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Abstract

We analyze how maximal entanglement is generated at the fundamental level in QED by
studying correlations between helicity states in tree-level scattering processes at high en-
ergy. We demonstrate that two mechanisms for the generation of maximal entanglement
are at work: i) s-channel processes where the virtual photon carries equal overlaps of the
helicities of the final state particles, and ii) the indistinguishable superposition between
t- and u-channels. We then study whether requiring maximal entanglement constrains
the coupling structure of QED and the weak interactions. In the case of photon-electron
interactions unconstrained by gauge symmetry, we show how this requirement allows to
reproduce QED. For Z-mediated weak scattering, the maximal entanglement principle
leads to non-trivial predictions for the value of the weak mixing angle θW . Our results
are a first step towards understanding the connections between maximal entanglement
and the fundamental symmetries of high-energy physics.
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1 Introduction

Entanglement [1] is the key property that pervades many developments in quantum physics.
As a paramount example, entanglement is necessary to discriminate classical from quantum
physics using Bell inequalities [2]. Entanglement can also be understood as the resource that
enables genuine quantum protocols such as cryptography based on Bell inequalities [3] and
teleportation [4]. Large entanglement is expected to be present in quantum registers when a
quantum algorithm produces a relevant advantage in performance over a classical computer
such as Shor’s algorithm [5]. Entanglement also plays a crucial role in condensed matter,
where quantum phase transitions in spin chains are characterized by a enhanced logarith-
mic scaling of entanglement entropy [6], highlighting the relation between entanglement and
conformal symmetry.

It is clear that entanglement is at the core of understanding and exploiting quantum
physics. It is therefore natural to analyze the generation of entanglement at its most fundamen-
tal origin, namely the theories of fundamental interactions in particle physics. If the quantum
theory of electromagnetism, QED, would never generate entanglement among electrons, Na-
ture would never display a violation of a Bell inequality. This implies that entanglement must
be generated by quantum unitary evolution at the fundamental level.

A deeper question emerges in the context of high-energy physics. Is maximal entanglement
(MaxEnt) possible at all? In other words, are the laws of Nature such that MaxEnt can always
be realized? One can imagine a QED-like theory where entanglement could be generated, but
in a way which would be insufficient to violate Bell inequalities. Then, it would be formally
possible to think of the existence of an underlying theory of hidden variables. On the other
hand, if MaxEnt is realized in QED, it is then possible to design experiments that will discard
classical physics right at the level of the scattering of elementary particles. Taking a step further,
one can ask what are the consequences of imposing that the laws of Nature are able to realize
maximally entangled states. Can this requirement be promoted to a principle, and to which
extent is this principle consistent with fundamental symmetries such as gauge invariance?

The quest for simple postulates to describe the fundamental interactions observed in Na-
ture resulted in the common acceptance of the gauge principle, that is, the invariance of the
physical laws over internal local rotations for specific symmetry groups. Leaving aside quan-
tum gravity, the Standard Model describes electroweak and strong interactions by means of a
Lagrangian which is largely dictated by gauge symmetry requirements. It is natural to pursue
further the search for yet an even simpler principle. A possible candidate to formulate a basic
underlying axiom for local symmetries is provided by Information Theory. We may recall the
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words of J. A. Wheeler, “all things physical are information-theoretic in origin" that substantiate
his philosophy of “it from bit” [7,8]. Indeed, it is conceivable that our equations are just a set
of operations to implement basic information ideas and protocols. Moreover, quantum physics
is the natural candidate to build the ultimate computing device [9].

The exploration of a concrete example of the “it from bit” philosophy based on a maximal
entanglement principle is the content of this work.

We shall show first than in QED only two mechanisms can generate MaxEnt in high-energy
scattering of fermions prepared in an initial helicity product state. These are i) s-channel
processes where the virtual photon carries equal overlaps of the helicities of the final state
particles, and ii) processes which display interference between t and u channels. We will
then illustrate the deep connection between maximal entanglement and the structure of the
electron-photon interaction vertex in QED. Indeed, maximal entanglement in most channels
is related to the exact form of the QED vertex. As a consequence, imposing that the laws of
nature are able to deliver maximal entanglement is tantamount to imposing the QED vertex.
We shall finally analyze the consequences of imposing MaxEnt on the weak interactions and
discover some surprising constraints on the parameters of the Standard Model.

Let us notice that in two-particle systems the concepts of maximal entanglement and max-
imal entropy are equivalent, as the reduced density matrix for any of the two particles is
proportional to the identity, which is the maximally entropic state. For systems with more
than two particles, the classification of entanglement becomes richer and does not necessarily
correspond to the entropy of the subsystem. As in this work we focus only on processes with
two particles, we shall use MaxEnt to refer indistinctly to maximal entanglement or maximal
entropy.

Some previous works have studied the role of entanglement in particle physics. In Ref. [10]
it was shown that orthopositronium can decay into 3-photon states that can be used to per-
form Bell-like experiments that discard classical physics faster than the standard 2-particle Bell
inequality. Bell inequalities have also been discussed in kaon physics [11] and its relation with
the characterization of T -symmetry violation [12] as well as in neutrino oscillations [13]. How
entanglement varies in an elastic scattering process has been studied using the S-matrix for-
malism in [14]. Note also recent work on entanglement in Deep Inelastic Scattering [15]. Also,
a discussion of quantum correlations in the CMB radiation has been brought to the domain of
Bell inequalities [16].

