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Abstract

One of the most fundamental properties of an interacting electron system is its
frequency- and wave-vector-dependent density response function, χ(q,ω). The imagi-
nary part, χ ′′(q,ω), defines the fundamental bosonic charge excitations of the system,
exhibiting peaks wherever collective modes are present. χ quantifies the electronic com-
pressibility of a material, its response to external fields, its ability to screen charge,
and its tendency to form charge density waves. Unfortunately, there has never been a
fully momentum-resolved means to measure χ(q,ω) at the meV energy scale relevant
to modern electronic materials. Here, we demonstrate a way to measure χ with quanti-
tative momentum resolution by applying alignment techniques from x-ray and neutron
scattering to surface high-resolution electron energy-loss spectroscopy (HR-EELS). This
approach, which we refer to here as “M-EELS”, allows direct measurement of χ ′′(q,ω)
with meV resolution while controlling the momentum with an accuracy better than a
percent of a typical Brillouin zone. We apply this technique to finite-q excitations in the
optimally-doped high temperature superconductor, Bi2Sr2CaCu2O8+x (Bi2212), which
exhibits several phonons potentially relevant to dispersion anomalies observed in ARPES
and STM experiments. Our study defines a path to studying the long-sought collective
charge modes in quantum materials at the meV scale and with full momentum control.
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1 Introduction

An interacting electron system can often be described, at low energy scales, in terms of a set
of weakly interacting, emergent particles [1, 2]. Such particles are usually either fermions,
referred to as quasiparticles, or bosons, referred to as collective modes, though fractional or
nonabelian particles may also emerge. The field of “quantum materials" might be defined as
studies of these excitations at energy scales less than a few times room temperature, say, below
100 meV.

Outstanding experimental probes exist for studying both the quasiparticles and the spin
collective modes. The former may be studied using angle-resolved photoemission (ARPES),
which measures the one-electron spectral function, A(k,ω), with meV-energy resolution and
momentum accuracy of less than a percent of a Brillouin zone [3]. Quasiparticles may also
be studied using scanning tunneling microscopy (STM), which measures a real-space spectral
function that can be related to ARPES via Fourier transform coupled with models of quasipar-
ticle scattering [4]. Spin collective modes may be studied with inelastic neutron scattering,
traditionally using a triple-axis spectrometer [5], whose energy and momentum resolutions
are similar to ARPES.

Surprisingly, there has never been an equivalent momentum-resolved probe of the charge
collective modes in materials. The three commonly used finite-wavevector probes are neu-
trons, electrons and x-rays. As explained in Section 2, none of these techniques—as currently
practiced—probes valence band charge excitations with both meV resolution and quantitative
control over the momentum, q.

Here, we demonstrate a strategy for measuring meV charge collective modes using mo-
mentum-resolved, low-energy electron energy-loss spectroscopy (M-EELS). Our strategy is to
apply angular alignment techniques from x-ray and neutron scattering [5,6] to reflection high-
resolution EELS (HR-EELS) [7, 8], which is a meV-resolved probe of the collective charge ex-
citations of a surface. We will show that it is possible, in this manner, to measure the dy-
namic charge response of a material, χ ′′(q,ω), with energy resolution close to 1 meV while
controlling the momentum to an accuracy better than a percent of a typical Brillouin zone.
As a case study, we apply M-EELS to the optimally doped high-temperature suprconductor,

2

https://scipost.org
https://scipost.org/SciPostPhys.3.4.026


SciPost Phys. 3, 026 (2017)

Bi2Sr2CaCu2O8+x (Bi2212), in which we observe collective modes relevant to the dispersion
anomalies observed in ARPES [9, 10] and STM [11] experiments, among other features. We
argue that M-EELS will play a central role in spectroscopic studies of quantum materials in the
coming decades.

This article is organized as follows. In Section 2, we explain the limitations of current
momentum-resolved scattering techniques and why M-EELS, at the moment, is the best ap-
proach to studying the charge excitations at the meV scale. Section 3 describes our exper-
imental approach, which combines alignment techniques from x-ray and neutron scattering
with surface HR-EELS using cylindrical analyzers. In Section 4, we generalize the multiple
scattering theory of Mills and co-workers [12, 13] and show that the M-EELS cross section is
proportional to the dynamic charge response, χ ′′(q,ω). Section 5 validates this cross section
by comparing M-EELS studies of Bi2212 at q= 0 to results from infrared spectroscopy. Section
6 demonstrates the momentum capabilities of M-EELS with elastic and inelastic maps of the
Brillouin zone, in which static features such as the well-known structural supermodulation
are visible [3]. Section 7 demonstrates a way to reconstruct the full dynamic susceptibility,
χ(q,ω), from M-EELS data. Section 8 uses these results to analyze the dispersion anomalies
(or “kinks") observed in ARPES experiments [9,10]. Section 9 summarizes the future prospects
for M-EELS and the role it may play in spectroscopic studies of quantum materials in the future.

2 Why M-EELS?

Emergent particles in a many-electron system, in their simplest form, are described by three
basic quantities [1,2]. The first, characterizing the fermions, is the one-electron Green’s func-
tion,

G(r, r′, t − t ′) = −i



{ψ†(r, t),ψ(r′, t ′)}
�

θ (t − t ′)/ħh,

which represents the probability that an electron placed at spacetime location (r, t) will prop-
agate to (r′, t ′). G quantifies the quasiparticle band structure, lifetimes, transport coefficients,
etc. The second, characterizing bosons with charge character, is the dynamic density response

χρρ(r, r′, t − t ′) = −i



[ρ̂(r, t), ρ̂(r′, t ′)]
�

θ (t − t ′)/ħh,

which represents the probability that a disturbance in the charge density at (r, t) propagates to
(r′, t ′). χρρ characterizes the charge collective modes, such as plasmons. The third quantity
is the dynamic spin response,

χSS(r, r′, t − t ′) = −i



[Ŝ(r, t), Ŝ(r′, t ′)]
�

θ (t − t ′)/ħh,

which characterizes spin collective modes, such as magnons.
We currently have outstanding, meV-resolved probes of both G and χSS . Angle-

resolved photoemission spectroscopy (ARPES) measures the one-electron spectral
function, A(k,ω) = −Im[G(k,k,ω)]/π, where G(k,k′,ω) is the Fourier transform of
G(r, r′, t − t ′), probing the fermion quasiparticles with extraordinary energy and mo-
mentum resolution [3]. The fermions can also be measured in real space using scan-
ning tunneling microscopy (STM), which measures the real-space spectral function
A(r,ω) = −Im[G(r, r,ω)]/π [4].1 Inelastic neutron scattering measures the dynamic
spin response function, χ ′′SS(q,ω) = Im[χSS(q,q,ω)], where χSS(q,q′,ω) is the Fourier
transform of χSS(r, r′, t − t ′) [14], probing the spin collective modes with similar resolution.

