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Abstract

We numerically study the jamming transition of frictionless polydisperse spheres in three
dimensions. We use an efficient thermalisation algorithm for the equilibrium hard sphere
fluid and generate amorphous jammed packings over a range of critical jamming densi-
ties that is about three times broader than in previous studies. This allows us to reex-
amine a wide range of structural properties characterizing the jamming transition. Both
isostaticity and the critical behavior of the pair correlation function hold over the entire
range of jamming densities. At intermediate length scales, we find a weak, smooth in-
crease of bond orientational order. By contrast, distorted icosahedral structures grow
rapidly with increasing the volume fraction in both fluid and jammed states. Surpris-
ingly, at large scale we observe that denser jammed states show stronger deviations
from hyperuniformity, suggesting that the enhanced amorphous ordering inherited from
the equilibrium fluid competes with, rather than enhances, hyperuniformity. Finally, fi-
nite size fluctuations of the critical jamming density are considerably suppressed in the
denser jammed states, indicating an important change in the topography of the poten-
tial energy landscape. By considerably stretching the amplitude of the critical “J-line”,
our work disentangles physical properties at the contact scale that are associated with
jamming criticality, from those occurring at larger length scales, which have a different
nature.
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1 Introduction

Granular materials such as grains, pinballs, and large colloids flow when some external forces
are applied. However, when the volume fraction of these particles is increased above a certain
value, particle motion is no longer allowed and these systems become amorphous solids. This
mechanical transition corresponds to a jamming transition because it occurs in the absence
of thermal fluctuations. The critical volume fraction of this critical “J-point” is φJ, and the
associated critical properties have been intensively studied in the last few decades [1–4]. In
particular, structural properties of jammed states have been examined over a wide range of
length scales from microscopic to macroscopic, providing a starting point for understanding
the mechanical and rheological properties of jammed systems [3,5–8].

In practice, the structural properties of jammed systems can be sorted out by the typical
length scale or wave number k that is being probed. First, the contact scale, corresponding to
δ→ 0, where δ is the typical gap between particles for φ < φJ, or to the typical overlap be-
tween particles for φ > φJ. The corresponding wave number is k ∼ 1/δ→∞. A remarkable
property at the contact scale is isostaticity, which implies that the average number of contacts
per particle, Z , becomes twice the number of spatial dimensions exactly at φ = φJ. In ad-
dition, a critical power law behavior characterizes the pair distribution g(r) near contact at
φJ [3,5,9,10]. The isostatic nature of the system is at the core of theoretical descriptions of the
jamming transition [3,4,11]. Second, one can consider distances at the neighbor scale, corre-
sponding to k ∼ 2π/σ, where σ is the averaged particle diameter. The major goal at this scale
is to properly characterize the local geometry of amorphous configurations [12–14], to possibly
define appropriate order parameters for the jamming transition [15,16]. The role of local crys-
talline and icosahedral order in monodisperse packings has been discussed before [2,17–21].
In particular, suitable modifications of bond orientational order parameters have revealed lo-
cal crystalline order in (non-isostatic) jammed packings [18,19], while icosahedral order is of
more limited extent [20, 21]. Finally, we can analyse the large scale corresponding to k→ 0,
where fluctuations over the entire sample are considered. It has been reported that systems
prepared at the jamming transition have unexpected density fluctuations at large scales, pos-
sibly corresponding to hyperuniform behavior. Physically, hyperuniformity implies that the
amplitude of volume fraction fluctuations at wave number k vanishes as k→ 0 [22,23]. How-
ever, several recent works have reported numerical evidence that hyperuniformity is not strictly
obeyed at the jamming transition [24–26].

The structural properties mentioned above have been studied at “the” jamming transition.
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However, theoretical studies have established that φJ is not uniquely determined but is in fact
strongly protocol dependent [15,27–41]. This implies that the jamming critical point, J-point,
actually corresponds to a line of critical points, thus forming a “J-line” [31]. A simple way of
exploring the J-line is to perform compressions of hard sphere configurations using different
compression rates. A more controlled method consists in first thermalising the hard sphere
fluid at finite temperature at some volume fraction and then performing a rapid compression
towards jamming [31, 36, 42]. By varying the volume fraction of the parent fluid, a finite
range of jamming volume fractions can be explored, while easily keeping crystallisation under
control.

Although the existence of a J-line is well accepted, much less is known about how structural
properties of jammed systems may change along the J-line. Some previous studies reported
that the structural properties at the contact and neighbor scales hardly change [30,31,33,43]
and thus one might conclude that the structural properties are essentially invariant along the
J-line. Scaling theories of the jamming transition are based on this assumption [3, 4, 11].
On the contrary, some other studies pointed out that there are tiny but systematic structural
changes [34, 36], in particular at the neighbor scale. To our knowledge, the evolution of the
large scale structural properties along the J-line has not been studied in detail. Analyzing the
evolution of structure along the J-line is a numerical challenge, because changing the value
of φJ requires changing the typical preparation timescale over orders of magnitude, and even
large numerical efforts may yield relatively minute changes to the value of φJ. Therefore,
previous studies have accessed finite, but quantitatively modest, variations of φJ along the
J-line.

In this paper, we develop a numerical strategy that allows us to stretch the extension of the
J-line of frictionless hard spheres considerably. As a result, we can characterize the variation
of structural properties with φJ over an unprecedentedly broad range of volume fractions,
φJ ≈ 0.65 − 0.70. This range is at least 3 times wider than in any previous study of fric-
tionless jammed packings [31, 40]. The decisive factor allowing the present analysis is the
recent development of an efficient thermalisation algorithm for polydisperse hard sphere flu-
ids. We have recently shown that this approach allows the equilibration of very dense fluid
states [44], bypassing any alternative method by many orders of magnitude. Here, we use
these deeply thermalised fluid configurations as starting point for rapid compressions towards
jammed states.

We find that at the contact scale, both isostaticity and the same critical behavior of the
radial distribution function hold over the entire J-line, thus corroborating previous results [31,
33]. To characterize the structure at the neighbor scale, we apply analysis tools appropriate
to polydisperse packings, based on the detection of locally favored structures [45, 46]. Our
key finding is the detection of distorted local icosahedral structures that become increasingly
numerous as φJ is increased, so that about 80 % of the particles form such structures in our
densest packings. This suggests that this local structural motif might be a key geometric factor
allowing the production of very dense jammed packings [20]. At the large scale, we find that
a nearly hyperuniform behavior [47] for the smallest φJ, but deviations from hyperuniformity
increase rapidly asφJ is increased, suggesting that optimized packings display stronger volume
fraction fluctuations at large scale. On the other hand, finite size effects of the mean value of
φJ are considerably suppressed when φJ is large. Overall, our work disentangles contact scale
properties that are deeply connected to the criticality of the jamming transition, to structural
properties at larger scale which evolve significantly along the J-line, and have therefore a
distinct physical origin.

This paper is organized as follows. In Sec. 2, we describe the details of the simulation
methods. The resulting extended range of jamming densities is discussed in Sec. 3. We discuss
the physics at contact scale (isostaticity, pair correlation) in Sec. 4, the physics at the local scale
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(bond orientational order, locally favored structures, rattlers) in Sec. 5, and at the large scale
(hyperuniformity, global finite-size effects) in Sec. 6. We conclude our paper and discuss our
results in Sec. 7.