The outline of this paper is as follows. In Sect. 2 we introduce measures to quantify en-
tanglement in scattering processes. Then in Sect. 3 we study how entanglement is generated
in QED scattering processes. In Sect. 4 we investigate to which extent MaxEnt can be used as
constraining principle on the structure of the QED interactions. Finally, in Sect. 5 we assess
some of the implications of MaxEnt for the weak interactions, and in Sect. 6 we conclude. A
number of technical details of the calculations are collected in the appendices: App. A, about
QED scattering amplitudes with helicity dependence; App. B, about unconstrained QED; and
App. C, about helicity-dependent calculations in electroweak theory.

2 Quantifying entanglement

We shall study here scattering processes involving fermions and photons as incoming and
outgoing particles. In the case of fermions (photons) we shall analyze the entanglement of
their helicities (polarizations). In both cases, the associated Hilbert space is two-dimensional,
and we use |0〉 and |1〉 as basis vectors. The quantum state of an incoming or outgoing particle
can then be written as

|φ〉= α|00〉+ β |01〉+ γ|10〉+δ|11〉 , (1)
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Figure 1: Feynman diagram for electron-positron scattering into a muon-antimuon pair at tree level.

where |α|2+ |β |2+ |γ|2+ |δ|2 = 1 due to normalization. We note that in high-energy scattering
a generic outgoing state will involve all possible outcomes of the process being analyzed. The
reduction to a two-level system therefore corresponds to a post-selection of results. This is the
correct description that delivers the probabilities which we could insert into a Bell inequality,
once the final state has been identified.

To quantify entanglement we could use the Von Neumann entropy, but this is not necessary
since in our case all possible entanglement measures are related to

∆≡ 2 |αδ− βγ| , (2)

known as the concurrence [17]. By construction, 0 ≤ ∆ ≤ 1, where the extreme cases
∆= 0 (1) correspond to a product (maximally entangled) state.

Here we shall study scattering process where the incoming particles are in a product state
of their helicities, that is, the incoming particles are not entangled (∆ = 0). It is certainly
true that entanglement may emerge between other quantum numbers, such as helicity and
momentum. We here consider the case of helicities at any outgoing momenta. This allows
for analyzing entanglement in a wide range of physical distinct scatterings. The results are
rich and already deliver information. A more sophisticated analysis should include all possible
quantum numbers, including momenta, flavor and color. We will often work in the high-energy
limit where helicities and chirality are equivalent, and we will use the basis |0〉in = |R〉 and
|1〉in = |L〉, where R and L correspond to right- and left-handed helicities, respectively. In
general, the outgoing state will be a superposition of all possible helicity combinations, and
thus the scattering amplitude of e.g. RL initial helicities, M RL , will include each possible
combination of outgoing helicities. We will then parametrize scattering amplitudes as

MRL ∼ αRL|RR〉+ βRL|RL〉+ γRL|LR〉+δRL|LL〉 , (3)

where here the subscript in the right-hand side indicates the incoming helicities, and the kets
in the left-hand side indicate the values of the outgoing ones.

3 MaxEnt generation in QED

Let us start our discussion with the analysis of how entanglement is generated in electron-
positron annihilation into a muon-antimuon pair, e−e+ → µ−µ+, described at tree level in
QED by a single s-channel diagram (Fig. 1). In order to analyze entanglement, it is necessary
to retain all the helicities in the calculation. As in the rest of this paper, we will work on the
center-of-mass frame.

It is convenient to first focus on the current generated at the interaction vertices. If the
incoming particles propagate along the z-direction, the incoming current associated to two
incoming particles in a RL helicity product state will be v̄↑γ

µu↑ = 2p0(0,1, i, 0), where p0 is
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the electron’s energy. The outgoing particles will then be described by a current as a function
of θ , the scattering angle. As shown in appendix A, we find that at high energies the leading
contribution only appears for incoming RL (and LR) helicities,

MRL ∼ (1+ cosθ )|RL〉+ (−1+ cosθ )|LR〉 (4)

up to a prefactor which is not relevant here. Therefore, for a scattering angle θ = π/2 the
final state becomes maximally entangled and proportional to |RL〉 − |LR〉, with ∆RL = 1. This
result illustrates how MaxEnt can be generated in a high-energy scattering process. While
scattering amplitudes in general carry a non-trivial angular dependence, it is always possible
to perform the measurement in the specific direction where MaxEnt is obtained, not unlike the
way maximally entangled states are obtained in quantum optics by parametric down conver-
sion. Let us also note that the dominant terms in the e−e+→ µ−µ+ scattering at high energies
are easily described by chirality conservation. This is not the case at lower energies, where the
emergence of entanglement is more complex.

For incoming particles in the RR helicity product state, all terms in the amplitude are sup-
pressed by a power of p0 as compared to the RL case. Nevertheless, MaxEnt is found for every
angle θ and incoming momenta p0. An experiment that prepares RR incoming states will
therefore always result in MaxEnt.

It is instructive to revisit the computation of the RL case focusing on the currents as-
sociated to the virtual photon. The incoming current (in the z-direction) corresponds to
jµ (RL)
in = 2p0(0, 1, i, 0), and at high energies the non-vanishing outgoing currents at θ = π/2

read jµ (RL)
out = 2p0(0, 0,−i,−1) and jµ (LR)

out = 2p0(0, 0, i,−1). Thus the third component of jin
carries equal overlap (with different sign) of the two possible helicity combinations for the
outgoing state. In a sense, the photon cannot distinguish between those two options. This is
the basic element that leads to MaxEnt generation in s-channel processes.