1Note that ARPES and STM are not Fourier transforms of one another, but may be related using models of
quasiparticle scattering [4].
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Unfortunately, there is no analogous probe of χρρ, at least at the meV scale.
It is important to pause here and review the reasons why. What is needed is a
momentum-resolved scattering technique that measures the dynamic charge response
function, χ ′′ρρ(q,ω) = Im[χρρ(q,q,ω)], where χρρ(q,q′,ω) is the Fourier transform of
χρρ(r, r′, t − t ′). The three options for such probes are neutrons, electrons, and x-rays.

In the case of inelastic neutron scattering, the probe particle is electrically neutral and
does not couple to charge excitations. Because of the nuclear cross section, neutrons can, of
course, be used to study lattice excitations (phonons), which involve explicit displacements of
the nuclear positions [5]. But electronic excitations, such as plasmons, cannot be studied with
neutron techniques.

A more promising approach is inelastic electron scattering or “electron energy-loss spec-
troscopy" (EELS), which directly couples to charge exitations. The EELS cross section is, in
the limit of zero temperature, given by the dielectric loss function, −Im[1/ε(q,ω)], which is
proportional to χ ′′ρρ(q,ω) [2]. EELS experiments may be carried out either in transmission
or reflection geometry. The former requires high-energy (∼ 105 eV) electrons and has been
done using both dedicated instruments [15,16] and energy filters integrated with a scanning
transmission electron microscope (STEM) [17,18]. The latter is usually done using low-energy
(∼ 100 eV) electrons and is normally used for surface science applications [7,8].

The problem with EELS is that meV energy resolution has not yet been demonstrated in an
instrument that also provides quantitative control over the momentum transfer, q. Dedicated
transmission EELS setups have excellent momentum resolution [15, 16], but have achieved
at best 80 meV energy resolution [19] which, because of interference from the zero-loss line,
makes them unsuitable for studying excitations in the sub-100 meV range. STEM instruments
have achieved 18 meV resolution using Ω-filters, but these setups are currently momentum-
integrating, and Lorentzian tails of the elastic line obscure excitations at low energy [17,18].
Surface EELS instruments can achieve energy resolution of 1 meV or better [7,8], but have not
been implemented in a manner that allows the momentum transfer to be determined with high
accuracy (see below and Section 3). Some variant on high-energy EELS employing aberration
correctors seems likely to be the best long-term strategy for studying meV charge collective
modes. But these techniques are still a work in progress.

The last option is inelastic x-ray scattering (IXS). Carried out at 3rd-generation synchrotron
facilities, IXS techniques simultaneously achieve high momentum resolution and sub-meV en-
ergy resolution using backscattering Si analyzers [20]. While IXS should, in principle, be ca-
pable of studying valence charge excitations, it is not practical for doing so, for the following
subtle reason. The x-ray cross section is proportional to χ ′′nn(q,ω) = Im[χnn(q,q,ω)], where
χnn(q,q′,ω) is the Fourier transform of the propagator for the electron density [21],

χnn(r, r′, t − t ′) = −i



[n̂(r, t), n̂(r′, t ′)]
�

/ħh.

Unfortunately, the quantity of interest in a real material is not the electron density propagator,
χnn, but the charge density propagator, χρρ. These two quantities are not the same, because
the positively charged nucleii in a solid contribute to the charge density, ρ, but not to the
electron density, n. For example, the integrated charge density of an electrically neutral atom
is zero, while its integrated electron density is equal to Z , the number of electrons, the vast
majority of which reside in core states [22].

The types of excitations that contribute to χρρ and χnn are therefore fundamentally dif-
ferent. χρρ reveals excitations that modulate the charge density of the system, e.g. valence
plasmons and, in the case of ionic materials, phonons. Neutral excitations, such as phonons in
covalent solids like Si or Ge, modulate the charge density very little and contribute to χρρ only
to the extent that they modulate the valence electron density. χnn, on the other hand, exhibits
excitations that modulate the electron density. Because most of the electrons in a solid reside

4

https://scipost.org
https://scipost.org/SciPostPhys.3.4.026


SciPost Phys. 3, 026 (2017)

in core states, χnn is overwhelmingly dominated by phonons, which displace the atomic cores.
Valence excitations that leave the atomic positions fixed, such as plasmons, contribute to χnn
but are weaker by a factor of 1/Z .

In practice, what this means is that meV-resolved IXS, while sensitive to charge excitations
in principle, in practice is essentially a phonon technique. The sum rules on the IXS response
function χ ′′nn(q,ω), in cases of interest, are mostly exhausted by the lattice excitations. Elec-
tronic excitations in the spectra are swamped by the lattice modes, which are stronger by a
factor of Z . For this reason, meV-resolved IXS has been extraordinarily successful at mapping
phonon dispersion relations [20, 23], even in crystals that are too small to be studied with
neutron techniques. But it is an inefficient way to study the valence charge excitations of
fundamental interest in a many-electron system.

For this reason, x-ray researchers have turned to resonance techniques. By tuning the x-
ray beam energy to a core absorption edge, scattering from valence excitations can be greatly
enhanced, an approach referred to as resonant inelastic x-ray scattering or “RIXS" [24, 25].
Using this approach, researchers have been able to detect valence excitations not visible with
nonresonant IXS [26,27]. Despite steady improvements, however, the best resolution achieved
with RIXS is still only about ∆E ∼ 40 meV [28], and fundamental questions remain about
whether the RIXS cross section can be related to a well-defined response function [25]. In
the long run, RIXS is sure to make a major impact on our understanding of the collective
excitations in materials, but at the moment it is not practical for studying the collective modes
at the sub-100 meV scale.

In summary, we currently have no truly momentum-resolved way of measuring one of the
most fundamental properties of a many-body system, χρρ(q,ω). In addition to characterizing
charge collective modes, χρρ(q,ω) is the charge susceptibility of the system, which quantifies
its response to external fields [1, 2], as well as its tendency to exhibit charge order [29]. In
the limit q → 0 and ω → 0, χρρ(q,ω) also quantifies the electronic compressibility of the
system [1,2]. The imaginary part, χ ′′ρρ(q,ω), is also related to the inverse dielectric or “loss"
function of the system, −Im[1/ε(q,ω)], providing information about the screening properties
at q 6= 0. The absence of an experimental probe of the density response means that these
utterly basic phenomena are unknown for the vast majority of materials.

Here, we demonstrate that the dynamic charge response of a material, and hence the
valence charge excitations, can be measured with both meV resolution and quantitative mo-
mentum control using by applying alignment techniques from x-ray and neutron scattering to
reflection high-resolution EELS (HR-EELS). We refer to this approach as “M-EELS". In this tech-
nique, a monochromatic beam of low-energy electrons (10 eV< E < 200 eV) is scattered from
the surface of a material in ultrahigh vacuum [7]. The scattered electrons are detected using
an electrostatic energy analyzer. Using aberration-corrected cylindrical optics, an energy reso-
lution better than 0.5 meV has been achieved [30]. Historically, HR-EELS has been thought of
as a surface science technique, often for studying vibrations of molecular adsorbates [31], and
has not been applied widely in the field of quantum materials. But the information it provides
should directly complement that from ARPES and STM, which are also surface techniques.

