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Abstract

Using the Lindblad master equation approach, we investigate the structure of steady-
state solutions of open integrable quantum lattice models, driven far from equilibrium by
incoherent particle reservoirs attached at the boundaries. We identify a class of bound-
ary dissipation processes which permits to derive exact steady-state density matrices in
the form of graded matrix-product operators. All the solutions factorize in terms of vac-
uum analogues of Baxter’s Q-operators which are realized in terms of non-unitary rep-
resentations of certain finite dimensional subalgebras of graded Yangians. We present a
unifying framework which allows to solve fermionic models and naturally incorporates
higher-rank symmetries. This enables to explain underlying algebraic content behind
most of the previously-found solutions.
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1 Introduction

Remarkable progress in experiments with cold atoms [1–7] has greatly impacted theoretical
research in the area of quantum many-body dynamics [8–16]. Quantum systems which reside
in the proximity of a quantum integrable point have received a great amount of attention.
Non-ergodic character of these systems was revealed through anomalous relaxation and ab-
sence of conventional thermalization, and paved the way to study new paradigms in quantum
statistical mechanics such as pre-thermalization [17–22] and equilibration towards general-
ized Gibbs ensembles [23–32]. In an idealized scenario which neglects integrability-breaking
perturbations, integrable interacting systems were shown to permit a universal classification
of local equilibria [33–35] based on a complete set of local conservation laws [36].

Equilibrium statistical ensemble however constitute a fairly small set of quantum many-
body states and are outside of perturbative regime insufficient to capture physically interesting
situations in which systems support particle and energy currents. An important step towards
realizing genuine far-from-equilibrium regimes is to devise an efficient computational frame-
work for accessing regimes of strongly-correlated quantum dynamics which often lie beyond
the reach of traditional techniques. Switching from the Hamiltonian approach for closed sys-
tems to the open system perspective [37–39] offers a promising route to achieve this.

A quantum system is regarded as an open system when as a result of interactions with its
surroundings experiences incoherent loss of information (quantum decoherence), making a
system evolving according to an effective non-unitary evolution law. In a highly controlled en-
vironment however, an irretrievable loss of information due to quantum noise may sometimes
even act as a resource [40–43]. Quantum noise is typically modelled either as a stochastic
process, or alternatively via deterministic evolution laws in the form of quantum master equa-
tions, where the unitary dynamics is supplemented with additional non-Hamiltonian effective
terms. The simplest master equations are Markovian [44,45] and thus entirely discard memory
effects between a system and its environment.

Quantum master equations can be in many aspects perceived as quantum analogues of clas-
sical stochastic models [46]. The latter encompass a large class of systems which include asym-
metric simple exclusion processes [47, 48], reaction-diffusion processes [49–52], zero-range
processes [53,54] and others (see e.g. [55] for a review). While classical stochastic equations
have been a subject of intense research in the past few decades which has lead to many ex-
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actly solvable examples [47,48,56–61], it is quite surprising that there exist merely a handful
of recent theoretical studies of quantum master equations in the realm of low-dimensional
many-particle systems [62–69].

Despite quantum many-body systems which undergo dissipation typically evolve to either
trivial states, or highly entangled states of prohibitive complexity, there remarkably exist cer-
tain non-trivial examples of quantum dissipative Markovian dynamics where an intricate inter-
play between noise and coherent evolution results in stationary states which are analytically
tractable. Integrability of the central model is of central importance here, as it makes it possible
to identify Markovian particle reservoirs which, as explained in the manuscript, induce certain
‘symmetry protected’ nonequilibrium states. The main objective in this regard is to isolate sce-
narios in which the steady states of dissipative many-body dynamics are of low complexity and
permit an exact analytic description in terms of matrix-product states. This programme has
been initially pursued in classical exclusion processes [47, 48] and relatively recently applied
to a quantum chain of non-interacting fermions [70, 71]. The same ideas have been shortly
after expanded also to a few representative interacting exactly solvable many-body Hamilto-
nians, such as the Heisenberg spin chain [72–74] and the fermionic Hubbard model [75,76],
which led to various applications (see e.g. [72, 77–79]). For a historical perspective on the
subject the reader is referred to the recent topical review [80].

Despite many promising advancements on the subject, it is rather unsatisfactory that the
structure of these solutions still remains elusive and poorly understood. Indeed, no common
framework which would explain the origin and meaning of integrable dissipative boundaries
and offer a systematic way to extend the results to more general scenarios has been proposed
to the date. In particular, all previous attempts to understand the internal structure of these
exactly solvable instances based on ‘first symmetry principles’ and algebraic concepts of Yang–
Baxter integrability have been mainly unsuccessful, although a few central insights have been
made in [81,82] which unveiled the Lax formulation and highlighted the importance of non-
unitary representations of quantum groups. However, a comprehensive group-theoretic ap-
proach which would enable to construct a larger class of solutions from first principles remains
unknown.

The primary goal of this work is to study formal aspects of integrable quantum chains
driven far from equilibrium with aid of incoherent Markovian reservoirs attached at their ends.
By continuing the bottom-up approach initiated in [81], we shall uncover the symmetry con-
tent behind some of the solutions obtained in the previous works, extend these results to
models based on higher rank algebras and discuss the paradigm of integrable steady states
from the standpoint of representation theory of quantum algebras. This work offers a unify-
ing algebraic construction for an entire class of exact nonequilibrium states belonging to the
so-called rational integrable quantum spin chains by making use of tools of quantum integra-
bility theory. Specific instances which have been derived in the previous work with different
techniques(cf. [73,74,81,82]) are thus naturally incorporated in a common framework. More-
over, by using graded vectors spaces and Lie superalgebras, we present how to accommodate
for fermionic degrees of freedom [83,84] and derive a new class of steady-state solutions for
interacting integrable fermionic chains with SU(n|m)-symmetric Hamiltonians. Further quan-
titative analysis of the constructed solutions goes beyond the main scope of the present study
and will be thus omitted. The task of computing correlation functions can however be carried
out by using standard techniques based on matrix-product states, see e.g. [80].

One of the central insights of our approach is rooted in the universal factorization property
of quantum Lax operators. This leads to the so-called ‘partonic’ Lax operators which can be
regarded as the elementary constituents of Yang–Baxter integrable systems and are intrinsically
related to the notion of Baxter’s Q-operators [85–88], a widely used concept in the Bethe
Ansatz diagonalization techniques. The observation that partonic Lax operators which realized
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over non-unitary irreducible modules may be used as local building units of exact steady-state
solutions to certain Lindbladian dynamics is however a curious unconventional feature which
displays their proper nonequilibrium character.

Outline. The paper is organized as follows. In the preliminary section 2 we give a quick
introduction to the Lindblad master equation and briefly review some basic concepts regarding
graded vectors spaces. In section 3, we proceed by introducing an out-of-equilibrium protocol
by coupling a quantum chain of interacting particles to incoherent particle reservoirs attached
at its ends. We subsequently present the main algebraic structures which are afterwards used
in the construction of the steady-state solutions. The notion of graded Yangians is defined in
section 4, where finite dimensional subalgebras which are intimately related to the Baxter’s
Q-operators are identified. In section 5 we outline a unifying construction for a class of non-
trivial current-carrying steady states, and present a few explicit examples of widely studied
integrable spin and fermionic chains. In section 6 we provide some technical remarks on the
notion of vacuum Q-operators, and conclude in section 7 by summarizing the main results and
providing an outlook.

2 Preliminaries

2.1 Lindblad master equation

In the approach of open quantum systems [38, 39], the time-evolution of a density operator
ρ(t) of a central system (which presently represents a one-dimensional system of spins or
interacting fermions) is governed by a completely positive and trace-preserving map V (t),
reading compactly

ρ(t) = V (t)ρ(0), V (t) = exp (tL ). (1)

The Liouville propagator obeys the semi-group property V (t1+ t2) = V (t2)V (t1). Notice that,
in contrast to the unitary propagator of the Hamiltonian evolution, the generator V (t) is not
invertible. The generator L takes the Lindblad form [44,45]

L =L0 +D, (2)

where L0ρ ≡ −i[H,ρ] is the ordinary Liouville–von Neumann unitary dynamics generated
by the Hamiltonian H of the central system, while D is the dissipator which fully encodes
an effective description of the environment and admits a canonical resolution in terms of the
Lindblad operators Ak,

Dρ =
∑

k

�

�

Ak,ρA†
k

�

+
�

Akρ, A†
k

�

�

. (3)

Here each Lindblad ‘jump operator’ Ak acts as an independent incoherent process.1 In our
application, Ak will be used to model incoming and outcoming particle flows through the
boundaries of the quantum chain. A particular advantange of such a nonequilibrium protocol
is to have a simple setup for obtaining exact or approximate results for genuine far-from-
equilibrium states, reaching beyond the traditional linear response theory and quasi-stationary
regimes described with the hydrodynamic approach [13,92,93].

In this work we shall exclusively restrict our considerations to the steady states. The latter
correspond, by definition, to fixed points of the Liouville dynamics, ρ∞ = limt→∞ρ(t). This

1Lindbladian flows can be alternatively understood in terms of ‘quantum trajectories’, i.e. an approach which
uses a stochastic differential equation for an ensemble of pure quantum states evolving under an effective non-
hermitian Hamiltonian [89–91].
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means that a steady state is an operator ρ∞ from the kernel (null space) of the generator L ,

Lρ∞ = 0. (4)

We will also encounter situations when dim kerL > 1, which physically corresponds to de-
generate steady states and leads to higher dimensional steady-state manifolds.

2.2 Graded vector spaces

In order to incorporate fermionic degrees of freedom in our description we shall make use of
graded vector spaces. A local Hilbert space attached to a site in a quantum chain is denoted by
Cn|m, where integers n and m in the superscript signify the number of bosonic and fermionic
states, respectively. Below we briefly recall a few basic notions of graded vectors space and
refer the reader for a more detailed exposition to appendix A.

The two types of states are distinguished by the Z2-parity,

p : {1,2, . . . , n+m} → {0,1}. (5)

The mapping p equips Cn+m with a Z2-grading: if a belongs to a subset of bosonic (fermionic)
indices we assign it a parity p(a) = 0 (p(a) = 1). Gradation is naturally lifted to vector spaces
Cn+m and furthermore to the Lie algebra of linear operators acting on Cn+m. Specifically, by
adopting the distinguished grading in which p(a) = 0 for a ∈ {1, 2, . . . n} and p(a) = 1 for
a ∈ {n+ 1, . . . m}, the space of (n+m)-dimensional matrices on Cn+m block-decomposes into
the bosonic (even) subspace V0 and fermionic (odd) subspace V1. The two subspaces are typ-
ically referred to as the homogeneous components. The fundamental gl(n|m) representation,
denoted by V n|m

� , is spanned by a basis of matrix units Eab, (Eab)i j = δai δ j b. The action of
the Lie bracket adjusted to the grading is expressed as

�

Eab, Ecd
�

= δcb Ead − (−1)(a+b)(c+d)δad Ecb. (6)

Since exchanging two fermionic states results in a minus sign, the presence of fermionic states
in a graded tensor product space non-trivially affects the multiplication rule. Namely, for a set
of homogeneous elements2 we have

(A⊗ B)(C ⊗ D) = (−1)BC(AC ⊗ BD). (7)

Tensor multiplication can be conveniently recast in the standard from by introducing the
graded tensor product þ, defined in accordance with (Aþ B)(C þ D) = AC þ BD. Further
clarifications about the notation can be found in appendix A.

3 Exactly solvable nonequilibrium steady states

The algebraic construction of the solutions which is outlined below consists of two steps. The
general strategy in some sense reminds of solving a Poisson’s equation. Namely, the first step
is to identify a space of solutions for the bulk part which only accounts for the unitary part
of the generator L0. Note that the entire space of bulk solutions is determined purely from
the kinematic constraints, i.e. it is determined solely from the quantum symmetry algebra
of the spin chain, irrespective of the representation labels. The second step is to impose the
dissipative boundary conditions which (when a solution exists) uniquely fixes the physical
state at hand. More specifically, this step amounts to chose suitable boundary auxiliary states

2Homogeneous elements are linear operators on (Cn|m)⊗N with a well-defined parity.
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and subsequently solve a non-linear system of boundary constraints in the space of the free
representation parameters. Such a separation of bulk and boundary processes is indeed a
characteristic feature of all exactly solvable classical and quantum boundary-driven lattice
models.

The aim of this section is to break down the entire procedure into elementary steps and
systematically discuss all the necessary ingredients to carry out the algebraic construction for
the class of steady-state solutions of integrable quantum chains. The more difficult problem of
identifying and classifying the relevant class of subalgebras is postponed to the next section,
before finally presenting a few explicit results in Section 5.

3.1 Graded Yang–Baxter relation

This work is focused on a particular class of integrable lattice models which involve both
bosonic and fermionic states. These models can be systematically derived from the so-called
rational solutions to the graded Yang–Baxter relation. On a two-particle space Cn|m ⊗Cn|m the
latter takes the following form

Rn|m(z1 − z2)
�

L(z1)þ 1
��

1þ L(z2)
�

=
�

1þ L(z2)
��

L(z1)þ 1
�

Rn|m(z1 − z2), (8)

where z1,2 are two arbitrary complex numbers usually referred to as the spectral parameters.
Here and subsequently we shall use the convention in which bold-faced symbols pertain to
operators which act non-identically in the auxiliary space(s).

Let us first explain the main objects. The graded R-matrix Rn|m(z) acts as an intertwiner
on the two-fold space Cn|m ⊗ Cn|m, i.e. expresses the equivalence of two distinct orderings
of the tensor product of two L-operators. Matrices Rn|m(z) are simply related to the graded
permutation matrices Pn|m,

Rn|m(z) = z + Pn|m, Pn|m = (−1)bEab þ E ba = (−1)abEab ⊗ E ba, (9)

where matrix units Eab form the standard basis of linear operators in the fundamental module
V n|m
� . The rational Yang–Baxter relation (8) can be formally understood as the defining relation

of an infinite-dimensional associative algebra Y ≡ Y (gl(n|m)) known as the Yangian. The L-
operator from Eq. (8) is in this context interpreted as aY -valued matrix onCn+m which admits
the resolution

L(z) = (−1)ab+bEab ⊗ Lab(z). (10)

The class of solutions to the nonequilibrium protocol considered in this work turn out to be
related to certain degenerate representations of Y which are discussed in Section 4.

The presence of non-trivial grading can be seen as a diagonal ‘metric tensor’ θ on the
two-particle space Cn+m ⊗Cn+m,

θac,bd = (−1)abδacδbd , (11)

which allows for an alternative interpretation of Eq. (8) as a braided Yang–Baxter equation on
a non-graded vector space Cn+m ⊗Cn+m,

Rn|m(z1 − z2)θ
�

L(z1)⊗ 1
�

θ
�

1⊗ L(z2)
�

=
�

1⊗ L(z2)
�

θ
�

L(z1)⊗ 1
�

θ Rn|m(z1 − z2). (12)

The graded permutation can be expressed in terms of the non-graded permutation Pn+m on
Cn+m as Pn|m = θ Pn+m.

The central object of the algebraic Bethe Ansatz solution of integrable quantum models
is the fundamental transfer matrix T n|m

� (z) operating on a N -particle physical space (Cn|m)⊗N

and satisfying the involution property (additional information can be found in appendix B)

T n|m
� (z) = StrV n|m

�
L�(z)þ · · ·þ L�(z),

�

T n|m
� (z), T n|m

� (z
′)
�

= 0. (13)
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Figure 1: Graphical representation of the Yang–Baxter relation (8). From the particle scat-
tering perspective, the relation imposes the equivalence of two apriori district ways of three
consecutive pairwise elastic scatterings. Time direction for physical particles flows vertically
and is shown by gray trajectories. The R-matrix R(z1 − z2) acts proportionally to a graded
permutation on two fundamental physical particles in a su(n|m) symmetric integrable quan-
tum chain. Lax operators L(zi − z3) on the other hand govern scattering between physical
particles with rapidities zi , i ∈ {1, 2}, and a fictitious particle carrying rapidity z3 whose time-
direction runs horizontally. Graded Yangians Y (gl(n|m)) are infinite-dimensional associative
algebras for the operator-valued coefficients of the L-operator, with the Yang–Baxter equation
on Cn|m ⊗Cn|m taking the role of its defining relations.

