universal for quantum computation by purely topolog-
ical means. Unlike SPT states, ground states of intrinsically topologically ordered states also
exhibit long-range entanglement that gives rise to topological entanglement entropy [24–26]
and ground state degeneracy that depends on the topology of the manifold the system is de-
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fined on [29]. While these concepts are not directly related to topological quantum compu-
tation, they are of paramount importance in identifying the presence of intrinsic topological
order in different models and we review them briefly in Section 2.2.

2.1 Topological states that support anyons

As discussed above, anyons require either states with intrinsic topological order or SPT states
with some kind of defects. Regarding the latter, of particular interest are topological super-
conductors that support Majorana zero modes. To briefly review the literature on condensed
matter systems that support anyons of interest to topological quantum computation, we discuss
them under three broad classes: (i) Strongly correlated electron gases under strong magnetic
fields that support fractional quantum Hall states, (ii) collective states of strongly interacting
spins giving rise to spin liquid states and (iii) topological superconductors and their engineered
variants in superconductor-topological insulator / semi-conductor heterostructures.

(i) Fractional quantum Hall states

Fractional quantum Hall (FQH) states occur when very cold electron gases are subjected to
high magnetic fields. In such states the electrons localize and form so called Landau levels,
which makes the system a highly degenerate insulator. Since the electron motion is frozen
out, interactions between the electrons become significant. Due to the interactions the gapped
ground states at different magnetic fields can be described by a non-integer filling fraction ν –
the number of electrons per flux quantum, i.e. fractionalization occurs. While the bulk of the
2D system is insulating, experimentally such states are most easily detected by measuring the
Hall conductance as the function of applied magnetic field. This exhibits characteristic plateaus
corresponding to different filling fractions [30,31]. Every plateau is a distinct phase of intrinsic
topological matter, characterized by the quantized Hall conductance that is proportional to the
topological invariant characterizing the state [32].

The nature of these intrinsically topologically ordered states and the anyons they support
is understood via trial wave functions. Such wave functions were first proposed by Laughlin
to predict that the ν= 1/3 state supports fractionalized quasiparticles that behave as Abelian
anyons [33]. While the direct probing of the anyons via their exchange statistics remains elu-
sive, the charge fractionalization has been experimentally confirmed, thus strongly supporting
the existence of anyons [34, 35]. Numerous further trial wave functions have been proposed
to describe other filling fractions seen in the experiments. From the point of view of quantum
computation, of particular interest is the ν= 5/2 case. It has been proposed that at this filling
fraction the system is described by the Moore-Read state that supports the simplest non-Abelian
anyons – the Ising anyons [36]. The predicted charge fractionalization has been confirmed,
but again direct probing of the anyons has remained elusive [38]. For most practical purposes
Ising anyons are equivalent to Majorana modes and hence they are not universal for quantum
computation. For universality one needs more complex Fibonacci anyons. These are expected
to emerge in the very fragile ν= 12/5 filling fraction described by the Read-Rezayi state [37].
For a comprehensive account of topological quantum computation in FQH states, we refer the
interested reader to [2].

It has also been proposed that FQH states can emerge in topological insulators when they
are subjected to similar conditions, i.e. strong magnetic fields, strong interactions and frac-
tional filling [39]. While such fractional topological (Chern) insulators are an intriguing al-
ternative, it is currently unclear whether these conditions can ever be achieved in crystalline
materials.
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(ii) Spin liquids

When strong Coulombic interactions localize electrons in a lattice configuration, their kinetic
degrees of freedom are frozen out in a Mott insulating state. However, the electron spins still
interact and can form collective states that exhibit intrinsic topological order. Such states are
known as topological spin liquids [40]. The study of these systems roughly follows two distinct
routes. The bottom-up route is to study common spin-spin interactions, which usually are of
Heisenberg type, on distinct 2D lattices. As such systems rarely lend themselves to analytic
treatment, one employs mean-field theory to understand what phases could exist [41], and re-
lies on state-of-the-art numerics to verify the predictions. Convincing numerical evidence has
been obtained that topological spin liquids that support Abelian anyons do exist on several
frustrated 2D lattices (e.g. triangular or Kagome lattices) [42–46]. The top-down route is to
write down idealized spin lattice models that support a given topological phase. The canon-
ical model of this type is Kitaev’s honeycomb model [47] that supports Ising anyons akin to
the Moore-Read state. The model is exactly solvable, which enables the emergent anyons to
be studied in detail, but the fine-tuning required for the exact solvability also means that it
is unlikely to appear in nature. However, certain compounds have been proposed to be de-
scribed by a perturbed version of the model [48,49], and neutron-scattering experiments have
provided initial evidence for spin liquid states in these materials [50].

Generalizations of the honeycomb model exist both in 2D and 3D [51,52]. As these systems
all follow the same construction, this family of models is still the only analytically tractable
framework for spin liquids. In principle, spin liquids supporting any types of anyons can be
defined on lattices via the quantum-double [10] or the Levin-Wen [53] construction. How-
ever, these require replacing actual spins with more generic local degrees of freedom subject
to rather unphysical constraints and many-body interactions. A celebrated example of the
quantum-double construction is the so called Toric Code [10]. While being an intrinsically
topologically ordered states with Abelian anyons, the Toric Code is also the simplest example
of a topological quantum memory that features heavily in relation to quantum memories and
error correction (for reviews we refer to [8,9]).

(iii) Topological superconductors in heterostructures

Since the seminal work by Read and Green [54], it has been known that if time-reversal sym-
metry is broken and the pairing in a 2D superconductor is so-called p-wave type, then vortices
(the natural defects in superconductors) bind Majorana zero modes. While actual materials
exhibiting such pairing are yet to be found (though strontium ruthenate is strongly believed
to be one) it was realized that qualitatively same physics could occur when a topological in-
sulator [55], a spin-orbit coupled semiconductor [56,57], a chain of magnetic atoms [58–60]
or half-metals [61,62] is placed in the proximity of a regular s-wave superconductor. In other
words, the combination of physics from both systems realizes effective p-wave superconduc-
tivity at the interface.

Following an early proposal by Kitaev [63], wires made of these materials, when deposited
on top of a superconductor, were predicted to host Majorana modes at their ends, which could
be probed through simple conductance measurements [64,65]. While the explicit verification
of their braiding properties is yet to be carried out, several experiments on microscopically
distinct setups strongly support the existence of Majorana modes [66–71]. These topological
nanowire heterostructures are the most prominent candidate to experimentally test the key
building blocks of topological protection and implementation of topological gates via the ex-
change statistics of anyons. For a comprehensive review of Majorana zero modes in solid-state
systems, see e.g. [72–75].
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(iv) Quantum simulations of anyonic systems

In addition to looking for anyons in materials, much progress has been made in simulating
topological states of matter with cold atoms in optical lattices [76]. Time-reversal symmetry
broken Chern insulators [77,78] have been realized and it is hoped that these systems can be
pushed towards fractionalized conditions that support anyons. Proposals also exist for Kitaev’s
honeycomb model [79], as well as for counterparts of topological superconducting nanowires
that host Majorana zero modes [80–82].

The statistical properties of Majorana zero modes can also be simulated in cavity arrays
[83] and photonic quantum simulators [84, 85]. These systems are only unitarily equivalent
to actual topological states of matter and hence not genuinely topological in nature. However,
they still realize counterparts of the protected subspaces and statistical evolutions in the pres-
ence of anyons. This makes them attractive for experimentally testing the required control to
reliably manipulate quantum information in a topological-like encoding.

2.2 Manifestations of anyons in microscopic many-body systems

We close this section by discussing how non-Abelian anyons manifest themselves in intrinsically
topologically ordered microscopic systems and highlight the similarities / differences to SPT
states with defects. The common key property is the emergence of a protected degenerate
subspace, where the evolution is given as a non-Abelian Berry phase when the anyons are
adiabatically moved around each other. The precise structure of this protected space and the
possible evolutions depend on the types of anyons and they are discussed in Section 3. We also
introduce two often appearing concepts – topological entanglement entropy and topological
ground state degeneracy – that are not directly relevant to topological quantum computation,
but which are important diagnostic tools in identifying the presence of intrinsic topological
order.

2.2.1 Degeneracy and Berry phases

All topological states that support anyons are insulators. By this we mean that the ground
state is separated from the rest of the states in the spectrum by a spectral gap∆. When a topo-
logical system is placed on a surface of trivial topology without boundaries (we discuss the
possible degeneracy that can arise from non-trivial spatial topologies in the following subsec-
tion), such as a sphere, then the ground state is unique. However, when non-Abelian anyonic
quasiparticles are introduced into the system, the lowest energy state in their presence exhibits
degeneracy that depends on the types of anyons, as illustrated in Figure 3. This contrasts with
Abelian anyons, in whose presence the lowest energy state remains unique. This non-local
degenerate manifold of states is in general exponentially degenerate in the anyon separation
(degeneracy lifting anyon-anyon interactions are discussed in Section 4.4) and it is separated
from any other states by the spectral gap ∆.