Using HR-EELS for momentum-resolved studies of collective modes presents two chal-
lenges. The first is multiple-scattering. In the case of transmission EELS, the single-scattering
approximation is often valid and the Born cross section is directly proportional to χ ′′ρρ(q,ω).
In the case of reflection EELS, strong interaction with the sample surface causes the electrons
to scatter many times before reaching the detector. Fortunately, as shown in the early 1970’s
by Mills and co-workers [12, 13], this multiple scattering problem is soluble: The amplitude
for elastic scattering of low-energy electrons is much larger than that for inelastic scattering,
so the surface EELS problem may be solved using the distorted wave Born approximation
(DWBA) [32]. In Section 4, we will show that Mills’ solution implies that reflection EELS
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Figure 1: Schematic showing the M-EELS scattering geometry. Here, ki and ks are the mo-
menta of the incident and scattered electron, respectively, and Q is the momentum transfer,
the in-plane component of which, q= (qx , qy), is the quantity of interest in M-EELS. The out-
of-plane momentum components, kz

i and kz
s , enter the scattering matrix elements in a critical

way (see Section 4 and Appendix A).

measures the density-density correlation function of a surface, S(q,ω), which is directly pro-
portional to χ ′′ρρ(q,ω) via the fluctuation-dissipation theorem.

The second complication is that HR-EELS experiments have not been done in a manner
that allows quantitative control over the momentum transfer, q (Fig. 1). In true, wave-vector
resolved techniques, such as neutron and x-ray scattering [5], the sample is mounted on a
diffractometer whose multiple axes of rotation are aligned to intersect at a single point to
a precision of a few tens of microns. The alignment errors are characterized by a volume
called the “sphere of confusion," which sets the overall momentum accuracy of the instrument.
This volume is centered on the probe beam using a set of translations that is separate from
those used to align the rotation axes. Using a third set of translations mounted on top of the
goniometer stack, the sample is placed in this same location, and oriented by measuring the
elastic scattering from at least two, noncolinear Bragg reflections of the crystal. The angles of
these reflections are used to construct an orientation matrix relating the diffractometer motions
to momentum space, enabling momenta to be indexed with a precision of thousandths of a
reciprocal lattice unit [6]. Without such alignment, it is still possible to observe dispersion
effects simply by rotating the sample [33]. But phenomena requiring accurate momentum
definition, such as studies of the critical fluctuations near a phase transition or the Goldstone
modes of an ordered phase [34,35], require a more sophisticated approach.

Here, we describe a strategy for combining meV-resolution HR-EELS techniques with
single-crystal alignment techniques widely used in x-ray and neutron scattering. This hybrid
approach allows direct measurement of the dynamic charge response function, χ ′′ρρ(q,ω), and
hence studies of the long-sought meV charge collective modes in solids, with meV resolution
and momentum accuracy better than one percent of a typical Brillouin zone. In the ensuing
discussion we will drop the subscripts and refer to the charge response function simply by its
conventional name, χ ′′(q,ω).

3 Experimental approach

There are three practical ways one might approach implementing an M-EELS experiment.
The first is to use a single-point, aberration-corrected Ibach spectrometer [7], widely used
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in surface science, mating it to a multi-axis sample goniometer and control system with the
degrees of freedom necessary to mimic a triple-axis spectrometer used for inelastic neutron or
x-ray scattering [5]. The advantages of this approach are that high resolution, ∆E ∼ 0.5 meV,
has already been demonstrated [30], and that alignment and data collection protocols from
inelastic neutron scattering can be implemented in a straight-forward way. The disadvantage
of this approach is that data collection is slow, as the spectrometer samples only one (q,ω)
point at a time.

The second approach is to use a variant on an Ibach spectrometer that provides parallel
energy detection, i.e., a cylindrical analyzer with a position-sensitive detector [36]. This ap-
proach is faster, in principle, since a full energy spectrum may be collected in parallel. But
aberration-free focusing combined with high throughput is more challenging to achieve in the
analyzer in this configuration.

The third approach is to combine an Ibach-type electron gun [7] with an ARPES hemi-
spherical analyzer [37, 38]. This approach provides, in principle, the fastest data collection
rate, since it samples a complete wedge of momentum and energy space in parallel. The dis-
advantage is experimental complexity: In triple axis spectroscopy, the momentum transfer,
q, is quantified by precisely measuring the angle between the scattered electrons and the di-
rect beam. Reflection EELS measurements must, however, be carried out at a scattering angle
greater than ∼ 60o, so that appreciable in-plane momenta can be reached without horizon
problems from the sample surface. The angular acceptance of a hemispherical analyzer is typ-
ically only about 30o, so the incident and scattered electrons cannot both be measured in a
fixed experimental geometry. The electron gun itself must, therefore, be placed on a rotation
stage [37], so the angle between the beam and the analyzer can be adjusted, introducing many
alignment complications as well as significantly elevated cost compared to other approaches.

While the hemispherical approach has been implemented before [37, 38], we focused on
the use of cylindrical analyzers, evaluating both single-point and parallel detection schemes.
On the basis of stability, reproducibility, cleanliness of the elastic line (i.e., compactness of the
tails of the resolution function), and throughput, we found the best data were provided by
the single-point approach, despite its slow data collection speed. It is this approach that we
describe here.

Our setup is based on a commercially available, aberration-corrected, surface HR-EELS
spectrometer with a double-pass monochromator and single-pass analyzer, whose ultimate
resolution is∼ 1 meV. The analyzer angle rotation (called “two-theta") was modified to reduce
mechanical backlash and actuated with a stepper motor. The spectrometer resides inside a
magnetically shielded, ultrahigh vacuum (UHV) chamber pumped with a cryopump and a
LN2-cooled titanium sublimation pump (TSP), exhibiting a base pressure of 5×10−11 torr and
a residual field at the sample position of ∼ 3 mG. The spectrometer is typically run at 4 meV
resolution, which provides a direct-beam current of 140 pA at the detector.

This system is mated to a custom, low-temperature sample goniometer consisting of a
differentially-pumped rotary seal, which acts as the primary sample rotation (called “theta"),
and two independent sets of XY translations—one below and one above the seal. The former
provides the motions needed to align the axis of rotation of theta to that of two-theta, and
the latter allows placement of the sample in this position. An out-of-plane (“phi") rotation
is achieved using a 360o piezo rotator. Two cameras oriented at 90o vantage points monitor
the sample through holes in the magnetic lining, facilitating alignment (see below). Cooling is
achieved using a standard He flow cryostat connected to the sample via a set of e-beam-welded
Cu braids, providing a base temperature of 17.5 K without radiation shields. With the braids
in place, the range of motion of phi is limited to 100o. Surface preparation is carried out in
a separate chamber equipped with a LEED system and annealing stage, though most surfaces
are prepared simply by cleaving.
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True momentum space scanning is enabled by a custom control system based on SPEC, a
crystal orientation package commonly used on synchrotron beamlines. The vendor-supplied
control system was replaced by a programmable microcontroller that mediates communica-
tions between the host and the voltage box of the EELS, enabling energy and momentum
scanning via coordinated control of the goniometer angles, scattering angle, and lens volt-
ages.