Entanglement can also be generated in QED through a completely different mechanism.
Let us consider Møller (electron-electron elastic) scattering, which receives contributions only
from t- and u-channel diagrams (Fig. 2). For this process, the computation of the ampli-
tude shows that no entanglement is generated at high energies within each t or u channel
separately, and that the only entangled state is produced by their superposition, resulting in
MRL ∼ (t/u)|LR〉 − (u/t)|RL〉 , leading to a concurrence

∆RL
p0→∞−−−−→ 2

u2 t2

u4 + t4

t=u
−−→ 1 . (5)

Therefore, MaxEnt (∆RL = 1) is realized when t = u, which corresponds again to the scat-
tering angle θ = π/2. The indistinguishability of u and t histories is now at the heart of
entanglement. This also implies that entanglement will not be generated in processes such as
e−µ−→ e−µ− where the same u/t interference cannot take place. Including electron mass me
effects, the concurrence ∆RL reads

�

�

�

�

2tu
�

tu+m2
e
(t−u)2

t+u

�

2m2
e (t − u)2(2m2

e − 2(t + u) + tu
t+u) + (t4 + u4)

�

�

�

�

, (6)

which shows the more powerful result that, for all energies, the scattering angle θ = π/2
(when t = u) leads to MaxEnt, ∆RL|θ=π/2 = 1 for all p0.

In the case of incoming particles in an RR product state, no entanglement is generated in
the high-energy limit, since the amplitude is dominated by the final state which also lives in
the RR sector, as required by helicity conservation. On the other hand, at very low energies
the calculation of the concurrence gives

∆RR
|~p|�me ,θ=π/2
−−−−−−−−−→ 1+O

�

|~p|2/m2
e

�

. (7)
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Figure 2: Feynman diagrams for Møller scattering, e−e−→ e−e−, in the t (left) and u (right) channels.

The combination of Eqns. (5) and (7) illustrates the remarkable fact that two electrons will
get always entangled at low energies, irrespectively of their initial helicities. It also justifies
that at low energies we easily find entangled fermions and we can describe their interactions
with effective models such as the Heisenberg model. Electron-electron interaction is different
from all other processes due to the indistinguishability of the particles.

The way in which MaxEnt is generated in QED scattering processes can be studied more
thoroughly. It is indeed possible to show that MaxEnt also arises in Bhabha scattering and in
pair annihilation of electron-positron to two photons. Table 1 shows the MaxEnt states that
can be obtained in all tree-level QED processes, both at high and low energies. All processes,
with the exception of electron-muon scattering and Compton scattering (photon-electron scat-
tering) can generate maximally entangled states in some energy limit and at a given scattering
angle. In two cases, MaxEnt is generated independently of the scattering angle: pair annihila-
tion into photons, and electron-positron annihilation into muons, in both cases at low energy
and for an initial state |RR〉. It is highly non-trivial that a single coupling, the QED vertex, can
take care of generating entanglement in all these processes, and at the same time guarantee
that if entanglement is present in the initial state, it will be preserved by the interaction.

4 MaxEnt as a constraining principle

It is tantalizing to turn the discussion upside down and attempt to promote MaxEnt to a fun-
damental principle that constraints particle interactions. Following Wheeler’s idea of looking
for an Information Theory principle underlying the laws of Nature, we propose to investigate
to what extent a MaxEnt principle makes sense in particle physics. Such principle would guar-
antee the intrinsically quantum character of the laws of Nature, allowing to perform Bell-type
experiments violating the bounds set by classical physics. In this formulation, MaxEnt emerges
as a purely information-theoretical principle that can be applied to a variety of problems.

Let us formulate the MaxEnt principle as follows. We shall impose that the laws of Nature
can generate maximal entanglement in scattering processes of incoming particles which are
not entangled. This should happen in as many processes as possible. We shall, thus, construct
a global figure of merit that takes into account many processes at a time. To verify the power of
such a principle we shall leave unconstrained the coupling in QED, and analyze the constraint
that the MaxEnt principle dictates on the coupling. In the next section, we will perform a
similar analysis focusing on the parameters of the weak interaction.

It may be argued that most interactions generate entanglement; however, it is certainly
true that only a limited class of couplings can produce maximal entanglement. It is a natural
extremization principle which is at play, as it is the case in other principles applied to describe
Nature. Furthermore, maximal entanglement carries the added value that physics is forced to
be non-classical as Bell inequalities are violated.
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Process Initial state |RR〉 Initial state |RL〉

High Energy Low Energy High Energy Low Energy

Mott scattering e−µ−→ e−µ− – – – –

e−e+ annihilation
e−e+→ µ−µ+ –

(cosθ |Φ−〉 − sinθ |Ψ+〉)∀θ
|Ψ−〉θ=π/2 –

into muons

Møller scattering e−e−→ e−e− – |Φ−〉θ=π/2 |Ψ−〉θ=π/2 |Ψ−〉θ=π/2

Bhabha scattering e−e+→ e−e+ – – |Ψ+〉θ=π/2 –

Pair annihilation e−e+→ γγ – |Φ−〉∀θ |Ψ−〉θ=π/2 –

Initial state |R+〉 Initial state |R−〉

High Energy Low Energy High Energy Low Energy

Compton scattering e−γ→ e−γ – – – –

Table 1: Maximally-entangled states (∆ = 1) for tree-level QED processes, both in the high-
and low-energy limits. The states are written in terms of the Bell basis, |Φ±〉 ∼ |RR〉±|LL〉 and
|Ψ±〉 ∼ |RL〉±|LR〉. For the processes in the upper part of the table, the initial state is expressed
in terms of the helicities of the fermions, R and L. For Compton scattering, e−γ → e−γ, the
initial state is expressed in terms of the helicity of the electron and the polarization of the
photon, |+〉 or |−〉. The scattering angle where the entangled state is produced is indicated in
the subscript. A dash indicates that MaxEnt cannot be reached for any value of the scattering
angle θ .