This degenerate subspace is a collective non-local property of the non-Abelian anyons that
one employs to encode quantum information in a topologically protected manner. This pro-
tection arises from the presence of an energy gap and from the non-locality. Since all the
excitations in the system are massive (in SPT states anyons are massless zero modes, but the
defects on which they are bound to are still massive), the energy gap suppresses spontaneous
excitations in the system that could interfere with the already present anyons and thereby
change the state in the degenerate subspace. The non-locality protects the state in the de-
generate manifold via the realistic assumption that any noise in the system acts locally and
hence may only result in local displacement of the anyons. As long as this displacement is
small compared to their separation, no evolution takes place in the protected subspace. Thus
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Figure 3: When an intrinsically topologically ordered state is placed on a surface of trivial
topology and no anyons are present, the ground state at some energy E0 is unique and sepa-
rated from excited states by an energy gap ∆. In the presence of non-Abelian anyons that we
denote by σ, the lowest energy state exhibits degeneracy that depends on the type of anyons
present (e.g. four-fold degeneracy if four σ anyons of the Ising model are present, as we dis-
cuss soon in Section 3.4). Since anyons are massive excitations in intrinsically topologically
ordered states, this degenerate manifold appears at some higher energy than the ground state
in the absence of anyons (e.g. at energy E0+4mσ when each Ising anyon has mass mσ), but it
is still separated from excited states by the spectral gap∆. Qualitatively similar picture applies
also to SPT states with defects, such as a topological p-wave superconductor with vortices. In
this case each σ denotes a massless Majorana modes bound to a vortex, but each vortex is still
carries some mass mσ.

the degenerate low-energy manifolds in the presence of non-Abelian anyons are essentially
decoherence-free subspaces.

States in the protected subspace evolve only when the anyons are transported around each
other. Due to the presence of the energy gap, when this process is performed adiabatically,
i.e. slowly compared to ∆, the system only evolves in the non-local subspace and is given by
to the statistics of the anyons. Microscopically, such evolution due to an adiabatic change in
the system is given as a non-Abelian Berry phase acquired by the wave function [127–129].
Let us consider a system of N non-Abelian anyons that give rise to a D-dimensional protected
subspace. This space is spanned by D degenerate many-body states given by

|Ψn(z1, z2, . . . , zN )〉 , n= 1, 2, . . . , D, (4)

that depend in general on the anyon coordinates z j . Let λ be a cyclic path in z j that winds
one anyon around another, as illustrated in Figure 4. If one changes the parameters z j slowly
in time compared to the energy gap ∆, then the transport is adiabatic and the system evolves
only within the degenerate ground state manifold spanned by the states (4). This evolution is
in general given by

|Ψn(z1, z2, . . . , zN )〉 →
D
∑

m=1

Γnm(λ) |Ψm(z1, z2, . . . , zN )〉 , (5)

where the non-Abelian Berry phase is defined by

Γ (λ) = Pexp

∮

λ

A · dz. (6)
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σ σ σσ
z1 z2 z3 z4

λ

𝛤(𝜆) ≈ 𝐹ିଵ𝑅ଶ𝐹

Figure 4: Microscopic braiding as a non-Abelian Berry phase. Consider a system where two
pairs of anyons, each denoted by a σ, are created from the vacuum (the pairs are connected by
dashed lines) located at positions z1, . . . , z4. Transporting the anyon at position z2 along any
path λ that encloses only the anyon at z3 gives rise to non-Abelian Berry phase (6) that acts
in the degenerate subspace shown in Figure 3. When the anyons correspond to Ising anyons,
to be discussed in detail in Section 3.4, and the transport is adiabatic, this non-Abelian Berry
phase will accurately approximate their braid matrix F−1R2F given by (22).

Here P denotes path ordering and the components of the non-Abelian Berry connection are
given by

(Aj)mn = 〈Ψm(z1, z2, . . . , zN ) |
∂

∂ z j
|Ψn(z1, z2, . . . , zN )〉 . (7)

The geometric phase due to the cyclic evolution in the coordinates z j does not depend on the
time it takes to traverse the path λ as long as it is long enough for the evolution to be adiabatic.
Nor does it depend on the exact shape of the path λ and thus the unitary Γ (λ) is topological in
nature. The precise form it takes depends on the types of anyons present and what their mutual
anyonic statistics are. For each anyon model, there is only a finite number of possible unitary
evolutions, generated by pairwise exchanges, that act in the protected non-local subspace. We
discuss the different types of statistics in Section 3.

It has been verified in several microscopically distinct settings that the statistics of the
anyons is indeed obtained from the adiabatic evolution of their wave functions. Analytically
this has been shown for the Laughlin [130] and Moore-Read [131] fractional quantum Hall
states, as well as p-wave superconductors [132] including heterostructure realizations of topo-
logical nanowires [133, 134]. These calculations are supported by numerics that have been
used to demonstrate non-Abelian statistics in more complex fractional quantum Hall states
[106,135,136] and in microscopic models such as Kitaev’s honeycomb lattice model [109,137]
or bosonic fractional quantum Hall systems [138].

2.2.2 Topological degeneracy and entanglement entropy

In Section 2 we discussed the two distinct notions of topological order – SPT order and intrinsic
topological order. Regarding anyons, the key difference was that the first required some kinds
of defects to support, e.g., Majorana zero modes, while the latter does not. There are also two
other important physical consequences of intrinsic topological order that are absent in SPT
states.

The first property is topological ground state degeneracy, i.e. that the ground state in the
absence of anyons is degenerate when the system is defined on a manifold of non-trivial spatial
topology [29]. In other words, a state defined on a sphere (the spatial manifold has no holes)
would have a unique ground state, but the same state defined on a torus (the spatial manifold
has a single hole) would have a degenerate ground state space. This is a general property
that applies to any intrinsic topological state regardless of the type of anyons, Abelian or non-
Abelian, it supports. However, the degree of degeneracy does depend on the anyon model
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and the topology of the spatial manifold and needs to be worked out on a case-by-case basis
[139]. The most important consequence to quantum computation is that, given that non-
trivial spatial topologies can be engineered, the degenerate ground state space can be used
as a topological quantum memory. In particular, since the nature of the supported anyons is
irrelevant, systems supporting relatively simpler Abelian anyons can also be employed to this
end. For thorough discussion about topological quantum memories, we refer to [8, 9]. The
second important application is to use the degeneracy on manifolds of distinct topology as a
convenient numerical probe to identify the presence of intrinsic topological order [42–46].

The second property inherent to only intrinsic topological states is that of topological
entanglement entropy. Any quantum state can be partitioned into two disjoint regions A
and B. The entanglement between the regions can be quantified by entanglement entropy
S = −TrBρ logρ, where ρ is the density matrix of the full system, but the trace is taken only
over the region B. All gapped states of matter are expected to have only short-range entan-
glement and thus follow the area-law scaling of entanglement entropy [140]. In other words,
the entanglement between A and B should be proportional to the length |∂ A| of the boundary
between them. However, if a state exhibits intrinsic topological order, then there is also a
universal constant correction to the area-law [24–26], with the entanglement entropy scaling
as

S = α|∂ A| − γ, (8)

where α is a non-universal constant. On the other hand, γ is a universal constant that takes a
non-zero value only in the presence of intrinsic topological order.

Like the ground state degeneracy on manifolds of varying topology, γ depends on the
types of anyons supported. Extracting it by studying the entropy scaling (8) is thus another
convenient numerical tool to identify the presence of intrinsic topological order. However,
neither the topological ground state degeneracy nor the topological entanglement entropy
are unique characteristics of anyon models – different anyon models can give rise to the same
degeneracy and to the same correction to entanglement entropy. To unambiguously determine
the anyon model supported by a given state, the statistics of the supported anyons can be
obtained from the ground state via more sophisticated manipulations of the state [141–143].

3 Anyon models

From now on we adopt the perspective that anyons exist and focus on explaining what different
types of anyons there can be and what their defining properties are. Furthermore, for the time
being, we assume that the microscopic details of the system that give rise to the anyons can be
completely neglected and the low-energy dynamics is described in terms of only the anyons.
Under these assumptions the possible evolutions are limited to three simple scenarios:

1. Anyons can be created or annihilated in pairwise fashion.

2. Anyons can be fused to form other types of anyons.

3. Anyons can be exchanged adiabatically.

The formal framework capturing these properties in a unified fashion goes under the name of a
topological quantum field theory [86]. From the point of view of topological quantum computa-
tion, most of the details of this rigorous mathematical description can be omitted. As a result,
only a minimal set of data is required to specify the properties of the anyons corresponding
to a particular topological quantum field theory. Here, as also often is the case in literature,
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we refer to this minimal information as an anyon model. Such models with up to four distinct
anyonic quasiparticles have been systematically classified [87]. We refer the interested reader
also to the appendices of [47] for an accessible introduction to the diagrammatic notation
often used when talking about anyons.

In this section we first give the general structure of anyon models to explain how a given
anyon model constrains the nature of the protected subspace discussed in Section 2.2 and the
possible evolutions therein. Then we illustrate these abstract concepts with two examples most
relevant to quantum computation: Fibonacci anyons (universal for quantum computation,
but up to now only a theoretical construction) and Ising anyons (not universal for quantum
computation, but can be experimentally realized).