Commutativity of transfer matrices is ensured by the existence of the R-matrix Rn|m
�,�(z) which

intertwines two fundamental auxiliary representations V n|m
� , i.e. it solves the corresponding

(graded) Yang–Baxter relation. We need to emphasize however that Eq. (8) is written with the
opposite identification of physical and auxiliary degrees of freedom with respect to the form
which is most commonly used in the (algebraic) Bethe ansatz technique. The upshot is that
our construction necessitates generic auxiliary modules and not the conventional fundamental
auxiliary representations. Indeed, the ordinary set of transfer matrices T n|m

� (z) and their fused
counterparts which correspond to finite-dimensional auxiliary irreducible representations of
gl(n|m) are unitary objects and in fact have no natural place in our application.

Differential Yang–Baxter relation. Taking the derivative of Eq. (8) with respect to z = z1−z2
yields the differential Yang–Baxter relation (sometimes also called the Sutherland relation,
cf. [74,81,94,95]),

�

hn|m,L(z)þ L(z)
�

= L(z)þ L′(z)− L′(z)þ L(z), (14)

using the short-handed notation L′(z)≡ ∂zL(z). Equation (14) is simply a consequence of the
fact that su(n|m)-symmetric Hamiltonian densities hn|m coincide with graded permutations
Pn|m over Cn|m ⊗Cn|m, i.e.

hn|m = Pn|m∂zRn|m(z) = Pn|m. (15)

For the so-called rational spin chains, relation (14) is in fact a simple corollary the zero-
curvature property of the Lax connection.3 What is more important is that the differential
Yang–Baxter relation (16) is satisfied on a purely algebraic level, i.e. irrespective of represen-
tations of the auxiliary components of the L-operator. A general solution to Eq. (15) is given by
an operator LΛn+m

(z) acting on a product space of a local physical space and an arbitrary auxil-
iary representation, that is V�⊗V +Λn+m

. Here V +Λn+m
denotes a generic irreducible highest-weight

3Relation (14) should not be confused with the lattice version of the Lax representation which takes the local
form ∂tLi(z) = i[H,Li(z)] = Ai+1(z)Li(z)− Li(z)Ai(z), with matrices Li(z) and Ai(z) corresponding to the spatial
and temporal component of the (discrete) connection of the associated auxiliary linear problem.
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Figure 2: The differential Yang–Baxter equation (see Eq. (14)) takes the form of an operator-
valued divergence condition on a one-dimensional lattice. The left-hand side is a schematic
representation of the local action of the unitary propagator ∂tΩN ' [H,ΩN ] which produces a
telescopic sum of terms with a single ‘defect operator’ which coincides with the derivative of
the L-operator (shown in orange).

representation of gl(n|m) Lie superalgebra, characterized by a set of Dynkin labels Λn+m (cf.
appendix B).

A key property of algebraic relation (14) is that it remains intact under fusion of auxil-
iary spaces. This readily makes it possible to extend it to composite (many-particle) auxiliary
spaces, namely we may quite generally consider multi-component Lax operators of the follow-
ing form

LΛ(z)≡ LΛ1
n+m
(z1)⊗ LΛ2

n+m
(z2)⊗ · · · ⊗ LΛ`n+m

(z`), (16)

acting on V�⊗Haux, withHaux representing an arbitrary `-component auxiliary product space
Haux

∼= VΛ1
n+m
⊗ · · ·⊗VΛ`n+m

characterized by a set of weight vectors Λ≡ {Λ1
n+m, . . . ,Λ`n+m} and

a vector of complex parameters z ≡ {z1, . . . , z`}. It is worthwhile emphasizing at this point
that the tensor product in Eq. (16) is written with respect to auxiliary spaces VΛn+m

, and thus
differs from the tensor product of two Lax operator from Eq. (8) which multiplies two copies
of local physical (fundamental) spaces Cn|m. The multi-component Lax operator LΛ(z) obeys
an analogue of Eq. (14), where the z-derivative acting on LΛn+m

(z) should be replaced by the

chain-rule derivation ∂z ≡
∑`

i=1 ∂zi
on LΛ(z), as illustrated in Figure 4.

3.2 Amplitude factorization

We consider an N -site quantum system with the Hamiltonian Hn|m =
∑N−1

i=1 hn|m
i and impose

open boundary conditions. This class of models describes integrable quantum chains symmet-
ric under su(n|m) Lie superalgebra [96,97] whose interactions take a simple form4

hn|m = (−1)bEab þ E ba. (17)

We adopt the convention for summing over repeated indices throughout the text, unless stated
otherwise.

In the boundary-driven setting, the Lindblad dissipator D gets naturally split into two inde-
pendent incoherent processes assigned to the boundaries of the chain, i.e. D = DL+DR, where
DL (DR) operates only on the first (last) site of the chain. It is perhaps not too surprising that
the fixed-point solutions ρ∞ to Eq. (4) for some bulk Hamiltonian Hn|m with generic Lindblad
boundary dissipators typically yield density matrices lacking any obvious structure. Remark-
ably however, there exist a class of dissipative boundary conditions for which one may derive
an exact algebraic expression for it. Before presenting the precise form of such integrable dis-
sipative boundaries in section 3.3, we first wish to explain why localizing the dissipators to the

4Here and throughout the text we afforded an unambiguous abuse of notation and replaced all parities p(a) in
the superscripts by their argument a, i.e. wrote simply (−1)p(a)→ (−1)a.
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chain boundaries plays a vital role in our construction and briefly comment on some important
consequences. In simple terms, attaching the dissipators only to the boundaries manifestly en-
sures that the unitary part of the fixed-point condition (4) preserves ρ∞ up to some residual
terms which stick at the boundary sites of the chain. This neat property motivates to use the
algebra of (possibly non-local) commuting operators associated to the Hamiltonian Hn|m as a
trial space of operators for constructing an appropriate Ω-amplitude introduced in Eq. (18). In
other words, we shall assume that the steady-state solution of our problem has a well-defined
local structure which is related to the symmetry algebra of the Hamiltonian. As explained
below, the global symmetry gets broken only due to a mismatch in the boundary conditions,
which is essentially the reason why for the steady state, [H,ρ∞] 6= 0.

We now proceed by employing the following amplitude factorization of the density opera-
tor ρ∞,

ρ∞ = ΩN Ω
†
N . (18)

Let us immediately stress that even though such a decomposition can be applied quite gen-
erally, it plays no fundamental role without imposing further restrictions on the amplitude
operators ΩN .5 Indeed, the factorization property has been originally observed already in the
seminal paper [73], where it is referred to as the‘reverse many-body Cholesky factorization’.
However, in the class of solutions considered here, ΩN need not be a Cholesky factor of a
steady state ρ∞, namely there is no requirement that ΩN takes a triangular form when ex-
panded in the standard many-body computational basis of unit matrices spanning (Cm+n)⊗N .
Nonetheless, since the entire class of solutions which are presented below extends the simplest
su(2) model to higher dimensional quantum spaces, we shall adopt the factorization property
as a starting point of our presentation.6

Following the above reasoning, the local symmetry of model is manifestly realized by in-
troducing the following homogeneous fermionic matrix-product operator

ΩN (g) = 〈vac|L(g)þ L(g)þ · · ·þ L(g)|vac〉, (19)

acting on an N -site quantum chain, with symbol þ designating the graded tensor product
which takes into account the presence of fermionic states. In the pictorial representation, the
amplitude represents the lower leg in Figure 3. The key properties of the amplitude operator
are:

• Each tensor factor in Eq. (19) is assumed to be a gl(n|m)-invariant Lax operator param-
etrized by a continuous real parameter g (being the coupling strength parameter associ-
ated the Lindblad dissipator D). The L-operator acts (by definition) on a local physical
space Cn|m and an auxiliary Hilbert space which is at the moment left unspecified and
can be thought of as a generic representation of the underlying quantum algebra.

• We have introduced the boundary state |vac〉 which will be subsequently referred to
as the (auxiliary) vacuum. The vacuum state is determined by choice by integrable
dissipative boundaries. In all the instances addressed in this work, |vac〉 is simply an
‘empty state’, i.e. a product of highest- or lowest-weight vectors from the irreducible
components which form a representation of the auxiliary algebra of the L-operator. This
uniquely fixes the vacuum state once the representation labels (i.e. Dynkin labels and
additional labels to specify the types of modules involved) associated to the L-operator

5Notice that, for instance, the factorization property (18) is not gauge-invariant as it notably exhibits a unitary
freedom of square roots, i.e. Ω→ ΩU for some unitary matrix U .

6While the factorization property can be sometimes inferred by inspecting the structure of exact solutions found
by symbolic algebra routines for small enough instances, its origin and physical significance remains elusive at the
moment.
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ΩN

LΛ(z)

1 2 3 N − 2 N − 1 N

L L L1 L L L

L L L2 L L L

Figure 3: Matrix-product representation of the non-equilibrium steady state ρ∞ = ΩNΩ
†
N : the

amplitude operator ΩN is represented by the degrees of freedom residing in the bottom row
(shown in pink), while its conjugate transposeΩ†

N corresponds to the upper row. In terms of an
auxiliary scattering process, auxiliary particles are depicted by black lines and propagate in the
horizontal direction. They can be viewed as fictitious particles composed of canonical bosons,
fermions of complex (super)spins, emanating from the auxiliary vacuum on one end and ab-
sorbed by the same vacuum at the other end. Physical degrees of freedom (shown by gray
vertical lines) are on the other hand associated to N fundamental particles of gl(n|m) Lie super-
algebra. The off-shell steady-state density operator admits an interpretation as a vacuum con-
traction of a homogeneous two-row monodromy operatorMΛ(z) = LΛ(z)þLΛ(z)þ· · ·þLΛ(z),
where LΛ(z) = LΛ(z)⊗ L̄Λ(z) is a Lax operator which acts on each vertical rung.

from Eq. (19) are being specified. The role of the auxiliary vacua shall be more carefully
explained in Section 5 where we treat a few explicit instances.

Let us now return to the differential Yang–Baxter relation. Algebraic property (14) can be
readily extended to the entire spin chain Hilbert spaceH ∼= (Cn+m)⊗N by simply expanding out
the commutator [Hn|m,ΩN ] and iteratively applying Eq. (14) at every pair of adjacent lattice
sites. This results in a telescoping cancellation mechanism which globally almost annihilates
the unitary part of the evolution generated by L0, leaving behind only residual boundary
terms which are an artefact of open boundary conditions. This can be formally expressed in
the form [74,98]

�

Hn|m,ΩN (g)
�

= ΞL ⊗ΩN−1(g)−ΩN−1(g)⊗ΞR, (20)

which can be viewed as the global version of the local condition (14) after contracting with the
vacuum |vac〉 at the end. We have written ΞL,R to denote a pair of ‘boundary defect operators’
acting only in the boundary particle spaces (their explicit form is not of our interest).

Factorization property (18) indicates that the auxiliary Hilbert space Haux associated to
the matrix-product representation of the steady-state density matrix ρ∞ is a two-fold prod-
uct of auxiliary subspaces which belong to mutually conjugate realizations of the underlying
symmetry. Therefore, setting `= 2 in Eq. (16) and writing shortly Λm+n ≡ Λ, we arrive at the
‘off-shell’ representation7 for ρΛ(z),

ρΛ(z) = 〈〈vac|LΛ(z)þLΛ(z)þ · · ·LΛ(z)|vac〉〉, (21)

where
LΛ(z) = LΛ(z)⊗ LΛ(z) (22)

is a two-row Lax operator of the form which is represented in Figure 3 by a vertical rung.
Similarly, the boundary state |vac〉〉 represents a factorizable state of two auxiliary vacua,
|vac〉〉 = |vac〉 ⊗ |vac〉. The internal structure of the vacuum state |vac〉, which depends on
the rank of symmetry algebra and the choice of integrable boundaries, will be detailed out in
Section 5.

7An ‘off-shell’ operator is referred to an object of an appropriate algebraic form which is not required to be a
solution of the fixed-point condition (4).
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Figure 4: A schematic depiction of hn|m(LΛ(z)þLΛ(z)), representing the local action of the
Hamiltonian Hn|m on the density operator ρ∞ = ΩNΩ

†
N (the coloring adopted from Figure 2,

and spectral and representation parameters are suppressed for clarity). The process of brining
the interaction hn|m across the horizontal legs generates terms which can be interpreted as a
operator divergence condition for two-row Lax operators LΛ(z).

3.3 Boundary compatibility condition

Given the Hamiltonian Hn|m and the boundary dissipators D, the fixed-point condition (4)
imposes a certain type of bulk-boundary matching condition. It can be inferred from expression
(20) that the fixed point conditionL ρ∞ = 0 admits a solution ρ∞ if and only if there exist an
Ω-amplitude (which amounts to find the L-operator and the vacuum state |vac〉) for which the
dissipator D exactly cancels out the right hand-side of Eq. (20). By plugging in a trial off-shell
density operatorρΛ(z) and demanding the on-shell condition one obtains a system of boundary
algebraic equations for the undetermined representation parameters which depends also on
the physical coupling parameters g of the reservoirs. The solution, when it exists, singles out
a unique density operator ρ∞(g(Λ, z)).

Combining Eq. (21) with a general solution of the bulk condition (16) results in two de-
coupled sets of boundary compatibility conditions, which can be cast in the compact form [82]

〈〈vac|
�

DL + i∂z

�

LΛ(z) = 0,
�

DR− i∂z

�

LΛ(z)|vac〉〉= 0.
(23)

The boundary conditions of this form generically yield an overdetermined system of equations
for the free parameters of the two-row Lax operator LΛ(z). Indeed, it is not difficult to confirm
that in spite of integrability of the bulk interactions generic boundary dissipators do not lead
to any solutions of Eqs. (23). In other words, for some general choice of boundary dissipators
there exist no off-shell operator ρΛ(z) which would satisfy the fixed-point condition of Eq. (4).
Of course this should not be surprising at all since typical dissipation processes result in a ‘non-
integrable’ Liouvillian dynamics in which a naïve separation of bulk and boundary parts cannot
be justified. Needless to say that in such a case there exists no obvious explicit representation
of the steady states either. It is therefore quite remarkable that integrable lattice models with
su(n|m)-symmetric interactions hn|m do allow for certain elementary (so-called integrable)
boundary dissipators which lead to non-trivial solutions to boundary equations (23).

3.4 Integrable dissipative boundaries

We consider a pair of dissipative boundary processes which involves an arbitrary pair of states
from the local Hilbert space Cn|m. Denoting them by |α〉 and |β〉, we posit the jump operators
of the form8

A1 =
p

g Eαβ1 , AN =
p

g EβαN , (24)

8In principle the left and right reservoirs can be assigned unequal couplings without spoiling integrability (see
e.g. [80]). In this work we prefer for simplicity to concentrate to the situation with equal coupling rates.
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2A

L

L

A†

A†A

L

L

L

L

A†A

iL′

L

L

iL
′

Figure 5: Graphical interpretation of the boundary compatibility condition as given by equa-
tion (23) displayed for the right boundary at lattice site N . The left-hand side shows schemat-
ically the action of the dissipator D on the L-operator decomposed into three terms which the
define the action of the jump operator AN . The termination point of the horizontal arrow sig-
nifies the contraction with the right auxiliary vacuum state. Note that the boundary condition
has to be satisfied for all values of physical indices.

parametrized by a single reservoir coupling parameter g. Since Lindblad dissipators which en-
ter in Eq. (24) operate non-trivially only on the boundary sites of the chain, the jump operator
from Eq. (24) can be interpreted as a source and drain associated to U(1) particle currents.

