
SciPost Phys. 3, 034 (2017)

Entanglement entropy in Lifshitz theories

Temple He1?, Javier M. Magán2[ and Stefan Vandoren3]

1 Center for the Fundamental Laws of Nature, Harvard University,
Cambridge, MA 02138, USA

2 Instituto Balseiro, Centro Atomico Bariloche, S.C. de Bariloche,
Rio Negro, R8402AGP, Argentina

3 Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,
Utrecht University, 3508 TD Utrecht, The Netherlands

? tmhe@physics.harvard.edu, [ javier.magan@cab.cnea.gov.ar, ] s.j.g.vandoren@uu.nl

Abstract

We discuss and compute entanglement entropy (EE) in (1+1)-dimensional free Lifshitz
scalar field theories with arbitrary dynamical exponents. We consider both the subin-
terval and periodic sublattices in the discretized theory as subsystems. In both cases,
we are able to analytically demonstrate that the EE grows linearly as a function of the
dynamical exponent. Furthermore, for the subinterval case, we determine that as the
dynamical exponent increases, there is a crossover from an area law to a volume law.
Lastly, we deform Lifshitz field theories with certain relevant operators and show that
the EE decreases from the ultraviolet to the infrared fixed point, giving evidence for a
possible c-theorem for deformed Lifshitz theories.
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1 Introduction

In (1+1)-dimensional relativistic conformal field theories (CFTs), the entanglement entropy
(EE) for a line segment at zero temperature obeys a log-law with a coefficient that is pro-
portional to the central charge of the CFT [1, 2]. This result is universal and holds for both
weakly and strongly coupled CFTs. It can be reproduced using holography via the celebrated
Ryu-Takayanagi (RT) formula [3]. To derive these results, both Lorentz symmetry and scale
invariance are used.

In this paper, we break Lorentz symmetry and consider non-relativistic field theories in
1+1 dimensions, but still preserving scale invariance.1 In particular, we will focus on a class
of models known as Lifshitz theories, which have a scaling symmetry under which x → Λx
and t → Λz t for z ∈ Z+. For z = 1, we recover the usual relativistic scaling symmetry. Such z
is known as the dynamical exponent of the Lifshitz theory, and such symmetries can arise at
quantum critical points in a variety of condensed matter systems. The prototype example is
that of a free massless scalar field theory with Hamiltonian2

H =
1
2

∫

�

π2 +α2
�

∂ z
xφ
�2�

dx , (1.2)

where π is the conjugate momentum to the scalar field φ, and α has SI units mz/s. For the
case where z = 1 and α= c, we recover the free, massless relativistic field theory. For generic
z, the model contains particle excitations with dispersion relations ω = αkz . The scalar field
φ has scaling weight (z − 1)/2.

Although the theory is Gaussian, the Lifshitz term in (1.2) contains higher spatial deriva-
tives and controls the ultraviolet (UV) behavior of the theory. Therefore, we expect the EE,
which is also UV dominated, to depend on z, and in fact to grow as a function of z. This can
be argued by discretizing the model on a one-dimensional lattice. Then, for z = 1, there are
nearest-neighbor interactions, for z = 2 next-to-nearest neighbor interactions, and for larger
values of z we get long-range interactions. EE typically grows in the presence of long-range
interactions, and hence should increase as z increases. This intuition is confirmed in this paper
for the special case of a discretized free (1+1)-dimensional real scalar field theory on a circle.

We organize this paper as follows. In Section 2, we study the Lifshitz vacuum EE for a
subregion consisting of NA consecutive lattice sites on a circle with N total lattice sites. By using
the recently developed framework of a continuous version of the multi-scale entanglement
renormalization ansatz (cMERA) [4], we are able to obtain the universal dependence of EE
with respect to the dynamical exponent. In Section 3, we use an approach similar to that

1We will later also include and discuss mass deformations.
2A more general class of Lifshitz models based on free fields is given by the action

S =
1
2

∫

�

imφ (∂ m
t φ)−α

2
�

∂ n
x φ
�2�

dx dt , (1.1)

which for m = 2 reproduces the Hamiltonian (1.2) with z = n. More generally, the Lagrangian (1.1) has a
dynamical exponent z = 2n/m. However, for m > 2, the theory contains higher time derivatives, which implies
the quantization of the model, and consequently the study of EE, becomes more difficult and obscure. Thus, we
restrict ourselves to the case where m = 2, z = n, or equivalently the Hamiltonian (1.2), for the remainder of this
paper.
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studied in [5] to analytically compute the Lifshitz vacuum EE for a subregion consisting of
every p-th lattice site on the circle. Moreover, in both of these sections, we complement our
analytical approach with a numerical one to confirm the results and to explore situations where
our analytic approach is not viable. Finally, in Subsection 3.3 we study a renormalization group
flow of vacuum EE by deforming the Lifshitz theory in the UV into a relativistic theory in the
infrared (IR). We summarize our results in Section 4.

Note added: On the day of submission of our paper to the arXiv, the paper [6] appeared.
This reference has some overlap with our Section 2. Their study of one-dimensional Lifshitz
theories is on an open interval with Dirichlet boundary conditions, whereas we have peri-
odic boundary conditions on a circle. Nevertheless, we see qualitative agreement of the nu-
merical data as a function of the dynamical exponent z and in the massless limit. The au-
thors of [6] also fit their data with a formula, which for d = 1 is given, to leading order, by

S(z)(lA) = #
�

lA
ε

�1− 1
z + · · · ; see equation (3.2) in [6]. While this seems to fit reasonably well in

the range of parameters discussed in their paper, namely when lA/ε is of the same order as z,
our results suggest this formula fails in the continuum limit, when z is not of the order of lA/ε.