We shall further explore this idea in the context of an unconstrained version of QED
(uQED). This is a theory of fermions and photons, obeying the Dirac and Maxwell equations
respectively, which can interact via a generic vertex that allows violations of rotation and gauge
invariance. For simplicity, we shall still impose the C, P and T discrete symmetries. While of
course this theory is not realized in Nature, our goal is to determine to which extent imposing
MaxEnt constrains this interaction vertex and to verify that QED can be reproduced.

To be more specific, we shall replace the QED vertex eγµ with a general object eGµ that
can be expanded in a basis of 16 4× 4 matrices. This unconstrained interaction vertex can be
parametrized as Gµ = aµνγ

ν, where aµν are real numbers and a0 j = ai0 = 0 for i, j = 1,2, 3
and γν are the Dirac matrices. The QED vertex is recovered for a00 = a11 = a22 = a33 = 1 and
ai j = 0 for i 6= j. The computation of the amplitudeMRL→RL/LR for e−e+ → µ−µ+ scattering
in uQED at high energies gives

MRL ∼ (a j1 + ia j2)(a j1 cosθ ∓ ia j2 − a j3 sinθ ) , (8)

where the −(+) sign corresponds to the RL (LR) final state helicities and the sum over j is
understood. By requiring that MaxEnt is realized in the form |RL〉−|LR〉 (∆RL = 1) at θ = π/2
we derive the constraint (a j1+ ia j2)a j3 = 0. Introducing the positive-defined Hermitian matrix
Akl = ak jal j , this condition implies A13 = A23 = 0, consistent with QED where all ai j = 0 for
i 6= j. While in general it is not justified to assume that MaxEnt in uQED emerges for the
same θ as in QED, this example shows the constraints which are obtained from concurrence
maximization.

Let us notice that the uQED formalism allows angular momentum violation. For instance,
let us consider the process e+e− → µ+µ−, and take θ = π/2 and a13 = a23 = a33 = 0. If the
initial state is |Ψ−〉= 1p

2
(|RL〉 − |LR〉), i.e. the singlet state, then the final state is proportional

to |RL〉 + |LR〉, and therefore violates angular momentum conservation (see Appendix B for
more details).
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The complete application of the MaxEnt principle to uQED requires the computation of all
the scattering amplitudes in the new theory and then the determination of the constraints on
the aµν coefficients from the maximization of the concurrences. Here we have maximized the
sum of the concurrences of four different processes: Bhabha and Møller scattering, ee → γγ

and e−e+ → µ−µ+, accounting for all initial helicity combinations for product states. The
maximization has been performed both over the aµν coefficients and over the scattering angle
θ . We find that the solution which maximizes the concurrence is

�

G0, G1, G2, G3
�

=
�

±γ0,±γ1,±γ2,±γ3
�

, (9)

where γ0,γ1,γ2,γ3 are the gamma matrices in the Dirac representation. This result shows that
QED is indeed a solution (though not the only one) of requiring MaxEnt for the above subset
of scattering processes in uQED. Some of these solutions are equivalent to QED since a global
sign can be absorbed in the electric charge.

The solutions Eq. (9) are divided into two groups, those related to QED and those that
are inconsistent with QED, for instance because they violate rotation symmetry. The latter
solutions cannot be ruled out since the scattering processes considered here cannot determine
the overall sign of the γµ matrices, as they always appear in pairs. Including further scattering
or decay processes which involve three outgoing particles might remove this ambiguity and
eliminate the inconsistent solutions.

5 MaxEnt in the weak interactions

The mechanism underlying MaxEnt generation in weak interactions is more subtle, due to the
interplay between vector and axial currents and between Z and γ channels. The coupling of
the Z boson to fermions reads

i
g

cosθW
γµ
�

g f
V − g f

Aγ
5
�

, (10)

where the axial and vector couplings are g f
A = T f

3 /2 and g f
V = T f

3 /2−Q f sin2 θW , and θW is the
Weinberg mixing angle. For electrons and muons, T3 = −1/2 and Q f = −1. Beyond tree level,
the Weinberg angle runs with the energy and is scheme dependent. The PDG average [18] at
Q = mZ in the on-shell scheme is sin2 θW ' 0.2234. Therefore, the vector coupling |gV | for
electrons is smaller than the axial one |gA| by about one order of magnitude.

The effects of the new axial component in the fermion-boson coupling can be included
as follows. We first consider e−e+ → µ−µ+ scattering mediated by a Z boson in the high-
energy limit, where mZ is neglected. We define the left and right couplings as gL = gV + gA
and gR = gV − gA, which simplifies the structure of the currents since jRL

in ∼ gR(0, 1, i, 0) and
jLR
in ∼ gL(0,1,−i, 0). By applying the MaxEnt requirement to the concurrences ∆RL(LR) (see

Appendix C for details) we can then derive a constraint between the couplings gR and gL , and
the scattering angle θ .