In models with multiple states per site such as su(n|m) chains considered here, the diagonal
‘density operators’ Eaa

i obey the following local continuity equations

∂t

�

Eaa
i − E bb

i

�

= i
�

H, Eaa
i − E bb

i

�

= jab
i−1,i − jab

i,i+1, (25)

where jab
i denote partial currents between two levels |a〉 and |b〉 locally at lattice site i. Total

current densities between two adjacent lattice sites are then obtained by summing over all
partial currents, that is ja

i,i+1 ≡
∑n

b=1 jab
i,i+1, and fulfil

∂t E
aa
i = i

�

H, Eaa
i

�

= ja
i−1,i − ja

i,i+1. (26)

Integrable su(n|m) symmetric Hamiltonians Hn|m conserve the total particle numbers
N a =

∑

i Eaa
i independently, i.e. [Hn|m, N a] = 0. The addition of dissipation however de-

stroys the conservation of N a if a ∈ {α,β}.
To better examine this situation, we notice that dissipative boundaries given by Eq. (24)

allow to decompose Liouvillian dynamics into invariant subspaces,

H =
⊕

ν

H ν, ν≡ {ν1, . . . ,νn+m} \ {να,νβ}, (27)

where orthogonal Hilbert subspaces H ν are defined via NγH ν = νγH ν, with eigenvalues
νγ ∈ {0,1, . . . , N} for γ ∈ {1, . . . , n+m} \ {α,β}. Accordingly, we introduce endomorphisms
O ν = End(H ν), i.e. linear spaces of operators operating onH ν. This means that states from
H ν have well-defined values of all particle number operators Nγ. When rank(g) > 1, there
exist at least one number operator Nγ such that

�

Hn|m, Nγ
�

=
�

A1, Nγ
�

=
�

AN , Nγ
�

= 0. (28)

This is an example of the so-called ‘strong Liouvillian symmetry’ [99]. In fact, all Nγ correspond
to strong symmetries, with the exception of the two distinguished indices which belong to a
pair of levels affected by the boundary dissipation, that is γ ∈ {α,β}. This immediately implies
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degeneracy9 of the steady states (cf. [82]) and vanishing current expectation values 〈 jγ〉∞ = 0.
Thus only current densities 〈 jα〉∞ and 〈 jβ〉∞ can take non-vanishing steady-state expectation
values.

When dealing with degenerate null spaces of the generator L , the steady state operator
ρ∞ naturally decomposes in terms of independent fixed-point components ρ

µ

∞ from individ-
ual invariant subspaces O µ, with µ= ν \ {να,νβ}. That is, we have

ρ∞ =
∑

µ

ρ
µ

∞, ρ
µ

∞ =P
µρ∞, (29)

with P µ denoting orthogonal projectors onto subspaces O µ. Because each invariant compo-
nent ρ

µ

∞ satisfies Lρ
µ

∞ = 0 for all values of µ, they may be combined in a convex-linear
combination

ρ∞ =
∑

µ

cµρ
µ

∞, (30)

with cµ representing a (n + m − 2)-component vector with non-negative components. The
steady-state operator ρ∞ as defined by Eq. (30) can be thus regarded as a grand canonical
nonequilibrium ensemble with coefficients cµ, which play the role of particle chemical poten-
tials. Notice that Eq. (30) can be conveniently cast in the form of a matrix-product operator
along the lines of ref. [82] for the su(3) chain.

Analysing ‘integrable boundaries’ of Eq. (24) by e.g. computing exact solutions for quan-
tum chains of small length reveals that the fixed point is a non-trivial current-carrying steady
state of particularly simple structure. In the remainder of the paper we demonstrate that the
steady-state solutions exhibit a particular algebraic representation which directly links to fun-
damental objects of quantum algebras. It is worthwhile stressing nonetheless that, despite the
simplicity of our effective reservoirs, the entire spectrum of L – typically referred to as the
Liouville decay modes – remains highly complex and lack any obvious structure. This means
that only the fixed-point solutions ρ∞ of Eq. (4) admit an exact description. It is also in-
structive to remark here that even the integrable steady state density operators themselves do
not enjoy the full quantum group symmetry of the Hamiltonian. Indeed, as a consequence
of the foliation (27) of the Lindbladian flow, the global residual symmetry of ρ∞ is merely
U(1)⊗n+m−2. However, as subsequently demonstrated, the local symmetry of the Ω-amplitude
is much larger. The symmetry content of the steady state solution will be carefully examined
in the next sections. Particularly, the local symmetry of the Ω-amplitudes will become appar-
ent on the basis of previously discussed Lax representation (see also Section 6 for additional
remarks).

4 Graded Yangians

Yangians are certain infinite-dimensional quadratic associative algebras which belong to a class
of (quasi-triangular) Hopf algebras, widely referred to as quantum groups. Yangians can be
defined in various equivalent ways [101–103]. Here we employ the ‘FRT realization’ [104]
(also known as the ‘RTT realization’), in which Yang–Baxter equation (8) takes a role of the
defining relation.

We specialize the discussion to Yangians Y ≡ Y (g) of Lie superalgebras g= gl(n|m) [105,
106]. Recall that the signature n|m indicates that the local Hilbert space consists of n bosonic

9Uniqueness of the steady-state components from individual conserved subspaces follows from the theorem of
Evans [100].
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and m fermionic states. Generators of Y are given as the operator-valued coefficients of the
Lax operator L(z) expanded as a formal Laurent series

Lab(z) = Lab
(0) + z−1 Lab

(1) + z−2 Lab
(2) + . . . . (31)

By imposing Yang–Baxter equation (8) as the defining relation, we obtain an infinite set of
quadratic algebraic conditions

�

Lab
(r),L

cd
(s)

�

= (−1)ab+ac+bc
min(r,s)
∑

i=1

�

Lcb
(r+s−i)L

ad
(i−1) − Lcb

(i−1)L
ad
(r+s−i)

�

. (32)

The level-0 generators Lab
(0) are scalars belonging to the center of Y . In the scope of our

application, we shall only be interested in the class of fundamental rational solutions of Eq. (9)
which are of degree one in the spectral parameter z,10

Lab(z) = Lab
(0) + z−1 Lab

(1), Lab
(k) ≡ 0 for k ≥ 2. (33)

This choice represents, in mathematical terms, an evaluation homomorphism from the Yangian
to the universal enveloping algebra of g, Y (g) 7→ U (g). With this restriction, representations
of Y are in one-to-one correspondence with representations of the classical Lie (super)algebra
g.

Automorphisms. It is instructive to shorty discuss the gauge freedom due to automorphisms
of Y , i.e. transformations which preserve the algebra (32) (cf. [86]). These comprise of (i)
rescaling L(z) with an arbitrary complex-valued scalar function f (z), (ii) shifting the spec-
tral parameter z → z + z′ and (iii) applying a (n + m)-dimensional GL(n|m) gauge trans-
formations which acts in Cn|m and is given by two arbitrary invertible matrices GL and GR,
L(z) → GL L(z)GR. In addition, there exist anti-automorphisms of Y , i.e. transformations
which only preserve the defining relations (8) up to exchanging the order of tensor factors.
Examples of these are transposition of the matrix space L(z) → Lt(z), and reflection in the
spectral plane L(z) → L(−z). Any composition of two anti-automorphisms is again an auto-
morphism.

Rank–degenerate realizations. The list of transformations given above nonetheless does
not exhaust all possibilities of realizing Y . As pointed out in [86, 87], equation (8) admits a
class of ‘degenerate solutions’ provided that one relaxes the requirement L(0) = 1. This is a
viable choice because the level-0 generators Lab

(0) are central and can therefore take arbitrary
(possibly vanishing) values. We may thus quite generally prescribe

L(0) = diag(1, 1, . . . , 1
︸ ︷︷ ︸

|I |

, 0, . . . , 0
︸ ︷︷ ︸

|I |

), 1≤ |I | ≤ n+m, (34)

modulo equivalent choices which correspond to permutations of 0s and 1s. Such a restriction
obviously induces another block structure11 on Cn|m under which the generators of Y split as

L(1) =

�

Aab Baḃ

Cȧb Dȧ ḃ

�

. (35)

10Realizations ofY which are of higher degree in z have been briefly discussed in [87]. At the moment it remains
unclear to us whether these solutions can be important in the studied setup.

11We follow the notation of [86,87] and employ the two-index labelling of the Yangian generators.
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The ranges of ordinary (undotted) and dotted indices are

a, b ∈ I = {1, 2, . . . , |I |= p+ q}, ȧ, ḃ ∈ I = {1, . . . , n+m}\I , (36)

where p (q) denotes the number of bosonic (fermionic) states in the index set I . Similarly, we
shall denote by ṗ (q̇) is the number of bosonic (fermionic) states contained in the complemen-
tary set I . The defining relations of the resulting ‘hybrid algebra’ AI

n,m are readily obtained by
plugging Eq. (35) in Eq. (32), and selecting the level-0 generators in accordance with Eq. (34),
i.e. Lab

(0) = δaI δbI . Since the generators Dȧ ḃ are central, it is convenient to pick a gauge by

setting Dȧ ḃ = δȧ ḃ. The remaining non-trivial commutation relations read
�

Aab,Acd
�

= (−1)ab+ac+bc(δad Acb −δcb Aad),
�

Aab,Bcḋ
�

= −(−1)ab+ac+bcδcb Baḋ ,
�

Aab,Cċd
�

= (−1)ab+aċ+bċδad Cċ b,
�

Baḃ,Cȧb
�

= (−1)ȧδab δȧ ḃ, (37)
�

Baḃ,Bcṡ
�

= 0,
�

Cȧb,Cċs
�

= 0.

4.1 Oscillator realizations

Commutation relations (37) have been derived in [86, 87], where the authors provide a re-
alization in terms of gl(p|q) ‘super spin’ generators Jab (for a, b ∈ I , and with p + q = |I |),

�

Jab,Jcd
�

= δcb Jad − (−1)(a+b)(c+d)δad Jcb, (38)

and additional |I | · |I | canonical bosonic or fermionic oscillators which obey graded canonical
commutation relations

�

ξȧb,ξ
cḋ�
= δcb δȧḋ , (39)

where a generator ξ
aḃ

should be understood as a creation operator of a bosonic (fermionic)
oscillator if p(ḃ) = 0 (p(ḃ) = 1), for a ∈ I and ḃ ∈ I . The oscillator part of the algebra AI

n,m,

denoted by osc(p+ṗ|q+q̇), is associated with a multi-component Fock spaceB⊗(p+ṗ)⊗F⊗(q+q̇),
where each factor B (F ) belongs to an irreducible bosonic (fermionic) Fock space. In terms
of these ‘super spins’ and ‘super oscillators’, the level-1 generators Lab

(1) take the canonical form

Aab = −(−1)b
�

Jab +Nab
�

,

Baḃ = ξ
aḃ

,

Cȧb = −(−1)bξȧb,

Dȧ ḃ = δȧ ḃ,

(40)

where

Nab =
∑

ḋ∈I

ξ
aḋ
ξḋ b + 1

2(−1)a+ḋδab. (41)

4.2 Partonic Lax operators

For a Lie superalgebra g of rank(g) = n+m, there are in total 2n+m distinct types of hybrid-type
subalgebras AI

n,m. The latter are in a bijective correspondence with all possible choices of set
I , where the counting excludes the various possibilities of choosing the grading. By addition-
ally excluding permutation equivalent choices, we eventually deal with finite-dimensional Lie
superalgebras of the type gl(p|q)⊗ osc(p+ ṗ|q+ q̇).
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The simplest rank-degenerate solutions of the graded Yang–Baxter algebra (8) belong to
the single-indexed sets |I |= 1 and were dubbed in [85] as the partonic solutions. These consist
solely from n+m− 1 oscillators arranged in a distinctive cross-shaped form,

L{a}(z) =

























1 −(−1)aξ1,a

. . .
...

1 −(−1)aξa−1,a

ξ
a,1

. . . ξ
a,a−1

z −Na
I

ξ
a,a+1

. . . ξ
a,n+m

−(−1)aξa+1,a 1
...

. . .
−(−1)aξn+m,a 1

























, (42)

with

Na
I
=
∑

ḃ∈I

(−1)ḃ
�

ξ
aḃ
ξḃa + 1

2(−1)a+ḃ
�

. (43)

Here the integers a ∈ {1, . . . , n+m} in the subscript of L{a}(z) are being used to indicate the
location of the single non-vanishing level-0 generator, cf. Eq. (34). As shown in appendix
B, all Lax operators associated to A|I |≥2

m,n can be systematically generated from the partonic

solutions which carry A|I |=1
n,m with aid of the universal fusion formula, yielding ‘multi-partonic’

Lax operators which are equivalent to canonical Lax operators given by Eq. (40).

5 Exact steady states for integrable quantum spin chains

In this section we finally present a few explicit examples for the steady-state solutions of the
boundary-driven su(n|m) quantum chains, subjected to integrable dissipative boundaries given
by Eq. (24). As the first step, we account for the kinematic constraints and construct off-shell
density operators which take the universal form of equation (21). Subsequently, the goal is to
find an appropriate internal structure of the Lax operator LΛ and the auxiliary vacuum state
|vac〉 which fulfil the requirements of the boundary equations (23).

Notice first that there exist in total 2×
�n+m

2

�

ways of assigning the dissipators of Eq. (24),
representing all the possibilities of selecting a pair of target levels |α〉 and |β〉. The extra factor
of 2 comes from exchanging |α〉 with |β〉 which results in a state of the opposite chirality,
i.e. the particle currents get reversed. It turns out that every choice of |α〉 and |β〉 leads to
a solution to Eq. (4) which is uniquely characterized by specifying a representation of the
auxiliary algebra AI

n,m of the Lax operator LΛ(z).

5.1 Fundamental integrable spin models

The significance of partonic Lax operators and the structure of the steady-state solutions is
perhaps best illustrated explicitly by working out a few simplest examples. To this end,
we first consider the non-graded interactions, and initially examine the most studied case
of the su(2) spin chain (the isotropic Heisenberg spin-1/2 model), with interaction density
h2|0 =

∑2
a,b=1 Eab ⊗ E ba. Let us remark that this particular instance has been considered

initially in the seminal paper [73] where the solution was found with a somewhat different
approach, and afterwards re-obtained in a more compact and symmetric form in [74]. The
derivation from Yang–Baxter algebra has been presented in [81]. Nevertheless, to uncover the
connection with partonic Lax operators and embed this solution in a unified theoretic frame-
work, we shall reproduce it below once again.
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In the su(2) spin chain, the local building block of the Ω-amplitude is given by a two-
parametric Lax operator L−j (z) acting on V� ⊗ V −j , whose auxiliary space V −j represents a
lowest-weight sl(2) module spanned by an infinite tower of states {|k〉}∞k=0. We adopt the sl(2)
spin generators obeying algebraic relations

�

J3,J±
�

= ± J±,
�

J+,J−
�

= 2 J3, (44)

whose action on V −j is prescribed by

J3 |k〉= (k− j) |k〉 , J+ |k〉= (2 j − k) |k+ 1〉 , J− |k〉= k |k− 1〉 . (45)

State |0〉 has the lowest weight, J− |0〉= 0, and will be referred to as the vacuum.
By recalling that all the solutions factorize in accordance with Eq. (18), the off-shell Lax op-

erator LΛ(z) which defines the steady-state solution ρ∞ is a product of two copies of auxiliary
representations, cf. Eq. (22). This factorization makes it possible to express the final solution
by only specifying a pair of complex parameters: the sl(2) weight which is interpreted as a
complex spin j, and a complex-valued spectral parameter z. Specifically, the two-parameteric
off-shell Lax operator which we denote by L j(z) is represented in the following compact form

L j(z) = L[1]−j (z)L[2]+− j (z). (46)

The notation used is as follows. Integer indices in superscript brackets are used to assign an
operator L j(z) to a tensor factor in a multi-component auxiliary space. In addition, in the
superscripts we also employed extra parity signatures which are required to correctly assign
the type of the sl(2) module. Namely, while the first auxiliary copy is realized in the lowest-
weight module as prescribed by Eq. (45), the second factor in Eq. (46) must be associated with
the highest-weight realization of sl(2) algebra V +j . The highest-weight Lax operator L+j (z) can
be readily obtained from L−j (z) by applying the spin-reversal transformation

V −j →V
+
j : J±→ J∓, J3→−J3. (47)

The highest weight state |0〉 from V +j is distinguished by J+ |0〉= 0.
Plugging the off-shell form of Eq. (46) into the boundary conditions (23) yields a system

of polynomial equations with the unique solution

z = 0, j =
i
g

. (48)

Notice that the auxiliary vacuum state takes the product form, |vac〉〉 = |0〉 ⊗ |0〉, and is de-
termined by the internal structure of L j(z). The driving is reversed by exchanging the target
states |α〉↔ |β〉. This amounts to interchange the factors in Eq. (46).