3.1 Fusion channels - Decoherence-free subspaces

To define an anyon model, one first specifies how many distinct anyons there are. For com-
pleteness, this list must include a trivial label, 1, corresponding to the vacuum with no anyons.
The anyon model is then spanned by some number of particles

M = {1, a, b, c, . . .}, (9)

where the labels a,b,c,. . . can be viewed as topological charges carried by each anyon. As
charges they must satisfy conservation rules. For anyons these are known as fusion rules, that
take the form

a× b =
∑

c∈M

N c
abc, (10)

where the fusion coefficients N c
ab = 0, 1, . . . are non-negative integers describing the possible

topological charges (fusion channels) a composite particle of a and b can carry (a and b
are fused). In general N c

ab can be any non-negative integer, but for most physical models
N c

ab = 0,1. If N c
ab = 0, then fusing a with b can not yield c. If for all a, b ∈ M there is only one

N c
ab that is different from zero, then the fusion outcome of each pair of particles is unique and

the model is Abelian. On the other hand, if for some pair of anyons a and b there are two or
more fusion coefficients that satisfy N c

ab 6= 0, then the model is called non-Abelian. The latter
implies that the fusion of a and b can result in several different anyons, i.e. there is degree
of freedom associated with the fusion channel. Furthermore, to conserve total topological
charge every particle a must have an anti-particle b, in the sense that N1

ab = 1 for some b. For
instance, a fusion rule of the form a × a = 1+ b, that we encounter below, means that a is a
non-Abelian anyon, as it has two possible fusion outcomes, and that it is its own anti-particle,
as one of the possible fusion outcomes is the vacuum.

The key characteristic of non-Abelian anyons is that the fusion channel degrees of freedom
imply a space of states spanned by different possible fusion outcomes. That is, if a and b can
fuse to several c ∈ M , we can define orthonormal states | ab; c〉 that satisfy

〈ab; c | ab; d〉= δcd . (11)

If there are N distinct fusion channels in the presence of a pair of particles, the system ex-
hibits N -fold degeneracy spanned by these states. We refer to this non-local space shared by
the non-Abelian anyons, regardless of where they are located, as the fusion space. This fusion
space is precisely the protected low-energy subspace discussed in Section 2.2. Under the as-
sumption that all microscopics of the system giving rise to the anyons are decoupled from the
low-energy physics, the states in the fusion space are perfectly degenerate. As it is a collective
non-local property of the anyons, no local perturbation can lift the degeneracy and it is hence
a decoherence-free subspace. As such it is an ideal place to non-locally encode quantum in-
formation. We stress that the fusion space arises from the distinct ways anyons can be fused
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Figure 5: Fusion diagrams and F -matrices. A basis in the fusion space is given by choosing an
order in which the anyons are to be fused without exchanging their positions (this results in a
unitary evolution in the fusion space as discussed in the next subsection). In the case of three
anyons a, b and c that are constrained to fuse to d, there are only two options: Either they are
fused pairwise from left to right (| (ab)c; ec; d〉) or from right to left (| a(bc); a f ; d〉). These
two bases are related by the unitary matrix F d

abc according to (12). The state in one basis is in
general a superposition of the basis states in the other basis.

over how they are fused. If two anyons are actually fused and the outcome of the fusion is
detected, this would correspond to performing a projective measurement in the fusion space.

The fusion space of a pair of non-Abelian anyons can not be used directly to encode a qubit
though. The reason is that two states | ab; c〉 and | ab; d〉 belong to different global topological
charge sectors (given by c and d, respectively) and hence can not be superposed. Instead, one
needs more than two anyons in the system, such that they can be fused in various different
ways that still give the same fusion outcome when all of them are fused. The basis in such
higher dimensional fusion space is given by a fusion diagram of a fixed fusion order spanned
by all possible fusion outcomes. Choosing a different fusion order is equivalent to a change
of basis. Like the familiar Hadamard gate that relates the Z- and X -bases of a qubit, for every
anyon model there exists a set of matrices that relate a state in one basis to states in other bases.
These so called F -matrices form part of the data of an anyon model and they are obtained as
the solutions to a set of consistency conditions known as the pentagon equations [47]. We do
not concern ourselves here with the explicit form of the pentagon equations, as their role is
to classify different possible anyon models consistent with given fusion rules (10). For known
anyon models this data can be found, e.g., in [87].

To illustrate how the F -matrices give structure to the fusion space, consider a case where
three anyons a, b and c are constrained always to fuse to d and assume that several interme-
diate fusion outcomes are compatible with this constraint. Then there are several fusion states
belonging to the same topological charge sector d that can be superposed. For three anyons
there are two possible fusion diagrams corresponding to distinct bases. Either one fuses first a
and b to give e, in which case the basis states are labeled by e and denoted by | (ab)c; ec; d〉, or
one fuses first b and c to give f , in which case the corresponding basis states are | a(bc); a f ; d〉.
These two choices of basis must be related by a unitary matrix F d

abc as

| (ab)c; ec; d〉=
∑

f

(F d
abc)e f | a(bc); a f ; d〉 , (12)

where (F d
abc)e f are the matrix elements of F d

abc , and f is summed over all the anyons that b

and c can fuse to, i.e. for which N f
bc 6= 0. The states and the action of the F -matrices are

most conveniently expressed in terms of fusion diagrams, as illustrated in Figure 5. Such
diagrams also vividly capture the topological nature of such processes – two diagrams that
can be continuously deformed into each other (i.e. no cutting or crossing of the world lines)
correspond to the same state of the system.
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3.2 Braiding anyons - Statistical quantum evolutions

The fusion space is the collective non-local property of the anyons. To evolve a quantum state
in this space, the statistical properties of anyons are employed. When anyons are exchanged,
or braided (as the process is often called due to their worldlines forming braids), the state in the
fusion space undergoes a unitary evolution. Transporting the anyons along paths that do not
enclose other anyons has no effect. For Abelian anyons the fusion space is one dimensional and
the only possible evolution is given by a complex phase factor. This phase depends on the type
of anyons and whether they are exchanged clockwise or anti-clockwise, but not on the order of
the anyon exchanges. In other words, the exchange operator describing exchanging anyons a
and b in a clockwise fashion is given by Rab = eiθab for some statistical angle 0≥ θab < 2π. This
contrasts with non-Abelian anyons for which the resulting statistical phase not only depends
on the types of anyons, but also on their fusion channel c, i.e. the exchange is described by the
operator Rc

ab = eiθ c
ab . Thus, when there is fusion space degeneracy associated with different

fusion channels, braiding assigns different phases to different fusion channels and depends
not only on the orientation of the exchanges, but also on their order.

Given the F -matrices of the anyon model, the possible statistics described by the exchange
operators Rc

ab compatible with them can be obtained by solving another set of consistency
equations known as hexagon equations [47, 87]. These R-matrices, as they are often called,
describe all possible unitary evolutions that can take place in the fusion space. Consider again
the case where anyons a, b and c are constrained to fuse to d, as in (12). Then in the basis
| (ab)c; ec; d〉 a clockwise exchange of a and b implements the unitary

| (ba)c; ec; d〉=
∑

f

R f
abδe, f | (ab)c; ec; d〉 , (13)

where f spans all possible fusion outcomes of a and b and δe, f is the Kronecker delta function.
Thus for a generic state in this basis, a clockwise exchange is represented by a diagonal unitary
matrix R with entries R f

ab. Were the anyons exchanged counter-clockwise, the evolution would
be described by R†. To write down the effect of exchanging b and c clockwise in the same basis,
one first applies the F d

abc to change the basis to | a(bc); a f ; d〉, then applies R, as defined above,
and then returns to the original basis with (F d

abc)
−1, which is given by the unitary evolution

| (ac)b; ec; d〉= (F d
abc)

−1R(F d
abc) | (ab)c; ec; d〉 . (14)

All unitary evolutions due to distinct exchanges of anyons can be constructed in similar fash-
ion and they are always given by some combination of the F - and R-matrices. Again, these
exchange operations are conveniently expressed diagrammatically, as illustrated in Figure 6.

Summarizing, an anyon model is most compactly specified by: (i) The fusion coefficients
N c

ab that describe how many distinct anyons there are and how the anyons fuse, (ii) the F -
matrices that describe the structure of the fusion space and (iii) the R-matrices that describe
the mutual statistics of the anyons. Regardless of the microscopics that give rise to anyons
in a given system, with this minimal set of data all possible states of the fusion space for
arbitrary number of anyons and all the possible evolutions can be constructed. As this notation
gets quickly rather cumbersome, we illustrate it with two examples that are most relevant to
topological quantum computation.

3.3 Example 1: Fibonacci anyons

Based on their anyon model structure, Fibonacci anyons are the simplest non-Abelian anyons.
There is only one anyon τ that satisfies the fusion rule

τ×τ= 1+τ. (15)
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Figure 6: Exchanging anyons in different bases and the R-matrices. When two anyons a and
b are exchanged in a basis where they are fused first (| (ab)c; ec; d〉), the R-matrix acts as a
diagonal matrix that assigns a phase factor Re

ab = eiθ e
ab depending on their fusion channel e.

When b and c are exchanged, the action in the basis where a and b are fused first is obtained
by first moving to the basis they are used first (| a(bc); a f ; d〉) by applying the unitary F d

abc ,
then applying the diagonal R-matrix that assigns different phase factors to different fusion
channels of b and c and finally returning to the original basis by applying (F d

abc)
−1.