2 Numerical methods

2.1 The model

We employ the standard model of additive frictionless hard spheres in three dimensions [48].
The pair interaction is zero for non-overlapping particles, infinite otherwise. We use a continu-
ous size polydispersity, where the particle diameterσ is distributed according to f (σ) = Aσ−3,
σ ∈ [σmin,σmax], where A is a normalization constant. Following previous work [44], we

use the size polydispersity ∆ =
Æ

σ2 −σ2/σ = 23%, corresponding to σmin/σmax = 0.4492,
where · · ·=

∫

dσ f (σ)(· · · ). We useσ as the unit of length. f (σ) used in this study is shown in
Fig. 6(a). We simulate systems composed of N particles in a cubic cell with periodic boundary
conditions. We mainly use the system sizes N = 1000 and 8000, but we also perform selected
simulations for N = 150, 300, 600, 2000, 4000 to systematically investigate the finite-size
effects described in Sec. 6. The state of the hard sphere system is uniquely characterized by
the volume fraction φ = πNσ3/(6V ), where V is the volume of the system. For the fluid
state, we measure the reduced pressure p = P/(ρkBT ), where ρ = N/V , kB and T are the
number density, Boltzmann constant and temperature, respectively. We set kB and T to unity.
The pressure P is calculated from the contact value of the pair correlation function properly
scaled for a polydisperse system [49]. The fluid state has a finite p, whereas the jammed state
corresponds to p→∞.

Note that the functional form of f (σ) with ∆ = 23% is chosen so that the system is fairly
robust against crystallization and fractionation at extremely high densities [50]. With smaller
∆, the system easily crystallizes when using the efficient swap Monte Carlo method described
below. On the other hand, as demonstrated in previous studies, large values of ∆ or different
forms of f (σ) lead to fractionation at sufficiently high density [51,52]. By contrast, the model
parameters employed in this work are optimized to avoid such instabilities and thus enable us
to explore the J-line over an unprecedented range of packing fractions.

2.2 Equilibration of very dense fluid states

To obtain equilibrium fluid configurations, we perform Monte Carlo (MC) simulations which
combine traditional translational particle displacements and non-local particle swaps [50,53–
59]. Translational displacements are drawn from a cube of linear side 0.115, and a trial dis-
placement is accepted if it does not create an overlap between particles [48]. For a trial swap
move, we randomly pick a pair (i, j) of particles with |σi −σ j| < a (we choose a = 0.2) and
attempt to exchange their diameters [50]. The swap is accepted if it does not create an over-
lap. We perform translational moves with probability 0.8, and swap moves with probability
0.2 [50]. We have previously established [44] that this swap Monte Carlo setting is extremely
efficient to thermalise hard sphere fluid states up to very large volume fractions,φfluid ≈ 0.655.
We have checked that all our equilibrium configurations are taken in the fluid state, carefully
monitoring possible signs of demixing or crystallization using the same structural tools de-
scribed below to also characterize jammed states. Therefore, the parent fluid configurations
used to produce jammed states all belong to the (metastable) equilibrium fluid branch, and
we do not artificially vary the jamming density by introducing partially crystallized or demixed
states. Instead, we explore the equilibrium fluid branch over a broad range of densities.
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2.3 Compression towards the jamming transition

Having prepared equilibrium fluid configurations of hard spheres, we use the non-equilibrium
compression algorithm introduced in Refs. [60, 61] to reach the jamming transition. Briefly,
this algorithm replaces the hard sphere potential with a soft repulsive harmonic potential,
given by

vi j(ri j) =
ε

2

�

1−
�

ri j/σi j

��2
θ (1− ri j/σi j), (1)

where ε is the energy scale, ri j is the distance between the spheres i and j, σi j = (σi +σ j)/2
is the distance of the two spheres at contact, and θ (x) is the Heaviside step function. We use
ε as the unit of energy. The idea of the algorithm is to alternate instantaneous compression
steps and energy minimization to iteratively converge to the jamming density.

During a compression step, we increase the volume fraction of the system φ by
δφ = 5× 10−4. This compression introduces finite overlaps between particles, such that the
potential energy U =

∑

i< j vi j(ri j) becomes finite. These overlaps are then eliminated by per-
forming an energy minimization. To this end, we apply the conjugate gradient minimization
method [62] for U .

If the system still has a finite U after minimization, we decrease δφ by factor of 2 and
use a series of decompression and compression steps until the overlaps are eliminated. This
process is interpreted as pulling the system from trivial local potential energy minima. We
stop the algorithm when δφ < 1.0 × 10−6, and the resulting system is essentially a hard
sphere jammed packing. However, we find that the algorithm explained so far [61] produces
a fraction of slightly hypostatic packings. Thus, we perform an additional process introduced in
Ref. [31] to get more accurate isostatic jammed packings. We simulate sequential compression
and minimization with δφ = 1.0× 10−5 until U/N > 1.0× 10−6. Then, we decompress the
system with δφ = 1.0 × 10−6 until U/N < 10−16, which determine the jamming transition
point [31].

Note that the jamming algorithm employed in this work is based on purely isotropic
compressions and decompressions. Thus, stability against shear deformation is not guaran-
teed [63], but we expect that further optimization against shear would not change our con-
clusions.

3 Extending the range of jamming densities

We present the equation of state of the system in Fig. 1(a). Equilibrium fluid configurations
at finite pressure p are compressed using the non-equilibrium algorithm described in Sec. 2.3
towards jammed states at p → ∞. Figure 1(a) demonstrates that the higher the volume
fraction of the parent fluid, φfluid, the higher the jamming transition volume fraction, φJ.
Thus, enhanced thermalization is the key to extend the J-line.

In Fig. 1(b), we show φJ as a function of φfluid, varying φfluid over a very broad range.
Below φfluid ® 0.53, the observed φJ is almost independent of φfluid, as suggested by our hori-
zontal dashed line. Also, we show the result obtained for a compression starting from a Poisson
distributed system of harmonic soft spheres withφfluid = 0.3. We find thatφJ from the Poisson
distribution takes the same value as from dilute hard sphere fluid configurations, φJ ' 0.655.
Thus, we confirm that the protocol dependence ofφJ is essentially absent atφfluid ® 0.53. This
value for φJ is consistent with recent numerical results for a similar continuously polydisperse
system [65].

As expected, φJ starts to depart from the plateau valueφJ ' 0.655 whenφfluid ¦ 0.53, and
it then monotonically increases with increasing φfluid. The largest value we obtain is φJ ' 0.7.
A qualitatively similar behavior was observed before in a binary hard sphere mixture [31,36].