Before proceeding with other examples, let us stress again that a proper identification of the
internal structure of the two-leg Lax operatorL j(z) is crucial. Once the convention for labelling
the irreducible sl(2) Verma modules is being fixed, there exist only one correct assignment
of irreducible spaces (incorrect assignments produce a system of boundary equations which
admits no solution).

Asymmetric driving. Let us mention a simple trick which enables to generalize the solutions
to the case of unequal reservoir coupling constants. Considering as an example the su(2) spin
chain, we may impose an asymmetric pair of Lindblad jump operators of the form

A1 =
Æ

g/ζ E12
1 , AN =

Æ

g ζ E21
N . (49)
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This choice yields an extended class of solutions which is connected to the special case of
equal couplings by a diagonal tilting transformation – a one-parameter automorphism of Y –
by applying

L−j (z)→ L−j (z)

�

ζ 0
0 1

�

, (50)

on every local spin space C2. The solution to the boundary compatibility conditions is then
given by

z =
i
2

�

1
g ζ
−
ζ

g

�

, j =
i
2

�

1
g ζ
+
ζ

g

�

. (51)

Models of higher-rank symmetry. The simplest higher-rank model is the su(3) spin chain
(with interaction h3), often called in the literature as the Lai–Sutherland model [107, 108].
Solutions to the fixed-point condition (4) have been originally identified and parametrized
in [82] and now represent a degenerate manifold of steady states. As discussed earlier in
Section 3.4, degeneracy of the null space of L is a consequence of the conservation of the
number operator Nγ associated to a distinguished noise-protected state |γ〉 (which is arbitrary,
depending on I).

The Lax operator for the Ω-amplitude now operates on a space of three auxiliary particles,
a non-compact sl(2) spin and two species of canonical bosons. Bosonic particles obey canonical
oscillator algebra,

�

b,b†
�

= 1,
�

h,b†
�

= b†,
�

h,b
�

= −b, h≡ b†b+ 1
2 , (52)

and live in the canonical Fock space spanned by a tower of states {|k〉}∞k=0. Similarly as in the
case of sl(2) spins, one has to distinguish two distinct realizations of bosonic Fock spacesB±,

B+ : b |0〉= 0, b† |k〉= |k+ 1〉 , (53)

B− : b† |0〉= 0, b |k〉= |k+ 1〉 , (54)

related to each other by an algebra automorphism

B+→B− : b†→ b, b→−b†, h→−h, (55)

which is interpreted as the particle-hole conjugation.
By assigning the dissipation to states I = {1, 2}, the off-shell Ω-amplitude is constructed

from the Lax operator L{1,2}(z) which carries a representation of algebra AI
3,0
∼= sl(2)⊗B⊗B

and takes the canonical form of Eq. (40),

L{1,2}(z) =





z + J3 − h1 J− − b†
1b2 b†

1
J+ − b†

2b1 z − J3 − h2 b†
2

−b1 −b2 1



 . (56)

Now it suffices to repeat the logic used before on the su(2) case, and define a factorized off-
shell Lax operator Lωj (z) for the steady-state solution ρ∞ in the form

Lωj (z) = L[1]ωj (z)L[2]ω− j (−z). (57)

This time we equipped each tensor copy with an additional labelω which, as argued earlier, is
needed to supply the information about the types of sl(2) and Fock modules. After determining
the rightω, the coupling constant g is linked to the free representation parameters z, j through
the boundary equations (23) with the solution

z =
1
2

, j = −
i
g

, ω= (−|−,+). (58)
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The delimiter in ω was used to explicitly distinguish the sl(2) module V ±j (on the left) from
the signatures belonging to the product of Fock spaces B± (on the right, in the ascending
order). Specifically, the above instance requires a lowest-weight type sl(2) representation and
to assignB− (B+) to the first (second) bosonic oscillator.

Before heading on to the more involved examples of fermionic models, let us spent a few
more words on the non-trivial structure of the vacuum |vac〉 and, in particular, to inequivalent
roles of the highest and lowest type of (auxiliary) representations. As said earlier, in order to
construct an off-shell Ω-amplitude it is first required to infer an appropriate ‘internal structure’
for the auxiliary space of LΛn+m

(z). Only then it is possible to proceed by solving the corre-
sponding finite system of polynomial equations (23). The upshot here is that the module type
labels ω are essential to assign ρ∞ an appropriate chiral structure. For instance, an incorrect
assignment of the auxiliary bosons in expression (56), e.g. by imposing two identical repre-
sentations B+, would violate the boundary compatibility conditions. Finally, one can easily
verify that the Lax operator L{1,2}(z) is in fact equivalent to the Lax operator found previously
in [82].12

5.2 Fermionic models

In this section we generalize the above construction to the steady state solutions which pertain
to graded su(n|m) chains, representing the simplest class of interacting integrable models
with fermionic degrees of freedom. We retain the dissipative boundaries given by Eq. (24).13

Besides bosonic oscillators, the auxiliary particle spaces now also involve canonical fermions
from two-dimensional spaces F .

The defining gl(1|1) representation is spanned by two basis states |0〉 and |1〉. The ‘highest
weight’ type representation, denoted by F+, is prescribed by

F+ : c† |1〉= 0, c† |0〉= |1〉 , c |0〉= 0, c |1〉= |0〉 , (59)

where the generators obey canonical anticommutation relations
�

n,c†
�

= c†,
�

n,c
�

= −c,
�

c,c†
�

= 1. (60)

Similarly, the ‘lowest weight’ representationF− is obtained fromF+ by virtue of the particle-
hole mapping

F+→F− : c→ c†, c†→ c, n→ 1− n. (61)

Free fermions. Arguably the simplest fermionic integrable system is a tight-binding model of
non-interacting spinless fermions (with a homogeneous chemical potential) whose interaction
is invariant under gl(1|1) Lie superalgebra and in terms of canonical fermions reads14

h1|1
i = c†

i ci+1 + c†
i+1ci − ni − ni+1 + 1. (62)

12In order to exactly match the Lax operator from ref. [82] and recover the canonical representation of the Lax
operator L{1,3}, one should first redefine the algebra generators to eliminate the redundant parameter η, apply a
diagonal gauge transformation with GL = 1, GR = diag(1, 1,−1), and ultimately the particle-hole transformations
on the auxiliary spin and oscillator species.

13A comment on the Jordan–Wigner transformation: When expressed in terms of the fermionic generators, the
dissipator attached to the first lattice site differs from its non-graded counterpart by a (non-local) Jordan–Wigner
‘string operator’ W , indicating that fermionization of the boundary-driven spin chain maps to a model of non-
local dissipation. This discrepancy between the two formulations which is due to the presence of W is however
immaterial as far as only the steady states are of our interest, the reason being that W commutes with both the
steady state ρ∞ and the total Hamiltonian Hn|m.

14The interaction h1|1 can also be expressed in terms of the fundamental su(2) generators. Up to boundary terms
this yields the XX model in a homogeneous external field, that is h1|1 = σ+ ⊗σ− +σ− ⊗σ+ + 1

2 (σ
z ⊗ 1+ 1⊗σz).
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In spite of its simplicity, it is remarkable that the corresponding integrable steady states involve
auxiliary spaces which belong to non-canonical gl(1|1) representations.

The fermionized integrable reservoirs provided by Eq. (24) are interpreted as an inflow
(outflow) of spinless fermions at the left (right) boundary with rate g,

A1 =
p

g E21
1 ≡

p
g c†

1, AN =
p

g E12
N ≡

p
g cN . (63)

To find the unique solution to the fixed-point condition (4), we follow the procedure from the
previous section and first consider the following two partonic Lax elements,

L{1}(z) =

�

z − (n− 1
2) c†

−c 1

�

, L{2}(z) =

�

1 c
c† z + (n− 1

2)

�

. (64)

By merging them together using the fusion rule (see appendix B for details) we have

Lλ(z)' L[1]{1}(z+)L
[2]
{2}(z−), z+ = z +λ+ 1

2 , z− = z −λ+ 1
2 . (65)

The outcome is a two-parameteric Lax operator Lλ(z) whose auxiliary space is identified with
an indecomposable non-unitary representation denoted here by Vλ. The latter can be realized
in terms of canonical generators (60) as

L±λ(z) =

�

z+ − n −2λc†

−c z− + n

�

, λ= 1
2(z+ − z−), (66)

where the complex representation parameter λ is the central charge.15 To distinguish between
the highest- and lowest-weight types of representations we shall use an extra superscript label,
using the convention that V ±

λ
is associated with the Fock space F±, i.e. (L±

λ
)12 |0〉= 0.

In close analogy to the su(2) case, the local unit of the amplitude operator ΩN is now built
from L-operator L−

λ
(z). The undetermined representation parameters are finally obtained from

the boundary conditions (24), yielding the unique solution

z =
1
2

, λ=
i
g

. (67)

The factorization property (18) implies that ρ∞(g) is constructed from a two-component Lax
operator Lλ(z) which explicitly reads

Lλ(z) = L[1]−
λ
(z)L[2]+

λ
(−z), with z =

1
2

, λ=
i
g

. (68)

The driving may be reversed by first applying the particle-hole transformation on the physical
fermions (see Eq. (63)), exchanging the order of factors in Eq. (68), and ultimately setting

Lλ(z) = L[1]+
λ
(z)L[2]−

λ
(−z), with z =

1
2

, λ= −
i
g

. (69)

The auxiliary vacuum state |vac〉〉 remains the product of the lowest- and highest-weight states
|0〉 from the fermionic Fock modules F±.

We find it instructive to remark that the model of free fermions takes a special place among
the gl(n|m) quantum chains which plays nicely with the fact that the model is compatible with
a larger set of integrable boundary dissipators. It is rather remarkable however that such an
extended set of solutions still admits the Lax representation, albeit the latter does no longer
exhibit the usual additive property. We are not sure whether this enlarged set of steady-state
solutions is still related to representation theory of Yangians. Further details and explicit results
are presented in appendix C.

15Verma module V ±
λ

is a 2-dimensional indecomposable representation of gl(1|1) which is unitary only at λ= 1
2

(where it coincides with the Fock space representation of canonical fermions). At λ = 0 it becomes atypical and
reducible.
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Example: SUSY t-J model. Integrable spin chains whose interactions coincide with graded
permutations have been initially considered in [96, 97]. A prominent (and generic) example
is the su(1|2)-symmetric integrable spin chain which is mappable to the t-J model at the ‘su-
persymmetric point’ [109] (2t = J). The spectral problem of the model has been solved with
Bethe Ansatz techniques in [110–114].

The local Hilbert space is now isomorphic toC1|2, and is spanned by a (bosonic) empty state
|0〉 and a pair of spin-carrying electrons, |↑〉 ≡ c†

↑ |0〉 and |↓〉 ≡ c†
↓ |0〉, representing fermionic

states. The interaction density can be expanded in terms of canonical fermions and reads
(σ =↑,↓)

h1|2
i,i+1 = −P

�

c†
i,σci+1,σ + c†

i+1,σci,σ

�

P + 2
�

~Si · ~Si+1 −
1
4 n jni+1

�

+ ni + ni+1, (70)

where ~Sαi =
1
2 c†

i,σ ~σσ,σ′ ci,σ′ and the projectorP =
∏N

i=1(1−ni,↑ni,↓) was used to eliminate the

forbidden doubly-occupied state |↑↓〉 ≡ c†
↑ c

†
↓ |0〉.

The grading can be distributed in various ways.16 We shall adopt |0| = 0, and regard the
empty state |0〉 as the highest-weight state (vacuum) in the physical Hilbert space. Then, we
may consider one of the following three options,

(1)
⊗

−−
⊙

(2)
⊙

−−
⊗

(3)
⊗

−−
⊗

, (71)

represented by Kac–Dynkin diagrams.17 It is important to remark here that the choice of
grading is entirely independent from the set I = {α,β}which specifies a pair of states subjected
to the dissipators.

Let us first set the grading to |1| = 0 and |2| = |3| = 1, which corresponds to diagram
(1). Incoherent conversion processes induced by the dissipators can be described by any of
the following three possibilities:

(a) |0〉 ←→ |↑〉 (b) |0〉 ←→ |↓〉 (c) |↑〉 ←→ |↓〉 . (72)

Options (a) and (b) represent fermionic driving and physically correspond to Markovian tran-
sitions between two states of opposite parities, namely a spin-carrying electron and the unoc-
cupied state |0〉. Option (c) is different, and affects the bosonic sector (i.e. the su(2) doublet)
by triggering incoherent spin flips.

Let us first address option (a), corresponding to assigning the following pair of Lindblad
jump operators

A1 =
p

g
�

1− n1,↑
�

c1,↓, AN =
p

g
�

1− nN ,↑
�

c†
N ,↓. (73)

This instance pertains to I = {1, 2}, I = {3}, with p = q = 1 and q̇ = 1, which defines the
auxiliary algebra A

{1,2}
1,2 of the product structure gl(1|1)⊗F⊗B . The corresponding canonical

Lax operator is of the form

L{1,2}(z) =







z − J11 −
�

ξ
13
ξ31 − 1

2

�

J12 + ξ
13
ξ32 ξ

13

−J21 − ξ
23
ξ31 z + J22 +

�

ξ
23
ξ23 + 1

2

�

ξ
23

−ξ31 ξ32 1






, (74)

16From the algebraic point of view, distinct inequivalent gradings indicate that Lie superalgebras do not admit
unique simple roots. All distinct possibilities are however related under certain boson-fermion duality transforma-
tions. In the context of Bethe Ansatz these correspond to inequivalent Bethe vacua and different ways of proceeding
to higher levels in the nesting scheme (see e.g. [114–116]).

17By convention we draw an open circle if two adjacent states are of the same parity and a crossed circle when
their parities differ (assuming |0|= 0), while moving from left to right.
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where the generators Jab are associated with the non-unitary gl(1|1) representation Vλ, where-
as the super oscillators are identified with bosonic and fermionic canonical oscillators in ac-
cordance with the rule

ξ
13
→ c†, ξ31→ c, ξ

23
→ b†, ξ32→ b. (75)

The solution to Eq. (23) is then given in the form

Lωj (z) = L[1]ωj (z)L[2]ω
− j
(−z), (76)

where Lωj (z) now implements the auxiliary algebra A
{1,2}
1,2 = gl(1|1)⊗ osc(1|1), and the repre-

sentation parameters take the values

z =
1
2

, j =
1
2
+

i
g

, ω= (−|−,+). (77)

In particular, the signature labels ω (where the bar in Eq. (76) stands for flipping the signs)
indicate that the auxiliary algebra A

{1,2}
1,2 should be realized in V −

λ
⊗F− ⊗B+.

The same procedure can be repeated for the case of bosonic driving (c), where the jump
operators act as

A1 =
p

g c†
1,↓c1,↑, AN =

p
g c†

i,↑ci,↓. (78)

The auxiliary algebra A
{2,3}
1,2 = sl(2)⊗ osc(0|2) now consists of a non-compact sl(2) module V j

(with the spin generators denoted by Ja) and a pair of fermionic Fock spaces F ⊗F ,

L{2,3}(z) =





1 c1 c2

c†
1 z + J3 + c†

1c1 −
1
2 J− + c†

1c2

c†
2 J+ + c†

2c1 z + J3 + c†
2c2 −

1
2



 . (79)

In order to fulfil the boundary constraints, the auxiliary algebra of Lωj (z) should consist of the
product V −j ⊗F

− ⊗F+. Finally, ρ∞ is cast in the universal form Eq. (21), where now

Lωj (z) = L[1]ωj (z)L[2]ω− j (−z) with z = −
1
2

, j =
i
g

, ω= (−|−,+). (80)

6 Vacuum Q-operators

Given that all the solutions are directly related to a particular type of solutions of the graded
Yang–Baxter equation (8), it is quite remarkable (and perhaps surprising) that a one-parame-
tric family of density matrices ρ∞(g) do not commute for different values of g (reported first
in [117])

�

ρ∞(g),ρ∞(g
′)
�

6= 0, for g 6= g ′. (81)

One may still wish to argue that due to amplitude factorization (18) the nonequilibrium den-
sity operators ρ∞(g) are not the most ‘fundamental’ physical objects. Indeed, amplitudes
operators ΩN (g) themselves do commute for different values of couplings,

�

ΩN (g),ΩN (g
′)
�

= 0. (82)

This shows that ΩN (g) can be regarded as a family of vacuum highest-weight transfer matrices.
However, while the steady states ρ∞(g) are diagonalizable objects which encode physical
properties of the system, their Ω-amplitudes exhibit a non-trivial Jordan structure.18 Below we
examine this unusual behaviour in more detail and relate it to the vacuum Q-operators.