2 Subinterval entanglement entropy

In this section, we will first derive a concrete formula for the EE of a free massless Lifshitz
scalar field with Hamiltonian (1.2) from cMERA using a straightforward application of the
framework introduced in [4]. In the subsequent subsections, we discretize the theory and
use numerics to compute the EE. We then compare our numerical results to our result from
cMERA.3

2.1 Scaling arguments from cMERA

Before we start discussing entanglement in Lifshitz theory, let us recall the celebrated result
from relativistic CFT that the vacuum EE for a subinterval A of length lA obeys the area law,
which in 1+ 1 dimensions has a logarithmic dependence given by [1,2]

S =
c
3

log
�

lA
ε

�

+ c0 , (2.3)

where c is the central charge of the CFT. Here ε is a short-distance cutoff, and the constant c0
reflects the ambiguity in the cutoff dependence, as multiplying the cutoff by any factor changes
the value of the constant c0. The area formula has been reproduced by holography; indeed,
since it is universal, holography even obtains the correct result for a free scalar with central
charge c = 1 [3, 12]. If we discretize the interval with NA points, so that lA = NAε, we would
have in the large NA limit

S =
1
3

log (NA) + c0 . (2.4)

For Lifshitz theories, we no longer know if there is an area law, and whether the coefficient of
its "central charge" is universal. However, while we cannot rely on holographic techniques for
a free Lifshitz scalar with Hamiltonian (1.2), we can apply a formalism based on cMERA that

3Due to the lack of the relativistic conformal symmetry for generic z, we are unable to carry out the replica trick
in the calculation of the EE. The replica method is of course still applicable, but one cannot use the OPE techniques,
as in the case of relativistic CFTs. For z = 2 and in 2+1 dimensions, there is an analytic approach for computing
certain universal and subleading terms in the EE discussed in [7–10], but to our knowledge there is no literature
on arbitrary values of z in any dimension. An alternative strategy might be to use the technique developed in [11].
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was developed to geometrize EE for free fields in d dimensions [4]. In this approach, we first
define the following metric in d + 1 dimensions:

ds2 = χ(u)2du2 +
e2u

ε
d~x2 , (2.5)

where u = 0,−1, ...,−∞ in the discrete MERA and defines the holographic direction in the
continuum, ~x the spatial boundary coordinates (in 1+1 dimensions there is only one spatial
boundary coordinate, and we will henceforth restrict ourselves to this case), and χ(u) is de-
fined via

χ(u) =
1
2

�

k ∂k ε(k)
ε(k)

�

k=eu/ε

, (2.6)

where ε(k) is the dispersion relation of the free scalar field and k the momentum. Note that
the boundary field theory lives at u = 0, and the deep interior corresponds to the infrared
uIR = −∞.

For our free massless scalar Lifshitz field with Hamiltonian (1.2), we have

ε(k) = αkz ⇒ χ(u) =
z
2

, (2.7)

which means the metric becomes

ds2 =
z2

4
du2 +

e2u

ε2
dx2 . (2.8)

Note that for z = 1, this is just the spatial part of the AdS3 metric. Applying the RT formula by
computing the length of the geodesics in the bulk, this metric produces the correct EE formula
(2.3). For z 6= 1, we apply a trick and notice that we can rewrite the metric (2.8) as

d
� s

z

�2
=

1
4

du2 +
e2u

(zε)2
dx2 . (2.9)

This formula shows something remarkable, namely that the Lifshitz EE for a free massless
scalar as obtained from extremizing geodesics in (2.8) is related to that for a relativistic (z = 1)
free massless scalar by simply rescaling the geodesic length by z and replacing ε by zε. Apply-
ing this to (2.4), we obtain the vacuum EE for a free massless Lifshitz scalar4

S =
z
3

log
�

lA
zε

�

+ zc0 . (2.10)

If we choose to discretize the system such that there are NA points on the interval, each sep-
arated by distance ε such that lA = NAε, then as long as NA � z so that we are still near the
continuum limit, the above equation becomes

S =
z
3

log
�

NA

z

�

+ zc0 . (2.11)

The coefficient c0 is still undetermined and depends on the regularization scheme. Further-
more, notice that for z� NA, which is always the case in the continuum, one has an area law
(logarithmic in lA), and that the EE is linear in z (as z log NA dominates). However, as we will
see using numerics in the following subsections, for values of z such that z ∼ NA, a crossover
happens, and we now have a volume law (linear in lA). This is not so surprising since in the dis-
cretized theory, z produces interactions between long-distance neighbors within z lattice sites
of each other, so entanglement does not occur only at the boundary. This type of non-local
entanglement behavior was specifically studied in [13–15]. In the process of demonstrating
this crossover, we will also numerically verify (2.11) to a reasonably good approximation by
tuning the coefficient c0.

4We are assuming the proportionality factor between the geodesic length and the EE is independent of z.
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2.2 Discretization

We begin by considering real (1+ 1)-dimensional free scalar field theory living on a cylinder
S1 × R, where R is the time axis and S1 is a spatial circle with circumference L. We are
particularly interested in the case when our Lifshitz theory has a Hamiltonian of the form

H =
1
2

∫ L

0

�

π2 +α2
�

∂ z
xφ
�2
+m2φ2

�

dx , (2.12)

where φ is the scalar field, π is its conjugate momentum, z ∈ Z+ is the dynamical exponent,
and α2, m2 ∈ R+ are real, positive parameters. In contrast to (1.2), we have introduced a
nonzero mass m to avoid divergence issues, which are related to the non-normalizablity of
ground states in massless free field theories. The massive extension is certainly interesting in
its own right, and by taking the massless limit, we can still study how the EE behaves when the
theory becomes scale invariant. Notice that for the case z = 1, we recover the usual relativistic
free massive scalar theory by setting α= c.