5

https://scipost.org
https://scipost.org/SciPostPhys.3.4.027


SciPost Phys. 3, 027 (2017)

0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Volume fraction

1/p
 Fluid state, N=1000
 Fluid state, N=8000
 Jammed state, N=1000
 Jammed state, N=8000

(a )

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71
(b )

fluid

 N=1000
 N=8000

Poisson

J

Figure 1: (a) Equation of state of the system for two different system sizes. Equilibrium fluid
states are shown as empty points. A modified version of the Carnahan-Starling equation of
state for polydisperse systems is drawn as a solid line [64]. Jammed states (filled points) ob-
tained by the compression algorithm are located at p →∞. The dashed arrows connect an
equilibrium parent fluid state to the corresponding jammed state. (b) Evolution of the aver-
aged jamming transition volume fraction φJ obtained by the compression from an equilibrium
parent fluid with volume fraction φfluid. We also report φJ starting from a Poisson distributed
configuration with φfluid = 0.3. The horizontal dashed line is φJ generated from a Poisson
distribution for N = 8000. The vertical bars correspond to the width of the J-line for this work
(thick bar) which is about 3 times larger than previous works using a binary mixture [31] (thin
bar).

The variation of the jamming density with the initial fluid density is reminiscent of the variation
of the energy of inherent structures with initial temperature for glass-forming materials with a
continuous pair interaction [36,66,67]. Note that the finite size effect ofφJ between N = 1000
and 8000 is small at low φfluid, and it essentially vanishes in the large φfluid regime, at least in
this graphical representation. The finite size effect of φJ will be more systematically examined
in Sec. 6. We draw as vertical bars the widths of the J-line obtained in the present study (thick
bar) and in a previous study of a binary mixture [31] (thin bar). The extension of the J-line
achieved in this work is about 3 times larger than previous works [31, 40]. Thus, we have
indeed succeeded in stretching the J-line considerably. In the next sections, we analyze the
structural properties of the obtained packings along this stretched J-line.
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Figure 2: (a): The averaged contact number Z as a function ofφJ remains close to the isostatic
value Z = 6 along the entire J-line. (b): The fraction of rattlers, Nr/N , increases substantially
as a function of φJ.

4 Structure at the contact scale: Isostaticity and pair correlation

4.1 Isostaticity

We first examine structural properties at the contact scale. The relevant length scale forφ ≤ φJ
is the gap between particles, x − 1, where x = ri j/σi j . A central quantity describing jammed
states at this contact scale is the averaged contact number, Z . In practice, two particles, i and
j, are considered in contact if ri j ≤ (1+ a)σi j , where a = 1×10−5 and 5×10−6 for N = 1000
and 8000, respectively [33]. With this definition, Z is given by Z = Nc/(N − Nr), where Nr
is the number of the rattlers, Nc is the number of contact pairs among N − Nr particles which
make a contact network. We define a rattler as a particle whose contact number is smaller
than d + 1, where d is the spatial dimension. Note that a determination of rattlers has to
be performed iteratively for a given configuration until all rattlers are removed. The isostatic
packing is defined by the condition Z = 2d (thus, Z = 6 in three dimensions), reflecting the
fact that the system is mechanically marginally stable [68].

In Fig. 2(a), we show Z as a function of φJ over the entire range of jamming densities that
we were able to explore. We find that the isostatic condition, Z = 6, indeed holds over the
entire J-line obtained by our protocols. In Fig. 2(b) we show the fraction of rattlers, Nr/N . It
is around 6% at the lowest jamming density, φJ ' 0.655, which is comparable with previous
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Figure 3: Radial distribution function ρg(x) near contact, where ρ = N/V and x = ri j/σi j .
The closed and open symbols are obtained with and without ratters, respectively. The black
straight lines characterize a power law behavior, g(x)∝ (x − 1)−γ, with γ = 0.5 (the upper
line) and γ = 0.41269 (the lower line), respectively. When rattlers are removed, a univer-
sal power law with the value predicted by the mean-field theory [70] is observed for all φJ
values. The gray shaded region marks the regime, x − 1 ® 10−3, where critical scaling with
γ= 0.41269 holds.

results using energy minimization in three dimensions for binary [5,31] and polydisperse [69]
systems. Interestingly, the fraction of rattlers increases steadily with φJ. Note that a slight
increase of the fraction of rattlers along the J-line was also reported previously in a binary
mixture [31,43]. This growth of the number of rattlers might appear counterintuitive at first
sight, because rattlers tend to occupy a larger volume [43] and increasing their number should
decrease the efficiency of the packing, in contradiction with the results shown in Fig. 2(b). The
issue of the increase of the number of rattlers will be further discussed in Sec. 5.3.

4.2 Pair correlation function at contact

It is known that the radial distribution function shows a power law critical behavior near
contact, g(x) ∝ (x − 1)−γ, for isostatic packings. We show ρg(x), where ρ = N/V , as a
function of the gap, x−1, in Fig. 3 for severalφJ values along the J-line. Note that we multiply
g(x) by ρ to remove the trivial effect of the density change. The data for all φJ ’s follow
a power law with an exponent γ = 0.5, when we compute g(x) from all particles in a given
configuration, in particular including rattlers [71]. Instead, when the rattlers are removed and
only the particles participating in the contact network are taken into account [72], the g(x)
for all φJ ’s now follow a distinct power law which is compatible with the value γ = 0.41269
predicted by the mean-field theory of the jamming transition [70]. Thus, a careful treatment
of the rattlers is essential to assess the critical behavior of the pair correlation function at
contact [10,72].

From these observations, we are able to confirm that the critical behavior in g(x) holds over
the entire J-line and is therefore universal. This is not a trivial observation. For instance, it may
have happened that this property only holds at the lowest end of the J-line, which is the only
point where jamming criticality and mean-field predictions had been analyzed before [73].
Notice also that establishing this result was not easy. We found appreciable deviations from a
power law behavior for smaller systems at low values of the argument x −1 (not shown). On
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the other hand, we also find that by increasing φJ the power law regime is entered for lower
values of x − 1, see Fig. 3. Therefore, observing a power law for large φJ is difficult, as the
critical regime becomes less easily observed for a given system size as φJ is increased.

We expect that other critical behaviors such as a power law distribution of the contact
forces are also observed over the entire J-line since these critical behaviors are all directly
connected to one another [68, 70]. However, this direction is beyond the scope of this paper,
since it would require a more important computational effort to prepare the packings exactly
at the jamming transition [73].

5 Structure at the local scale

Our results so far confirm that the combined use of the swap Monte Carlo technique and poly-
disperse spheres stretch substantially the J-line, while maintaining isostaticity, Z = 6. This
already indicates that the system does not have crystalline order, which would produce Z > 6
(hyperstatic packings), as explicitly demonstrated in Ref. [33]. For monodisperse spheres,
packing fractions comparable and even larger to the ones observed here can be attained.
However, these packings are not isostatic and there is evidence that they accumulate local
crystalline order beyond a threshold density [18]. Thus, the next question is: How do jammed
configurations of polydisperse spheres attain such large densities while remaining amorphous?
In this section, we address this issue by investigating the subtle evolution of the geometry of lo-
cal packing at the neighbor scale, k ∼ 2π/σ. In particular, we confirm a mild increase of bond
orientational order upon increasing density (Sec. 5.1) and reveal the emergence of distorted
icosahedral local structures (Sec. 5.2). Above the onset density, these structural features are
present in both fluid and jammed states.