In other words, τ is its own anti-particle, but two τ anyons can also behave like a single τ
anyon. Repeated associative application of the fusion rule shows that the dimension of the
fusion space, i.e. the number of different ways the fusion of all τ anyons can result in either
total topological charge of 1 and τ, grows in a rather peculiar manner

τ×τ×τ= 1+ 2 ·τ,

τ×τ×τ×τ= 2 · 1+ 3 ·τ, (16)

τ×τ×τ×τ×τ= 3 · 1+ 5 ·τ,

and so on. In other words the dimensionality of the fusion space in both sectors grows as the
Fibonacci series, where the next number is always the sum of the two preceeding numbers
(hence the name Fibonacci anyons!). This immediately points to a peculiarity of the Fibonacci
fusion space. It does not have a natural tensor product structure in the sense of its dimension-
ality growing by a constant factor per added τ anyon.

To encode a qubit in the fusion space of Fibonacci anyons, we see from (16) that one needs
three τ anyons that are constrained to fuse to a single τ particle (or equivalently, four τ anyons
constrained to the total vacuum sector). A basis in this two-dimensional fusion subspace is
given by the states | (ττ)τ; 1τ;τ〉 and | (ττ)τ;ττ;τ〉, with the corresponding fusion diagrams
given by Figure 5 with the corresponding label substitutions. For the Fibonacci fusion rules
the F -matrix giving the basis transformation and the R-matrix describing braiding are given
by

F = Fττττ =

�

φ−1 φ−1/2

φ−1/2 −φ−1

�

, R=

�

R1
ττ 0
0 Rτττ

�

=

�

e
4πi
5 0

0 e
−3πi

5

�

, (17)

where φ = (1+
p

5)/2 is the Golden Ratio (another characteristic of the Fibonacci series). For
a detailed discussion on Fibonacci anyons, we refer to [88].

This seeming simplicity of the Fibonacci anyons hides something remarkable though.
Namely, arbitrary unitaries can be implemented by braiding the Fibonacci anyons and hence
the model is universal for quantum computation [2]! Even if R10 equals the identity matrix,
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the braid group generated by R and F−1RF is dense in SU(2) in the sense that an arbitrary uni-
taries can be approximated to arbitrary accuracy by only braiding the anyons. There are two
serious caveats though. First, the lack of tensor product structure means that only a subspace
of the full fusion space can be used to encode information. For instance, if three τ anyons are
used to encode a qubit, then one would like to use altogether six anyons to encode two qubits.
However, their fusion space is five-dimensional in the vacuum sector, which means that the
logical qubits reside only in a subspace. The second caveat is that approximating even the
simplest gates is far from straighforward. Even the NOT -gate requires thousands of braiding
operations in very specific order [89, 90]. Several techniques exist to construct the required
braids more efficiently [91–95], but the task remains challenging. Still, the fact that braiding
can be employed to generate in principle arbitrary unitaries, as opposed to most other anyon
models, makes Fibonacci anyons the Holy Grail for quantum computation.

While the caveats can be overcome, the most daunting thing about Fibonacci anyons is that
their relative simplicityas an anyon model by no means correlates with the accessability of the
microscopic systems that support them. Quite the contrary. While novel elaborate schemes to
realize them have been proposed in coupled domain wall arrays of Abelian FQH states [96],
the most plausible candidate is still the Read-Rezayi state that has been proposed to describe
the filling fraction ν = 12/5 FQH state [37]. As this state is very fragile, it remains unclear
whether it can ever be realized in a laboratory. Hence, much research has focused on states
hosting simpler non-Abelian anyons that might not be universal, but which still enable testing
and development of topological quantum technologies. In this regard Ising anyons are of
particular interest.

3.4 Example 2: Ising anyons

The Ising anyon model consists of two non-trivial particles ψ (fermion) and σ (anyon) satis-
fying the fusion rules

1× 1= 1, 1×ψ=ψ, 1×σ = σ,
ψ×ψ= 1, ψ×σ = σ,

σ×σ = 1+ψ.

The fusion ruleψ×ψ= 1 implies that, when brought together, two fermions behave like there
is no particle, while ψ×σ = σ implies that ψ with a σ is indistinguishable from a single σ.
The non-Abelian nature of the σ anyons is encoded in the last fusion rule, which says that two
of them can behave either as the vacuum or as a fermion. Physically, the fusion rules can be
understood, for instance, in the context of a topological p-wave superconductor [54]. There,
the vacuum 1 is a condensate of Cooper pairs. The fermions ψ are Bogoliubov quasiparticles
that can pair into a Cooper pair and thus vanish into the vacuum. The σ anyons, on the other
hand, correspond Majorana zero modes bound to vortices. As we will explain in Section 5, a
Majorana mode corresponds to a “half” of a complex fermion mode. A pair of such vortices
carries thus a single non-local fermion mode, the ψ particle, that can be either unoccupied
(fusion channel σ×σ→ 1) or occupied (fusion channel σ×σ→ψ).

The non-Abelian fusion rule for theσ anyons implies that there is a two dimensional fusion
space associated with a pair of them. The basis can be associated with the two fusion channels
and denoted by {|σσ; 1〉 , |σσ;ψ〉}. However, as these two states belong to different topo-
logical charge sectors, they can not be superposed. In order to have a non-trivial fusion space
in the same charge sector, one needs to consider at least three σ particles that can fuse to a
single σ in two distinct ways (or equivalently four σ anyons that fuse to 1), as shown by the
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repeated associative application of the fusion rules

σ×σ×σ = 2 ·σ,

σ×σ×σ×σ = 2 · 1+ 2 ·ψ, (18)

σ×σ×σ×σ×σ = 4 ·σ,

and so on. The basis in the constrained fusion space can be given by the states

{| (σσ)σ; 1σ;σ〉 , | (σσ)σ;ψσ;σ〉} , (19)

that correspond to the two left-most σ anyons fusing into either 1 or ψ. The F -matrix to
change the basis to fusing from right to left is given by

F = Fσσσσ =
1
p

2

�

1 1
1 −1

�

. (20)

Since it creates equal weight superpositions, it means that if the fusion outcome is unique in
one basis, in the other basis it is completely random. Thus the different fusion orders of Ising
anyons correspond to different bases exactly as the basis for a qubit could be chosen along
the Z-axis or along X -axis. Unlike Fibonacci anyons, the fusion space of Ising anyons has a
natural tensor product structure. We see from (18) that the dimension of the fusion space
doubles for every added σ pair and hence for 2N anyons the dimension of the fusion space in
a fixed topological charge sector is given by 2N−1.

The R-matrix describing the statistics of Ising anyons under the clockwise exchange of the
two left-most σ anyons is given by

R=

�

R1
σσ 0
0 Rψσσ

�

= e−i π8

�

1 0
0 ei π2

�

. (21)

We immediately see that if we encoded a qubit in the fusion space associated with three σ
particles, R2 would implement the logical phase-gate up to an overall phase factor. If the two
right-most anyons were instead exchanged twice, the evolution in the basis (19) would be
described by

F−1R2F = e−iπ4

�

0 1
1 0

�

. (22)

In other words, braiding them changes the fusion channel of the two left most ones between 1
and ψ. If the three σ’s were employed to encode a qubit, this braid would have implemented
a logical NOT -gate.

The limitation of the operations that can be performed is obvious from the braiding of
three σ anyons. Since one can only implement logical phase and NOT -gates on a single qubit,
Ising anyons can only implement the Clifford group by braiding [97, 98]. This means that
Ising anyons, while being non-Abelian, are not universal for quantum computation by braid-
ing. To overcome this shortcoming, non-topological schemes have been devised to promote
their computational power to universality. While the need for such non-topological operations
makes the system more susceptible to errors, Ising anyons are still the best candidates to ex-
perimentally test the principles of topological quantum computation due to their realization as
Majorana zero modes in superconducting nanowire heterostructures [66–70]. In the Section
4 we describe in more detail how a topological quantum computer would in general be oper-
ated. In Section 5 illustrate these steps in the context of the experimentally relevant Majorana
wires.

18

https://scipost.org
https://scipost.org/SciPostPhys.3.3.021


SciPost Phys. 3, 021 (2017)

4 Quantum computation with anyons

While discussing non-Abelian anyons and the non-local fusion space associated with them, we
have already hinted how this space could be used to encode and process quantum information
in an inherently fault-resilient manner. In the ideal conditions of zero temperature and infinite
anyon separation, the states in the fusion space have three very attractive properties:

(i) All the states are perfectly degenerate.

(ii) They are indistinguishable by local operations.

(iii) They can be coherently evolved by braiding anyons.

If this space of states is used as the logical space of a quantum computer, property (i) implies
that the encoded information is free of dynamical dephasing, while property (ii) means that
it is also protected against any local perturbations. Property (iii) means that errors could only
occur under unlikely non-local perturbations to the Hamiltonian that would create virtual
anyons and propagate them around the encoding ones. However, braiding of the anyons can
still be carried out robustly by the operator of the computer to execute desired quantum gates.
Furthermore, property (iii) implies that all the quantum gates are virtually free from control
errors since they depend only on the topological characteristics of the braiding evolutions given
by the F - and R-matrices.

Together these properties mean that quantum computation with anyons would heavily
suppress errors already at the level of the hardware, with little need for resource intensive
quantum error correction. Of course, in the real world these ideal conditions are never met
and some decoherence of the encoded information always takes place. Still, the topological
encoding and processing of quantum information provides in principle unparalleled protection
over non-topological schemes. For the time being we forget about the nasty reality and focus
on outlining the steps to operate a topological quantum computer with Ising anyons as our case
study. Generic error sources present in a laboratory are discussed at the end of the section.