In order to bypass the well-known UV divergence in the EE, we discretize the circle into
N points, each separated by a distance of ε ≡ L/N that serves as a UV-cutoff. Defining
φ j ≡

Æ

mε
~ φ( jε) and π j ≡

Æ

ε
m~ π( jε), so that both φ j and π j are dimensionless, we can

write the discretized Hamiltonian as

H =
m~
2

N−1
∑

j=0



π2
j + J−2

� z
∑

r=0

�

z
r

�

(−1)rφ j+z−r

�2

+φ2
j



 , J ≡
mεz

α
. (2.13)

Note that we impose periodic boundary conditions φk+N ≡ φk and πk+N ≡ πk for all k since
our theory lives on a spatial circle, and that J is a dimensionless coupling constant. Making
the assumption that z < N/2, which certainly holds in the regime of large N , we can rewrite
(2.13) as

H =
m~
2

 

N−1
∑

j=0

π2
j +

N−1
∑

i, j=0

φiVi jφ j

!

, (2.14)

where Vi j is a symmetric circulant matrix defined as follows:5

V = circ

�

J−2
z
∑

r=0

�

z
r

�2

+ 1,−J−2
z−1
∑

r=0

�

z
r

��

z
r + 1

�

, J−2
z−2
∑

r=0

�

z
r

��

z
r + 2

�

, . . . ,

(−1)zJ−2, 0, . . . , 0, (−1)zJ−2, . . . ,−J−2
z−1
∑

r=0

�

z
r

��

z
r + 1

�

�

.

(2.16)

Our goal is to compute the EE for a fixed subinterval A, labeled by points 1, . . . , NA, as a
function of the dynamical exponent z. For simplicity, we will assume our system to be in the
vacuum state. As was demonstrated in [16–18], it suffices to study the vacuum two-point

5A circulant matrix is a matrix where every row is a cyclic shift of the row above it, so that it can be defined
from the first row alone. As an example,

circ(c0, c1, c2) =







c0 c1 c2

c2 c0 c1

c1 c2 c0






. (2.15)
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functions, which we obtain via mode expansion to be

Φi j ≡ 〈φiφ j〉=
1

2N

N−1
∑

k=0

1
ω̃k

cos
2π(i − j)k

N
,

Πi j ≡ 〈πiπ j〉=
1

2N

N−1
∑

k=0

ω̃k cos
2π(i − j)k

N
,

(2.17)

where the ω̃k ’s are the dimensionless eigenvalues of V ,6 and the indices i, j run from 1 to NA.
The EE is then given by

SA =
NA−1
∑

l=0

��

λl +
1
2

�

log
�

λl +
1
2

�

−
�

λl −
1
2

�

log
�

λl −
1
2

��

, (2.18)

where λl are the eigenvalues of the NA × NA matrix
p
ΦΠ. Although it is rather difficult to

analytically obtain the eigenvalues λl except for certain very special cases (i.e. when ΦΠ is
a circulant matrix, as we will explore in the next section), there are no major obstructions
to determining the eigenvalues numerically. We simply need to determine the ω̃k ’s, i.e. the
eigenvalues of V in (2.16).

Fortunately, the eigenvalues of circulant matrices are completely known, and we obtain

ω̃2
k = 1+ J−2

z
∑

r=0

�

z
r

�2

+ 2J−2
z
∑

s=1

z−s
∑

r=0

(−1)s
�

z
r

��

z
r + s

�

cos
2πks

N
, (2.19)

for k = 0, . . . , N − 1. Applying Vandermonde’s identity

k
∑

r=0

�

n
r

��

m
k− r

�

=
�

n+m
k

�

, (2.20)

we arrive at

ω̃2
k = 1+

�

2z
z

�

J−2 + 2J−2
z
∑

s=1

(−1)s
�

2z
z − s

�

cos
2πks

N
. (2.21)

This can be further simplified, after some algebra and using the binomial theorem, to the
following simple result:7

J2ω̃2
k = J2 +

�

2 sin
πk
N

�2z

. (2.22)

We can now use numerics to determine SA as a function of z. Note that because the eigenvalues
λl of

p
ΦΠ are invariant under rescaling of ω̃k, we are free to rescale away the J2 on the left-

hand-side of (2.22). We are then free to take the massless limit J → 0 without any subtleties.

2.3 Numerical results

At large N the dispersion relation (2.22) reads

J2ω̃(x)2 = J2 + (2 sinπx)2z , (2.23)

6We obtain the usual dimensionful frequency modes ωk (see i.e. [5]) from ω̃k via the relation ωk = mω̃k.
7We thank Dion Hartmann for pointing this out.
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Figure 1: Utilizing the assumption N → ∞, we fixed NA = 40, 70 and J = 10−5 and plotted the
vacuum EE SA as a function of z. We fitted the data using (2.11) with c0 = 1.996 for the NA = 40 case
and c0 = 2.080 for the NA = 70 case, as determined by Mathematica to be the best fit. We expect that
the two values of c0 should be the same, and the fit should become exact in the massless continuum
limit J → 0 and NA→∞.

where x ≡ k/N is a continuous parameter. This is not the continuum limit of the QFT on the
circle, because the dispersion in that case would simply be ω2 = m2 + p2z , with quantized
momenta p = 2πk/L, k ∈ Z. Instead, we keep the cutoff ε small but finite and send N →∞,
which means the circle circumference becomes infinitely long, i.e. L→∞. Thus, our system
is now an infinitely long one-dimensional lattice, precisely the discretized system considered
in Section 2.1.

In this limit, the sums in the two-point functions (2.17) become integrals:

Φi j ≡ 〈φiφ j〉=
1
2

∫ 1

0

1
ω̃(x)

cos[2π(i − j)x]dx ,

Πi j ≡ 〈πiπ j〉=
1
2

∫ 1

0

ω̃(x) cos[2π(i − j)x]dx ,

(2.24)

where i, j run from 1 to NA for some fixed finite NA. We can then numerically obtain the NA
eigenvalues of

p
ΦΠ, and use (2.18) to compute the EE.