In the left panel of Fig. 3 we show the maximal concurrence lines (∆= 1) as a function of
the scattering angle θ and of the coupling ratio gR/gL for the two combinations LR and RL.
We find that both concurrences are simultaneously maximized for θ = π/2, where gR = ±gL ,
that is, either gA = 0 or gV = 0. If the axial coupling vanishes gA = 0, we recover the known
QED result. The gV = 0 solution, a vanishing vector coupling, corresponds to a Weinberg angle
of sin2 θW = 1/4, in agreement with the experimental value at the Z pole [18] within ∼ 10%.
This result can be traced back to the Z → f f̄ decay, and indeed the decay of any polarization of
the Z particle gets maximally entangled under the condition sin2 θW = 1/4 (see Appendix C).
Thus scattering processes mediated by a Z inherit the entanglement structure from Z decays.
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Figure 3: Left: Maximal concurrence line as a function of the scattering angle θ and the coupling
ratio gR/gL for Z-mediated e−e+ → µ−µ+ scattering. Blue line: electron and positron with right- and
left-handed initial helicities respectively; red line: electron and positron with left- and right-handed
initial helicities. Maximal entanglement is achieved at the same scattering angle θ for the two initial
helicity configurations when the coupling ratio is equal to one, which leads to a Weinberg angle of π/6.
Right: Maximum concurrence line for the weak mixing angle θW as a function of scattering angle θ for
the process e−e+→ µ−µ+, now including also the effects of Z/γ interference. Imposing that MaxEnt is
achieved for the same value of the scattering angle θ fixes θW = π/6.

There are two possible explanations for the ∼ 10% discrepancy with respect to the exper-
imental value of the Weinberg angle. On the one hand, this analysis has been performed at
first order in perturbation theory; the full MaxEnt analysis should be performed taking into
account also higher orders, which modify the amplitudes. On the other hand, it is possible
that MaxEnt does not fix this parameter, but only gives us a close value, a first intuition. It is
however remarkable that requesting MaxEnt simultaneously for the two initial state helicities
leads either to QED or to a theory which looks surprisingly close to the weak interaction.

Finally, we have studied how the concurrences are modified if we include both the con-
tribution from γ-exchange and Z-exchange in e−e+ → µ−µ+ scattering. This is a non-trivial
check since the γ contribution adds terms to both RL and LR, which are independent of sin2 θW .
If we include the effects of the photon/Z interference, the expressions for the concurrences
become more complicated. In particular, ∆RL does not depend on the weak mixing angle,
but ∆LR does. Taking the leptonic electric and weak isospin charges Q = −1 and T3 = −1/2,
respectively, we find that (see Appendix C)

∆RL =
4 sin2 θ

6 cosθ + 5(1+ cos2 θ )
, (11)

∆LR =
sin2 θ sin2 θW

cos4(θ/2) + 4 sin4(θ/2) sin4 θW
. (12)

Imposing that MaxEnt should be reached for some scattering angles implies that

θ (∆RL = 1) = arccos
�

−
1
3

�

∀ θW , (13)

θW (∆LR = 1) = arcsin
�

1
p

2
cot(θ/2)

�

. (14)

The two curves are shown in the right panel of Fig. 3. If MaxEnt is realized for the same scat-
tering angle independently of the specific scattering initial state, then the prediction θW = π/6
readily follows, consistently with the result that we find by requesting MaxEnt in the decays
of the Z boson into leptons and e+e−→ µ+µ− scattering mediated by a Z boson.

While the application of MaxEnt to Z-boson mediated scattering does not fix completely the
coupling structure of the weak interactions, as we mentioned its application to Z decay fixes
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gV = 0 and thus sin2 θW = 1/4. The lack of full predictivity of MaxEnt in the full scattering
case is due to the freedom to choose different angles for MaxEnt depending on the chirality of
the initial particles.

6 Summary

Fundamental interactions generate entangled states using mechanisms based on indistin-
guishability, consistently with the symmetries of the theory. In this work we have explored
the relationship between generation of maximally entangled states and high-energy scattering
amplitudes in QED and the weak interactions. We found that promoting MaxEnt to a funda-
mental principle in the spirit of Wheeler’s “it from bit" philosophy allows one to constrain the
coupling structure describing the interactions between fermions and gauge bosons. As a mat-
ter of fact, QED couplings are found to be the solution to a MaxEnt principle once some global
symmetries (C, P and T) are imposed. We also found that MaxEnt in the weak interactions
prefers a weak angle θW = π/6, surprisingly close to the SM value.

In this framework, MaxEnt arises as a possible powerful information principle that can be
applied to different processes, bringing in unexpected constraints on the structure of high-
energy interactions. To mention a few possibilities, MaxEnt may provide new insights into the
all-order structure of the QED vertex, and may hint at further relations between the parameters
of the Standard Model or in new physics beyond it.
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A QED scattering amplitudes with helicity dependence

In this appendix we provide explicit results for the calculations of some of the relevant QED
scattering amplitudes with explicit helicity dependence. Specifically, we consider electron-
positron annihilation into muons, Møller scattering, and pair annihilation into photons.