Proper alignment of the rotations and sample orientation is crucial for momentum-resolved
experiments. The beam generated by the electron gun was aligned by the manufacturer to
within 100 µm of the axis of rotation of two-theta, which is adequate for momentum studies
of samples ∼ 0.3 mm or larger. The challenge is to align the rotation axis of theta, as well
as the sample itself, to this point. This is done by the following procedure. First, the zero of
two-theta is set by scanning the detector through the direct beam. Next, using the XY sample
motions, a reference sample is translated into the center of rotation of theta by viewing it
from the video cameras (a flat, cleaved graphite crystal works well for alignment purposes).
This sample is then lowered into the spectrometer and the specular beam reflected into the
analyzer. The theta angle of this reflection is then optimized for a series of two-theta values
over the range [0o, 70o]. If the axes are perfectly centered, a plot of theta vs. two-theta will
form a line with slope 1/2. If the axes are misaligned, this plot will exhibit some curvature,
quantified by a quadratic term in a polynomial fit. Using the second set of XY translations, the
rotary seal is translated parallel to the beam until this quadratic component is negligible, i.e.,
the curve is linear to within the angular resolution of the instrument, which is∼ 0.1o, at which
point the axes may be considered centered. Once this procedure is complete, the material of
interest can be aligned simply by placing it in the center of rotation of theta using the cameras.

After centering, the orientation of the crystal axes with respect to the goniometer angles
still must be determined. The specular reflection is often not suitable for this purpose, since
the cleavage surface may not be perfectly flat. Running the analyzer in zero-loss mode to select
the elastic scattering, the crystal is rotated to identify two, noncollinear Bragg reflections of the
surface, typically (1,0) and (0,1) (note that momenta can be indexed using two Miller indices,
(H, K), since momentum in the direction perpendicular to the surface is not conserved). These
two reflections are then used to define the orientation matrix [6], at which point the system is
ready for experiments. In this article, momenta will be denoted as illustrated in Fig. 1.

Once the above alignment steps have been completed, the momentum performance of
an M-EELS experiment is quantified by two figures of merit: the momentum accuracy and
resolution. The former describes the reliability with which q can be positioned in the Brillouin
zone, and is determined by the size of the sphere of the confusion. The latter describes the
size of the ellipsoid over which the instrument integrates at any given q, and is given by the
angular resolution of the spectrometer. The experiments in this article were carried out at 50
eV beam energy with a sphere of confusion of∼ 0.25 mm and a sample-slit distance of 70 mm,
which translates to a momentum accuracy of ∼ (0.25/70)

p
2mE/ħh = 0.013Å

−1
. The angular

resolution of our HR-EELS spectrometer is ∼ 17 mrad, which implies a momentum resolution
of 0.017

p
2mE/ħh= 0.06Å

−1
. A detailed description of the momentum resolution of a M-EELS

experiment analogous to that developed for neutron spectrometers [39,40] will be the subject
of a future article.

4 M-EELS cross section and the dynamic susceptibility, χ(q,ω)

As discussed in Section 2, a dominant effect in low-energy, reflection EELS is multiple scatter-
ing, which prevents the electrons from penetrating the material and causes them to couple only
to excitations near the surface. A key insight for the technique, due to Mills and co-workers,
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Figure 2: (a-d) Four different quantum mechanical processes captured in Mills’ theory of sur-
face EELS using the distorted wave Born approximation. The cross section is dominated by
processes (b) and (c) (see Appendix A).

was that multiple scattering takes place almost entirely in the elastic channel [8,12,13]. That
is, of the many scattering events an electron undergoes before reaching the detector, typically
only one is inelastic. In such situations, the multiple scattering problem can be solved to a
high degree of accuracy using the distorted wave Born approximation (DWBA) [32]. In this
approach, the incident and final state plane wave functions of the probe electron are replaced
with phenomenological wave functions that model reflectivity from the sample surface. In
terms of these effective wave functions, the inelastic event can then be treated in the first Born
approximation. Four possible scattering processes result, illustrated in Fig. 2. As originally ar-
gued by Mills, the cross section is dominated by the two terms that involve a single reflectivity
event [12,13].

The only elastic scattering effect considered in Mills’ original treatment was specular re-
flectance off the sample surface [12,13]. A crystal is periodic, however, so elastic Bragg scatter-
ing can also take place. In momentum-resolved studies, one often encounters such reflections,
which reside at the center of each Brillouin zone. Here, we extend the Mills approach to
the case of a periodic surface, considering how Bragg scattering modifies multiple scattering
effects in the cross section.

The generalized M-EELS cross section in the presence of elastic scattering from Bragg
planes with reciprocal vectors, G, is derived in detail in Appendix A. The main result is

∂ 2σ

∂Ω∂ E
= σ0

∑

G

V 2
eff(q−G)

∫ 0

−∞
dz1dz2

× e−|q−G||z1+z2|
�

∑

m,n

〈m|ρ̂∗(q−G, z1)|n〉〈n|ρ̂(q−G, z2)|m〉Pmδ(E − En + Em)
�

. (1)

Here, ρ̂(q−G) is the density operator, Pm = e−Em/kB T/Z is the Boltzmann factor, and Veff(q−G),
is an effective Coulomb propagator that describes the interaction between the probe electron
and the excitations near the surface of the semi-infinite system.

This result simplifies by recognizing that the quantity in the brackets is the two-point,
density-density correlation function, i.e., the dynamic structure factor [2,41],

S(q, z1, z2,ω) =
∑

m,n

�

〈m|ρ̂(q, z1)|n〉 · 〈n|ρ̂(−q, z2)|m〉Pm

�

δ(E − En + Em). (2)
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This quantity is also sometimes called the Van Hove function [42]. This mixed representa-
tion form of S is appropriate for a system in which momentum is conserved only in a two-
dimensional plane, and characterizes density fluctuations with in-plane wave vector, q, corre-
lated between depths z1 and z2 below the surface. In terms of this quantity, the cross section
becomes

∂ 2σ

∂Ω∂ E
= σ0

∑

G

V 2
eff(q−G) ·

∫ 0

−∞
dz1dz2e−|q−G||z1+z2|S(q, z1, z2,ω), (3)

where we have used the fact that the correlation function should exhibit the same periodicity
as the material itself, i.e., S(q−G, z1, z2,ω) = S(q, z1, z2,ω).