After taking the large N limit, the EE SA is a function of the dimensionless parameters
NA, z, and J . In Fig. 1, we fixed NA to be both 40 and 70 and computed SA as a function of
the dynamical exponent z with J = 10−5. Although we cannot set J = 0 to probe the massless
case due to divergence issues in the numerics, J is sufficiently small such that we see that there
is qualitative agreement with (2.11). Using Mathematica, we determined that to obtain the
best fit, we require c0 = 1.996 given NA = 40 and c0 = 2.080 given NA = 70. Again, we expect
these two possible values of c0 to converge to a single number in the massless continuum limit
J → 0 and NA→∞.

Next, we plotted in Fig. 2 the vacuum EE as a function of J , for NA = 20 and different
fixed values of z. Recalling that small J for fixed α, m corresponds to small lattice spacing (the
UV regime) while large J corresponds to large lattice spacing (the IR regime), we see that SA
decreases as we flow from the UV into the IR. This is in accordance with the statement that
EE decreases along the renormalization group (RG) flow, a statement proven for relativistic
theories in [19], but is not in general true for non-relativistic theories.8

Finally, we plotted in Fig. 3 the vacuum EE as a function of NA, as is usually done, for
fixed J and different fixed values of z. We see that there indeed appears to be a crossover
as we go from linear growth (volume law) when NA � z to logarithmic growth (area law)

8Two such non-relativistic theories whose EEs do not decrease along the RG flow are given in [20].
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Figure 2: Plot of vacuum EE as a function of J for NA = 20 and different fixed values of z. Note that
in the UV, the lattice spacing ε is very small, which implies J � 1, while in the IR, ε is very large,
which implies J � 1. In this J � 1 regime, the correlation length, inversely proportional to J , becomes
smaller than the lattice spacing, and we expect the EE to fall off. Thus, we see that regardless of z, as
we flow from UV to IR, the vacuum EE SA decreases.

Figure 3: Plot of vacuum EE as a function of the size NA of the subinterval A for fixed J = 10−5 and
different fixed values of z. For the z = 1 case, the plot matches with the Casini-Huerta prediction with
central charge c = 1. There also appears to be a crossover from logarithmic growth when NA > z to
linear growth when NA < z, as is best visible with the z = 8 data points.

when NA � z, as predicted by (2.11). For z = 1, our numerical result agrees perfectly with
the analytic formula obtained by Casini and Huerta in [21,22], given to be9

S(lA)− S(ε) =
1
3

log
lA
ε
−

1
2

log(− log(mε)) +
1
2

log(− log(mlA)) +O
�

log−2(mlA)
�

, (2.25)

where lA > ε is the length of subsystem A with lA ≡ NAε.
10

The first term in (2.25) is independent of the mass, and corresponds to the universal area
law (which is a log-law in 1+1 dimensions). The other terms diverge in the massless limit and
should be subtracted in the conformal limit to avoid divergences. For higher values of z > 1,
we observe from the data that there appears to be a crossover from an area law, where the

9A simple sign typo in eq. (96) from [21] was corrected. The formula is for the difference of two EEs and only
holds in the L = Nε→∞ limit, i.e. on the infinite line. Thus, our numerical agreement with (2.25) occurs in the
regime when N →∞, but with the cutoff ε fixed at some small finite value.

10Observe further that (2.25) holds when the correlation length, which is inversely proportional to the mass, is
much larger than the size of the subsystem, i.e. mlA = JNA� 1, but smaller than the size of the total system, which
is obeyed assuming L→∞. These conditions are satisfied in Figures 1 and 3. For correlation lengths smaller than
the size of the subsystem, i.e. JNA > 1, the EE is logarithmic in the correlation length [2], and is relevant only to
Figure 2.
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Figure 4: One-dimensional periodic sublattices consisting of N = 12 lattice sites, with subsystem A
consisting of the NA filled lattice points such that N = pNA. On the left NA = 6 and p = 2, while on the
right NA = 4 and p = 3. Figure taken from [5].

entropy is logarithimic in NA, when NA > z, to a volume law, where the entropy is linear in NA,
when NA < z. As mentioned in the introduction, this makes intuitive sense, since when z > NA,
entanglement of subinterval A with the rest of the system is not occurring only at the boundary,
but at every lattice site within A. Similar nonlocal scenarios were considered in [13–15].

3 Sublattice entanglement entropy

3.1 Preliminaries

In the previous section, we used cMERA techniques in the massless case, since we were un-
able to diagonalize the matrix

p
ΦΠ in analytic form. However, if we instead consider a p-

alternating sublattice, that is, we let our subsystem A to be every p-th point as in Fig. 4,11 then
the two-point functions Φ and Π are circulant matrices with the same eigenbasis. In this case,
the eigenvalues of

p
ΦΠ can be analytically computed even in the massive scenario.

To write the two-point functions for the p-alternating sublattice, we first rescale the indices
of the sublattice by p so that instead of labeling the sublattice by the indices 0, p, . . . , (NA−1)p,
we label it by the indices 0, . . . , NA−1. Using the rescaled indices, the two-point functions read

Φi j ≡ 〈φiφ j〉=
1

2N

N−1
∑

k=0

1
ω̃k

cos
2π(i − j)k

NA
,

Πi j ≡ 〈πiπ j〉=
1

2N

N−1
∑

k=0

ω̃k cos
2π(i − j)k

NA
,

(3.26)

where i, j = 0, . . . , NA − 1. Except for the fact that the dispersion relation being used here
is (2.22), these two-point functions are formally equal to those studied in [5], where it was
noticed that the vacuum eigenvalues of

p
ΦΠ are given by

λl =
1

2p





p−1
∑

i, j=0

ω̃l+iNA

ω̃l+ jNA





1/2

, l = 0,1, . . . , NA− 1 . (3.27)

Substituting this into (2.18) gives us the EE of the subsystem A.
We can further simplify our results if we restrict ourselves to the case N , NA � 1 with

N/NA = p fixed. Recalling that (2.23) is the dispersion relation in the limit N � 1, it follows