18This is somewhat reminiscent to what occurs in logarithmic conformal field theories which are governed by
non-unitary representations of Virasoro algebra and possess non-diagonalizable dilatation generators.
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Baxter’s Q-operators. Before introducing the notion of vacuum Q-operators, let us first
make some comments on the connection between the conventional Q-operators and Lax oper-
ators LI(z) introduced in Section 4. The concept of a Q-operator was originally introduced in
Baxter’s seminal paper on the 8-vertex model, where it was used as a device to diagonalize the
transfer matrix of the problem by solving a suitable second-order difference relation [118], and
later revived in the context of Potts model [119] and integrable structure of CFTs [120,121].
For clarity we focus the subsequent discussion entirely on the homogeneous su(2) spin chain,
providing only a condensed summary of the main ingredients. For a more comprehensive and
pedagogical exposition we refer the reader to [85].

Baxter’s TQ-relation is a functional relation for the fundamental transfer operator T� of
the form19

T�(z)Q±(z) = T0(z −
1
2)Q±(z + 1) + T0(z +

1
2)Q±(z − 1), T0(z) = zN . (83)

The pair of Baxter Q-operators Q±(z) represents two independent operator solutions to the
functional equation (83) which enjoy the involution property

�

T�(z),Q±(z
′)
�

=
�

Q+(z),Q−(z
′)
�

= 0, ∀z, z′ ∈ C. (84)

Eigenvalues of Q±(z), denoted byQ±(z), are (up to a twist-dependent phase which is omitted
for brevity) polynomials of the form

Q−(z) =
M
∏

k=1

(z − zk), Q+(z) =
N−M
∏

k=1

(z − z̃k). (85)

Their zeros zk (z̃k) coincide with the Bethe (dual) roots, and are solutions to the celebrated
Bethe quantization condition

�z + 1/2
z − 1/2

�N
e±iφ = −

Q∓(z + 1)
Q∓(z + 1)

. (86)

Polynomiality of eigenvalues of T�(z) and Q±(z) ensures that the TQ-relation (83) is equivalent
to Bethe equations (86).

Operators Q± can be conveniently cast as auxiliary traces over quantum monodromies
obtained by the lattice path integration of partonic Lax operators. Specifically, in the su(2)
case we have

Q±(z)' TrF
�

e−iφ nL±(z)⊗ · · · ⊗ L±(z)
�

. (87)

Here we have made identifications L{1}(z) ≡ L+(z), L{2}(z) ≡ L−(z), and the trace is with
respect to the auxiliary Fock spaceF . An analogous construction applies to integrable theories
based on higher-rank algebras [120–123] where a complete set of Q-operators is associated to
Lax operators LI(z) introduced in Section 4. In the language of Bethe ansatz, this means
that eigenvalues of all Q-operators belonging to rational solutions of Yang–Baxter algebra (cf.
Eq. (8)) are polynomials whose roots coincide with Bethe roots belonging to different nesting
levels. An explicit construction of the full hierarchy of Q-operators for gl(n|m) spin chains
can be found in [85–88] (and in [124, 125], using a different approach). The outcome of
this procedure is a set of 2n+m distinct Q-operators which can be arranged on vertices of a
hypercubic lattice [126]. In this context, partonic Lax operators L{a}(z) are associated to the
distingusihed set of n + m elementary Q-operators Q{a}(z) which can be used to solve the
spectral problem by explicit integration of an auxiliary linear problem [122,123]. An important
consequence of this is that eigenvalues of fused transfer matrices which obey the T-system
functional identities [127,128] decompose in terms of the elementary Q-functions.

19For technical reasons we shall think of a closed system and impose twisted boundary conditions. The case of
periodic boundary conditions (i.e. the limit of vanishing twist φ→ 0) exhibits a subtle singular behaviour due to
restoration of the SU(2) multiplets and has to be treated with care (see [85]).
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Vacuum Q-operators. Since in open quantum spin chains translational symmetry is man-
ifestly absent, taking (super) traces over auxiliary spaces is no longer a priori justified. As
originally noticed in [72], one may instead use projections onto the highest (or lowest) weight
states of auxiliary spaces.20 To this end we now define the following set of ‘vacuum Q-
operators’

Qvac
I (z) = 〈vac|LI(z)þ · · ·þ LI(z)|vac〉. (88)

The previous analysis of the steady-state solutions for gl(n|m) spin chains with integrable dis-
sipative boundaries given by Eq. (24) shows that all Ω-amplitudes can indeed be identified
with vacuum Q-operators. More specifically, Ω-amplitudes which enter in our nonequilibrium
setting always correspond to ‘mesonic’ Lax operators LI(z) with |I |= 2.

We wish to elaborate on a subtle (but important) point in regard to the auxiliary algebra
of LI(z) and the structure of the vacuum state |vac〉. The fact that LI(z) carry (besides Dynkin
labels) the information about the types of irreducible components which enclose the auxiliary
algebra becomes crucial here. For instance, already in the simplest case of the su(2) chain,
we had to define and operate with two inequivalent types of vacuum Q-operators (denoted
by Qvac,±

{a} (z), with a = 1, 2) associated to the two inequivalent bosonic Fock spaces B±. The
explicit structure of the fusion relation for partonic operators L{a}(z) (see appendix B) brings
us to the conclusion that the vacuum Q-operators with equal auxiliary modules are still in
involution

�

Qvac,±
{a} (z),Q

vac,±
{a′} (z

′)
�

= 0, ∀z, z′ ∈ C, and a, a′ ∈ {1, 2}, (89)

which in turn implies that the same property also holds for the corresponding Ω-amplitudes
(as given by Eq. (82)). Conversely, the objects which involve inequivalent auxiliary spaces do
not commute,

�

Qvac,±
{a} (z),Q

vac,∓
{a′} (z

′)
�

6= 0, ∀z, z′ ∈ C, and a, a′ ∈ {1, 2}. (90)

Since the steady-state density operators ρ∞(g) always consist of two fused mesonic vacuum
Q-operators of the opposite type (which is a corollary of property (18)), by virtue of Eq. (90)
they do not inherit the involution property (82) from their amplitude operators ΩN (g).21 It
remains an interesting open problem to devise a suitable generalization of the Algebraic Bethe
Ansatz procedure to diagonalize ρ∞ [117].

7 Conclusion and outlook

In this work we introduced a unifying algebraic description of exact nonequilibrium steady
states which belong to an important class of integrable quantum lattice models. We presented
an explicit construction of density matrices which appear as non-trivial stationary solutions to
a non-unitary relaxation process in which a system is coupled to effective Markovian particle
reservoirs attached at its boundaries. We employed a simple set of incoherent particle source
and drain reservoirs which naturally generalize those used previously in refs. [73, 74, 76, 80,
81]. We have shown that such reservoirs partially preserve the integrable structure of the
bulk Hamiltonian and permit to obtain analytic closed-form steady-state density operators in
a systematic way.

20In a more general setting, when particle source and drain terms are rotated with respect to the z-axis, the
highest-or lowest-weight vacua get replaced by spin-coherent states [129].

21It is instructive to remark that tensor products of irreps of mixed types do not admit a resolution in terms of a
(finite or infinite) discrete sum over extremal-weight irreps, in contrast to the ubiquitous decomposition of tensor
products of finite dimensional irreps (or products of extremal-weight irreps of the same type).
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The solutions were presented in the universal form of a homogeneous fermionic matrix-
product operators, and shown to decompose in terms of the vacuum analogues of Baxter’s
Q-operators. Such a factorization property reflects the chiral structure of the states and also
allows to reverse directions of particle currents with aid of suitable particle-hole transforma-
tions. The basic building blocks of our construction are the so-called partonic Lax operators
which stem from certain degenerate representations of graded Yangians, identified recently
in [85–88]. These rather unconventional algebraic structures admit a canonical realization
in terms spins and oscillators. In the context of our application, these appeared as the aux-
iliary degrees of freedom in the matrix-product operator representation for the steady-state
solutions.

The absence of translational symmetry in open quantum chains is of profound importance
and requires to replace the usual auxiliary traces by the projectors onto highest- or lowest-
weight auxiliary vacua. The internal algebraic structure of the amplitude operators depends
crucially on the parities assigned to the particles which experience dissipation. In the case
of equal parities (bosonic driving), the amplitude operators always involve a single auxiliary
non-compact sl(2) spin, whereas the opposite parities (fermionic driving) require non-unitary
irreducible gl(1|1) representations which are two dimensional. The residual auxiliary degrees
of freedom pertain to a finite number of canonical (bosonic or fermionic) oscillators which
remain intact upon varying the coupling parameters of the reservoirs. The universal structure
of the steady-state solutions signifies that it is the non-unitary part of the auxiliary algebra
which ultimately controls their qualitative characteristics: on one end, the presence of sl(2)
sectors leads to a universal anomalous (i.e. non-diffusive) j ∼ O (N−2) decay of longitudinal
currents and cosine-shaped density profiles as already found in [73, 76, 80, 82]. Fermionic
driving is on the other hand characterized by gl(1|1) subspaces and triggers ballistic transport
with non-decaying currents j ∼ O (N0) and flat density profiles [98]. The solutions at hand
can therefore be perceived two particular nonequilibrium universality classes.

The distinguished feature of integrable steady states addressed in this work are the non-
unitary representations of Lie (super)algebras . This contrasts the conventional approaches
to quantum integrable systems which are primarily based on unitary representations and di-
rectly relate to physical excitations in the spectrum (described by the formalism of the Ther-
modynamic Bethe Ansatz [130–132]). Physical significance of non-unitary representations in
integrable theories is on the other hand far less understood and has not been much explored
in the literature, although a few prominent examples are worth mentioning. Most notably,
the logarithmic CFTs are based on (non-unitary) reducible indecomposable representations of
Virasoro algebra [133,134] and are known to capture various phenomena in statistical physics
ranging from critical dense polymers [135], symplectic fermions [136, 137], critical percola-
tion [138–140] to Gaussian disordered systems [141,142]. It is perhaps instructive to add that
non-compact spin chains are also found in the hadron scatting in QCD, which is in the Regge
regime governed by the s = 0 non-compact isotropic Heisenberg magnet [143,144].

The role of non-unitarity in the present nonequilibrium setting is however different as it
is not (at least directly) attributed to physical degrees of freedom, but instead enters on the
level of fictitious particles assigned to auxiliary spaces in a matrix-product representation of
nonequilibrium steady states. Nevertheless, it has been found that non-unitary representations
can sometimes be linked to certain hidden conservation laws which turn out to be responsi-
ble for anomalous quantum spin transport (singular DC conductivity) in the linear-response
regime [72,77,145,146].

In the conclusion we wish to highlight a few unresolved aspects of the problem which in
our opinion deserve to be better explored and understood. In order to further extend the
range of applicability of the present approach, it is of paramount importance to obtain better
theoretical understanding of the integrability-preserving dissipative boundaries. In particu-
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lar, whether there exist a connection between quantum integrability and a special type of
Lindblad reservoirs employed here remains unanswered at the moment. Another intriguing
open question is to find a field-theoretic version of the Lindbladian evolution which would
qualitatively reproduce the scaling regime of integrable quantum lattices (cf. [80]). It is more-
over difficult to overlook several discernible similarities with the Caldeira–Leggett approach of
modelling a dissipative environment with a boundary-localized friction term [147,148], which
has been applied to sine–Gordon theory with an integrable boundary perturbation [149]. In
particular, (i) the boundary current is given by the vacuum eigenvalues of the CFT analogues
of Q-operators, (ii) the reservoir parameters are linked to purely imaginary values of high-
est weights, and (iii) the particle current is expressed directly in terms of the nonequilibrium
partition function Z = Tr%∞, which is otherwise common to both the asymmetric classical ex-
clusion processes [60] and their quantum counterparts [80] considered here. In our opinion,
these curiosities deserve to be further explored in future studies.

Acknowledgements

The author thanks P. Claeys, V. Popkov, E. Quinn, and especially T. Prosen for valuable and
stimulating discussions and/or providing comments on the manuscript.

Funding information. The author acknowledges support by VENI grant by the Netherlands
Organisation for Scientific Research (NWO).

A Graded vector spaces and Lie superalgebras

A graded vectors space is a complex vector spaceCn|m, spanned by basis states {|a〉}n+m
a=1 , which

is endowed with a Z2 map,

p : {1, 2, . . . , n+m} → {0, 1}, (91)

referred to as the grading:

p(a)≡ |a|=

¨

0 if a is bosonic

1 if a is fermionic
. (92)

We subsequently adopt (with no loss of generality) the distinguished grading,

|a|=

¨

0 a ∈ {1, 2, . . . , n}
1 a ∈ {n+ 1, . . . , n+m}

. (93)

This assignment induces a block decomposition on End(Cn|m), being the space of matrices
acting on Cn|m. Specifically, End(Cn|m) = V0⊕V1, where components V0 (dimV0 = n) and V1
(dimV1 = m) represent bosonic (even) and fermionic (odd) parts, respectively. The subspaces
V0 and V1 are referred to as the homogeneous components of End(Cn|m). Notice that while
V0 is a subalgebra, the odd part V1 is not. A vector space End(Cn|m) also constitutes gl(n|m)
Lie superalgebra. In particular, any element A admits a block form

A=

�

A00 A01
A10 A11

�

, (94)
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where sub-matrices A00, A11, A01 and A10 are of dimensions n×n, m×m, n×m and m×n, respec-
tively. The bosonic part decomposes in terms of bosonic subalgebras gl(n|m)0 ∼= gl(n)⊕ gl(m)
and corresponds to A01 = A10 ≡ 0, whereas the fermionic (odd) part gl(n|m)1 pertains to
elements with A00 = A11 ≡ 0.