Eq. 3 has three important implications. The first is that the probe depth of M-EELS is
determined by the magnitude of the in-plane momentum transfer, q. At momenta in the vicin-
ity of the Γ point (|q| ∼ 0), the scattering is dominated by the G = 0 term in the sum, and
the effective probe depth is ∼ 1/|q|, which is typically a few tens of nm or less. Hence, we
see that M-EELS is a surface probe, but is somewhat more bulk sensitive than probes like
ARPES or STM, which measure only the top layer of the material. This can be understood
by realizing that, while the probe electron does not itself penetrate into the material, it feels
the density fluctuations below the surface, which generate a long-ranged Coulomb potential
extending into the vacuum. This conclusion, which follows directly from the original Mills
treatment [12, 13], is likely the reason substrate phonons were visible in a recent study of
FeSe thin films on SrTiO3 [43]. In any case, we see that the core observable of M-EELS is the
density-density correlation function of the surface, defined as

SS(q,ω) =

∫ 0

−∞
dz1dz2e−|q−G||z1+z2|S(q, z1, z2,ω)≈ S(q, 0, 0,ω). (4)

The second implication of Eq. 3 is that M-EELS measures the long-sought density response
function, which is related to the correlation function via the quantum mechanical version of
the fluctuation-dissipation theorem [1,2,41,44],

SS(q,ω) = −
1
π

1
1− e−ħhω/kB T

χ ′′S (q,ω), (5)

where χ ′′S (q,ω) is the density response function of the surface, (1− e−ħhω/kB T )−1 = n(ω)+1 is
a Bose factor that reflects the quantum statistics of the excitations. χ ′′S (q,ω) is the imaginary
part of the surface density propagator, χS(q,ω), which describes the propagation of collective
charge excitations in the plane of the surface. This quantity is not precisely the same as the
bulk χ(q,ω), but is the relevant quantity for comparison to ARPES and STM experiments,
which also probe the surface of a material. Moreover, as we show in Section 5, χ ′′S (q,ω) is
very similar to the bulk response, χ ′′(q,ω), in cases where the latter can be measured by other
techniques such as infrared spectroscopy and transmission EELS.

Third, Eq. 3 indicates that the Coulomb matrix element, V 2
eff(q−G), is energy-independent

and diverges whenever the electron beam satisfies a Bragg condition (see Appendix A). In one
respect, this makes interpretation of M-EELS data simpler than ARPES, whose matrix ele-
ments depend strongly on energy [3]. However, the M-EELS matrix elements are strongly
momentum-dependent, the divergences having the effect of amplifying the intensity of inelas-
tic scattering when the momentum coincides with a structural periodicity in the material. We
refer to this phenomenon as “Bragg enhancement." A specific case is the well-known enhance-
ment of the intensity when q∼ 0, which in HR-EELS was traditionally referred to as the regime
of “dipole scattering" [7,8]. The M-EELS matrix elements have the effect of enforcing the pe-
riodicity of reciprocal space onto the experimental data, creating a finite-momentum replica
of the electronic response near q= 0 around each reciprocal lattice vector, G.
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The divergences of V 2
eff(q − G) imply that there must be corrections to the Mills DWBA

approach in near-Bragg conditions, since the experimental intensity must remain finite. Such
corrections are beyond the scope of this paper. We point out, however, that it is highly likely
that the matrix elements would continue to be energy-independent, even when Mills’ theory
breaks down. This opens up the possibility of correcting for multiple scattering effects by using
frequency sum rules [45].

In the low-momentum limit, i.e., q∼ 0, only the G= 0 term in Eq. 3 is significant. In this
limit, all other terms in Eq. 3 may be dropped, and the cross section reduces to [12,13,44],

∂ 2σ

∂Ω∂ E
= σ0V 2

eff(q)

∫ 0

−∞
dz1dz2e−|q||z1+z2| · S(q, z1, z2,ω), (6)

where

Veff(q) =
4πe2

q2 + (kz
i + kz

s )2
. (7)

This is exactly Mills’ result, cited before in many previous works [7,8,12,13,44].

5 Comparison to IR and transmission EELS measurements

We now demonstrate the M-EELS approach by applying it to an optimally-doped high temper-
ature superconductor, Bi2Sr2CaCu2O8+x (Bi2212) with Tc = 92 K. Elastic momentum maps
were carried out at an incident beam energy of 50 eV with resolution ∆E = 5 meV, and
high-resolution measurements of excitations were done at an energy of 7.4 eV with resolu-
tion ∆E = 2.2 meV. Bi2212 was chosen for initial M-EELS studies because of its excellent
cleavability, which facilitates surface preparation, and because it exhibits a structural super-
modulation whose reflections are useful for defining the crystal orientation. For simplicity, in
this article we will label momentum space in terms of the reduced, tetragonal unit cell, i.e., the
Miller indices, (H, K), denote a transferred momentum q = 2π(H, K)/a, a = 3.81Å being the
tetragonal, in-plane lattice parameter. We located and optimized the elastic scattering from
both the (1,0) fundamental Bragg peak as well as the (0.11, 0.11) supermodulation reflection.
The goniometer angles of these two reflections were used to construct an orientation matrix,
allowing precise definition of the momentum transfer, q [6].

We begin by validating the cross section discussed in Section 4 and Appendix A. The dy-
namic charge response measured with M-EELS, χ ′′(q,ω), should be proportional to the di-
electric loss function, −Im[1/ε(q,ω)] [48]. So the cross section expression in Eq. 3 can be
evaluated by comparing M-EELS spectra at q ∼ 0 to results from infrared reflectivity (IR)
measurements.

In Fig. 3a we show q = 0 M-EELS measurements of Bi2212 for ω < 100 meV at two
different temperatures. For comparison, this plot also shows the inverse dielectric function
determined from c-axis polarized, IR spectroscopy [46]. The most pronounced feature in the
M-EELS spectra is a series of phonons that were previously observed in early, conventional HR-
EELS studies [49–53]. Note that the energies of these modes, which reside at 17 meV, 24 meV,
49 meV, and 80 meV, closely coincide with the kink-like fermion dispersion anomalies observed
in Bi2212 with ARPES, suggesting they may be related to these effects [9, 10]. Apart from a
background visible in the M-EELS spectrum, which arises from in-plane excitations not seen
in c-axis optics experiments, the two techniques are quantitatively consistent, both in terms of
the energies and the relative oscillator strengths of the modes. This comparison validates Eq.
3 and shows that the surface response function, χ ′′S (q,ω) is quite representative of that of the
bulk, χ ′′(q,ω).
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Figure 3: (a) Comparison of the M-EELS spectrum of Bi2212 at q= 0 at T = 20 K (blue) and
T = 295 K (red) to the c-axis loss function measured at T = 295 K with infrared spectroscopy,
reproduced from Ref. [46] (gray). The energies and spectral weights of the optical phonons are
quantitatively consistent between the two techniques. (b) Comparison of the M-EELS spectrum
at q= (0.05, 0) (orange) to transmission EELS data at q=0.08 r.l.u. reproduced from Ref. [47]
(brown). The energy and linewidth of the 1 eV plasmon are, again, quantitatively consistent
between the two techniques. At a large momentum, q = (0.6,0), the plasmon damps into a
broad, electronic continuum extending to a cutoff of 0.9 eV (green).

The purpose of M-EELS is to observe electronic excitations, such as plasmons. In Fig.
3b, we show the M-EELS spectrum in the plasmon region, i.e., the energy range 0 < ω < 2
eV, taken at 50 eV beam energy at a momentum transfer q = (0.05, 0). This spectrum is
compared with that from a low-resolution, transmission EELS measurement performed at the
same momentum value [47]. A clear plasmon excitation is visible at approximately 1 eV energy
loss whose lineshape is very similar in the two spectra. At large momentum, q = (0.6,0),
this plasmon decays into a particle-hole continuum that bears a strong resemblance to the
electronic Raman continuum observed in inelastic light scattering experiments on cuprates
[54, 55]. These measurements demonstrate that M-EELS is sensitive to the electronic charge
excitations that are so difficult to observe with x-ray or neutron techniques.