5.1 Bond-orientational order

Bond-orientational order (BOO) parameters [74] have been used extensively to characterize
the local structure of jammed packings [15,21,36]. The idea is to compute rotational invari-
ants from a multiple expansion of the nearest neighbors distance distribution, and compare the
results to the values observed for known crystal structures [74]. Inspection of the combined
distribution of BOO parameters of different orders allows one to disentangle structures char-
acterized by different local symmetries [75]. For a given particle i, the local BOO parameter
is defined as

Q l,i =

√

√

√

√

4π
2l + 1

l
∑

m=−l

�

�

�

�

�

1
nb(i)

nb(i)
∑

j=1

Yl,m(ri j)

�

�

�

�

�

2

, (2)

where nb(i) is the number of nearest neighbors of the i-th particle, Yl,m(ri j) is the spherical
harmonic of degree l and order m, and ri j is the vector distance between particle i and j.
The average BOO parameters, Q l = (1/N)

∑

i Q l,i , can then be used to characterize the local
structure of a packing.

It is well known that the values of local BOO parameters in dense, disordered packings
depend sensitively on the definition of the neighbors network surrounding each particle [19].
In disordered packings, neighbors are often defined as particles whose distance contributes to
the first peak of the radial distribution function; alternatively, the nearest neighbors network
is obtained from a Voronoi tessellation of the particles’ coordinates [76]. In order to cure
the sensitivity of BOO parameters to the details of neighbors network, Mickel et al. [19] have
proposed to weight each bond entering the calculation of Q l,i by the area of the corresponding
face of the surrounding Voronoi cell. The resulting weighted BOO parameters are then defined
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Figure 4: (a, b): Bond orientational order parameter Qw
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a function of their volume fraction (a), or the volume fraction of the parent fluid, φfluid, (b).
(c, d): Similar plots for the fraction of icosahedral structures characterized by the (0, 0,12)
Voronoi signature. The vertical lines are a guide for the eye.

as

Qw
l,i =

√

√

√

√

4π
2l + 1

l
∑

m=−l

�

�

�

�

�

nb(i)
∑

j=1

Ai j
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where Ai j denotes the area of the face of Voronoi cell connecting particle i and j and
Ai =

∑

j Ai j . A similar idea had been suggested long ago in Ref. [74], to cure the artifacts
mentioned above. In the following, we compute the weighted BOO employing the neighbors
network determined via a radical Voronoi tessellation [76] obtained using Voro++ [77].

A standard indicator of structural ordering is the average Q6, which takes large values for
ordered, close-packed structures (Q6 = Qw

6 = 0.575 for the fcc cell and Q6 = Qw
6 = 0.663

for the icosahedron). In Figs. 4(a, b), we show the weighted BOO parameter Qw
6 for both

equilibrium fluid (open symbols) and jammed (closed symbols) states. The data are shown as
a function of the corresponding volume fraction of jammed states, φJ, and as a function of the
volume fraction of the parent equilibrium fluid, (φfluid), in panels (a) and (b), respectively. In
both fluid and jammed states, Qw

6 increases monotonically with increasing packing fraction,
indicating a systematic, progressive local ordering along the J-line. In agreement with the
results of Ref. [19], we found that the values of the standard Q6, obtained using the Voronoi
neighbors network are smaller than for its weighted counterpart, Qw

6 (by 10-15% in our case,
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result not shown).
The different representations of the data in Fig. 4 convey two distinct messages: Panel (a)

shows that fluid and jammed states can have a similar volume fraction and yet clearly different
local structure, as illustrated by the vertical dashed line around φJ = 0.655 [44, 78]. Panel
(b) demonstrates instead that above the onset volume fraction, φonset ' 0.56, around which
glassy dynamics starts to manifest in the equilibrium fluid [79], the equilibrium fluid and the
corresponding jammed states are characterized by very similar bond orientational order; at
the local scale, jammed configurations retain essentially the local structure of the parent fluid.
This result is confirmed by analysis of the other local structure metrics detailed below.

The evolution of Qw
6 is generally not enough to detect the presence of local crystal struc-

tures in dense packings. In particular, it is difficult to disentangle local fcc structures from
distorted icosahedra [19], which both give similar Q6 values. To resolve fine details of the lo-
cal structure, one has to resort to scatter plots of rotational invariants of different orders [74],
and possibly introduce an additional averaging procedure over the neighbors [80]. Mickel et
al. [19] have suggested to measure Qw

2 invariants, which are zero for most crystal structures
as a simpler approach to quantify the degree of local crystalline order. We found that Qw

2 de-
creases mononotically by increasing volume fraction for both fluid and jammed configurations,
and that its variation is smooth and continuous (not shown). Typical values of the average
Qw

2 range from about 0.1 at φ = 0.4 to 0.05 at the largest packing fractions. These values are
consistent with those observed in non-crystalline packings of monodisperse hard spheres [19].
This, together with the smooth evolution of the fluid equation of state and the regularity of
the partial structure factors at small k [79], confirms that our packings are fully amorphous
along the whole J-line.

5.2 Locally favored structure

A slight but systematic change of bond orientational order along the J-line has been noted
before [34, 36], albeit over a smaller range of volume fractions. While this suggests some
sort of ordering of the packings, uncovering the precise nature of local order remains difficult
and requires knowledge of a dictionary of “known” reference structures. In this section, we
employ a strategy based on the statistics of Voronoi cell shapes [81, 82] which does not rely
on any a priori reference to specific motifs. This approach has been employed successfully in
the context of glasses, see e.g. Refs. [46, 83] for recent reviews, but its use in the context of
jammed packings remains very limited [20].

As in Sec. 5.1, we perform a radical Voronoi tessellation [76] of each configuration. In this
construction, which duly accounts for the size polydispersity, each particle i in the system is
enclosed in a polyhedral cell such that all points whose tangent distance from the surface of
particle i is smaller than the tangent distance from the surface of particle j with j 6= i [76].
The shape of a Voronoi cell encodes detailed information about the local arrangements of the
neighbors around the central particle, hence the local structure. We characterize the shape of
a cell through its signature (n3, n4, n5, ...), where nq is the number of faces of the cell with a
given number q of vertices.1 By averaging over an ensemble of configurations, we detect the
most frequent signatures and monitor their concentration as a function of the relevant control
parameter (here the volume fraction). This approach provides a fairly robust assessment of the
preferred local order, often termed “locally favored structure” in simple models of glasses [46].