4.1 Initialization of a topological quantum computer

To initialize a quantum computer, one needs first to identify the computational space of n
qubits. In topological computer this means creating some number of anyons from the vacuum
and fixing their positions. The system then exhibits a fusion space manifesting as a protected
non-local subspace that is identified as the computational space. Depending on the anyons in
question, the full fusion space may not admit a tensor product structure (such as the Fibonacci
anyons), but one can always identify subspaces corresponding to the fusion channels of subsets
of anyons that can serve as qubits. To illustrate the steps of operating a topological quantum
computer, we focus on the simpler Ising anyons whose fusion space does exhibit natural tensor
product structure.

As discussed in Section 3.4, for 2N Ising anyons the fusion space dimension in a fixed
topological charge sector increases exponentially as D = 2N−1. To initialize the system, we
assume that σ anyons are created pairwise from the vacuum with no other anyons present.
This means that every pair is initialized in the σ×σ→ 1 fusion channel and hence the system
globally belongs also to the vacuum sector. Thus fourσ anyons encodes a qubit, sixσ’s encodes
two qubits, and so on. Let us focus on a system of six σ anyons that enables to demonstrate all
the basic operations. It is convenient to choose the pairwise fusion basis as a computational
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σ σ σ σ σ σ

ba c

1

a b c

|𝟎𝟎 〉 1 1 1

|𝟏𝟎 〉 𝜓 𝜓 1

|𝟎𝟏 〉 1 𝜓 𝜓
|𝟏𝟏 〉 𝜓 1 𝜓

Figure 7: The fusion diagram for six Ising anyons for a pairwise basis restricted to the global
vacuum sector. Due to the fusion rules σ × σ = 1 +ψ and σ ×ψ = σ, the fusion diagram
contains four distinct fusion channels that are consistent with the constraint that the fusion of
all the six σ anyons must give the vacuum 1. The table shows the identification of the fusion
channels with the computational basis of two qubits.

basis

|00〉= |σσ; 1〉 |σσ; 1〉 |σσ; 1〉 ,
|10〉= |σσ;ψ〉 |σσ;ψ〉 |σσ; 1〉 ,
|01〉= |σσ; 1〉 |σσ;ψ〉 |σσ;ψ〉 , (23)

|11〉= |σσ;ψ〉 |σσ; 1〉 |σσ;ψ〉 ,

where the three kets refer to the fusion channels of the three σ pairs, as illustrated in Figure
7. When the anyon pairs are created from the vacuum, the topological quantum computer is
initialized in the state |00〉. The other basis states involve an even number of intermediate ψ
channels, which according to the fusion rule ψ×ψ = 1 is consistent with the constraint that
the fusion of all σ particles must always yield the vacuum.

4.2 Quantum gates – Braiding anyons

To perform a computation in the fusion space is equivalent to specifying a braid – a sequence
of exchanges of the anyons that corresponds to the desired sequence of logical gates. For Ising
anyons, the natural gate set to implement consists of Clifford operations on single qubits, i.e.
the X -, Z- and Hadamard UH -gates and the two-qubit controlled phase gate UC Z .

The single qubit gates follow directly from the F - and R-matrices of Ising anyons, (21)
and (22). The first says that under two exchanges the state acquires a −1 phase whenever
the exchanged σ pair fuses to a ψ, while the latter says that exchanging twice two σ anyons
from different pairs simultaneously changes the fusion channel of both pairs between 1 and
ψ. In the two-qubit computational basis (23), the elementary single qubit operations, up to
an overall phase, are thus given by

X1 = R2
23 = F−1R2F ⊗ I, Z1 = R2

12 = R2 ⊗ I,

X2 = R2
45 = I⊗ F−1R2F, Z2 = R2

56 = I⊗ R2, (24)

where Ri j is the clockwise exchange operator acting on anyons i and j. The corresponding
braiding diagrams are illustrated in Figure 8. Similarly, the Hadamard gates UH can be imple-
mented by single exchanges. One can easily verify that F−1RF creates superpositions of fusion
channels, but with distinct phase factors assigned to different fusion channels. These phase
factors can be cancelled by appending it further exchanges. A little algebra shows that up to
an overall phase, the Hadamard gates on the two qubits are given by

UH,1 = R12R23R12 = RF−1RFR⊗ I,

UH,2 = R56R45R56 = I⊗ RF−1RFR, (25)
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𝑋ଵ = (𝑅ଶଷ)ଶ

𝑈஼௓ = 𝑅ଵଶିଵ𝑅ହ଺ିଵ𝑅ଷସ𝑈ு,ଵ = 𝑅ଵଶ𝑅ଶଷ𝑅ଵଶ

𝑍ଵ = (𝑅ଵଶ)ଶ

Figure 8: The elementary braids corresponding to the X -, Z- and Hadamard UH -gates on the
first qubit as well as the controlled-Z gate UC Z . The single qubit operations on the second
qubit are given by (24) and (25).

as illustrated in Figure 8. Hence by braiding one can implement all the single qubit operations
in the Clifford group.

To implement two-qubit operations, one needs to perform braids outside this group of
operations. The natural two-qubit gate to implement with Ising anyons is the controlled phase
gate, that is given by the braid

UC Z = R−1
12 R34R−1

56 . (26)

Since the three exchanges act on separate pairs of σ anyons, the action of such braid
can be deduced piecewise in the computational basis (23). First, R34 gives rise to uni-
tary that maps |01〉 , |10〉 → ei π2 |01〉 , ei π2 |10〉 by assigning the phase factor ei π2 when-
ever the middle pair is in the ψ fusion channel. Likewise, R−1

12 acts on the left pair
and maps |10〉 , |11〉 → e−i π2 |10〉 , e−i π2 |11〉, while R−1

56 acts on the right pair and maps
|01〉 , |11〉 → e−i π2 |01〉 , e−i π2 |11〉. Hence, the joint effect is to map only |11〉 → −|11〉, which
is precisely the controlled phase gate between the two qubits.

Unfortunately, this is the best one can do with Ising anyons. A two-qubit gate together with
Clifford group operations does not form a universal gate set for quantum computation. For that
one requires an additional non-Clifford gate, such as the π8 -phase gate [99,100]. In principle, it
can be implemented non-topologically by bringing two anyons nearby. An interaction between
the anyons will then lift the degeneracy of the fusion channels by ∆E and they will dephase
in time according to

U =

�

1 0
0 ei∆Et

�

. (27)

Assuming that bringing the anyons nearby and separating them again can be controlled pre-
cisely such that ∆Et = π/4, than one would have implemented the desired π

8 -phase gate,
albeit in a non-topologically protected fashion. While this is likely to be noisy in the labora-
tory, i.e. there is likely to be error in the induced phase shift, more elaborate schemes have
been proposed to implement this gate in a robust manner [101–103].

4.3 Measurements – Fusing anyons

The final step of a computation is the read-out. As the computational basis states (23) cor-
respond to distinct patters of pairwise fusion outcomes, the projective measurements are per-
formed by bringing the anyons pairwise physically together and detecting the fusion outcomes.
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How this is done in practice depends on the anyons in question and on the microscopic physics
that give rise to them. For the Ising anyons there is in principle a straightforward way to do
this. A pairwise fusion can result only either in the vacuum (nothing remains) or a ψ parti-
cle (a massive particle remains). This distinction in the change of energy of the system is in
principle detectable and serves as a method to perform measurements in the computational
basis.

In our example of two qubits encoded in six σ anyons illustrated in Figure 7, a projective
Z-basis measurement of the first qubit corresponds to detecting the fusion outcome of anyons
1 and 2. If no change in energy is detected, then one has applied the projector |0〉 〈0 | ⊗ I,
while observing a change in energy applies the projector |1〉 〈1 | ⊗ I. Before the measurement
is applied the state of the system could be in a superposition of fusion states. Similarly, an
X -basis measurements are performed by detecting the fusion outcome of anyons 2 and 3. For
measurements on the second qubit the same operations are applied to anyons 5 and 6 for Z-
basis measurements and to anyons 4 and 5 for X -basis measurements. By measuring the fusion
outcomes of other anyon pairs, one can apply projectors into joint subspaces of the two qubits.
For instance, detecting that anyons 3 and 4 fuse to vacuum projects into the subspace spanned
by |00〉 and |11〉, while observing ψ as the fusion outcome projects onto its complement.

In a nutshell, these are the basic steps of operating a topological quantum computer. How
they are carried out precisely depends on the microscopics of the system that supports the
anyons. In Section 5 we apply these ideas to a concrete setting. We outline how a topological
quantum computation could in principle be carried in one microscopic system that supports
Majorana zero modes, the best realizations we currently have for Ising anyons. Before pro-
ceeding there, we briefly review the literature on how a topological quantum computer might
fail to deliver the promised protection under realistic conditions.

4.4 Possible error sources

The biggest experimental challenge to topological quantum computation is that anyons, espe-
cially of the required non-Abelian kind, are hard to come by experimentally. Assuming that
one would have access to anyons, there are still several general mechanisms how topological
protection might fail despite of its inherent resilience to local perturbations.