One of the striking conclusions to draw from Fig. 3 is that M-EELS appears to be quan-
titatively consistent with bulk measurements, at least at q ∼ 0. Both IR spectroscopy and
transmission EELS probe bulk excitations, with a probe depth of ∼ 100 nm, the former deter-
mined by the extinction depth of IR light and the latter by the thickness of the suspended films
used for experiments. Evidently, as discussed in Section 4, the M-EELS probe depth is actually
reasonably large, despite the fact the electrons themselves do not penetrate the material.

6 Momentum maps

The crystal orientation capabilities of M-EELS enable measurements to be carried out with
quantitative control over the momentum transfer, q. In Fig. 4, we show a static, fixed-energy
map of momentum space of Bi2212 taken at room temperature. This measurement was per-
formed with an energy resolution ∆ω = 4.5 meV at zero energy-loss (ω = 0) and a fixed
out-of-plane momentum, L = 20.3, by doing coordinated scans of the sample and analyzer
angles. The matrix elements, V 2

e f f , were divided from the raw data, making the assumption
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Figure 4: Momentum maps of the quasi-static (ω= 0) scattering in Bi2212 in the (H, K) plane
at T = 295 K.

that G = 0 is the dominant term (Eq. 6). The data in Fig. 4 are therefore nominally pro-
portional to the correlation function, S(q,ω). The fundamental, static density features are
visible, including the (1,0) Bragg peak and the structural supermodulation reflection (as well
as its harmonics) that were used to define the sample orientation. This map demonstrates the
ability of M-EELS to quantitatively pinpoint charge features in momentum space.

A key advantage of M-EELS is its energy resolution. In Fig. 5b we show energy- and
momentum-dependent M-EELS spectra at T = 20 K for four different sections of momentum
space, denoted (i)-(iv) as defined in Fig. 5a. These data were taken with energy resolution
∆E = 2.2 meV at a fixed out-of-plane momentum L = 1.9 r.l.u., and show the raw intensity
without dividing out the matrix elements. These sections show the dispersion of the phonons
(Fig. 3a) using a custom color scale so both elastic and inelastic features can be seen on the
same plot. The data in Fig. 5 were taken on a different sample than Fig. 4, so also serve as a
reproducibility check.

A prominent feature in these spectra is a set of bright, vertical lines (labeled SM) that indi-
cate enhanced inelastic intensity at wave vectors corresponding to the structural supermodula-
tion. This effect, which we call “Bragg enhancement," is a consequence of the Coulomb matrix
elements in Eq. 3, which enhance the scattering when q coincides with a structural periodicity
in the material. Because the matrix elements in M-EELS are energy-independent, this effect
could in principle be normalized out using a sum rule. Fig. 5 illustrates that the phonons
(Fig. 3a) are weakly dispersive, in quantitative agreement with HR-EELS studies [53]. This
is additional evidence that these excitations may be related to the ARPES dispersion kinks,
whose energy shape is consistent with nondispersive, Einstein-like modes [56]. Note that, un-
like other materials in which acoustic phonons are clearly visible [57], no acoustic modes are
visible in Bi2212 using M-EELS.
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Figure 5: (a) Brillouin zone of Bi2212 indicating the four momentum space trajectories used
for M-EELS studies, labeled (i)-(iv). (b) Momentum-dependent M-EELS spectra of optimally-
doped Bi2212 at 20 K for the four momentum directions indicated in panel (a). A custom color
scale was devised so that strong features around the zero-loss line can be observed on the same
figure as weak phonon features (see scale bar). The bright, vertical lines labeled “SM” are a
consequence of the Coulomb matrix element, V 2

eff(q−G), which is enhanced when q coincides
with a structural periodicity in the material, in this case the structural supermodulation. The
dispersions of the optical phonons (green points) are consistent with previous studies (empty
triangles) reproduced from Ref. [53].

7 Reconstructing χ(q,ω)

The most important application of M-EELS, in the long run, may be in determining the dynamic
susceptibility, χ(q,ω). As discussed in Section 2, this quantity is the fundamental charge
propagator of the system, characterizing its electronic compressibility, its response to external
fields, its tendency to exhibit charge order, and its ability to screen charge [1, 2, 29]. Here,
we sketch out a procedure for using M-EELS to quantify the full χ(q,ω) for a real material.
We will base our analysis on the data in Fig. 5b. Our goal is not to construct a susceptibility
function that is exact, but to illustrate a practical procedure for an approximate function that
is based on real M-EELS data. In Section 8, we will show how this quantity can be used to
analyze self-energy effects in ARPES data.

The starting point for this procedure is Eqs. 3-5. The former relates the experimental
intensity to the correlation function, SS(q,ω), and the latter relates SS to the imaginary part
of the response, χ ′′S (q,ω), which we have shown bears great similarity to χ ′′(q,ω) of the bulk.

Following Eq. 3, the first step is to divide the matrix elements, V 2
eff, from the experimental

data, to obtain the correlation function. Doing so raises two caveats. The first is that the
quantity achieved in this manner does not have the proper units, i.e., is only proportional
to SS(q,ω). No information about the absolute value of SS is available from M-EELS data.
The absolute scale could, in principle, be calibrated by applying a frequency sum rule [45],
an approach commonly used in IXS [58]. But a sum rule for the surface correlation function
measured with M-EELS has not yet been derived.

The second caveat is that the expression for the cross section (Eq. 3) is only approximate
and breaks down in the limit q→ 0 and ω→ 0 due to multiple scattering effects not included
in Mills’ theory (see Section 4). This is evident from the functional form of V 2

eff, which diverges
in this limit, even though the experimental intensity must remain finite. The consequence is
that the SS(q,ω) obtained by dividing out V 2

eff will vanish at small energy and momentum
with a functional form that differs from the expected asymptotic properties of a correlation
function. Multiple scattering corrections to Mills’ theory would have to be implemented for a
simple division of the matrix element to be meaningful in this limit.
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Nevertheless, the matrix elements for M-EELS are energy-independent, and it is likely they
would remain so even in an exact scattering theory. What this means is that the M-EELS
spectrum should exhibit the same frequency dependence as the correlation function, SS(q,ω),
at all values of q, even in the regime where V 2

eff diverges. The only quantity that is unknown
is the overall normalization. Hence, if a sum rule were derived for M-EELS, it might be used
to correct for multiple scattering effects even in the low-momentum region. Efforts to acquire
such a sum rule are in progress.

We divided the experimental spectra (Fig. 5b) by V 2
eff, to achieve a discrete representa-

tion of SS over a complete, reduced octant of the Brillouin zone. In doing so, we made the
approximation that the sum is dominated by the G = 0 term, i.e., that the elastic scattering
from the surface is dominated by the specular reflection. This approximation should be valid
everywhere except in very close proximity to the supermodulation reflections.