11Such systems have for instance also been studied in quantum many-body physics [23–25].
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Figure 5: Vacuum EE density of z = 2 and z = 4 Lifshitz theories as a function of p with J = 0, or
equivalently, m= 0. The vacuum EE density increases without bounds as p increases.

we can also relabel λl as λ(x) and write (3.27) as

λ(x) =
1

2p





p−1
∑

i, j=0

ω̃
�

x + i
p

�

ω̃
�

x + j
p

�





1/2

, (3.28)

where x ≡ l/N becomes a continuous variable in the range x ∈ [0,1/p). This in turn implies
that we can replace the sum in (2.18) by an integral, and we determine the EE density to be

SA

NA
= p

∫ 1/p

0

��

λ(x) +
1
2

�

log
�

λ(x) +
1
2

�

−
�

λ(x)−
1
2

�

log
�

λ(x)−
1
2

��

dx . (3.29)

We remark that there is a caveat here if m→ 0, which implies J → 0. In that case, the zero
mode λ(0) diverges as J−1/2, which implies SA/NA has a divergent zero mode of the form
log J/NA. This divergence in the massless limit was also found in [5] for z = 1. However,
as long as we take NA → ∞ sufficiently fast such that this term vanishes, there will be no
divergence in SA/NA even for J → 0, and we can ignore such issues.12 We will henceforth
assume this is the case. Modulo this subtlety, it is then clear from (3.29) that the EE is linear
in NA and follows a volume law, i.e. the EE is extensive.

3.2 Results

Let us concentrate on the massless case, where the dispersion relation (2.22) reduces to

J2ω̃(x)2 = (2 sinπx)2z , where J → 0 , (3.30)

assuming we take NA→∞ fast enough so that log J/NA→ 0. As we mentioned already under
(2.22), the prefactor J2 on the left-hand-side is harmless when we take J → 0 since it cancels
out once we compute λ(x). Substituting this into (3.28) and (3.29), we obtain the vacuum
EE density as a function of p and z. The results for z = 2 and z = 4 are plotted in Fig. 5 as a
function of p.

One may notice that SA/NA in each plot increases as p increases, and wonder whether
there is an upper bound on the EE density. We will now show that no such bound exists, and
that the vacuum EE density diverges as p →∞. To see this, note that in that limit, we can
approximate the sums in (3.28) as integrals to obtain

λ(x) =
1
2

√

√

√

∫ 1

0

1
ω̃(x + y)

dy

∫ 1

0

ω̃(x + y)dy . (3.31)

12Note that in Section 2, we set NA = 20, which is why the zero mode divergence is present when we take m→ 0.
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Figure 6: Vacuum EE density for p = 2 and p = 4 as a function of z. The vacuum EE density becomes
a linear function of z for sufficiently large z.

Observing the fact that ω̃ is periodic with period 1, it is straightforward to show that the
integrals are independent of x . It follows that λ(x) is in fact independent of x , which means
by (3.29) that the EE is extensive and is simply given by

SA

NA
=
�

λ(0) +
1
2

�

log
�

λ(0) +
1
2

�

−
�

λ(0)−
1
2

�

log
�

λ(0)−
1
2

�

. (3.32)

To compute λ(0), we substitute (3.30) into (3.31). Using the fact that for any z ≥ 1,
∫ 1

0

1
sinz πx

dx →∞ , (3.33)

it immediately follows that λ(0)→∞, which in turn implies SA/NA→∞, thus proving that
the vacuum EE density for a massless theory diverges as p→∞.

Alternatively, we can also fix p and plot the vacuum EE density as a function of z. For the
cases p = 2 and p = 4, we have plotted this in Fig. 6. Note that in both cases, the vacuum EE
density appears to be linear in z. We shall prove here for the simple p = 2 case that this linear
behavior always holds in the regime z� 1; the proof for the case of an arbitrary p is given in
Appendix A. Using (3.28), we compute

λ(x) =
1
4

�

cotz/2πx + tanz/2πx
�

. (3.34)

Before substituting this expression into (3.29) to obtain the vacuum EE density, note that in the
large z limit, λ(x) diverges as a function of z for all x ∈ [0, 1/2) except for the point x = 1/4.
As λ(x) � 1 in the large z limit is violated only on a set of measure zero, we can make the
approximation λ(x)� 1 within the integral and approximate (3.29) as

SA

NA
= 2

∫ 1/2

0

logλ(x)dx +O
�

z0
�

. (3.35)

It follows in the large z limit,

SA

NA
= 4

∫ 1/4

0

� z
2

logcotπx + log (1+ tanz πx)
�

dx +O
�

z0
�

= 2z

∫ 1/4

0

log cotπx dx +O
�

z0
�

=
2GC

π
z +O

�

z0
�

,

(3.36)
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where GC ≈ 0.916 is Catalan’s constant. This implies that for sufficiently large z, the vacuum
EE density for p = 2 is linear in z with slope 2GC/π. This result is coherent with the result of
the previous section, which basically states that, up to cutoff non-universal ambiguities, the
introduction of a dynamical exponent in the theory renormalizes the central charge c→ zc.

3.3 Renormalization group flow

We now turn our attention to studying how the sublattice EE changes as we perturb the Lifshitz
theory (2.12) with relevant operators. As an example, we choose O = (∂xφ)2 as a relevant
operator that makes the theory flow to a relativistic theory in the IR:

H =
1
2

∫ L

0

�

π2 + c2(∂xφ)
2 +α2

�

∂ z
xφ
�2
+m2φ2

�

dx , (3.37)

where c is the speed of light. More generally, we can perturb the Hamiltonian (2.12) with
a relevant operator O = (∂ zIR

x φ)2 to generate a flow from a Lifshitz model with dynamical
exponent z in the UV to another Lifshitz model with dynamical exponent zIR < z in the IR,13

provided we set the mass to zero. As the massless limit is obtained straightforwardly from
taking m → 0, we will keep the mass term and discuss the massless limit as a special case
below.