A.1 Electron-positron annihilation into muons: e−e+→ µ−µ+

The first QED process that we consider is electron-positron annihilation into muons,
e−e+→ µ−µ+. At Born level, there is a single Feynman diagram that contributes to the ampli-
tude, and is shown in Fig. 1. This scattering process is mediated by a virtual photon in the s
channel. We are interested in computing the scattering amplitudes for initial and final states
with well defined helicities. Up to an overall factor which is irrelevant for the discussion of
entanglement, for the case of where the initial product state shares the same helicities, these
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amplitudes are given by

M|RR〉→|RR〉 = −M|RR〉→|LL〉 = −
λ

µ2 +λ2
cosθ ,

M|RR〉→|RL〉 =M|RR〉→|LR〉 =
λ

p

µ2 +λ2
sinθ , (15)

M|LL〉→|RR〉 = −M|LL〉→|LL〉 =
λ

µ2 +λ2
cosθ ,

M|LL〉→|RL〉 =M|LL〉→|LR〉 = −
λ

p

µ2 +λ2
sinθ ,

and in the case where the input product state has different helicities,

M|RL〉→|RR〉 = −M|RL〉→|LL〉 = −
sinθ

p

µ2 +λ2
,

M|LR〉→|RR〉 = −M|LR〉→|LL〉 = −
sinθ

p

µ2 +λ2
,

M|RL〉→|RL〉 = − (1+ cosθ ) , (16)

M|RL〉→|LR〉 = (1− cosθ ) ,

M|LR〉→|RL〉 = (1− cosθ ) ,

M|LR〉→|RL〉 = − (1+ cosθ ) ,

where θ is the scattering angle in the center of mass frame, λ ≡ me/mµ is the ratio between
the electron and muon mass, and µ ≡ |~p|/mµ is the ratio of the momentum of the incoming
electrons over the muon mass. In the high energy limit, where the center of mass energy of
the scattering is much larger than the muon mass, we have that µ→∞. In this limit it is also
of course a very good approximation to assume that λ� µ. In this limit, we see from Eq. (16)
that all the scattering amplitudes involving fermions of the same helicity either in the initial or
in the final state are subleading, and the dominant amplitudes are those where both the initial
and final states are composed by particles with different helicity.

Using the concurrence, Eq. (2), to quantify the amount of entanglement between the he-
licities of the outgoing particles present in each of these scattering processes, we obtain that
for a generic value of the center-of-mass energy µ we have

∆RR = 1 , (17)

∆RL =

�

µ2 +λ2 − 1
�

sin2 θ

(µ2 +λ2) (1+ cos2) + sin2 θ
. (18)

Therefore, for RR scattering there is always maximally entangled, for any energy. The same
is true for LL scattering. Note that in the high-energy limit however the contribution to the
RR and LL initial helicity states is suppressed by a factor 1/µ with respect to the RL and LR
combinations, and thus will contribute much less to the total cross section.

The high-energy limit for the RL concurrence reads

∆RL
µ→∞
−−−→

sin2 θ

1+ cos2 θ
+O

�

1
µ2

�

θ→π/2
−−−−→ 1+O

�

1
µ2

�

. (19)

Therefore, we see that MaxEnt is realized when the scattering angle is θ = π/2, that is, when
the muon-antimuon are scattered perpendicularly to the original direction of motion of the
electron and positron.
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A.2 Møller scattering: e−e−→ e−e−

The next process that we consider is Møller scattering, e−e−→ e−e−, electron-electron elastic
scattering. The main difference as compared to e+e− → µ+µ− scattering is that there is no
s-channel diagram. Tree-level Møller scattering is mediated instead by t and u-channel dia-
grams, as illustrated in Fig. 2. This process illustrates a different way of realizing MaxEnt from
an initial product state, by means of the the interference between t and u channels.

To analyze the way this mechanism for entanglement generation works, we write the scat-
tering amplitudes in the helicity basis for the two Feynman diagrams in terms of the t and u
Mandelstam variables. The result for initial product states that share the same helicity reads

M|RR〉→|RR〉 =M|LL〉→|LL〉 = −
2
�

(t + u)3 − 2m2
e

�

t2 + u2
��

tu (t + u)
,

M|RR〉→|LL〉 =M|LL〉→|RR〉 = −
8m2

e

(t + u)
,

M|RR〉→|RL〉 = −M|RR〉→|LR〉 = −
2me (t − u)

q

tu
�

4m2
e − (t + u)

�

(t + u) tu
, (20)

M|LL〉→|RL〉 = −M|LL〉→|LR〉 = −
2me (t − u)

q

tu
�

4m2
e − (t + u)

�

(t + u) tu
,

and for initial product states with opposite helicities we have instead that

M|RL〉→|RR〉 =M|RL〉→|LL〉 =
2me (t − u)

q

tu
�

4m2
e − (t + u)

�

(t + u) tu
,

M|LR〉→|RR〉 =M|LR〉→|LL〉 = −
2me (t − u)

q

tu
�

4m2
e − (t + u)

�

(t + u) tu
,

M|RL〉→|RL〉 =M|LR〉→|LR〉 = −
2
�

2m2
e (t − u) + u (t + u)

�

t (t + u)
, (21)

M|RL〉→|LR〉 =M|LR〉→|RL〉 = −
2
�

2m2
e (t − u)− t (t + u)

�

u (t + u)
.