Having acquired an approximate form for SS(q,ω), the next step is to determine χ ′′S (q,ω)
from the fluctuation-dissipation theorem (Eq. 5). The main difference between χ ′′S and SS is
that the former is antisymmetric in ω, while the ratio between positive and negative energy
features in the latter is determined by the temperature. Acquiring χ ′′S from SS therefore re-
quires eliminating the Bose factor in Eq. 5, but this too comes with caveats: This factor is
singular in the limit ω→ 0, and depends explicitly on the sample temperature, which is not
always known exactly. The most stable way to determine χ ′′ from S is to antisymmetrize, by
making use of the identity,

χ ′′S (q,ω) = −π [SS(q,ω)− SS(q,−ω)] . (8)

The advantage of this expression is that it seamlessly handles the singularity at ω = 0 and
does not require knowledge of the sample temperature. Application of Eq. 8 to the M-EELS
spectrum at q = 0 is illustrated in Fig. 6a. Note that the result is perfectly antisymmetric, by
construction, but exhibits anomalies in the vicinity ofω= 0 due to the experimental resolution,
which leads to violation of Eq. 5 in the low-energy region [44]. These anomalies are intrinsic to
M-EELS in the sense that their scale can be reduced by improving the experimental resolution,
but they can never be eliminated completely. We antisymmetrized our data for all momenta at
which our function SS(q,ω) is defined, resulting in an approximate representation of χ ′′S over
one octant of the Brillouin zone.

With χ ′′S (q,ω) in hand, the real part of the susceptibility, χ ′S(q,ω), was determined using
a Kramers-Kronig transform. This required extrapolating each energy spectrum, which was
measured up to 150 meV energy loss, using a 1/ω2 tail [60]. Finally, we assumed the Brillouin
zone has four-fold symmetry and repeated χ to fill all momentum space. The full dynamic
susceptibility function is shown in Fig. 7. The static, momentum-dependent susceptibility,
χS(q, 0), is shown in Fig. 6b for comparison. The strong momentum-dependence of this latter
quantity may suggest a tendency of this material to form charge order [29,61].

8 Self-energy effects

We close by illustrating the usefulness of χ ′′S (q,ω) for analyzing fermion dispersion anomalies
observed in ARPES experiments. The primary 49 and 80 meV phonon modes observed with M-
EELS (Fig. 3a) have the correct energy and dispersion to explain the dispersion kinks observed
with ARPES in Bi2212 [9, 10]. To make a quantitative comparison, we used our experimen-
tally determined susceptibility function, χS(q,ω), to compute the lowest order correction to
the electron self-energy in a one-loop approximation, which is given by the convolution inte-
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Figure 6: (a) Illustration of the antisymmetrization procedure for determining χ ′′(q,ω) from
the correlation function, S(q,ω). The energy asymmetry of the M-EELS spectrum at q = 0 at
295 K (red) and 20 K (blue) is a consequence of the Bose factor (Eq. 5). The antisymmetrized
spectrum representing χ ′′(q,ω) is shown in gray. (b) Momentum dependence of the static
susceptibility, χ(q, 0), at T = 20 K for the four momentum directions defined Fig. 5a. Note that
χ(q, 0) is purely real. (c) The calculated bare (black) and renormalized (blue) band dispersion
of Bi2212 are compared to the measured ARPES data (Ref. [59]). The renormalized electron
self-energy was determined using a one-loop calculation using the experimentally determined
χ ′′(q,ω).

gral [1],

Σ(iω, k) = g2
b f T

∑

Ω

∫

dq G0(iω− iΩ,k− q)χS(iΩ,q). (9)

Here, χ is the charge propagator determined from M-EELS, G0 is the bare electron Green’s
function, and ω and Ω are Matsubara frequencies for the fermions and bosons, respectively.
The variables k and q are the associated momenta, T is the temperature, and gb f is an effec-
tive boson-fermion coupling constant, which in this expression is assumed to be momentum-
independent.

In order to avoid complications related to opening of the superconducting gap [9,10], we
focus here on the ARPES data in the nodal direction for T = 115 K > Tc . G0 was taken from
tight binding fits to ARPES data at high binding energies [62], which gave a bare Fermi velocity
of vF = 1.7 eVÅ used as a seed value in data fits.

It is necessary to allow for the possibility that different phonon modes exhibit different
electron-phonon coupling constants. For this purpose, we made an analytic parameterization
of χS by fitting the M-EELS results at all momenta with two Lorentzians, for the 49 and 80
meV modes. This allowed evaluation of Eq. 9 using a different value for gb f for each mode.
The M-EELS data used to determine the susceptibility were measured at T = 20K . But the
spectrum exhibited no observable temperature dependence, so it is reasonable to use it to
analyze ARPES data even at T = 115 K. After evaluating Eq. 9, real frequency self-energy was
then determined by analytic continuation.

Using the two electron boson coupling constants, the Fermi velocity, and the overall mag-
nitude of χ ′′S (q,ω) as parameters, we fit the low-energy ARPES dispersion along the nodal di-
rection [59]. The best fit was obtained for coupling constants gb f 1 = gb f 2 = 0.5 eV for the 49
meV and 80 meV modes, respectively, resulting in the dispersion curves in Fig. 6c. The agree-
ment between the calculated and experimental curves is excellent and gives an estimate for the
energy- and momentum-integrated electron-phonon coupling constant of λ= vF/v

0
F−1= 0.7,

which is in line with previous estimates [63]. We conclude that the bosonic modes observed
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Figure 7: Fixed-energy momentum cuts of χ ′′(q,ω) at T = 20 K for different values ofω. The
data have been multiplied by q2 to improve the visibility of high-momentum features. Bragg
enhancement due to the scattering matrix elements is visible as enhanced weight in the region
of the structural supermodulation.

with M-EELS have the correct energy structure to explain the ARPES kinks, and may be part
of the cause of these effects.

This one-loop calculation is simplistic, and only provides an estimate of λ. It also does
not exclude the possibility that the dispersion kinks could arise, at least in part, from spin
fluctuations or other intrinsic, many-body effects. It should certainly not be taken as a claim
that phonons are the mechanism of high temperature superconductivity in cuprates. But this
exercise illustrates the point that M-EELS data can be tremendously useful for understand-
ing boson effects observed in one-electron spectroscopies, including not only ARPES but also
STM [64].
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9 Future prospects for M-EELS

A great deal of work remains to be done, particularly on the subjects of sum rules and quanti-
fying multiple scattering effects beyond the Mills framework. However, it should be clear from
this study that M-EELS is a direct and, at the moment, unique way to measure the dynamic
charge susceptibility and the bosonic charge modes at the meV scale in condensed matter. We
expect this technique to take its place alongside ARPES, STM, and neutron scattering as one of
the fundamental wave-vector-resolved probes of elementary excitations in quantum materials.
In the long run, meV-resolved, high-energy EELS, carried out in transmission geometry with
extraordinarily high energy resolution using aberration correctors, may someday extend the
range of applicability of these techniques to achieve bulk information on this energy scale.
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A Derivation of the M-EELS cross-section

A detailed derivation of the scattering cross section for low-energy EELS measurements has
been presented previously by several authors [8,12,13,44]. However, these apply only to the
case in which the surface is translationally invariant, and ignore the possibility of elastic Bragg
scattering off the in-plane crystalline structure. Here, we generalize these results to the case of
a periodic system. Like past treatments [8,13,44], we base our analysis on the distorted-wave
Born approximation (DWBA) method [32].