Discretizing the theory as before, our Hamiltonian becomes

H =
m~
2

N−1
∑

j=0



π2
j + J̃−2(φ j+1 −φ j)

2 + J−2

� z
∑

r=0

�

z
r

�

(−1)rφ j+z−r

�2

+φ2
j



 , (3.38)

where J̃ ≡ mε
c and J ≡ mεz

α are two dimensionless parameters. We can rewrite this Hamiltonian
in the form (2.14), with V given by

V = circ

�

2J̃−2 + J−2
z
∑

r=0

�

z
r

�2

+ 1,−J̃−2 − J−2
z−1
∑

r=0

�

z
r

��

z
r + 1

�

,

J−2
z−2
∑

r=0

�

z
r

��

z
r + 2

�

, . . . , (−1)zJ−2, 0, . . . ,

0, (−1)zJ−2, . . . ,−J̃−2 − J−2
z−1
∑

r=0

�

z
r

��

z
r + 1

�

�

.

(3.39)

For reasons that will soon be clear, let us denote the dimensionless eigenvalues of V as ω̃(l/N)
instead of ω̃l , where l = 0, . . . , N − 1. Then we have

J̃2ω̃

�

l
N

�2

= J̃2 + 4sin2 πl
N
+

J̃2

J2

�

2 sin
πl
N

�2z

. (3.40)

Restricting ourselves again to the case N , NA � 1 with N/NA = p fixed, so that we can
approximate x ≡ l/N as a continous parameter, we can write our dispersion relation as

J̃2ω̃(x)2 = J̃2 + 4 sin2πx +
J̃2

J2
(2 sinπx)2z . (3.41)

13This can reversed if we had instead put the Lifshitz anisotropy on the time derivatives. An example of this is the
Lagrangian (1.1) with n= 1, so that z = 2/m. In this case, we flow from larger m to smaller m, which corresponds
to flowing from a Lifshitz model with dynamical exponent z in the UV to one with dynamical exponent zIR > z in
the IR. We will not study such theories and leave them for future research.
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Let us now study how this dispersion relation changes under a particular choice of real-space
renormalization. The blocking procedure that we will employ groups p points together at
each step, i.e. we have N → N/p and NA→ NA/p.14 We can do this iteratively, so that after k
blockings, we have

Nk ≡
N
pk

, εk ≡
L

Nk
=

L
N

pk, J̃k ≡
mεk

c
= pk J̃0, Jk ≡

mεz
k

α
= pzkJ0 , (3.42)

where J̃0 and J0 are the values of the coupling constants before blocking. Thus, after k block-
ings, the dispersion relation (3.41) becomes

J̃2
k ω̃k(x)

2 = J̃2
0 p2k + 4sin2πx +

J̃2
0/J

2
0

p(2z−2)k
(2 sinπx)2z . (3.43)

Note that the subscript k is now used to denote the number of blockings performed, which is
why we used ω̃(l/N) in (3.40) instead to denote the eigenvalues of V . Substituting (3.43)
into (3.28) and (3.29), we can now compute the vacuum EE density for this deformed Lifshitz
theory after each blocking step.

To gain intuition, we plot the vacuum EE density for z = 2,4 and p = 2, 10. We picked
very small J̃0 as for large N ≡ L/ε0, J̃0 ≡ mε0/c� 1; on the contrary, we expect for z > 1 that
J̃0/J0 = α/

�

c εz−1
0

�

� 1. The results are shown in Fig. 7.
First, consider the left side of each of the plots, which is when k = 0 and we are deep in

the UV regime. Noting that J̃0� 1 and J̃0/J0� 1 in (3.41), our dispersion relation becomes
with k = 0

J2
0 ω̃0(x)

2 = (2sinπx)2z . (3.44)

This is just the dispersion relation (3.30) for a massless pure Lifshitz theory, which we already
studied in the previous subsection; the relevant plots for the vacuum EE density as a function
of p and z are respectively given in Figs. 5 and 6.

In the opposite regime, consider the limit in which k → ∞ and we are deep in the IR
regime. If J̃0 6= 0, or equivalently m 6= 0, then as k increases, J̃k increases while J̃k/Jk de-
creases. It follows from (3.43) that the dispersion relation asymptotes to

ω̃∞(x)
2 = 1 . (3.45)

It follows immediately via (3.28) and (3.29) that the vacuum EE density vanishes. This makes
sense, since in the IR regime, both J̃ and J become large, which means the term φ2

j in (3.38)
dominates. This term does not couple different oscillators, and thus there cannot be any
entanglement.

However, for the massless case, when J̃0 = 0, the EE density SA/NA asymptotes to a non-
trivial value when k becomes large. Recalling that J̃k/Jk decreases to zero as we flow into the
IR, all dependence on z drops out, and up to a divergent prefactor J̃∞ that drops out when
computing the EE, the dispersion relation (3.43) reduces to that for a massless relativistic
theory:

J̃2
∞ω̃∞(x)

2 = 4sin2πx . (3.46)

Thus, as expected, this deformed massless Lifshitz theory flows from a pure Lifshitz theory in
the UV to a relativistic theory in the IR. Substituting this into (3.28) and (3.29), we obtain the

14For simplicity, we decided to choose the blocking parameter p to be the same as that of the p-sublattice. This
choice is by no means unique, and we could have instead grouped n 6= p points together at each step. In that case,
the results for the RG flow would then depend on n and p separately.
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Figure 7: Plots of the RG flow of the vacuum EE density for Lifshitz theories in the continuum limit
N →∞ with z = 2, 4 and p = 2, 10. The first row is for z = 2, while the second row is for z = 4.
We examine the cases when J̃0 = 0, 2−30, and 2−20 while fixing the ratio J̃0/J0 = 220 (for the J̃0 = 0
case we fix the ratio by taking the appropriate limit). The UV regime corresponds to small k, and as k
increases, we flow into the IR regime.