We find that at low volume fractions the fluid exhibits a variety of different Voronoi sig-
natures, typical of highly disordered fluids. Upon increasing φfluid, however, fluid samples
become increasingly rich in (0, 0,12) signatures, which are associated to icosahedral local or-
der. This kind of signature is by far the most frequent one at largest volume fractions. In

1We disregard null values of nq for q > q′, where q′ is the largest number of vertices such that nq′ > 0.
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φJ = 0.656 φJ = 0.678 φJ = 0.697
(0,2,8,1) 2.8% (0,2,8,1) 5.1% (0,0,12) 14.2%
(0,3,6,4) 2.5 (0,2,8,2) 4.4 (0,1,10,2) 7.0
(0,3,6,3) 2.4 (0,2,8) 4.1 (0,2,8) 6.3
(0,2,8,2) 2.3 (0,0,12) 3.9 (0,2,8,1) 5.7
(0,3,6,1) 2.0 (0,1,10,2) 3.7 (0,2,8,2) 4.6
(0,4,4,3) 1.9 (0,3,6,4) 3.2 (0,3,6) 3.7
(0,2,8) 1.8 (0,3,6,3) 2.8 (0,3,6,1) 3.0
(0,3,6,2) 1.7 (0,3,6,1) 2.8 (0,3,6,4) 2.4
(0,3,6) 1.6 (0,3,6) 2.3 (0,3,6,3) 2.1
(1,2,5,3) 1.4 (0,2,8,4) 2.1 (0,2,8,4) 2.0

Table 1: Most frequent Voronoi signatures and the corresponding average percentages in
jammed configurations. The corresponding parent fluid packing fractions are φfluid = 0.500
(N = 8000), 0.618 (N = 8000), and 0.655 (N = 1000), respectively.

Figs. 4(c, d), we show the fraction f(0,0,12) of icosahedral structures for both fluid and jammed
states. As for panels (a) and (b), we plot the data as a function of φJ and of φfluid. We find
that f(0,0,12) for both fluid and jammed states is essentially negligible below φfluid ' 0.56, but
then it increases rapidly with increasing volume fraction to reach a value of about 14% for our
densest packings. We note that if we also take into account all particles connected to centers
of icosahedral structures, as done for instance in Ref. [84], this fraction reaches about 80 % at
the largest density. Superficially, this behavior resembles the one found in the binary Lennard-
Jones mixture introduced in Ref. [85], for which f(0,0,12) shows a marked increase around the
onset of slow dynamics [86].

Turning our attention to jammed packings, no distinguishable local order is detectable
below φonset. Figure 4(d) demonstrates that the sudden emergence of the icosahedral local
order around φonset in the equilibrium fluid is, again, inherited by the jammed packings. It is
thus tempting to attribute the increase of φJ along the J-line to the appearance of distorted
icosahedral arrangements, which help maintaining an overall amorphous organization of the
packings [20]. In Table 1, we report the occurrences of the most frequent Voronoi signatures
in jammed packings at selected volume fractions. We note that, on average, (0,0,12) cells
have contact numbers Z slightly smaller than 6 (Z = 5.4). We found that some less abundant
signatures, such as (0,3,6) and (0,2,8), are associated to even smaller values of Z . These trends
suggest a correlation between Z and the number of nearest neighbors, which we tentatively
attribute to the size dispersity of the packings.

The presence of icosahedral order and, more generally, polytetrahedral order in fluid and
jammed hard sphere packings has been discussed before, see e.g. Refs [17,20,87,88]. The re-
sults presented above differ from earlier findings on two important aspects. First, the amount
of (0,0, 12) signatures found in our polydisperse packings substantially exceeds the one re-
ported in monodisperse jammed packings [20] and is also appreciably larger than the one
reported in less polydisperse hard sphere at equilibrium [88]. However, because of the large
size polydispersity, the local arrangements associated to (0, 0,12) signatures are often distorted
and irregular. Such issues are usually neglected in the analysis of icosahedral order in simple
binary mixtures [86].

To quantify the degree of asphericity of Voronoi cells, we analyzed the distribution of dis-
tances ri j = |ri−r j| separating a central particle i to its neighbors j. As a simple measure of cell
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Figure 5: (a): Distribution of asphericity parameter s for polydisperse hard spheres for two
different volume fractions, and for a monodisperse hard sphere system. (b, c, d): Typical
icosahedral structures with varying degree of asphericity s.

asphericity, we compute the normalized standard deviation of the distances from particle i,

si =
1
r̃i

√

√

√

√

1
nb(i)

nb(i)
∑

j=1

(ri j − r̃i)2,

where r̃i = (
∑nb(i)

j=1 ri j)/nb(i) is the average nearest neighbors distance of particle i. See
Ref. [89] for a more systematic approach based on Minkowski tensors. Of course s ≥ 0 and the
equality holds for a perfectly regular structure. In Fig. 5(a) we show the probability distribu-
tion of the asphericity parameter, P(s), of icosahedral structures for jammed packings for a low
(φJ = 0.653) and a high (φJ = 0.685) packing fraction. We find that the distribution is not
very sensitive to the value of φJ. For comparison, we also include results for P(s)measured in
monodisperse hard sphere jammed packings. We obtained the latter by compressing Poisson
distributed configurations at φfluid = 0.3 using the algorithm described in Sec. 2.3. On aver-
age, icosahedral structures detected in polydisperse packings are more aspherical by about a
factor two than those found in the monodisperse hard spheres. We found that the asphericity
of icosahedra in a glassy binary mixture with modest size ratio [85], for which icosahedral
order is most pronounced [45], is intermediate between those of the two systems in Fig. 5(a).
Figures 5(b-d) show representative icosahedral structures detected in our densest packings.
They are representative of different degrees of asphericity, ranging from fairly regular (b) to
intermediate (c) and highly irregular (d) structures.

These results indicate that, despite the abundance of (0, 0,12) Voronoi cells, the nature
of icosahedral order in polydisperse packings might be different from the one observed in
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Figure 6: (a) Diameter distribution for all particles, f (σ), and diameter distribution for rattlers
only, fR(σ). (b) Cluster size distribution for the rattlers (closed symbols), compared to the
same fraction of randomly selected particles in the same packings (open symbols).

simple binary mixtures. In fact, icosahedral structures in highly polydisperse spheres are more
distorted and inherently more irregular due to the increased compositional freedom. In binary
mixtures with sufficiently small size ratio icosahedral structures can strongly influence the
local mobility of the particles in the supercooled regime [45, 84, 90]. Further work is needed
to assess the relevance of icosahedral local order in dense, highly polydisperse packings, in
particular in the context of glass transition studies.

5.3 Spatial organization of rattlers

In Fig. 2(b) we have shown that the fraction of rattlers grows steadily with increasing φJ.
Naively, one might expect rattlers to occupy a larger free space, thus a large number of rattlers
seems at odds with the increased efficiency of the packings.

First, we assess the size distribution of rattlers, fR(σ), along the J-line, see Fig. 6(a). By
comparing fR(σ) to the distribution of all particles, f (σ), we find rattlers are mostly small
particles, which is an intuitive result. Interestingly, the shape of fR(σ) hardly changes along
the J-line, whereas the fraction of rattlers increases substantially.

Next, we inspect the spatial organization of rattlers. To get a qualitative idea of their real
space structure, we show in Figs. 7 some typical snapshots of rattlers found in jammed packings
at φJ = 0.656 and φJ = 0.688. Rattlers appear to be distributed in rather homogeneous way
in this representation. To get a more quantitative picture, we follow previous work [91] and
study the spatial organization of rattlers into clusters. We define a rattler cluster as a group
of rattlers where each rattler is neighbor to at least another member of the cluster. As in the
previous sections, neighbors are identified through a radical Voronoi tessellation. Note that
our analysis differs from the one of Ref. [91], in which rattler clusters were classified according
to the connectivity of their corresponding cages.