Leakage via spurious anyons

Like with conventional qubits, decoherence in topological quantum computation can arise due
to an uncontrolled coupling to a reservoir. In topologically ordered systems the reservoir could
appear in two ways. Either there are additional anyons in the system, causing the full fusion
space to enlarge beyond the computational space, or there is another topological system nearby
from where quasiparticles can tunnel into and out of the system. Considering that anyons
require precise microscopic conditions, it should be relatively easy to take care of the latter by
ensuring that there are no accidental topologically ordered states nearby. The first source of a
reservoir, however, requires care. As any topological quantum computation is likely to require
a macroscopic number of anyons to define a useful computational space (it is estimated that
for a robust implementation of quantum algorithms this number ranges from 103 Fibonacci
anyons to a whopping 109 Ising anyons [90]), it is in general hard to keep track of all the
anyons in the system. When executing quantum gates, braiding around unaccounted anyons
would then rotate the state outside the computational space. If the unaccounted anyons are
tightly paired and localized, this will not be a problem as their fusion channel is fixed to the
vacuum channel and braiding around both has no effect. If the anyons can propagate freely
though, accidental braids around isolated anyons can occur leading to decoherence.
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Degeneracy lifting due to anyon-anyon interactions

The exact degeneracy of the states corresponding to different fusion channels relies on the
anyons being non-interacting. In reality, the same microscopics that give rise to them also
endow them with interactions that decay exponentially in their separation. Thus at best one
can demand them to be far away, enough for interactions become negligible and thus unable
to distinguish the fusion channels by lifting their degeneracy. In the laboratory everything is
finite though and when a macroscopic number of anyons is required to operate a topological
quantum computer, it is impossible to keep all of them well separated at all times. What far
away means for a certain system is given by the coherence length that scales in general as
the inverse energy gap ξ ∼ ∆−1. As the anyons are quasiparticles, that are collective states
of the elementary excitations, they are in practice always exponentially localized with the
decay of the wave function controlled by ξ. Thus when two anyons with two possible fusion
channels are within distance L of each other, virtual tunneling processes between them lift
the degeneracy of the fusion channels by ∆E ∼ e−L/ξ [104]. Indeed, this splitting has been
calculated in p-wave superconductors [105], fractional quantum Hall states [106] and spin
liquids [107], and also experimentally observed for Majorana zero modes in superconducting
nanowires [70].

Lifting of the fusion channel degeneracy implies several subtleties for topological quantum
computers. First, logical states with different energies will dephase with time. While they
remain insensitive to local operations, the Hamiltonian of the system will distinguish between
them akin to the non-topological implementation of the π

8 -phase gate (27). Thus topological
qubits, like non-topological ones, can also decohere with time unless error correction is applied
[108]. Second, quantum gates by braiding are no longer necessarily exact. Finite energy
splitting between the ground states implies that the evolution must be fast enough at the scale
of ∆E for the states to appear degenerate, while still being slow enough at the scale of the
energy gap ∆ not to excite the system [109, 110]. In general this balancing between the two
energy scales means that there are small errors in the implemented logical operations. If they
accumulate and are not error corrected, they will become a source of decoherence.

Anyon-anyon interactions can also induce topological phase transitions when the anyons
form regular arrays [111–113]. Any scalable architecture for a topological quantum computer
is likely to employ a systematic arrangement of anyons to keep track of them. As a transition
to a different topological phase of matter is the ultimate failure of a topological quantum
computer, it needs to be avoided at all costs. The microscopic conditions for such anyon-anyon
interaction induced phase transitions, particularly those for arrays of localized Majorana zero
modes, have been studied in several works [114–119].

Finite temperature

Finite temperature means that one no longer considers pure states of fixed number of excita-
tions, but mixtures of states corresponding to different number of excitations. In principle the
energy gap ∆ of topologically ordered systems protects the encoded information by suppress-
ing such thermal fluctuations at least as e−

∆
kT . However, even very small weights of thermally

excited states can cause a problem in intrinsic topological states where the excitations are
anyons. Studies on topological quantum memories based on Abelian anyons suggest that any
finite temperature, even if much smaller than the gap, can cause the encoded information to
be lost and this is expected to be an issue also for non-Abelian anyons [120–122]. Any finite
system, and in a laboratory everything is finite, does have a critical threshold temperature.
However, as an extensive amount of anyons is in general needed, such protection in realistic
finite-size systems is unlikely to be sufficient for stability. Promisingly, this may be circum-
vented if the system possesses some mechanism that suppresses the spontaneous creation of
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stray anyons [9, 123–126], but it is unclear whether such schemes are realistic. Experimen-
tally the situation is equally challenging as the energy gaps tend to be small and thus only
formidably low temperatures can be tolerated even for short times.

Regarding the problem of finite temperature, SPT states that require defects to bind anyons
might actually be more stable than intrinsic topological states, since not all defects are ther-
mally excitable (e.g. a small temperature can not cut wires into pieces or create lattice dis-
locations). We defer the discussion of thermal stability in the Majorana zero mode hosting
superconducting nanowires to Section 5.4.

5 Topological quantum computation with superconducting nano-
wires

We turn now to illustrating the steps of topological quantum computation, as outlined in the
previous section, in the context of a microscopic model. As an example we consider Kitaev’s
toy model for a superconducting nanowire [63]. This model gives rise to a 1D superconducting
SPT state where Majorana zero modes are bound at the ends of the wire or at at domain walls
between topological and trivial phases. The Majorana zero modes are for all practical purposes
equivalent to Ising anyons. The technical difference is that the braiding of Majorana modes
bound to defects realizes the R-matrices of Ising anyons only projectively [149], i.e. the overall
phase factors in (21) and (22) are omitted. However, since overall phases are not relevant to
quantum computation, quantum computating with Majorana zero modes proceeds exactly as
outlined in Section 4.

Long before Majorana modes acquired experimental relevance, it was known that quasi-
particles in a two-dimensional system described by localized Majorana modes would exhibit
the braiding statistics of Ising anyons [28,54]. Formally, a Majorana mode is “half” of a com-
plex fermion mode. By this we mean that if f is a fermion operator satisfying { f †, f }= 1, one
can always write

f =
1
2
(γ1 + iγ2) , (28)

where γi = γ
†
i are Hermitian Majorana operators satisfying {γi ,γ j} = 2δi j and γ2

i = 1. If two
Majorana modes, γ1 and γ2, would exist as quasiparticles localised at different positions, then
the occupation f † f = 0, 1 of the complex fermion shared by them would constitute a non-
local degree of freedom. This would precisely correspond to the non-local degree of freedom
of two σ anyons described in Section 18. If the fermionic mode is unoccupied ( f † f = 0),
then the two Majorana modes would behave like the vacuum when brought together, while
if it is occupied ( f † f = 1), then the fusion of two such quasiparticles would leave behind the
fermion ψ.

Writing a complex fermion operator as a linear combination of two Majorana operators
is a mathematical identity, that by no means implies that Majorana modes could actually ap-
pear on their own. They are named after Ettore Majorana, who in 1937 suggested that 3D
fermionic particles that are their own antiparticles could describe neutrinos. Their restriction
to 2D brings about a non-Abelian anyonic behaviour to the wave function that describes them,
which is not present in their 3D counterpart. Such realizations can be met in condensed matter
systems. Pioneering work on p-wave superconductors [54] suggested though that such exotic
2D superconductors might host Majorana modes localized at vortices. Building on this work,
Kitaev proposed a simplified 1D toy model where Majorana modes could appear at the ends
of a superconducting wire [63]. While not having a clear experimental realization at the time,
this model provided the invaluable insight that domain walls can also host Majorana modes.
It took 10 years to discover that Kitaev’s simple model could be physically realized by deposit-
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ing a spin-orbit coupled semiconducting nanowire on top of a normal s-wave superconductor
and subjecting it to suitably oriented magnetic fields [64, 65]. Remarkably, a few years later
experimentalists confirmed this prediction [66–69, 71]. As discussed in Section 2, numerous
microscopically distinct proposals for realizing Majorana modes have since been put forward.
Regardless of the microscopic description, the low energy physics can always be cast in the
form of the original toy model [63].

5.1 Majorana zero modes in a superconducting nanowire

Consider a system of spinless superconducting fermions on a 1D lattice of length L described
by the Hamiltonian

H =
L
∑

j=1

�

−t
�

f †
j f j+1 + f †

j+1 f j

�

−µ
�

f †
j f j −

1
2

�

+
�

∆p f j f j+1 +∆
∗
p f †

j+1 f †
j

�

�

. (29)

Here t is the tunnelling amplitude, µ is the chemical potential and ∆p = |∆p|eiθ is the super-
conducting pairing potential. Following [63], this Hamiltonian for L complex fermions can be
written in terms of 2L Majorana operators. Absorbing the superconducting phase θ into the
definition (28) by writing f j = e−iθ/2(γ2 j−1 + iγ2 j)/2, the Hamiltonian takes the form

H =
i
2

L
∑

j=1

�

−µγ2 j−1γ2 j + (t + |∆p|)γ2 jγ2 j+1 + (−t + |∆p|)γ2 j−1γ2 j+2

�

, (30)

which, as illustrated in Figure 9(a), now describes free Majorana operators on a 1D lattice of
length 2L subjected to nearest and third-nearest neighbour tunneling.