Using these helicity scattering amplitudes, we can now compute the concurrences for the two
relevant cases: an incoming product state where the two fermions share the same helicity, or
where the incoming fermions have opposite helicities. The values of these concurrences, valid
for any value of the center-of-mass energy (not only in the high-energy approximation) turn
out to be given by:

∆RR =

�

�

�

�

2m2
e tu

�

(3t + u) (t + 3u)− 4m2
e (t + u)

�

(t + u)5 − 2m2
e (2t4 + 5t3u+ 2t2u2 + 5tu3 + 2u4) + 4m4

e (t + u) (t2 + u2)

�

�

�

�

, (22)

∆RL =

�

�

�

�

2tu
�

tu (t + u) +m2
e (t − u)2

�

2m2
e (t − u)2

�

2m2
e (t + u)− (2t2 + 3tu+ 2u2)

�

+ (t + u) (t4 + u4)

�

�

�

�

. (23)

Recalling the fact that the kinematical condition u = t corresponds to an scattering angle of
θ = π/2, we obtain that for this configuration

∆RR
u=t
−−→

m2
e

�

m2
e − 2t

�

m4
e − 2m2

e t + 2t2

t�me−−−→ 1+O
�

t2

m4
e

�

, (24)

∆RL
u=t
−−→ 1 . (25)

12

https://scipost.org
https://scipost.org/SciPostPhys.3.5.036


SciPost Phys. 3, 036 (2017)

e+

e−

γ

γ

e+

e−

γ

γ

Figure 4: Feynman diagrams for pair annihilation to photons, e−e−→ γγ, in the t (left) and u (right)
channels.

Therefore, we find that in Møller scattering MaxEnt is realized at a scattering angle θ = π/2 for
all energies provided that the incoming particles have opposite helicities. On the other hand,
the same analysis also implies that for product states composed by same-helicity particles,
MaxEnt is only realized at very low energies, well below the electron mass.

A.3 Pair annihilation to photons: e−e+→ γγ

This process is another example of indistinguishability as a basic source of entanglement. Note
that pair annihilation to two photons is also described by the combination of t and u channels
(see Fig. 4), as was the case for Møller scattering. The final-state photons can be expressed in
the circular polarization basis, defined as follows:

ελ(θ ,φ) = λp
2
(0, cosθ cosφ + iλ sinφ, cosθ sinφ − iλ cosφ,− sinθ ) , (26)

|R〉 ≡ ελ=+1(θ ,φ) |L〉 ≡ ελ=−1(θ ,φ) (27)

The helicity scattering amplitudes in terms of the Mandelstam variables u and t are:

M|RR〉→|RR〉 = −M|LL〉→|LL〉 = −
m(t + u− 2m2)
(m2 − t)(m2 − u)

�Æ

2m2 − (t + u)−
Æ

−2m2 − (t + u)
�

,

M|RR〉→|LL〉 = −M|LL〉→|RR〉 =
m(t + u− 2m2)
(m2 − t)(m2 − u)

�Æ

2m2 − (t + u) +
Æ

−2m2 − (t + u)
�

,

M|RR〉→|RL〉 =M|RR〉→|LR〉 = −
4m

�

m4 − tu
�

(m2 − t)(m2 − u)
p

−2m2 − (t + u)
, (28)

M|LL〉→|RL〉 =M|LL〉→|LR〉 = −M|RR〉→|RL〉 ,

and

M|RL〉→|RL〉 =M|RL〉→|LR〉 =M|LR〉→|RL〉 =M|LR〉→|LR〉 = 0 , (29)

M|RL〉→|RL〉 =M|LR〉→|LR〉 =

√

√ tu−m4

(t + u)2 − 4m4

p

(t + u)2 − 4m4(u− t)− (4m4 − (t + u)2)

(m2 − t)(m2 − u)
r

1+ 4m2

(t+u)−2m2

,

M|RL〉→|LR〉 =M|LR〉→|RL〉 =

√

√ tu−m4

(t + u)2 − 4m4

p

(t + u)2 − 4m4(u− t) + (4m4 − (t + u)2)

(m2 − t)(m2 − u)
r

1+ 4m2

(t+u)−2m2

.
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The corresponding concurrences are then given by

∆RR =

�

�

�

�

2m2
�

4m6 − 4m4(t + u)− 2m2(t − u)2 + (t + u)3
�

− 8t2u2

4m4 (2m4 + 2m2(t + u)− (t2 + 6tu+ u2)) + t4 + 4t3u+ 14t2u2 + 4tu3 + u4

�

�

�

�

,

∆RL =
2(tu−m4)

t2 + u2 − 2m4
. (30)

As in the case of Møller scattering, if θ = π/2 (corresponding to t = u) MaxEnt is realized
for all energies when the initial particles have opposite helicities, while MaxEnt arises only
for small momentum transfers t in the case in which the initial-state particles share the same
helicity,

∆RR
u=t
−−→

(m2 − t)
m2 + 3t

t�me−−−→ 1+O
�

t
m2

e

�

, (31)

∆RL
u=t
−−→ 1 ∀ t. (32)

B Unconstrained QED

In this appendix we provide more information about unconstrained QED (uQED) and about
the form of the helicity scattering amplitudes computed in this hypothetical theory. The Dirac
matrices γµ form the Clifford algebra of the 4 × 4 matrices; {γµ,γν} = 2gµν if the metric is
(+,−,−,−). The complexification of the Clifford algebra C`1,3(R), C`1,3(R)C, is isomorphic to
the algebra of 4× 4 complex matrices. Therefore, it is possible to express any general 4× 4
complex matrix as

Gµ = cµ1 I+ cµν2 γν + icµ3γ
5 + cµν4 γ

5γν + cµνρ5 σνρ, (33)

where the expansion coefficients are real-valued, ci ∈ R, and γ5 = iγ0γ1γ2γ3,
σνρ = − i

2 [γ
ν,γρ]. The hypothetical theory of unconstrained QED is constructed by re-

placing the QED vertex −ieγµ by the general 4× 4 complex matrices −ieGµ. To simplify the
analysis, we first impose the conservation of the C, P and T discrete symmetries, which leads
to cµ1 = cµ3 = cµν4 = cµνρ5 = 0 and cµν2 ≡ aµν with ai0 = a0 j = 0 for i, j = 1, 2,3.