It is sometimes assumed that rattlers are randomly distributed in the system [92]. To test
this idea, we randomly pick a fraction of particles with the same concentration as the rattlers
and compute the corresponding cluster size using the same definition given above. We show
the distribution of rattler cluster sizes for jammed states with a low (φJ = 0.656) and a high
(φJ = 0.688) volume fraction in Fig. 6(b). We find that the rattler clusters are smaller than the
one formed by the randomly chosen particles, for both low and high φJ values. This implies
that overall the positions of the rattlers are only weakly correlated, displaying a slight tendency
to form small clusters [91]. This is confirmed by visual inspection of snapshots of jammed
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Figure 7: Typical snapshots of rattlers (red spheres) in jammed packings at φJ = 0.656 (left)
and φJ = 0.688 (right). The white bonds connect neighboring rattlers that form a cluster.

packings along the J-line, see Fig. 7 for representative examples. These relatively compact
clusters might lead to small volume fraction fluctuations and may also affect hyperuniform
behavior, as discussed in Sec. 7.

6 Structure at the large scale

Here we consider the structure of the packings at the large scale. The corresponding wave
number regime is k → 0, which means that we quantify fluctuations at very large length
scales.

6.1 Hyperuniformity

Equilibrium fluids are characterized by a finite value of the static structure factor S(k) at k→ 0,
which is associated to a finite isothermal compressibility. However, it is known that hard
sphere packings at the jamming transition show “unexpected” (that is, more complex) density
fluctuations [22, 93]. It was reported that S(k) in monodisperse jammed packings obeys a
surprising linear behavior at low k, S(k)∝ k, which characterizes hyperuniform materials [22,
93]. It is sometimes assumed that hyperuniformity is related to the criticality of the jammed
states [47], but the nature of this criticality and the connection to other signatures of jamming
remain unclear [25,26].

When the system is a mixture of several components or is continuously polydisperse, the
structure factor S(k) of jammed states does not show a linearly vanishing behavior. Instead,
S(k) takes a finite value at k→ 0 just as in fluid states [94,95]. We show S(k) of our polydis-
perse system for both fluid and jammed states in Figs. 8(a, b). These results confirm that the
shape of S(k) of jammed states is similar to the fluid ones, taking in particular a finite value,
S(k → 0) ' 0.5, for all jammed states along the J-line, with no sign of a vanishing signal at
low k.

In Refs. [23, 92], the concept of hyperuniformity was generalized from density to vol-
ume fraction fluctuations to discuss the hyperuniformity of multi-components system and of
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Figure 8: (a, b): Static structure factor S(k) reflecting number density fluctuations for fluid (a)
and jammed (b) states. (c, d): Spectral density χ(k) reflecting volume fraction fluctuations
for fluid (c) and jammed (d) states. Nearly hyperuniform behavior expected for χ(k) is only
observed for the lowest φJ value in (d).

particles with non-spherical shapes. Thus, an appropriate observable to characterize the hype-
runiformity of polydisperse systems is the spectral density χ(k), which quantifies the volume
fraction fluctuations [23,92]. It is defined as

χ(k) =
1
V
〈Ik I−k〉 , (4)

where Ik is the Fourier transform of the indicator function I(r). For spherical particle systems,
I(r) is given by

I(r) =
N
∑

i=1

θ (Ri − |r− ri|), (5)

where Ri is the radius of the i-th particle, Ri = σi/2. For homogeneous isotropic systems in
d = 3, Ik becomes

Ik =
N
∑

i=1

4π
k3
[sin(kRi)− (kRi) cos(kRi)] e

−ik·ri . (6)

Note that alternative definitions of the volume fraction fluctuations in the reciprocal space can
be applied to study hyperuniformity in jammed packings [24,96].

In Figs. 8(c, d), we show our numerical results for χ(k) for both fluid and jammed states.
Before discussing χ(k) of jammed states at small k, where signs of hyperuniformity may be

16

https://scipost.org
https://scipost.org/SciPostPhys.3.4.027


SciPost Phys. 3, 027 (2017)

t!]

 J = 0.656
 J = 0.658
 J = 0.661
 J = 0.668
 J = 0.677
 J = 0.688

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.000

0.002

0.004

0.006

0.008

0.010

(k)
Jammed state, N=8000

k
Figure 9: Zoom in the small k region of the spectral density χ(k) for jammed states shown
in Fig. 8(d). The error bars represent the standard deviation obtained from sample to sam-
ple fluctuations. The gray dashed line is a linear fit for φJ = 0.656, which extrapolates to
χ(k→ 0) = 7.9× 10−4 for the lowest φJ. Instead χ(k→ 0) = 4.2× 10−3 for the largest φJ.

found, it is instructive to study χ(k) for the fluid states and its volume fraction dependence.
We find that χ(k) for fluid states has a broad peak near k ∼ 2π/σ and a flat plateau at
smaller k [97]. In addition, the overall amplitude of χ(k) decreases as the volume fraction
φfluid increases at k ® 2π/σ, reflecting that volume fraction fluctuation are suppressed in
order to achieve denser particle packings in equilibrium. This observation contrasts with the
well-known increase of the first peak of S(k) with increasing the density in dense fluids [98]
which instead reflects the slight increase in local scale structural correlations as the density is
increased.

In jammed states, the peak height of χ(k) is much smaller than in corresponding fluid
states, and the peak amplitude decreases as φJ increases, reflecting again that further opti-
mization of local configurations has been realized. Note that χ(k) displays a rather strong
volume fraction dependence in both fluid and jammed states, which contrasts with the rel-
atively weak density dependence of S(k) over the same range. This insensitivity of S(k) in
supercooled liquids is traditionally taken as a hallmark of glass physics [98]. However, our
results demonstrate that χ(k) is a more sensitive probe of structural changes at the level of
two-point correlations. This suggests that χ(k)might be a good observable to characterize the
equilibrium structure of dense hard sphere systems.

Having described the main features of χ(k), we now concentrate on the low-k behavior
in jammed states. A zoom in this region is shown in Fig. 9, to investigate more carefully the
possible existence of a hyperuniform behavior in this regime. At the lowest φJ along the J-line
for N = 8000, φJ = 0.656, χ(k) linearly decreases with decreasing k, as observed in previous
numerical works [23,24,47,92]. By fitting this linear behavior (shown with the dashed line),
we can extrapolate the limit k→ 0 and we obtain a small finite value, χ(k→ 0) = 7.9× 10−4

for this volume fraction. Therefore, one might conclude that the system at φJ = 0.656 is very
close to being hyperuniform [47]. However, as φJ is increased from its lowest value, χ(k)
quickly deviates from this linear behavior, and it even becomes flat, within our error bars, at
low k. Simultaneously, χ(k → 0) obtained by linear extrapolation increases systematically
from χ(k → 0) ≈ 7.9 × 10−4 to χ(k → 0) ≈ 4.2 × 10−3 with increasing φJ , suggesting that
deviations from hyperuniformity become stronger when φJ increases.