There are two limiting coupling regimes where the ground state of H can be obtained
immediately. When the chemical potential term dominates, we can set |∆p| = t = 0. The
Hamiltonian becomes

H = −
i
2

L
∑

j=1

µγ2 j−1γ2 j = −µ
L
∑

j=1

( f †
j f j −

1
2
), µ� t, |∆p|, (31)

which means that the ground state is given by having a fermion ( f †
j f j = 1) on every site, as

illustrated in Figure 9(b). This state is a product state of fermion modes localized on physical
sites and hence topologically trivial.

The other limiting coupling regime is to have the kinetic term comparable to the pairing
potential and dominating over the chemical potential. Setting t = |∆p| and µ = 0, we obtain
the Hamiltonian

H = i t
L
∑

j=1

γ2 jγ2 j+1 = 2t
L−1
∑

j=1

( f̃ †
j f̃ j −

1
2
), t = |∆p| � µ, (32)

where we have defined a new set of fermionic operators by combining the Majoranas as
f̃ j = e−iθ/2(γ2 j + iγ2 j+1)/2 from different physical sites. As illustrated in Figure 9(b), the
Majorana operators γ1 and γ2L at the edges completely decouple from the Hamiltonian that
now describes interactions only between L−1 complex fermions. The missing fermion can be
described by the operator d = e−iθ/2(γ1 + iγ2L)/2 that is delocalised between the two ends
of the wire. Since [d†d, H] = 0, the ground state in this limit is two-fold degenerate. Both
degenerate states have no localized fermions in the bulk of the system ( f̃ †

j f̃ j = 0), but they

differ by the population of the delocalized fermion mode (d†d = 0, 1). Formally, this mode
can be added to Hamiltonian (32) by assigning zero energy to it. For this reason the edge
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𝑓௜𝑓௜ିଵ 𝑓௜ାଵ

𝛾ଶ௜ିଵ 𝛾ଶ௜

(a)

(c)

Trivial phase (𝜇 > 𝑡):

Topological phase (𝜇 < 𝑡):
𝛾ଵ 𝛾ଶ௅

(b)

Domain wall:
𝜇 > 𝑡 𝜇 < 𝑡

Figure 9: Kitaev’s toy model for a p-wave paired superconducting wire [63]. (a) The original
Hamiltonian (29) in terms of complex fermions f j is defined on a one-dimensional lattice of
L sites. When each complex fermion operator is decomposed into two Majoranas by writing
f j = e−iθ/2(γ2 j−1+ iγ2 j)/2, the Hamiltonian (30) describes free Majorana fermions on a chain
of length 2L. (b) When µ� t, |∆p|, the system is in the trivial phase described by the Hamil-
tonian (31), whose unique ground state has all the Majorana modes paired. In the opposing
limit, the system is in the topological phase where the Majorana operators γ1 and γ2L strongly
decouple from the Hamiltonian (32). The localized end states constitute a single non-local
zero energy fermion mode d = (γ1+ iγ2L)/2 and the ground state is thus two-fold degenerate.
(c) If a part of the wire is in topological phase and the other part in the trivial phase, then the
domain wall separating the phases also binds a localized Majorana mode.

Majorana modes appearing in topological wires are also called Majorana zero modes. As op-
posed to the trivial state in the t = |∆p|= 0 limit, we call this state topological since it exhibits
the defining characteristic of an SPT state: For open boundary conditions the ground state ex-
hibits degeneracy that arises from edge states (here the two Majorana zero modes due to the
delocalized fermion mode), while for periodic boundary conditions the ground state is unique
(the fermion mode d is no longer delocalized and has finite energy). More formally, this state
is also characterised by a non-trivial topological invariant [63].

The coupling regimes t = |∆p| = 0 or µ = 0 are limiting cases that demonstrate that the
Hamiltonian (29) for the spinless superdonducting wire supports two distinct phases of matter,
one of which is topological with Majorana modes appearing on the wire ends. These wire
ends should be viewed as defects, that bind the anyons (even if the system is in the topological
phase, for periodic boundary conditions there are no localized Majorana modes). Of course,
these idealized limits are never realized in a realistic setting, but that is not necessary either.
As two topologically distinct gapped states, they must both be part of extended phases in the
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parameter space. The Hamiltonian can be solved exactly for all values of the parameters via
Fourier transform followed by a Bogoliubov transformation [63], which gives a phase diagram
where the topological and trivial phase are separated by a phase transition at t = |µ| (we set
here t = |∆p|). The topological phase with Majorana modes at the wire ends thus persists as
long as t > |µ|.

The consequence of being away from the idealized µ= 0 point is that the Majorana modes
will be exponentially localised at the wire ends rather than being positioned on a single site.
The operators describing them at the left (L) and right (R) ends of the wire take the general
form

ΓL/R =
2L
∑

j=1

α
L/R
j γ j . (33)

The normalised amplitudes decay as |αL
j | ∝ e− j/ξ and |αR

j | ∝ e−(2L− j)/ξ, where ξ∝ ∆−1 is
the coherence length and ∆ the spectral gap, that depends on the precise values of t and µ,
that separates the degenerate ground states from the rest of the spectrum. This means that
for finite wires of length L, the wave functions of the two Majoranas will in general overlap,
which in turn results in a finite energy splitting ∆E ∝ e−L/ξ between the two ground states.
This splitting is negligible for long wires. Nevertheless, it serves as an explicit reminder that
topologically ordered phases emerge always in finite microscopic systems. The anyon model
provides an exact effective low energy description of the system only in an idealised limit
of infinite system size and energy gap. The anyons (the Majorana modes at the wire ends)
are collective quasiparticle states of underlying more fundamental particles (electrons in the
wire), that have also microscopic dynamics of their own. Indeed, such degeneracy lifting due
to finite wave function overlap, that can be viewed as an anyon-anyon interaction as discussed
earlier, has been predicted in microscopically distinct nanowires [145–148] and subsequently
experimentally observed [70].

5.2 The Majorana qubit

Recall that in Section 3.4 we discussed the Ising anyon model that consists of three particles 1,
ψ and σ obeying the fusion rules (18). If the two localised Majorana modes γ1 and γ2L at the
ends of the wire can be viewed as a pair of σ anyons, how should one view the vacuum 1 and
the fermionψ? Since 1 denotes trivial topological charge, it is clear that it should be identified
with the ground state of the topological phase in the absence of any excitations or Majorana
zero modes. The intrinsic excitations of the system are fermionic quasiparticles, created by the
operators f̃ †

j appearing in the diagonalized spectrum (32). These should be identified with the
ψ particles of the Ising anyon model, which gives a natural interpretation to the fusion rule
ψ×ψ = 1. As with any superconducting system, the ground state is a condensate of Cooper
pairs of fermions and the elementary excitations are the fermions obtained by breaking the
pairs up at the energy cost of 2∆, i.e. twice the energy gap due to ψ particles always coming
in pairs. The fusion rule just states that two fermions can pair up to form a Cooper pair that
vanishes into the condensate, thus becoming part of the ground state 1. This also means that
only the parity of the ψ fermions is conserved. Indeed, the only exact global symmetry of the
Hamiltonian (29) is fermion parity described by the operator P = exp(iπ

∑

j f †
j f j).

With these identifications in mind, we now assume that the system contains only Majorana
zero modes corresponding to σ anyons, but no fermions ψ. When only two Majorana modes
are present, the occupation of the non-local fermion shared by them is described by the opera-
tor d†d = (1+ iγ1γ2L)/2. The state with eigenvalue of d†d being 0 can then be identified with
the fusion channel σ×σ→ 1, while the state with eigenvalue 1 corresponds to σ×σ→ ψ.
As a result, the two degenerate ground states in the topological phase can be identified with
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The anyon worldlines

time

Transport at junction

(i)

(ii)

(iii)

Figure 10: Braiding Majorana modes at a T-junction of superconducting nanowires, where the
chemical potential µ in the Hamiltonian (29) is locally tunable. Dashed lines denote domains
in the trivial phase (|µ| > t), solid lines domains in the topological phase (|µ| < t) and the
dots denote the locations of Majorana zero modes. In the even fermion parity sector (P = 1)
the two-fold degenerate ground state of this system is spanned by the states (35) and sepa-
rated from excited states containing an even number ψ excitations by an energy gap of 2∆.
By locally tuning the chemical potential µ along the wires, one can extend or contract the
topological domains and thereby move the domain walls binding the Majorana modes. The
shown sequence (i)-(iii) results in the Majorana modes of different topological domains to be
exchanged such that their worldlines are braided. When done adiabatically, the non-Abelian
Berry phase (5) for this exhange evaluates to the braid matrix R23 of the Ising anyon model,
as discussed in Section 4.3.

the two fusion channel states

iγ1γ2L |σσ; 1〉= −|σσ; 1〉 , iγ1γ2L |σσ;ψ〉= + |σσ;ψ〉 , (34)

where |σσ;ψ〉 = d† |σσ; 1〉. However, as we already discussed in Section 4.1, these two
states cannot form a basis for a qubit, because they belong to differentψ-parity sectors. In the
context of the superconducting wire this is seen be studying the action of the fermion parity
operator P on the two states (34). On them it acts as P = iγ1γ2L , which means they belong
to different parity sectors and thus one can not form coherent superpositions of them.