asymptotic vacuum EE density in the IR for the J̃0 = 0 curves in Fig. 7. We plot this vacuum
EE density in the IR as a function of p in Fig. 8. Note that just as in the pure massless Lifshitz
theories analyzed in the previous subsection, the vacuum EE density diverges as p → ∞.
This is apparent if we substitute the IR dispersion relation (3.46) into (3.31), and noting the
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Figure 8: Asymptotic vacuum EE density of a deformed massless Lifshitz theory as a function of p.
This is in the IR regime, in which the theory reduces to the massless z = 1 relativistic theory.

divergence (3.33) holds for z = 1.15

It is clear from the plots in Fig. 7 that the vacuum EE density of the p-alternating lattices is
monotonically decreasing along the RG flow. Indeed, we will prove that for any fixed z ≥ 1 and
p ≥ 1, the vacuum EE density in the UV will always be greater than or equal to that in the IR.
This is the weak version of a c-theorem, and although the plots give evidence that the strong
version of a c-theorem also holds, i.e. the vacuum EE density is monotonically decreasing for
any fixed z ≥ 1 and p ≥ 1, we will not prove the strong version here.

To proceed with the proof of the weak c-theorem, we note that it is obviously satisfied for
the massive case, since the vacuum EE density in the IR vanishes. In this case, the dispersion
relation in the UV is given by (3.44), and that in the IR is given by (3.46), or equivalently
obtained from (3.44) by setting z = 1. It follows that if we can prove that SA/NA increases as
z increases, then we are done. For the case p = 1, there is nothing to prove since subsystem A
is the whole system and hence the EE vanishes along the entire RG flow. Thus, we can restrict
ourselves to p ≥ 2. In particular, this means we can use our intermediate result in Appendix
A, which is that λ(x) grows for fixed x ∈ [0,1/p) and p ≥ 2 as z increases, i.e. see (A.49). To
complete our proof, we only need to show that the vacuum EE density defined in (3.29) grows
as a function of λ. Direct computation yields

∂

∂ λ(x)

�

SA

NA

�

= p

∫ 1/p

0

log

�

λ(x) + 1
2

λ(x)− 1
2

�

dx . (3.47)

This is positive since the integrand is positive, thus completing the proof of a weak c-theorem
for these deformed Lifshitz scalar field theories in 1+1 dimensions.

4 Conclusions

Entanglement entropy (EE) is nowadays a subject of active research in many areas of theoret-
ical physics. In high energy theory, the EEs of holographic CFTs in particular have been under
intense scrutiny, as the RT formula provides a way to straightforwardly compute the EE of a
spatial region in the boundary CFT. On the other hand, there has been relatively fewer studies
on the EEs of holographic Lifshitz theories.

While the focus of our paper was not on holographic Lifshitz theories, we were driven by
such motivations to study entanglement in the simplest Lifshitz theories – a Gaussian theory

15Alternatively, because the deformed Lifshitz theory in the IR is simply a relativistic theory, one may use the
results of Subection 4.3.1 in [5], where this divergence is explicitly computed.
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in 1 + 1 dimensions. In particular, we wanted to understand specifically the dependence of
the EE on the dynamical exponent z. In Section 2, we studied the usual subinterval EE by
using the recently developed cMERA techniques. These techniques allowed us to obtain the
universal scaling of EE with the dynamical exponent in the massless case. The result, given
by formula (2.11), states that the EE of a Lifshitz theory with dynamical exponent z is just the
EE of a relativistic CFT with an effective central charge rescaled by the dynamical exponent
c→ zc.

In Section 3, we studied the EE associated to a p-alternating sublattice. The advantage of
studying this type of subsystem, as noted in [5], is that the diagonalization of the product of
correlation matrices and the entanglement spectrum can be obtained analytically even in the
massive case, since both correlation matrices are circulant and share the same eigenvectors.
In this context, we were able to analytically show that for large z, the vacuum EE again grows
linearly with z, in agreement with the results obtained from the subinterval entanglement
section.

Finally, having analytical control allows us to consider RG flows, in which we flow from a
Lifshitz theory in the UV to a relativistic CFT (or to a decoupled theory in which the mass term
dominates) in the IR. We were able to prove that the vacuum EE density in the UV is always
greater than or equal to that in the IR, thus demonstrating the existence of a weak c-theorem
for these non-relativistic, Lifshitz deformed theories as well. The numerical plots also appear
to indicate the presence of a strong c-theorem, for which the vacuum EE density decreases
monotonically along the RG flow from the UV to the IR, but we do not have an analytic proof
for this at the moment. This Lifshitz c-theorems could perhaps be generically proven if one
could show also for the interacting cases that introducing a dynamical exponent just rescales
the central charge. In such case, Lifshitz c-theorems would directly follow from the relativistic
CFT ones, but as of now this is an open question.
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A Linearity of vacuum EE density

We prove in this appendix that in the limit of large z, the vacuum EE density as a function
of z is linear, thereby generalizing the linear behavior seen in Fig. 6 to arbitrary p ≥ 2. An
intermediate result we will show along the way is that the the eigenvalues λ(x) grow as a
function of z almost everywhere in x ,16 which is used in Subsection 3.3 to prove a weak

16The one exception to this is when p = 2 and x = 1/4, in which the eigenvalues λ(x) remain constant as a
function of z by (3.34). However, this occurs on a set of measure zero and therefore won’t affect the analysis, as
was discussed below (3.34). We will henceforth ignore this subtlety in the appendix.
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c-theorem.
Our starting point is the dispersion relation in the deep UV given by (3.44). This is the

result for a pure massless Lifshitz theory. Substituting it into (3.28), we obtain

λz(x) =
1

2p





p−1
∑

i, j=0

sinz
�

π
�

x + i
p

��

sinz
�

π
�

x + j
p

��





1/2

, (A.48)

where x ∈ [0, 1/p), and we denoted the eigenvalue by a subscript z to indicate its dependence
on z. We now claim that λz(x) diverges as a function of z, for all values of x ∈ [0, 1/p). To
prove this, it suffices to show