Let Eab denote matrix units, i.e. matrices with the only non-zero element being 1 in
the a-th row and b-th column. Basis elements Eab are assigned a Z2-parity according to
p(Eab)≡ |Eab| → {0, 1}, with the prescription

|Eab|= |a|+ |b|. (95)

Element A is of even (odd) parity when non-vanishing blocks Aab are of equal (opposite) parity
|a|+ |b| = 0 (|a|+ |b| = 1). For instance, R-matrices Rn|m are always even elements. Matrix
units Eab form a basis of the fundamental representation of gl(n|m) algebra denoted by V n|m

� .
The graded Lie bracket is prescribed by

�

A, B
�

:= AB − (−1)ABBA, (96)

and the graded Jacobi identity reads

(−1)AC
�

A,
�

B, C
�

�

+ (−1)AB
�

B,
�

C , A
�

�

+ (−1)BC
�

C ,
�

A, B
�

�

= 0. (97)

Here and below we simplified the notation by writing (−1)a instead of (−1)|a|.
Graded vector spaces and Lie superalgebras are naturally extended over N -fold product

spaces. Product spaces inherit the parity according to the prescription

|Ea1 b1 ⊗ Ea2 b2 ⊗ · · · ⊗ EaN bN |=
N
∑

k=1

�

|ak|+ |bk|
�

. (98)

A linear operator A on (Cn|m)⊗N is called a homogeneous element of parity |A| if it satisfies

(−1)
∑

k(ak+bk)Aa1...aN ,b1...bN
= (−1)AAa1...aN ,b1...bN

. (99)

A product of two homogeneous elements A and B has a good parity and is given by
|AB| = |A| + |B|. The presence of non-trivial grading also affects the tensor product. The
graded tensor product is denoted by þ and is defined as

Aþ B = (−1)|A|+r(B)A⊗ B, (100)

where function r designates the row parity,

r(Ea1 b1 ⊗ Ea2 b2 ⊗ · · · ⊗ EaN bN ) =
N
∑

k=1

r(ak). (101)

The advantage of definition (100) is that it preserves the standard tensor multiplication rule,

(Aþ B)(C þ D) = AC þ BD. (102)

The graded tensor product can be extended to product spaces by introducing (homogeneous)
elements Eab

j , representing the generators associated to the j-th copy of End(Cn|m). Notice

that in contrast to the standard (non-graded) basis 1 ⊗ · · · ⊗ Eab ⊗ · · · ⊗ 1 of End(Cn+m)⊗N ,
elements Eab

j do not commute at different lattice sites, but we find instead

Eab
i Ecd

j = (−1)(a+b)(c+d)Ecd
j Eab

i . (103)
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On the same lattice site they however still obey the property of projectors,

Eab
i Ecd

i = δcb Ead
i . (104)

The last two properties combined yield
�

Eab
j , Ecd

k

�

= δ jk

�

δcb Ead
k − (−1)(a+b)(c+d)δad Ecb

j

�

. (105)

The graded generators acting on the N -particle space (Cn|m)⊗N read in terms of the graded
tensor product

Eab
i = 1⊗(i−1)þ Eab þ 1⊗(N−i), (106)

whereas expressed in terms of the standard tensor product they assume the expansion

Eab
i = (−1)(a+b)

∑N
k= j+1 ck 1⊗(i−1) ⊗ Eab ⊗ Ec j+1c j+1 ⊗ · · · ⊗ EcN cN . (107)

This prescription should be interpreted as the higher-rank version of the Jordan–Wigner trans-
formation [150].

Interaction densities hn|m for a class of the so-called ‘fundamental graded models’ are iden-
tified with graded permutations Pn|m on Cn|m ⊗Cn|m,

Pn|m = (−1)bEab þ E ba. (108)

Permutations Pn|m can be alternatively given also as matrices acting on the two-fold funda-
mental spaces Cn+m ⊗Cn+m, reading

Pn|m = (−1)a+bEab ⊗ E ba. (109)

The defining su(n|m) representations admit realizations in terms of canonical fermions. In
the su(1|1) case, the graded projectors Ei act non-identically only on the i-th copy of C1|1 in
the chain, and are realized as a 2× 2 matrix of spinless fermions

Ei =

�

1− ni ci

c†
i ni

�

. (110)

Here the generators ni and 1− ni span the even (bosonic) subalgebra V0, while ci and c†
i are

the fermionic generators which span the odd part V1 and satisfy canonical anticommutation
relations

{ci , c†
j }= δ j,k, {ci , c j}= {c

†
i , c†

j }= 0. (111)

Equation (107) is nothing but the well-known Jordan–Wigner transformation from Pauli spins
to canonical spinless fermions

c†
i = 1⊗(i−1) ⊗σ− ⊗ (σz)⊗(N−1),

ci = 1⊗(i−1) ⊗σ+ ⊗ (σz)⊗(N−1).
(112)

In systems with multiple fermionic species (e.g. spin-carrying fermions), the super projec-
tors can be constructed with aid of the fusion procedure [150]. For instance, the local physical
space of a su(2|2) spin chain is four dimensional, spanned by states

|0〉 , |↑〉 ≡ c†
↑ |0〉 , |↓〉 ≡ c†

↓ |0〉 , |↑↓〉 ≡ c†
↑ c

†
↓ |0〉 . (113)

At each lattice site i we thus have 4× 4= 16 generators,

E ac,bd
↑↓ = (E↑þ E↓)ac,bd ≡ (−1)|a+b||c|E ab

↑ E
cd
↓ . (114)
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Flattening the indices readily yields the graded permutation on C2|2 ⊗C2|2, taking the form

P2|2 = (−1)bE ab
↑↓ þ E

ba
↑↓ . (115)

Furthermore, the fermionic realization of the graded projector P2|1 can be obtained from P2|2

by projecting out e.g. the doubly-occupied state |↑↓〉. The local space of states thus consists of
the triplet

|0〉 , c†
↑ |0〉 , c†

↓ |0〉 . (116)

Choosing e.g. the grading as |0|= 0 and |1|= |2|= 1, one finds

Ei =





(1− ni,↑)(1− ni,↓) (1− ni,↑)ci,↓ ci,↑(1− ni,↓)
(1− ni,↑)c

†
i,↓ (1− ni,↑)ni,↓ c†

i,↓ci,↑

c†
i,↑(1− ni,↓) c†

i,↑ci,↓ ni,↑(1− ni,↓)



 . (117)

B Fusion and factorization properties of Lax operators

In this section we revisit the main factorization and fusion formulae for the gl(n|m) integrable
spin chains. A comprehensive and more detailed presentation can be found e.g. in refer-
ences [85–88].

Classification of irreducible highest-weight gl(n|m) modules. Before presenting the fun-
damental factorization property of the rational Lax operators we need to introduce irreducible
highest-weight gl(n|m) representations. These are known as the Verma modules, denoted by
V +Λn+m

, and are characterized by (i) the highest-weight property

Ja,a+1 |hws〉= 0 for a = 1, 2, . . . , n+m− 1, (118)

and (ii) the weight vector Λn+m = (λ1, . . . ,λn,λn+1, . . . ,λn+m) through the action of Cartan
generators (no summation over repeated indices),

Jaa |hws〉= λa |hws〉 . (119)

A representationΛn is typically of infinite dimension, corresponding to generic complex-valued
weights λa. Since we shall mostly need the restriction to sl(n|m) subalgebra, we introduce the
sl(n|m) weights as

µa = (−1)aλa − (−1)a+1λa+1, a = 1, 2, . . . , n− 1. (120)

In the case of unitary sl(n|m) representations, all µa for a 6= n must be non-negative integers,
while µn can take arbitrary real values. The fundamental representation of sl(n|m) is given by
the weight vector Λn+m = (1,0, . . . , 0). Kac–Dynkin labels and finite-dimensional irreducible
representations are in one-to-one correspondence, with Young diagrams corresponding to non-
negative non-increasing weights. Rectangular representations {s, a}with s columns and a rows
have a single non-vanishing label µa = s.

B.1 Factorization of Lax operators

Highest-weight gl(n|m)-invariant transfer operators T+Λn+m
(z) acting on a Hilbert space

H ∼= (Cn|m)⊗N are given by22

T+Λn+m
(z) = StrV +Λn+m

LΛn+m
(z)þ · · ·þ LΛn+m

(z)
︸ ︷︷ ︸

N copies

, (121)

22Here it is implicitly assumed that the super trace exists. Additional regulators in the form of boundary twists
may be needed in general.
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which due to Yang–Baxter relation (8) enjoy the commutativity property,
�

T+Λn+m
(z), T+

Λ′n+m
(z′)

�

= 0. (122)

for all z, z′ ∈ C and representation labels Λn+m and Λ′n+m. Remarkably however, operators
T+Λn+m

do not represent the most elementary objects in the theory. In fact, they factorize23 into

an ordered sequence of Q-operators Q{a},
24

T+Λn+m
(z)'Q{1}(z1 +λ

′
1)Q{2}(z2 +λ

′
2) · · ·Q{n+m}(zn+m +λ

′
n+m). (123)

Here parameters λ′a are the ‘shifted weights’,

Λ′n+m = Λn+m +%n+m, %a =
n+m
∑

b=a+1

1
2(−1)b −

a−1
∑

b=1

1
2(−1)b. (124)

In the gl(n) case, i.e. when m = 0, the shifts arrange in the ‘complete n-strings’, reading
%n =

1
2(n − 1, n − 3, . . . 1 − n), closely resembling the pattern of the string-type solutions to

Bethe Ansatz equations. Indeed, factorization property (123) is a direct consequence of the
local factorization relation [86]

L{1}(z1 +λ
′
1)L{2}(z2 +λ

′
2) · · ·L{n+m}(zn+m +λ

′
n+m) = SL+Λn+m

(z)KS−1, (125)

Below we exemplify the factorization procedure on a few concrete instances.

Basic example: sl(2) case. The factorization property is best illustrated on the sl(2) case.
The corresponding highest-weight Lax operators read

L+Λ2
(z) =

�

z + J3 J−

J+ z − J3

�

, (126)

and are characterized by a single Dynkin label j which parametrizes the gl(2) weight vector
Λ2 = ( j,− j). The non-compact spin generators Ja act on a sl(2) module V +j , and can be
conveniently given in the Holstein–Primakoff form

J3 = j − b†b, J+ = b, J− = b†(2 j − b†b), (127)

where b and b† are the generators of a bosonic oscillator obeying canonical commutation
relations

�

b,b†
�

= 1,
�

h,b
�

= −b,
�

h,b†
�

= b†, (128)

and h= b†b+ 1
2 is the mode number operator. We furthermore define two types of Fock space

representations, denoted by

B+ : b |0〉= 0, b† |k〉= |k+ 1〉 ,

B− : b† |0〉= 0, b |k〉= |k+ 1〉 .
(129)

The two are related to each other under the particle-hole transformation b→ b†, b†→ b and
h→−h.

A pair of partonic Lax operators L{1}(z) and L{2}(z) can be straightforwardly obtained from
T+Λ2
(z) by considering two possible ways of taking a (correlated) large- j and large-z limits

23The algebraic origin of the factorization formula has to do with theU (g)-invariant universalR-matrix decom-
posing in terms of tensor products of components from the corresponding Borel subalgebras [120,121].

24Geometrically, Q-operators can understood as Plücker coordinates on Grassmannian manifolds [122,151].
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(cf. [85]). This is achieved by keeping either of the combinations z± = z ± ( j + 1
2) fixed,

resulting in the ‘degenerate’ Lax operators of the form

L{1}(z) =

�

z − h b†

−b 1

�

, L{2}(z) =

�

1 b†

−b z + h

�

, (130)

which represent two distinct well-defined solutions to the Yang–Baxter equation.

B.2 Fusion of partonic Lax operators

Quantum groups are endowed with a coproduct, ensuring that the algebraic structure gets
preserved under tensor multiplication Y → Y þ Y . Partonic Lax operators, as defined in
Eq. (42), represent the simplest solutions of the Yang–Baxter equation (8). They serve as
irreducible components for obtaining other realizations of Y via fusion. Below we outline
the main features of such a procedure, while referring the reading for a more complete and
detailed presentation to references [86–88].

Let I , J ⊆ {1,2, . . . , n+m} be two index sets. We shall only consider operators L(z) which
are linear in spectral parameter z, requiring I and J to be non-intersecting, I ∩ J = ;. Set I
(resp. J) comprises of p (ṗ) bosonic and q (q̇) fermionic indices. We furthermore introduce
K ≡ I∪J , involving p̈ (q̈) bosonic (fermionic) indices, such that p+ ṗ+ p̈ = n and q+q̇+q̈ = m.
Fusion is a process of merging two canonical Lax operators LI and LJ of respective ranks
|I |= p+ q and |J |= ṗ+ q̇, which takes the abstract form

LK(z)∼ L[1]I (z + z1)L
[2]
J (z + z2), (131)

for some appropriate choice of shifts z1 and z2. The superscript square brackets were needed
here to distinguish inequivalent species. The precise prescription for the fusion rule is entailed
by the following form

L[1]I

�

z + 1
2

∑

ḋ∈J

(−1)ḋ
�

L[2]J

�

z −λ− 1
2

∑

d∈I

(−1)d
�

= SL[1]K (z)K
[2] S−1, (132)

where K is a triangular ‘disentangling matrix’ and S a suitable global similarity transformation.
An implication of fusion formula (132) is that Lax operators which are realized in terms of
algebras AK

m,n are not elementary, but instead factorize according to AK
m,n → AI

m,n ⊗ AJ
m,n.

Below we take a closer look at this by inspecting a few explicit examples.
We begin by noticing that the above fusion procedure clearly violates the canonical form

given by Eq. (40), as it appears to involve an exceeding number of auxiliary spaces. We shall
in turn demonstrate that all redundant auxiliary spaces can be eliminated upon appropriately
redefining the generators. In particular, there exist a canonical procedure to reduce the number
of oscillators from |I | · |I |+ |J | · |J | down to |K | · |K | and expressing the gl(|K |) generators in
terms of independent generators of gl(|I |) and gl(|J |), dressed with |K | additional oscillators.
This is in practice achieved by virtue of the homomorphisms [87]

gl(|K |)→ gl(p|q)⊗ gl(ṗ|q̇)⊗ osc(p+ ṗ|q+ q̇), (133)

in terms of which the post-fusion gl(p + ṗ|q + q̇) generators bJ
ab

are given by the following
prescription

bJ
ab
= Jab

1 + ξ
aċ
1 ξ

ċ b
1 ,

bJ
aḃ
= λ(−1)ḃξ

aḃ
1 − (−1)(ḃ+ḋ)(ḃ+c)ξ

aḋ
1 ξ

c ḃ
1 ξ

ḋ c
1 + ξ

aċ
1 Jċ ḃ

2 − (−1)ḃ+cJac
1 ξ

c ḃ
1 ,

bJ
ȧb
= ξȧb

1 ,

bJ
ȧ ḃ
= Jȧ ḃ

2 +λ(−1)ḃδȧ ḃ − (−1)(ȧ+ḃ)(ḃ+c)ξ
c ḃ
1 ξ

ȧc
1 ,

(134)
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with Jab
1 and Jȧ ḃ

2 denoting the gl(p|q) and gl(ṗ|q̇) super spins, respectively, whereas the oscil-
lators are to be identified as

ξȧb =

¨

ξ[1]ȧb , b ∈ I

ξ[2]ȧb , b ∈ J
, ξaḃ =

(

ξ
[1]
aḃ , a ∈ I

ξ
[2]
aḃ , a ∈ J

. (135)

The latter are either bosonic or fermionic, depending on the grading. Finally, the tridiagonal
matrix K is of the form

K=





1 −(−1)ḃξaḃ
2 0

0 1 0
0 0 1



 , (136)

while the similarity transformation in Eq. (132) reads

S= exp

 

∑

a∈I

∑

ḃ∈J

∑

c̈∈K

ξ
aḃ
1

�

(−1)aξ
ḃa
2 + ξ

ḃc̈
2 ξ

c̈a
1

�

!