Recently, deviations from hyperuniformity were reported in both two [24] and three [25,
26] spatial dimensions. Both works employed rapid quenches from fully random configura-
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tions using energy minimization protocols. These studies showed that χ(k) (and thus S(k) in
monodisperse systems) linearly decreases with decreasing k, but it always saturates at a cer-
tain k∗ (k∗ ∼ 0.2 in Ref. [24] and k∗ ∼ 0.4 in Refs. [25,26]), indicating that hyperuniformity is
eventually avoided at sufficiently small k. Ref. [47] attributes the breakdown of hyperunifor-
mity at very small k to a lack of numerical accuracy in conventional jamming algorithms. It is
argued that producing truly jammed, hyperuniform states is a highly difficult numerical task
and thus the observed saturation at k∗ using energy minimization could stem from numerical
inaccuracy of a given algorithm.

However, the systematic deviation of χ(k) at denser φJ of our system shown in Fig. 9
presumably has a different origin, because the system size we use, N = 8000, is not large
enough to detect the saturation at k∗ reported in previous work. Also, the systematic increase
of χ(k → 0) is observed for a given system size and within a given numerical algorithm.
Therefore, the strong deviations from hyperuniformity reported here must have a physical,
rather than a computational, origin.

Our jammed packings at various φJ are obtained with a similar degree of precision, in par-
ticular isostaticity is equally well satisfied for all configurations along the J-line. However, they
display an increasing tendency to depart from hyperuniformity as φJ is increased. Therefore,
we conclude that the jamming criticality, which is well-obeyed all along the J-line, and hyper-
uniformity, which is increasingly violated, are distinct concepts. This conclusion is consistent
with the fact that the linear dependence of χ(k) (and S(k)), which might be interpreted as
a “precursor” of hyperuniformity [99], is robustly observed at densities well below [99] and
above [24,25] φJ and even in the presence of thermal fluctuations [25], whereas the jamming
criticality originating from isostaticity is very quickly erased in similar conditions [100].

Furthermore, the nearly hyperuniform behavior observed at the lowest φJ in this work
implies that hyperuniformity, if it were to be observed, should characterize the lowest end of
the J-line [32, 40]. Although the “maximally random jammed state” [2] and the lowest end
point of the J-line are conceptually distinct, our observations lead us to speculate that these two
concepts may be identical [101], and may both display the strongest (although presumably
still imperfect) signature of hyperuniformity. This conclusion, based on our numerical findings,
also directly contradicts an opposite theoretical prediction recently made in Ref. [102].

A hypothesis that could explain the present observations is that the increasing deviation
from hyperuniformity observed on increasing φJ correlates with the increasing number of rat-
tlers in the corresponding packings. Rattlers can be seen as “defects” in the volume fraction
field, and a finite fraction of rattlers could induce a finite amount of volume fraction fluctua-
tions at large scale. This hypothesis is hard to test directly, as we cannot independently vary
the fraction of rattlers and the degree of hyperuniformity in hard sphere packings. We notice
that the fraction of rattlers increases by only a factor of 2 while the limit χ(k→ 0) increases
by about an order of magnitude, which suggests that rattlers may not be the central expla-
nation for this observation. This conclusion was indirectly tested in Ref. [24], which showed
that upon compression of jammed packings the number of rattlers decreased but the behavior
of χ(k) was essentially unchanged. We also confirmed this behavior in our simulations (not
shown). We will discuss this issue further in Section 7.

6.2 Finite-size fluctuations of the critical density of jamming

Second order phase transitions are usually associated with diverging length scales [103].
Finite-size scaling represents a powerful tool to understand the nature of such transitions and
of the corresponding diverging length scales. Although several distinct important length scales
have been identified for the jamming transition [7,25,99,100,104–110], the particular length
scale responsible for the finite-size effects of φJ is not well understood [5,105,111].
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Figure 10: (a): Probability distribution function of φJ for several N obtained by compressing
dilute (φfluid = 0.4) and dense (φfluid = 0.635) equilibrium fluid configurations. (b): Finite-
size scaling plot according to Eq. (7). Finite-size effects on the quantityφJ(N) are considerably
suppressed for φfluid = 0.635.

A qualitatively different aspect of the jamming transition compared to usual critical phe-
nomena is the fact that the transition point is not unique and is protocol-dependent [11].
Thus, we examine the finite-size effect of φJ for two different protocols which produce differ-
ent averaged φJ values. In practice, we compare results of two protocols, the non-equilibrium
compression from dilute (φfluid = 0.4) and dense (φfluid = 0.635) fluids, which produce low
(φJ ' 0.657) and high (φJ ' 0.685) jamming volume fractions. We expect a smooth evolu-
tion of the behavior with φJ, but these measurements are numerically demanding, so we limit
ourselves to only two different critical points on the extremes of the J-line.

We show the probability distribution function P(φJ) for several system sizes N in Fig. 10(a).
For the compression of the dilute fluid, φfluid = 0.4, a broad Gaussian shape of P(φJ) is ob-
tained for the smallest system size. As N increases, the distribution becomes narrower and the
position of the peak shifts to higher volume fractions, as reported previously [5,60,112].

For the compression of the dense fluid, φfluid = 0.635, the width of the distribution for a
given N is slightly narrower than the one for φfluid = 0.4 [14, 34], but the distribution again
becomes more sharply peaked as N increases. Remarkably, the peak position hardly shifts with
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N , in strong contrast with φfluid = 0.4. Therefore, for φfluid = 0.635, the finite size effect in
terms of the mean value of φJ is significantly suppressed and φJ(N) quickly approaches the
thermodynamic valueφ∞J . For both protocols, the latter value can be extracted using standard
finite-size scaling,

φJ(N) = φ
∞
J −δN−1/νd , (7)

where δ and ν are fitting parameters, and d is the number of spatial dimensions. Note that
we use the mean value for φJ(N) instead of the peak value [5], since we do not have enough
statistics to determine the peak position with high accuracy. The results of this fit are shown
in Fig. 10(b). We obtain φ∞J = 0.65698 ± 0.00009 and ν = 0.64 ± 0.01 for φfluid = 0.4,
and φ∞J = 0.68548 ± 0.00002 and ν = 0.41 ± 0.04 for φfluid = 0.635, respectively. The
obtained ν’s are slightly different from previous reports [5,113]. Note that ν for φfluid = 0.4 is
compatible with very recent numerical work [102]. However, we do not wish to discuss these
values quantitatively because ν might be protocol or algorithm dependent, and corrections
to scaling should be included before drawing any strong conclusions [111]. We do not treat
these corrections to scaling because they require huge statistics. Our main result here is more
qualitative; finite size effects on φJ are significantly suppressed for the compression from the
dense fluid. The prefactor δ in Eq. (7) is more than 10 times smaller for the compression
of the dense fluid, as can be directly seen in the data shown in Fig. 10(b). The smallness of
the finite-size effect in fact makes a quantitative determination of the critical exponent very
difficult for the largest φJ values [36]. Our data conclusively demonstrate that the J-line is not
due to a finite size effect and that it remains instead well-defined in the thermodynamic limit.