The physical justification for DWBA in this case is that multiple scattering in reflection
EELS predominantly takes place in the elastic channel, while inelastic events may be treated
in the first Born approximation. Following the treatment of Mills and coworkers [8, 12, 13],
the elastic scattering can be described by using the phenomenological wave functions,

ψi = Ni

�

eiki ·reikz
i z +

∑

G1

RG1
ei(ki+G1)·re−iκiz

�

θ (z), (10)

ψs = Ns

�

eiks·reikz
s z +

∑

G2

RG2
ei(ks+G2)·re−iκsz

�

θ (z), (11)

where ψi and ψs represent the incident and scattered electron, respectively. In this ansatz,
the coordinate R = (r, z), where r is the in-plane component and z is the component normal
to the surface. ki,s and kz

i,s represent, respectively, the in-plane and out-of-plane momenta of
the incident and scattered electron. The parameter RG is the complex amplitude reflection
coefficient for the surface Bragg reflection with wave-vector G, the specular reflection being
denoted by G= 0. Ni,s are the appropriate normalization constants.
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In Bragg scattering from a surface, the in-plane component of the electron momentum
changes by G. In order to conserve energy, the out-of-plane momentum must take on the
value κ=

Æ

k2
z − G2 − 2k ·G, where kz was its momentum before scattering. This momentum

change can always be accomplished near a surface since momentum is not conserved in the z
direction. Hence, the reflected, out-of-plane momenta in Eqs. 1 and 10 are given by

κi,s = ±
q

(kz
i,s)

2 −G2 − 2ki,s ·G, (12)

where the sign is chosen so that κi,s has the same sign as kz
i,s.

In EELS one usually neglects exchange effects, which is equivalent to assuming that spin-
flip scattering from magnetic excitations is negligible (such magnetic scattering is referred to
as SPEELS [65]). The scattering matrix element, then, is just given by the direct Coulomb
term,

Mn,m = −
ie2

2ħh

∫

dR1dR2
〈n|ρ̂(R1)|m〉ψ∗s (R2)ψi(R2)

|R1 −R2|
(13)

where R1 and R2 are the valence and probe electron coordinates, respectively. Neglecting
exchange scattering effectively renders these two electrons distinguishable. |m〉 and |n〉 are
the initial and final many-body states of the material, and ρ̂ is the density operator.

Inserting Eqs. 10-11 into Eq. 13 yields four independent scattering processes, illustrated
in Fig. 2. As pointed out by Mills [12,13], the dominant terms are those that involve a single
reflectivity event, i.e., those shown in Fig. 2b and 2c. Keeping only these two terms, and
integrating over coordinates r1, r2, and z2, the matrix element becomes

Mn,m = −
i

2ħh
NsNi

∑

G

∫ 0

−∞
dz1V2D(q−G)·

� R∗G
|q−G| − i(kz

i +κs)
+

R−G

|q−G|+ i(κi + kz
s )

�

〈n|ρ̂(q−G, z1)|m〉e−|q−G||z1| (14)

where V2D(q) = 2πe2/q is the two-dimensional Coulomb propagator. From this matrix ele-
ment, we can compute the transition rate using Fermi’s golden rule,

ωn←m = 2πħh|Mn,m|2. (15)

For the case of a perfectly coherent electron beam, squaring the matrix element (Eq. 14) results
in many cross terms involving two different G values. For an incoherent source, such as the
thermionic source in a typical M-EELS setup, these cross terms will average to zero [41]. If
we drop these cross terms and assume the system exhibits inversion symmetry, i.e., RG = R−G,
the transition rate simplifies to

ωn←m = 2π
1
ħh
(NsNi)

2
∑

G

|RG|2 V 2
eff(q−G)·

∫ 0

−∞
dz1dz2e−|q−G||z1+z2|〈m|ρ̂∗(q−G, z1)|n〉〈n|ρ̂(q−G, z2)|m〉 (16)

where V 2
eff(q−G) is a Coulomb matrix element given by

V 2
eff(q−G) =

V 2
2D(q−G)

2

� 4|q−G|2 + (kz
i + kz

s + κs +κi)2 + (kz
i +κs − κi − kz

s )
2

�

|q−G|2 + (κi + kz
s )(k

z
i + κs)

�2
+ |q−G|2(kz

i + κs − κi − kz
s )2

�

.

(17)
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Note that if the beam satisfies a Bragg condition, then q = G, kz
i + κs − κi − kz

s = 0 and
kz

i +κs+κi+kz
s = 2(kz

i +kz
s ), which implies that the denominator in Eq. 17 vanishes. We refer

to this amplification of the M-EELS cross section under conditions of strong elastic scattering
as “Bragg enhancement" (see Section 4).

From the transition rate, one can determine the double-differential scattering cross section
using the standard relation

∂ 2σ

∂Ω∂ E
=

1
Φ

∑

n,m

ωn←mPm
∂ 2N
∂Ω∂ E

(18)

where Φ =
p

2Ei/m/V is the electron flux, Pm = exp (−Em/kB T )/Z is the Boltzmann factor,
and the last term is the density of final states,

∂ 2N
∂Ω∂ E

=
V

8π3

�

2m

ħh2

�3/2
Æ

E f . (19)

where E f = Ei−ħhω is the energy of the scattered electron. Multiplying out these terms, putting
in the energy-conserving delta functions, we arrive at the full expression for the generalized
M-EELS cross section for the case of a periodic surface,

∂ 2σ

∂Ω∂ E
= σ0

∑

G

V 2
eff(q−G)

∫ 0

−∞
dz1dz2

×
�

∑

m,n

〈m|ρ̂∗(q−G, z1)|n〉〈n|ρ̂(q−G, z2)|m〉e−|q−G||z1+z2|Pm

�

δ(E − En + Em). (20)

where

σ0 =
V 2m2|RG|2(NsNi)2

2πħh4

√

√

√

E f

Ei
. (21)

This result is what is used in Section 4 of the main manuscript.
The main conclusion here is that the Coulomb matrix element in Eq. 20, and hence the M-

EELS cross section, is enhanced whenever the momentum transfer coincides with a structural
periodicity in the material, i.e., whenever a Bragg condition is met. This conclusion was not
reached by earlier authors, who considered only the case of a surface that is translationally
invariant [8,12,13,44]. If the experiment is carried out in near-specular conditions, i.e., with
q∼ 0, one can drop all but the G= 0 term in the sum. In this case, assuming further that the
reflection coefficient R0 is real, one recovers the Mills result,

∂ 2σ

∂Ω∂ E
= σ0

∑

m,n

V 2
eff(q)

∫ 0

−∞
dz1dz2

×
�

〈m|ρ̂∗(q, z1)|n〉〈n|ρ̂(q, z2)|m〉e−|q||z1+z2|Pm

�

δ(E − En + Em). (22)

where

Veff(q) =
4πe2

q2 + (kz
i + kz

s )2
. (23)

This expression applies to the case of what was traditionally called “dipole scattering,” in
which the semiclassical trajectory of the probe electron keeps a significant distance from the
surface [8].
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