To form a qubit one needs two wires hosting four Majorana zero modes [150–152]. Such
system has a ground state manifold that contains two states belonging to each parity sector.
Choosing the even parity sector (P = 1), the computational basis states can be identified with
the fusion channel states (19) as

|0〉 ≡ |σσ; 1〉 |σσ; 1〉 , |1〉 ≡ |σσ;ψ〉 |σσ;ψ〉 , (35)

where the two kets now refer to the fusion channel states of the two wires. One can thus
view every wire with Majorana end states as a pair of σ anyons created from the vacuum. By
adding a third wire, the computational basis of two qubits could be defined precisely as (23),
as discussed in Section 4.1.
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5.3 Manipulating and reading out the Majorana qubit

The fact that two distinct Majorana wires are required to encode a qubit might seem like
posing a problem for manipulating it via braiding. As braiding involves moving the anyons
around each other, the obvious problem is that the Majorana modes are stuck at the ends
of disjoint wires whose position is fixed. However, a wire end is nothing but a domain wall
between the topological phase and the vacuum, which is equivalent to the trivial phase. Thus
Majorana modes exist also at the domain walls that separate the topological phase (a region
where t > |µ|) from the trivial phase (a region where t < |µ|), in the same physical system,
as illustrated in Figure 9(c). By locally controlling, say, the chemical potential µ by gating
the wire, even a single physical wire can realize many sections that each contribute a single
Majorana wire. By adiabatically changing the chemical potential locally, the domain walls,
and thus the Majorana modes bound to them, can in principle be moved along the wires.

To perform braiding, consider a T-junction of these wires, as illustrated in Figure 10. The
junction structure enables exchanging Majorana modes both from same and different topo-
logical domains and thereby implement via braiding the single qubit Clifford operations (24)
discussed in Section 4.2. While the explicit calculation is beyond the scope of this introduc-
tion, Alicea et al. [133] have shown that when such exchanges are performed by adiabatically
tuning the chemical potential along the wires, the resulting non-Abelian Berry phase (5) in the
two-dimensional ground state manifold spanned by the states (35) indeed coincides, up to an
overall phase, with the braid matrices of the Ising anyon model. The π

8 -phase gate, that is re-
quired for universality, can similarly be implemented by locally tuning the chemical potential to
bring two domain walls nearby and letting them dephase for a precise time according to (27).
To promote the T-junction into a topological quantum computer, more Majorana qubits can
be realized and manipulated in extended arrays of junctions where many different sections
are either in the trivial or in the topological phase. The realization of such wire arrays is a
challenge on itself, but promisingly there is both theoretical [153,154] and even experimental
evidence [155] for their feasibility.

Moving anyons around by manipulating the chemical potential is a direct, but not the only
method to implement braiding evolutions. In fact, since tuning the chemical potential involves
quenching the system locally into and out of the topological phase to move the domain walls, it
can result in unwanted excitations that are sources of error [156,157]. To circumvent this, sev-
eral more desirable schemes have been devised to implement effective braiding evolutions that
do not require actually moving the anyons around. One promising scheme involves switching
domains of the wires between Josephson energy and charging energy dominated regimes en-
abling Majorana modes to jump between different domain walls without the need of precise
local control [158–161]. A blueprint for implementing a topological quantum computer based
on such ideas can be found in [162]. An alternative is the so called measurement-only topo-
logical quantum computation, where non-destructive measurements of anyon charges have
been shown to simulate arbitrary braid evolutions [163, 164]. A blueprint to implement this
scheme with Majorana zero modes in superconducting wires has been put forward in [165].

Assuming that the braiding evolutions can be implemented by some means, the final step of
a topological quantum computation is the read out, as discussed in Section 4.3. As can be seen
from the basis states (35), to measure the Majorana qubit in the Z-basis, one needs to measure
the fermionic population of either of the two Majorana pairs constituting the qubit. This can
be performed by adiabatically bringing the Majorana modes close to each other by slowly
shrinking the topological domain they belong to. When they are superposed, fusion takes place
and the state of the system becomes locally either the vacuum 1 or the fermion ψ depending
on the occupation d†d of the non-local fermion mode. Since ψ is a massive excitation, there
is a relative energy difference of ∆ between these two alternatives. Detecting this shift in
the energy of the system after fusing the Majorana modes amounts to performing a projective
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measurement on the qubit. Likewise, as also discussed in Section 4.3, a measurement in the
X -basis can be similarly implemented by fusing Majorana modes from different topological
domains and detecting the shift in the energy of the system. For details on how these changes
in energy can be detected in the microscopic architecture, we refer the interested reader to
[162,165].

5.4 Challenges with Majorana-based topological quantum computation

In Section 4.4 we discussed general challenges that can affect topological quantum computa-
tion. Regarding the presence of unwanted anyons, these can appear in Majorana wires due
to disorder. Like domain walls can be moved by tuning chemical potential, disorder along
the wire, exhibited by a locally random chemical potential, can cause parts of the wire to be
accidentally in either the topological or the trivial phase. This causes additional domain walls
along the wire that will host additional unaccounted Majorana modes [166, 167]. These can
cause leakage out of the computational space, but encouragingly this effect can be mitigated
when employing Josephson-charging energy switching braiding protocols [168].

Majorana-based schemes can also suffer from the leakage to an external reservoir. The
Majorana qubit is protected by the fermion parity that is exact in a closed system [169]. How-
ever, the physical schemes to realize Majorana wires require depositing the spin-orbit coupled
nanowires on top of an s-wave superconductor [59, 64, 65] from which Cooper pairs tunnel
into the wire inducing superconductivity. If Cooper pairs can tunnel from the wire, so can Bo-
goliubov quasiparticles. In other words, the s-wave superconductor can also serve as a reser-
voir of ψ particles breaking the parity conservation. This sets limits on time-scales how fast
the quantum computation needs to be performed before such poisoning occurs [170–173].
Encouragingly, heterostructures for topological nanowires exhibit long poisoning times that
should make such errors manageable [174,175].

Regarding the question of finite temperature, the engineered p-wave superconductors may
be more robust than intrinsically topologically ordered states. Since Majorana modes are
bound to domain walls, they are not spontaneously created by thermal fluctuations. The en-
ergy gap protects the localized states on the domain walls from extended states, which suggests
that protection by the energy gap should be sufficient. Indeed, studies show that Majorana
qubits do tolerate finite temperatures [176, 177], which should thus not pose a fundamental
obstacle.

6 Outlook

We have seen that the key ingredients for performing topological quantum computation are:
(i) To have access to a system supporting non-Abelian anyons, (ii) to be able to adiabatically
move them around each other or simulate such evolutions in a topologically protected man-
ner and (iii) to be able measure their fusion channels. If one were to have access to Fibonacci
anyons, then these steps would be sufficient to implement universal quantum computation.
Unfortunately, the theoretically proposed states that support these particular types of anyons
are very fragile and thus experimentally challenging. Thus the research has focused on sim-
pler types of anyons known as Ising anyons. Their free-fermion counterparts – the Majorana
zero modes – are strongly believed to exist, with experimental support in heterostructures
of spin-orbit coupled nanowires and normal s-wave superconductors [66–69, 71]. While not
universal for quantum computation by purely topological means, they serve as a test bed for
the key selling points of topological quantum computation – non-local encoding, protection by
energy gap and quantum gates by braiding. If additional non-topological operations are used,
then Majorana fermions are able to implement arbitrary quantum gates. Considering that the
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existence of clear hard energy gaps [178] and the exponential localization of the Majorana end
states [70] has already been experimentally verified, there is much hope that the proposed ex-
periments on the braiding properties [133, 134, 162] will also be carried out successfully in
these systems.

While being very encouraging, it should be kept in mind that Majorana modes do not pro-
vide the full power of topologically protected quantum computation nor is any anyon based
scheme a panacea for all the troubles of quantum computation. The hardware level protec-
tion they provide is highly desirable, but they all come with their own shortcomings to over-
come. Still, considering the open problems faced by non-topological schemes and the rapid
progress in preparing and controlling topological states of matter hosting Majorana modes,
overcoming these challenges is a fair price to pay for the robustness that comes with topo-
logical quantum computation. Ways to go beyond Majorana modes already exist based on
the same constructions. Replacing the spin-orbit coupled semiconductor nanowires with edge
states of Abelian fractional quantum Hall states can realize parafermion modes that allow for a
larger, although still non-universal gate set [179,180]. While the Read-Rezayi fractional quan-
tum Hall state [37] hosting Fibonacci anyons might just be too fragile, it has been proposed
that collective states of parafermion modes can give rise to an analogous state that supports
the Fibonacci anyons [96]. Since Abelian fractional quantum Hall states are well established
experimentally, it is not too far fetched to imagine that the current technology can be pushed
to realize parafermion modes and, stretching the imagination a bit further, perhaps even Fi-
bonacci anyons. Another exotic idea is to employ superconducting nanowires to engineer
intrinsic topological order that supports Ising anyons and employ special defects to promote
the Ising anyons for universal quantum computation by topological means [181].

A more realistic route might be some midway that enjoys some of the benefits of topological
quantum information storing and processing, while not being fully a topological quantum com-
puter as described here. One such scheme is to construct surface codes that support Abelian
anyons from Majorana wire based qubits and design fault-tolerant protocols to promote such
systems into universal quantum computers [182]. Another is to couple Majorana qubits to
non-topological spin qubits, which enables to realize a universal gate set [183]. Whatever the
route taken, the general principles underlying any topological scheme will be based on the
basic operations described in this review.
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