, (137)

where the double-dotted indices represent the summation over K .

sl(2) case. The basic principle of fusion can be explained on the sl(2) theory. Fusion can be
understood as the opposite procedure of factorization which is outlined in the previous section.
The partonic pieces given by expressions (130) can be fused in two distinct ways. To this end
we introduce square brackets and assign a bosonic oscillator to each tensor factor, yielding the
following operator identity on C2 ⊗B ⊗B ,

L[1]{2}(z2)L
[2]
{1}(z1) =

�

1 b†
1

b1 z2 + n1

��

z1 − n2 b†
2

−b2 1

�

= exp
�

b†
1b2

�

�

1 0
b1 1

��

z + J3
2 J−2

J+2 z − J3
2

�

exp
�

− b†
1b2

�

, (138)

where the input spectral parameters are given by

z1 = z + j + 1
2 , z2 = z − j − 1

2 . (139)

Notice that in the second line of Eq. (138) the oscillators have been rearranged using the
similarity transformation S= exp (b†

1b2) onB ⊗B , which reads explicitly

Sb†
1 S−1 = b†

1, Sb1 S−1 = b1 + b2, Sb†
2 S−1 = b†

1 + b†
2, Sb2 S−1 = b2. (140)

On the other hand, fusing in the opposite order yields a similar operator identity

L[1]{1}(z+)L
[2]
{2}(z−) = exp

�

b†
1b†

2

�

�

z + J3
1 J−1

J+1 z − J3
1

��

1 −b2
0 1

�

exp
�

− b†
1b†

2

�

, (141)

where again the parameter constraints (139) are imposed.
Formula (138) readily implies the factorization property for the highest-weight sl(2)-invariant

transfer operator T+Λ2
(z)≡ T+j (z) in terms of a pair of Q-operators,

T+j (z) =Q{1}(z + j + 1
2)Q{2}(z − j − 1

2). (142)

A sequence of transfer matrices T j(z) with 2 j ∈ Z, pertaining to finite-dimensional irreducible
su(2) representations, can the be obtained from T+j (z) with aid of the Bernstein–Gelfand–
Gelfand resolution of finite-dimensional modules, V j = V +j − V

+
− j−1, resulting in Bazhanov–

Reshetikhin determinant representation [152]

T j(z) =Q{1}(z + j + 1
2)Q{2}(z − j − 1

2)−Q{2}(z + j + 1
2)Q{1}(z − j − 1

2). (143)
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A comment in regard to the so-called vacuum Q-operators is in order here. First, recall that
the vacuum Q-operators represent a family of transfer operators which are constructed from
a path-ordered product of (partonic) Lax operators contracted with respect to a suitable ‘vac-
uum state’. These vacuum states are presently identified with the highest (or lowest) weight
state in B . Mutual commutativity of the vacuum Q-operators can be inferred from fusion
formula (138), after observing that (i) when the two Fock space involved are of same type the
product vacuum |0〉⊗|0〉 remains inert under the action of the similarity transformation S, i.e.
S |0〉⊗|0〉= |0〉⊗|0〉, and (ii) the disentangler K has no global effect due to its triangular form.
In the opposite scenario, a fusion of two Lax operators which involve two different types of
Fock spaces inevitably excites the vacuum to a coherent state which in turn prevents the vac-
uum T-operator from decomposing into two vacuum Q-operators. For the very same reason
the vacuum Q-operators pertaining to inequivalent auxiliary modules are not guaranteed to
satisfy the involution property. In fact, it can be explicitly checked that they do not commute.

sl(3) case. The Ω-amplitudes for the integrable steady states constructed in this work are all
formed from the ‘mesonic’ Lax operators, namely objects which result from the fusion of two
partonic elements. As an explicit example we consider the SU(3)-symmetric Lai–Sutherland
chain [107, 108], to which we ascribe auxiliary algebra A

{1}
3,0 ⊗A

{2}
3,0 → A

{1,2}
3,0 . Setting I = {1}

and J = {2}, the fusion formula is of the form (using the shifted weights %2 =
1
2(1,−1))

L[1]{1}(z +λ+
1
2)L

[2]
{2}(z −

1
2) = SL[1]{1,2}(z)K

[2] S−1, (144)

with the partonic Lax operators reading

L[1]{1}(z) =





z + j1 − h[1]1 − h[1]2 b[1]†1 b[1]†2

−b[1]1 1 0
−b[1]2 0 1



 , (145)

L[2]{2}(z) =





1 −b[2]1 0
b[2]†1 z + j2 − h[2]1 − h[2]2 b[2]†2

0 −b[2]2 1



 . (146)

The oscillators are disentangled with aid of

K[2] =





1 −b[2]1 0
0 1 0
0 0 1



 , (147)

and an additional similarity transformation S= UV, with

U= exp
�

b[1]†1 b[2]†1

�

, V= exp
�

b[1]†1 b[2]†2 b[1]2

�

. (148)

Explicitly, these transformations act as

Ub[1]1 U−1 = b[1]1 − b[2]†1 ,

Ub[2]1 U−1 = b[2]1 − b[1]†1 ,
(149)

and

Vb[1]1 V−1 = b[1]1 − b[2]†2 b[1]2 ,

Vb[2]2 V−1 = b[2]2 − b[1]†1 b[1]2 ,

Vb[1]†2 V−1 = b[1]†2 + b[1]†1 b[2]†2 ,

(150)
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respectively. Putting everything together, relabelling the oscillators,

b[1]2 → b[1]1 , b[2]1 → b[1]2 , b[1]†2 → b[1]†1 , b[2]†2 → b[1]†2 , (151)

and representing the generators of the sl(2) spins acting on V j (where 2 j = j1 − j2 +λ) as

J11← j1 +λ− b[1]†1 b[1]1 ,

J21← b[1]†1 b[1]†1 b[1]1 − ( j1 − j2 −λ)b
[1]†
1 ,

J12←−b[1],

J22← j2 − b[1]†1 b[1]1 ,

(152)

yields precisely the anticipated canonical representation of the mesonic Lax operator

L{1,2}(z) =





z + J11 − h1 J21 − b†
1b2 b†

1
J12 − b†

2b1 z + J22 − h2 b†
2

−b1 −b2 1



 . (153)

gl(1|1) case. It may be instructive to also explicitly spell out the fusion step (132) for the
gl(1|1) Lie superalgebra. The latter is spanned by four elements, two bosonic generator N and
E, and two fermionic ones ψ±. Commutation relations read

�

N ,ψ±
�

= ±ψ±,
�

ψ−,ψ+
�

= E, (ψ−)2 = (ψ+)2 = 0, (154)

where E is the central element. The defining (fundamental) representation is of dimension 2,
and is given by 2× 2 matrices

E =

�

1 0
0 1

�

, N =

�

0 0
0 1

�

, ψ=

�

0 1
0 0

�

, ψ† =

�

0 0
1 0

�

. (155)

By setting E = 0, we obtain a trivial one-dimensional irreducible representation with ψ± ≡ 0.
There moreover exists a family of two-dimensional irreducible representations, denoted by
〈n, e〉 (with E 6= 0), which reads

E =

�

e 0
0 e

�

, N =

�

n− 1 0
0 n

�

, ψ=

�

0 1
0 0

�

, ψ† =

�

0 0
e 0

�

, (156)

and includes the fundamental representation (155) as 〈1, 1〉. Reducible indecomposable rep-
resentations of gl(1|1) (see e.g. [133,153]) and not of our interest here.

Fusion in the fermionic case works as follows. The partonic Lax operators contain a single
fermionic specie and are of the form

L{1}(z) =

�

z − (n− 1
2) c†

−c 1

�

, L{2}(z) =

�

1 c
c† z + (n− 1

2)

�

. (157)

By employing the universal fusion formula,

L[1]{1}(z −
1
2)L

[2]
{2}(z −λ+

1
2) = SL[1]

λ
(z)K[2] S−1, (158)

we readily derive the gl(1|1)-invariant Lax operator which takes the form

L[1]
λ
(z) =

�

z +λ− (n1 −
1
2) −2λc†

1
−c1 z −λ− (n1 −

1
2)

�

, (159)
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where

K[2] =

�

1 c2
0 1

�

, S= exp
�

c†
1c†

2

�

, (160)

have been used. To match the canonical form of Eq. (40), given by

L{1,2}(z) =

�

z − J11 J21

−J12 z + J22

�

, (161)

the gl(1|1) super spin generators Jab are identified as

J11 = j1 + c†
1c1, J12 = ( j1 + j2 −λ)c

†
1, (162)

J21 = c1, J22 = j2 −λ− c†
1c1, (163)

together with the following constraint on the gl(1) scalars

j1 = −
1
2 −λ, j2 =

1
2 . (164)

Therefore, Lλ(z) belongs to the two-dimensional representation Vλ, with λ being the central
charge. A comparison with Eq. (156) shows that Vλ ≡ 〈1,2λ〉. In terms of the fermionic
algebra, operator Lλ(z) admits an expansion

Lλ(z) = (−1)bEab þ Lab(λ) = z + 2λ c c† + c† c− 2λn− n. (165)

Recall that for λ= 0, module Vλ becomes an atypical indecomposable representation (a short
multiplet) which is no longer irreducible; it contains a one-dimensional invariant subspace
corresponding to the Fock vacuum. However, these exceptional instances do not seem to be
relevant in the context of boundary-driven spin chains.

We moreover wish to emphasize that prescription (134) provides an explicit oscillator real-
ization of gl(n|m) Lie superalgebras. Let us consider the gl(2|1) case as an example, and fixing
the grading to

⊗

−−
⊗

. The bosonic subalgebra is a direct sum gl(2)⊕ u(1), and is spanned by
the gl(2) generators (writing ni = c†

i ci)

bJ
11
= J11

1 + n1, bJ
13
= J13

1 + c†
1c2,

bJ
33
= J33

1 + n2, bJ
31
= J31

1 + c†
2c1,

, (166)

and the u(1) generator
bJ

22
= j2 − n1 − n2. (167)

In addition, there are four fermionic charges which are parametrized as

bJ
12
= c†

1
bJ

22
+ J11

1 c†
1 + J13

1 c†
2, bJ

21
= c1,

bJ
32
= c†

2
bJ

22
+ J31

1 c†
1 + J33

1 c†
2, bJ

23
= c2.

(168)

The sl(1|2) case can be obtained by restricting Jab
1 to the sl(2) spins acting on V j1 , while j2 is

the remaining Dynkin label.

C Non-interacting fermions

In this section we provide the solution to the problem of boundary-driven non-interacting
spinless fermions hopping on a one-dimensional lattice. The Hamiltonian of the model can be
seen as a Yang–Baxter integrable spin chain invariant under gl(1|1) Lie superalgebra.25

25The model can also be mapped to the XX Heisenberg spin chain Hamiltonian. In the spin picture, we deal with
a model invariant under the q-deformed quantum symmetryUq(sl(2)) for the value of the deformation parameter
q = i.
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In Section 5.2 we constructed the steady-state solutions for the simplest fermionic bound-
ary reservoirs with equal coupling strengths. Our aim here is to demonstrate that the problem
of free fermions represents a special case which even allows for solutions going beyond those
discussed in Section 5.2. Quite remarkably, the operator Schmidt rank26 of ρ∞ now equals 4
and thus does not depend on the system size. This is in stark contrast to the solutions pertain-
ing to higher-rank symmetries which all exhibit Schmidt ranks which grow algebraically with
system size. A finite Schmidt rank gives a strong indication that the problem of finding the
steady states may be tractable by ‘brute force’, that is first by explicitly computing the null space
of the Liouvillian generator L and subsequently analytically parametrizing the solution (e.g.
with help of symbolic algebra routines). An obvious advantage of this approach is that it does
not require any prior knowledge of the underlying algebraic structures. This allows allows to
conveniently parametrize the solutions directly in terms of physical couplings attributed to the
boundary reservoirs.

We shall provide an extended four-parametric set of solutions for the asymmetric driving

A1 =
Æ

g ζσ+1 , AN =
Æ

g/ζσ−, (169)

involving coupling rate parameters g,ζ ∈ R, supplemented with two additional boundary
external fields,

Hfield =
hL

2
σz

1 +
hR

2
σz

N , (170)

of unequal magnitudes hL, hR ∈ R. We notice that the solutions given below appear to lie
outside of gl(1|1)-invariant Lax operators of Eqs. (68) and (69).27

The L-operator for the Ω-amplitude is now formally linked to a two-dimensional auxiliary
representation denoted by Vu. Here u is a four-component vector label which involves the
boundary parameters, u = (g,ζ, hL, hR). In terms of Pauli matrices, the L-operator admits the
expansion

LVu
=
σ0

2
⊗
�

ζ+ 1 0
0 (ζ− 1) + (h̃L − ζ h̃R)

�

+
σz

2
⊗
�

ζ− 1 0
0 ig(1− ζ)− (h̃L + ζ h̃R)

�

+σ− ⊗
�

0 0
ig(ζ2 + 1) + ζδh 0

�

+σ+ ⊗
�

0 1
0 0

�

, (171)

using shorthand notations h̃i = hi − 1 and δh = hL − hR. It can easily be verified that the
L-operator provides a multi-colored family of commuting of transfer matrices,

T (u) = TrVu
LVu
⊗ · · · ⊗ LVu

, [T (u1), T (u2)] = 0 ∀u1,u2 ∈ C4. (172)

The involution property of T (u) is ensured by the multi-colored 6-vertex R-matrix RVu1
Vu2

which operates on Vu1
⊗Vu2

,

RVu1
Vu2
=







a1(u1,u2) 0 0 0
0 b1(u1,u2) c1(u1,u2) 0
0 c2(u1,u2) b2(u1,u2) 0
0 0 0 a2(u1,u2)






, (173)

intertwining two copies of auxiliary spaces Vu associated to a pair of L-operators LVui
acting

on C2 ⊗Vui
,

RVu1
Vu2

LVu1
LVu2

= LVu2
LVu1

RVu1
Vu2

. (174)

26The operator analogue of the Schmidt rank characterizes a degree of bipartite entanglement of a mixed quan-
tum state. In the language of matrix-product states it coincides with the bond dimension.

27In practice it turns out that free fermions allow even more general types of non-perturbative integrable bound-
aries than those considered here.
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Moreover, it can easily be verified that the R-matrix embedded into a three-fold tensor space
obeys the Yang–Baxter equation

RVu1
Vu2

RVu1
Vu3

RVu2
Vu3
= RVu2

Vu3
RVu1

Vu3
RVu1

Vu2
. (175)

The amplitudes (Boltzmann weights) of the R-matrix read explicitly

a1(u1,u2) = ζ1ζ2 g1 + g2 − iζ2(hL,1 − hR,2),

a2(u1,u2) = g1 + ζ1ζ2 g2 − iζ1(hL,2 − hR,1),

b1(u1,u2) = ζ1 g2 − ζ2 g1 − iζ1ζ2(hR,1 − hR,2),

b2(u1,u2) = ζ1 g1 − ζ2 g2 − i(hL,1 − hL,2),

c1(u1,u2) = (1+ ζ
2
2)g2 − iα2(hL,2 − hR,2),

c2(u1,u2) = (1+ ζ
2
1)g1 − iα1(hL,1 − hR,1),

(176)

and satisfy the free fermion condition [154],

a1a2 + b1 b2 = c1c2. (177)

The differential Yang–Baxter relation on C2 ⊗C2 yields the standard form of the Sutherland
equation,

�

h1|1,LV u ⊗ LV u

�

= LVu
⊗ eLVu

− eLVu
⊗ LVu

, (178)

where
eLVu
= 1

2(i g − ζhR)σ
0 ⊗σ0 − 1

2(i gζ+ hL)σ
z ⊗σz . (179)

By expanding it to the entire spin chain, we obtain the action of the unitary part L0 which in
distinction to the canonical solutions discussed in the paper this time (assuming non-vanishing
δh) acquires an additional term,

[H,ΩN (u)] = g̃

�

ζδh+ 1 0
0 ζ

�

⊗ΩN−1(u) + g̃ΩN−1(u)⊗
�

1 0
0 −ζ−δh

�

+δhΩN (u). (180)

References

[1] I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod.
Phys. 80, 885 (2008), doi:10.1103/revmodphys.80.885.

[2] T. Kinoshita, T. Wenger and D. S. Weiss, A quantum Newton’s cradle, Nature 440, 900
(2006), doi:10.1038/nature04693.

[3] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß, T. Fukuhara, C. Gross,
I. Bloch, C. Kollath and S. Kuhr, Light-cone-like spreading of correlations in a quantum
many-body system, Nature 481, 484 (2012), doi:10.1038/nature10748.

[4] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert and
I. Bloch, Probing the relaxation towards equilibrium in an isolated strongly correlated
one-dimensional Bose gas, Nat. Phys. 8, 325 (2012), doi:10.1038/nphys2232.

[5] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I. Mazets, D. A.
Smith, E. Demler and J. Schmiedmayer, Relaxation and prethermalization in an isolated
quantum system, Science 337, 1318 (2012), doi:10.1126/science.1224953.

37

https://scipost.org
https://scipost.org/SciPostPhys.3.4.031
http://dx.doi.org/10.1103/revmodphys.80.885
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature10748
http://dx.doi.org/10.1038/nphys2232
http://dx.doi.org/10.1126/science.1224953


SciPost Phys. 3, 031 (2017)

[6] T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M. Kuhnert, W. Rohringer, I. E.
Mazets, T. Gasenzer and J. Schmiedmayer, Experimental observation of a generalized
Gibbs ensemble, Science 348, 207 (2015), doi:10.1126/science.1257026.