∂ λ2
z

∂ z
> 0 ,

∂ 2λ2
z

∂ z2
≥ 0 , (A.49)

as this will prove that λ2
z (and hence λz as well) has a positive slope and is a convex function

of z. Denoting

fi(x)≡ sin
�

π

�

x +
i
p

��

, (A.50)

which are positive on the interval x ∈ [0, 1/p), we compute

∂ λz(x)2

∂ z
=

1
4p2

p−1
∑

i> j

�

fi(x)z

f j(x)z
−

f j(x)z

fi(x)z

�

log
fi(x)
f j(x)

. (A.51)

We note that every term in this sum is nonnegative, and equals zero only if fi(x) = f j(x).17 In
particular, since f1(x) > f0(x) for all x ∈ [0,1/p) for p ≥ 2 (ignoring the subtlety in footnote
15), the first term in the sum is in fact strictly positive for all x ∈ [0,1/p). It follows the
right-hand-side is strictly positive, proving ∂ λ2

z/∂ z > 0. This result will be used to prove the
claims in Subsection 3.3.

Next, to show that λz(x) is convex as a function of z, we differentiate (A.51) with respect
to z to obtain

∂ 2λz(x)2

∂ z2
=

1
4p2

p−1
∑

i> j

�

fi(x)z

f j(x)z
+

f j(x)z

fi(x)z

��

log
fi(x)
f j(x)

�2

. (A.52)

It is obvious that every term in the sum is nonnegative. This proves the second inequality in
(A.49), and thus proving that for p ≥ 2 and x ∈ [0, 1/p), λz(x) diverges in the limit of large
z.

Because λz(x) diverges in the limit of large z almost everywhere, this means we may
approximate (3.29) in that limit as

SA

NA
= p

∫ 1/p

0

logλz(x)dx +O
�

z0
�

= p

∫ 1/p

0

1
2

�

log

�p−1
∑

i=0

sinz
�

π

�

x +
i
p

��

�

+ log

 

p−1
∑

j=0

sin−z
�

π

�

x +
j
p

��

!

�

dx

+O
�

z0
�

= p

∫ 1/p

0

1
2

�

log

�p−1
∑

i=0

fi(x)
z

�

+ log

 

p−1
∑

j=0

f j(x)
−z

!

�

dx +O
�

z0
�

.

(A.53)

17If we formally set z = 0, then every term in the sum is zero. However, we restrict ourselves to z ≥ 1.
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As we mentioned above, each term in the sums inside the bracket is nonegative. Let us first
focus on the first sum. For any fixed x , we denote fM (x) as the maximum among the fi(x)’s;
note that the index M implicitly can depend on x . We then can write the sum as

log

�p−1
∑

i=0

fi(x)
z

�

= log fM (x)
z + log

 

1+
p−1
∑

i 6=M

fi(x)z

fM (x)z

!

. (A.54)

In the limit of large z, the second term on the right-hand-side either vanishes if fi(x)< fM (x)
for i 6= M , or it contributes a term of order O

�

z0
�

if fi(x) = fM (x). In either case, we can
ignore it to leading order in z, thus leaving us with log fM (x)z . Likewise, we could have just as
easily considered the second sum in (A.53). Letting fm(x) be the minimum among the fi(x)’s,
in the large z limit, the second sum to leading order becomes log fm(x)−z . It follows we only
need to determine what are the minimum and maximum among the fi(x)’s for a given x . We
proceed by considering two cases separately.

First, consider the case when p is odd. We want to determine for each x ∈ [0,1/p), which
term in the sums of (A.53) dominates. Now, sinπx is the largest in the interval x ∈

�

p−1
2p , p+1

2p

�

.
Thus, the first term in (A.53) can be approximated as

p

∫ 1/p

0

1
2

log
�

sinz
�

π

�

x +
p− 1
2p

���

dx +O
�

z0
�

. (A.55)

On the other hand, the integration interval in which sinπx is the smallest is
x ∈

�

0, 1
2p

�

∪
�

1− 1
2p , 1

�

. Thus, we can approximate the second term in (A.53) to be

p

�

∫ 1/2p

0

1
2

log
�

sin−z πx
�

dx +

∫ 1/p

1/2p

1
2

log
�

sin−z
�

π

�

x +
p− 1

p

���

dx

�

+O
�

z0
�

. (A.56)

Substituting these approximations back into (A.53), we obtain

SA

NA
=

zp
2

�∫ 1/p

0

log
�

sin
�

π

�

x +
p− 1
2p

���

dx −
∫ 1/2p

0

log (sinπx) dx

−
∫ 1/p

1/2p
log

�

sin
�

π

�

x +
p− 1

p

���

dx

�

+O
�

z0
�

,

(A.57)

which means SA/NA is linear in z. Although we’ve only considered above for the case when p
is odd, the analysis works out in a similar fashion for the case when p is even, and the final
expression is in fact the same as (A.57). This completes the proof that for any fixed p, the
vacuum EE density is linear in z in the regime of large z.

As a final check of (A.57), let us show that it reduces to (3.36) for the case p = 2. In this
special case, we obtain using (A.57)

SA

NA
= z

∫ 1/4

0

log
1+ cotπx
1− tanπx

dx +O
�

z0
�

= z

∫ 1/4

0

�

log cotπx + log
�

cotπx + 1
cotπx − 1

��

dx +O
�

z0
�

.

(A.58)

This reduces to (3.36) since
∫ 1/4

0

log
�

cotπx + 1
cotπx − 1

�

dx =

∫ 1/4

0

log

�

cot
�

π
4 −πx

�

+ 1

cot
�

π
4 −πx

�

− 1

�

dx =

∫ 1/4

0

log cotπx dx . (A.59)

This completes the proof of our claims.
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