To get more physical insights into the finite-size effects for φJ, we monitor the probabil-
ity distribution function P(∆r) of single particle displacements during the compression from
the fluid to the jammed states, ∆r = |rjam

i − rfluid
i |, where rfluid

i and rjam
i are the positions of

particle i in the equilibrium parent fluid configuration and in the corresponding jammed con-
figuration, respectively. The distribution P(∆r) is computed for all the particles (including
rattlers). P(∆r) quantifies how much the particles need to move or rearrange during the com-
pression until the system is jammed. In Figs. 11(a, b), we show P(∆r) as a function of either
∆r or (∆r)2, for three different system sizes, N = 150, 1000, and 8000. For φfluid = 0.4,
P(∆r) has a rather long tail, indicating that the particles may perform large displacements
before finding the final jammed configuration. This tail can be fitted by a Gaussian form,
P(∆r)∝ exp[−b(∆r)2], where b is a constant [see Fig 11(b)], which suggests that there is
no strong positional correlation between before and after compression. Importantly, a notice-
able finite-size effect is found in these tails, in the sense that smaller systems are characterized
by smaller particle displacements. This observation provides a possible explanation for the ob-
served finite-size effect in φJ: particles in smaller systems do not explore space as they do in
large systems and thus get jammed in less optimized (i.e. less dense) configurations, leading
to smaller φJ, as observed in Fig. 10.

Interestingly, for φfluid = 0.635, the tail in P(∆r) is significantly suppressed compared to
the one for φfluid = 0.4, indicating that particles get jammed in a position that is actually very
close to their original position in the parent fluid. This observation is of course consistent with
the fact that the parent fluid and its corresponding jammed state display very similar geometric
structure when φJ is large, as shown above in Figs. 4(b, d). Simultaneously, the finite-size
effect on the tail in P(∆r) almost disappears, which parallels the suppression of the finite-size
effect in φJ values. Furthermore, P(∆r) is no longer Gaussian, but exhibits an exponential
tail, P(∆r)∝ exp[−a∆r], where a is a constant. This functional form has been reported in
supercooled liquids undergoing a transition between nearby inherent structures [114–116].
This may suggest that during the compression of the denser fluid, the system may perform
transitions among nearby locally stable configurations, while remaining firmly localised within
a well-defined metabasin [64,117–119].
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Figure 11: (a): Probability distribution function P(∆r) of particle displacements during a
compression, ∆r = |rjam

i − rfluid
i |. The straight line corresponds to P(∆r) ∝ exp[−a∆r],

where a is a constant. (b): The same distributions P(∆r) as a function of the quantity (∆r)2.
The straight line corresponds to P(∆r)∝ exp[−b(∆r)2], where b is a constant.

7 Discussion and conclusions

Thanks to an efficient thermalisation algorithm which allowed us to equilibrate polydisperse
hard spheres up to unprecedented packing fractions [44], we have significantly extended the
study of the line of critical jamming transitions, or J-line. Our results demonstrate that iso-
staticity and the associated critical behavior of the pair correlation function remain unchanged
along the entire J-line, while some other structural properties at larger length scales evolve
qualitatively. Therefore, our results disentangle the structural properties which originate from
isostaticity at the contact scale from other geometric properties at larger scale that seem un-
related or insensitive to the jamming criticality.

We found that the fraction of rattlers in jammed packings increases markedly with increas-
ing φJ, which is a counterintuitive result. We confirm that a proper treatment of these rattlers
is essential to reveal the critical behavior at contact scale. Rattlers also affect the organization
of the packings at the neighbor scale and tend to form relatively compact clusters, which might
induce subtle volume fraction fluctuations in the packing. In Ref. [47], it has been argued that
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the presence of rattlers may interfere with hyperuniformity. We found that deviations from
hyperuniform behavior in jammed polydisperse hard spheres become more pronounced as the
volume fraction increases. However, hyperuniformity cannot be simply achieved by reducing
the number of rattlers through additional compressions [24]. Moreover, hyperuniform be-
havior disappears completely when rattlers are removed from the computation of the spectral
density, or volume fraction fluctuation [22]. Our results confirm this trend, which is in stark
contrast with the jamming critical behavior seen in the pair correlation function. This would
be another supporting evidence that hyperuniformity and jamming criticality are unrelated.
These numerical results does not exclude the possibility that an ideal, rattler-free packing
obtained through a more complex optimization process provides true hyperuniformity [47].
Along this line of thought, it would be interesting to study in more detail the relation between
presence of rattlers and the violation of the hyperuniformity reported here.

We found that, above the onset volume fraction, the structure of jammed packings at the
local scale closely tracks the one of the parent equilibrium fluid. This contrasts with the be-
havior at the contact scale, which is qualitatively very different in jammed and fluid states.
In particular, as the volume fraction increases, both equilibrium fluid and jammed packings
display a smooth but progressive local ordering, which we attributed to the emergence of
distorted icosahedral structures. We attributed their irregular shape to the significant size dis-
persity of the system. We speculate that only the most regular structures, identified through
the asphericity parameter used in this work or more sophisticated metrics [19], may actually
provide locally stable arrangements in the dense equilibrium fluid. These ideas might find
useful applications in the context of glass structure studies [46] and of investigations of the
structure-dynamics relationship [90].

In a recent numerical study of polydisperse hard spheres [79], we demonstrated the growth
of non-trivial static “point-to-set” correlations, which are at the core of thermodynamic pictures
of the glass transition [120]. It has been suggested that such “amorphous order” could be iden-
tified with hyperuniformity [99,102], although this link has been questioned [25]. Our results
cast further doubts on this argument: point-to-set correlations grow as the volume fraction in-
creases, while hyperuniform behavior is suppressed. The growth of amorphous order in the
equilibrium fluid appears thus to compete with, rather than to enhance, hyperuniformity.

The significant suppression of finite size effects at higher φJ suggests that the length scale
causing this finite-size effect might not be related to the isostatic nature of the jamming transi-
tion, since all studied configurations are similarly isostatic. This conclusion seems to contrast
with other diverging length scales near jamming [25, 100, 104, 107–109]. We notice that the
finite-size effect for inherent structure energies in Lennard-Jones supercooled liquids is also
suppressed when considering lower temperatures for the parent fluid [121], which is reminis-
cent of our observations for denser φfluid in hard spheres. Finite size effects for jammed and
inherent structures may have a common physical origin, namely the different topography of
the energy landscape probed in dilute or dense fluids [28, 122]. Dense fluids jam in a con-
figuration that belongs to well-defined metabasins, whereas dilute fluids may explore a larger
portion of the potential energy landscape before jamming, larger systems exploring a larger
region of phase space.

We have used a system with continuous polydispersity to enhance thermalisation. How-
ever, we expect the conclusions drawn from the present model to hold more generally. Systems
with discrete polydispersity, i.e. mixtures, are more easily amenable to theoretical investiga-
tions [101,123–125]. Recently, it has been proposed that thermal glassy systems with contin-
uous polydispersity can be mapped into an effective multi-component system to characterize
their thermodynamic behavior [126]. Whether such an effective description is also applica-
ble to the structural characterization of jammed states is an interesting open issue, which will
likely require a careful treatment of the rattlers [124,125].
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