[7] T. Langen, T. Gasenzer and J. Schmiedmayer, Prethermalization and universal dynam-
ics in near-integrable quantum systems, J. Stat. Mech. Theor. Exp. 064009 (2016),
doi:10.1088/1742-5468/2016/06/064009.

[8] P. Calabrese and J. Cardy, Time Dependence of Correlation Functions Following a Quantum
Quench, Phys. Rev. Lett. 96 136801 (2006), doi:10.1103/physrevlett.96.136801.

[9] A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Colloquium: Nonequilib-
rium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83, 863 (2011),
doi:10.1103/revmodphys.83.863.

[10] J. Eisert, M. Friesdorf and C. Gogolin, Quantum many-body systems out of equilibrium,
Nat. Phys. 11, 124 (2015), doi:10.1038/nphys3215.

[11] L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate
thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65, 239 (2016),
doi:10.1080/00018732.2016.1198134.

[12] P. Calabrese and J. Cardy, Quantum quenches in 1+1 dimensional conformal field theories,
J. Stat. Mech. Theor. Exp. 064003 (2016), doi:10.1088/1742-5468/2016/06/064003.

[13] D. Bernard and B. Doyon, Conformal field theory out of equilibrium: a review, J. Stat.
Mech. Theor. Exp. 064005 (2016), doi:10.1088/1742-5468/2016/06/064005.

[14] F. H. L. Essler and M. Fagotti, Quench dynamics and relaxation in isolated integrable
quantum spin chains, J. Stat. Mech. Theor. Exp. 064002 (2016), doi:10.1088/1742-
5468/2016/06/064002.

[15] E. Ilievski, M. Medenjak, T. Prosen and L. Zadnik, Quasilocal charges in inte-
grable lattice systems, J. Stat. Mech. Theor. Exp. 064008 (2016), doi:10.1088/1742-
5468/2016/06/064008.

[16] M. A. Cazalilla and M.-C. Chung, Quantum quenches in the Luttinger model and
its close relatives, J. Stat. Mech. Theor. Exp. 064004 (2016), doi:10.1088/1742-
5468/2016/06/064004.

[17] M. Moeckel and S. Kehrein, Crossover from adiabatic to sudden interaction quenches in
the Hubbard model: prethermalization and non-equilibrium dynamics, New J. Phys. 12,
055016 (2010), doi:10.1088/1367-2630/12/5/055016.

[18] M. Kollar, F. A. Wolf and M. Eckstein, Generalized Gibbs ensemble prediction of prether-
malization plateaus and their relation to nonthermal steady states in integrable systems,
Phys. Rev. B 84, 054304 (2011), doi:10.1103/physrevb.84.054304.

[19] J. Marino and A. Silva, Relaxation, prethermalization, and diffusion in a noisy quantum
Ising chain, Phys. Rev. B 86 (2012), doi:10.1103/physrevb.86.060408.

[20] M. Marcuzzi, J. Marino, A. Gambassi and A. Silva, Prethermalization in a nonin-
tegrable quantum spin chain after a quench, Phys. Rev. Lett. 111, 197203 (2013),
doi:10.1103/physrevlett.111.197203.

38

https://scipost.org
https://scipost.org/SciPostPhys.3.4.031
http://dx.doi.org/10.1126/science.1257026
http://dx.doi.org/10.1088/1742-5468/2016/06/064009
http://dx.doi.org/10.1103/physrevlett.96.136801
http://dx.doi.org/10.1103/revmodphys.83.863
http://dx.doi.org/10.1038/nphys3215
http://dx.doi.org/10.1080/00018732.2016.1198134
http://dx.doi.org/10.1088/1742-5468/2016/06/064003
http://dx.doi.org/10.1088/1742-5468/2016/06/064005
http://dx.doi.org/10.1088/1742-5468/2016/06/064002
http://dx.doi.org/10.1088/1742-5468/2016/06/064002
http://dx.doi.org/10.1088/1742-5468/2016/06/064008
http://dx.doi.org/10.1088/1742-5468/2016/06/064008
http://dx.doi.org/10.1088/1742-5468/2016/06/064004
http://dx.doi.org/10.1088/1742-5468/2016/06/064004
http://dx.doi.org/10.1088/1367-2630/12/5/055016
http://dx.doi.org/10.1103/physrevb.84.054304
http://dx.doi.org/10.1103/physrevb.86.060408
http://dx.doi.org/10.1103/physrevlett.111.197203


SciPost Phys. 3, 031 (2017)

[21] B. Bertini and M. Fagotti, Pre-relaxation in weakly interacting models, J. Stat. Mech.
Theor. Exp. P07012 (2015), doi:10.1088/1742-5468/2015/07/p07012.

[22] B. Bertini, F. H. Essler, S. Groha and N. J. Robinson, Prethermalization and thermaliza-
tion in models with weak integrability breaking, Phys. Rev. Lett. 115, 180601 (2015),
doi:10.1103/physrevlett.115.180601.

[23] M. Rigol, A. Muramatsu and M. Olshanii, Hard-core bosons on optical superlattices: Dy-
namics and relaxation in the superfluid and insulating regimes, Phys. Rev. A 74, 053616
(2006), doi:10.1103/physreva.74.053616.

[24] M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely inte-
grable many-body quantum system: an ab initio study of the dynamics of the highly
excited states of 1D lattice hard-core bosons, Phys. Rev. Lett. 98, 050405 (2007),
doi:10.1103/physrevlett.98.050405.

[25] D. Rossini, A. Silva, G. Mussardo and G. E. Santoro, Effective Thermal Dynamics Fol-
lowing a Quantum Quench in a Spin Chain, Phys. Rev. Lett. 102, 127204 (2009),
doi:10.1103/physrevlett.102.127204.

[26] P. Calabrese, F. H. L. Essler and M. Fagotti, Quantum Quench in the Transverse-Field Ising
Chain, Phys. Rev. Lett. 106, 227203 (2011), doi:10.1103/physrevlett.106.227203.

[27] J.-S. Caux and R. M. Konik, Constructing the Generalized Gibbs Ensemble after a Quantum
Quench, Phys. Rev. Lett. 109, 175301 (2012), doi:10.1103/physrevlett.109.175301.

[28] J.-S. Caux and F. H. L. Essler, Time evolution of local observables after
quenching to an integrable model, Phys. Rev. Lett. 110, 257203 (2013),
doi:10.1103/physrevlett.110.257203.

[29] J. De Nardis, B. Wouters, M. Brockmann and J.-S. Caux, Solution for an in-
teraction quench in the Lieb-Liniger Bose gas, Phys. Rev. A 89, 033601 (2014),
doi:10.1103/physreva.89.033601.

[30] B. Wouters, J. De Nardis, M. Brockmann, D. Fioretto, M. Rigol and J.-S. Caux, Quenching
the Anisotropic Heisenberg Chain: Exact Solution and Generalized Gibbs Ensemble Predic-
tions, Phys. Rev. Lett. 113, 117202 (2014), doi:10.1103/physrevlett.113.117202.

[31] B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos, G. Zaránd and G. Takács, Correla-
tions after Quantum Quenches in the XXZ Spin Chain: Failure of the Generalized Gibbs
Ensemble, Phys. Rev. Lett. 113, 117203 (2014), doi:10.1103/physrevlett.113.117203.

[32] L. Vidmar and M. Rigol, Generalized Gibbs ensemble in integrable lattice models, J. Stat.
Mech. Theor. Exp. 064007 (2016), doi:10.1088/1742-5468/2016/06/064007.

[33] E. Ilievski, J. De Nardis, B. Wouters, J.-S. Caux, F. H. Essler and T. Prosen, Complete gen-
eralized Gibbs ensembles in an interacting theory, Phys. Rev. Lett. 115, 157201 (2015),
doi:10.1103/physrevlett.115.157201.

[34] E. Ilievski, E. Quinn, J. De Nardis and M. Brockmann, String-charge duality in inte-
grable lattice models, J. Stat. Mech. Theor. Exp. 063101 (2016), doi:10.1088/1742-
5468/2016/06/063101.

[35] E. Ilievski, E. Quinn and J.-S. Caux, From interacting particles to equilibrium statistical
ensembles, Phys. Rev. B 95, 115128 (2017), doi:10.1103/physrevb.95.115128.

39

https://scipost.org
https://scipost.org/SciPostPhys.3.4.031
http://dx.doi.org/10.1088/1742-5468/2015/07/p07012
http://dx.doi.org/10.1103/physrevlett.115.180601
http://dx.doi.org/10.1103/physreva.74.053616
http://dx.doi.org/10.1103/physrevlett.98.050405
http://dx.doi.org/10.1103/physrevlett.102.127204
http://dx.doi.org/10.1103/physrevlett.106.227203
http://dx.doi.org/10.1103/physrevlett.109.175301
http://dx.doi.org/10.1103/physrevlett.110.257203
http://dx.doi.org/10.1103/physreva.89.033601
http://dx.doi.org/10.1103/physrevlett.113.117202
http://dx.doi.org/10.1103/physrevlett.113.117203
http://dx.doi.org/10.1088/1742-5468/2016/06/064007
http://dx.doi.org/10.1103/physrevlett.115.157201
http://dx.doi.org/10.1088/1742-5468/2016/06/063101
http://dx.doi.org/10.1088/1742-5468/2016/06/063101
http://dx.doi.org/10.1103/physrevb.95.115128


SciPost Phys. 3, 031 (2017)

[36] E. Ilievski, M. Medenjak and T. Prosen, Quasilocal conserved operators in
the isotropic Heisenberg spin-1/2 chain, Phys. Rev. Lett. 115, 120601 (2015),
doi:10.1103/physrevlett.115.120601.

[37] C. W. Gardiner and P. Zoller, Quantum Noise, Springer Berlin Heidelberg (2000).

[38] Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems,
Oxford University Press (2007), doi:10.1093/acprof:oso/9780199213900.001.0001.

[39] A. Rivas and S. F. Huelga, Open Quantum Systems, Springer Berlin Heidelberg (2012),
doi:10.1007/978-3-642-23354-8.

[40] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler and P. Zoller, Quantum states
and phases in driven open quantum systems with cold atoms, Nat. Phys. 4, 878 (2008),
doi:10.1038/nphys1073.

[41] S. Diehl, E. Rico, M. A. Baranov and P. Zoller, Topology by dissipation in atomic quantum
wires, Nat. Phys. 7, 971 (2011), doi:10.1038/nphys2106.

[42] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F.
Roos, P. Zoller and R. Blatt, An open-system quantum simulator with trapped ions, Nature
470, 486 (2011), doi:10.1038/nature09801.

[43] G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera and H. Ott, Controlling
the Dynamics of an Open Many-Body Quantum System with Localized Dissipation, Phys.
Rev. Lett. 110, 035302 (2013), doi:10.1103/physrevlett.110.035302.

[44] G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys.
48, 119 (1976), doi:10.1007/bf01608499.

[45] V. Gorini, A. Kossakowski and E. C. G. Sudarshan, Completely positive dynamical semi-
groups of N-level systems, J. Math. Phys. 17, 821 (1976), doi:10.1063/1.522979.

[46] L. P. Kadanoff and J. Swift, Transport Coefficients near the Critical Point: A Master-
Equation Approach, Phys. Rev. 165, 310 (1968), doi:10.1103/physrev.165.310.

[47] B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional
asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 667 (1992),
doi:10.1007/bf01050430.

[48] B. Derrida, M. R. Evans, V. Hakim and V. Pasquier, A Matrix Method of Solving an Asym-
metric Exclusion Model with Open Boundaries, in N. Boccara, E. Goles, S. Martinez and P
Picco (eds.), Cellular Automata and Cooperative Systems, pp. 121–133. Springer Science
(1993), doi:10.1007/978-94-011-1691-6_11.

[49] D. Toussaint, Particle–antiparticle annihilation in diffusive motion, J. Chem. Phys. 78,
2642 (1983), doi:10.1063/1.445022.

[50] K. Kang and S. Redner, Fluctuation effects in Smoluchowski reaction kinetics, Phys. Rev.
A 30, 2833 (1984), doi:10.1103/physreva.30.2833.

[51] K. Kang and S. Redner, Scaling Approach for the Kinetics of Recombination Processes,
Phys. Rev. Lett. 52, 955 (1984), doi:10.1103/physrevlett.52.955.

[52] F. Alcaraz, M. Droz, M. Henkel and V. Rittenberg, Reaction-Diffusion Pro-
cesses, Critical Dynamics, and Quantum Chains, Ann. Phys. 230, 250 (1994),
doi:10.1006/aphy.1994.1026.

40

https://scipost.org
https://scipost.org/SciPostPhys.3.4.031
http://dx.doi.org/10.1103/physrevlett.115.120601
http://dx.doi.org/10.1093/acprof:oso/9780199213900.001.0001
http://dx.doi.org/10.1007/978-3-642-23354-8
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1038/nphys2106
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1103/physrevlett.110.035302
http://dx.doi.org/10.1007/bf01608499
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1103/physrev.165.310
http://dx.doi.org/10.1007/bf01050430
http://dx.doi.org/10.1007/978-94-011-1691-6_11
http://dx.doi.org/10.1063/1.445022
http://dx.doi.org/10.1103/physreva.30.2833
http://dx.doi.org/10.1103/physrevlett.52.955
http://dx.doi.org/10.1006/aphy.1994.1026


SciPost Phys. 3, 031 (2017)

[53] F. Spitzer, Interaction of Markov Processes, in R. Durrett and H. Kesten (eds.), Random
Walks, Brownian Motion, and Interacting Particle Systems, pp. 66–110. Springer Nature
(1991), doi:10.1007/978-1-4612-0459-6_5.

[54] E. D. Andjel and C. Kipnis, Derivation of the Hydrodynamical Equation for the Zero-Range
Interaction Process, Ann. Prob. 12, 325 (1984), doi:10.1214/aop/1176993293.

[55] G. Schütz, Exactly Solvable Models for Many-Body Systems Far from Equilibrium, in C.
Domb and J. L. Lebowitz (eds.), Phase Transitions and Critical Phenomena, pp. 1–251.
Elsevier BV (2001), doi:10.1016/s1062-7901(01)80015-x.

[56] G. Schütz and E. Domany, Phase transitions in an exactly soluble one-dimensional exclu-
sion process, J. Stat. Phys. 72, 277 (1993), doi:10.1007/bf01048050.

[57] B. Derrida and J. L. Lebowitz, Exact Large Deviation Function in the Asymmetric Exclusion
Process, Phys. Rev. Lett. 80, 209 (1998), doi:10.1103/physrevlett.80.209.

[58] B. Derrida, J. L. Lebowitz and E. R. Speer, Free Energy Functional for Nonequi-
librium Systems: An Exactly Solvable Case, Phys. Rev. Lett. 87, 150601 (2001),
doi:10.1103/physrevlett.87.150601.

[59] J. de Gier and F. H. L. Essler, Bethe Ansatz Solution of the Asymmetric Ex-
clusion Process with Open Boundaries, Phys. Rev. Lett. 95, 240601 (2005),
doi:10.1103/physrevlett.95.240601.

[60] R. A. Blythe and M. R. Evans, Nonequilibrium steady states of matrix-product form: a
solver’s guide, J. Phys. A 40, R333 (2007), doi:10.1088/1751-8113/40/46/r01.

[61] M. Gorissen, A. Lazarescu, K. Mallick and C. Vanderzande, Exact Current Statistics of the
Asymmetric Simple Exclusion Process with Open Boundaries, Phys. Rev. Lett. 109, 170601
(2012), doi:10.1103/physrevlett.109.170601.

[62] M. Žnidarič, T. Prosen and P. Prelovšek, Many-body localization in the Heisen-
berg XXZ magnet in a random field, Phys. Rev. B 77, 064426 (2008),
doi:10.1103/physrevb.77.064426.
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[65] T. Prosen and B. Žunkovič, Exact solution of Markovian master equations for quadratic
Fermi systems: thermal baths, open XY spin chains and non-equilibrium phase transition,
New J. Phys. 12, 025016 (2010), doi:10.1088/1367-2630/12/2/025016.
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[69] M. Žnidarič, Relaxation times of dissipative many-body quantum systems, Phys. Rev. E
92, 042143 (2015), doi:10.1103/physreve.92.042143.
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