With these assumptions for the electron-photon interaction vertex, when computing the
amplitudes at high energy limit for the process e+e−→ µ+µ− using and restricting the particles
to be in the X Z plane one obtains the following results for incoming |RL〉:

M|RL〉→|RL〉 = −a2
j2 − a2

j1 cosθ + a j1a j3 sinθ + i
�

a j1a j2(1− cosθ ) + a j2a j3 sinθ
�

,

M|RL〉→|LR〉 = a2
j2 − a2

j1 cosθ + a j1a j3 sinθ − i
�

a j1a j2(1+ cosθ )− a j2a j3 sinθ
�

, (34)

while all other scattering amplitudes vanish.
The two possible final states that maximize the concurrence, that is, that realize MaxEnt

are given by |RL〉± |LR〉, and thereforeM|RL〉→|RL〉 = ±M|RL〉→|LR〉. Requiring a final state that
satisfies the maximal entanglement principle we find that for a scattering angle of θ = π/2
the following conditions must be satisfied

a2
j2 − ia j1a j2 = 0 −→ A22 = A12 = 0 ifM|RL〉 =M|LR〉 or

a j1a j3 + ia j2a j3 = 0 −→ A13 = A23 = 0 ifM|RL〉 = −M|LR〉,
(35)

where Akl ≡ a jka jl is a positive definite matrix. It is also possible to redo the same analysis
but now requiring the scattered particles to lie in the Y Z and X Y planes respectively. If the
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motion of the initial particles takes place in the Y axis and the outgoing scattered particles lie
in the Y Z plane, the corresponding scattering amplitudes become:

M|RL〉→|RL〉 = −a2
j1 − a2

j2 cosθ + a j2a j3 sinθ − i
�

a j1ai2(1− cosθ ) + a j1a j3 sinθ
�

,

M|RL〉→|LR〉 = a2
j1 − a2

j2 cosθ + a j2a j3 sinθ + i
�

a j1a j2(1+ cosθ )− a j1a j3 sinθ
�

. (36)

If now we request MaxEnt to be realized at an scattering angle of θ = π/2, one finds that

a2
j1 + ia j1a j2 = 0 −→ A11 = A12 = 0 ifM|RL〉 =M|LR〉 or

a j2a j3 − ia j1a j3 = 0 −→ A23 = A13 = 0 ifM|RL〉 = −M|LR〉.
(37)

For incoming particles in X axis and outgoing in the X Y plane, the results read instead

M|RL〉→|RL〉 = −a2
j3 − a2

j2 cosφ + a j1a j2 sinφ + i
�

a j2ai3(1− cosφ) + a j1a j3 sinφ
�

,

M|RL〉→|LR〉 = −a2
j3 + a2

j2 cosφ − a j1a j2 sinφ + i
�

a j2a j3(1+ cosφ)− a j1a j3 sinφ
�

. (38)

where φ is the azimuthal angle that goes from 0 to 2π. Fixing φ = π/2 we get another set of
conditions

a j1a j2 + ia j1a j3 = 0 −→ A12 = A13 = 0 ifM|RL〉 =M|LR〉 or
a2

j3 − ia j2a j3 = 0 −→ A23 = A33 = 0 ifM|RL〉 = −M|LR〉 .
(39)

A crucial property of entanglement is that it should be invariant under local unitary trans-
formations like rotations. For this reason, it is possible to obtain the |RL〉+ |LR〉 state in one
plane and |RL〉−|LR〉 state in another, but both for the same scattering angle because of isome-
try. Therefore, there are a finite number of possible solutions that satisfy the above constraints:
the one which corresponds to QED is the |RL〉−|LR〉 state for X Z and Y Z plane and |RL〉+|LR〉
state for X Y plane. While in this example we have imposed that MaxEnt is realized for specific
choices of the scattering angles θ ,φ = π/2, it is conceivable that additional constraints could
be obtained by exploiting the information contained in other scattering angles.

From this specific example among the list of processes that we have analyzed in uncon-
strained QED, one can also observe that it is not possible to distinguish the overall sign of the
ai j coefficients, as they always appear squared or multiplied in pairs. Other processes, involv-
ing for example a final state with three particles, might be necessary in order to resolve this
degeneracy.

Notice also that uQED allows angular momentum violation. Let us take as example the
amplitudes for the process e+e−→ µ+µ− in the X Z plane. The results for an initial state |RL〉
are collected in Eq. (34), whereas the corresponding amplitudes for an initial state |LR〉 read

M|LR〉→|RL〉 = −a2
j2 + a2

j1 cosθ − a j1a j3 sinθ + i
�

−a j1a j2(1+ cosθ ) + a j2a j3 sinθ
�

,

M|LR〉→|LR〉 = a2
j2 + a2

j1 cosθ − a j1a j3 sinθ + i
�

a j1a j2(−1+ cosθ )− a j2a j3 sinθ
�

. (40)

Therefore, if the initial state is |Ψ−〉 = 1p
2
(|RL〉 − |LR〉), i.e. the singlet state, then the final

state |ψ〉final becomes

|ψ〉final ∼M|RL〉→|RL〉|RL〉+M|RL〉→|LR〉|LR〉 −
�

M|LR〉→|RL〉|RL〉+M|LR〉→|LR〉|LR〉
�

∼

 

−
∑

j

a2
j1 cosθ +

∑

j

a j1a j3 sinθ

!

(|RL〉 − |LR〉) + i
∑

j

a j1a j2 (|RL〉+ |LR〉) , (41)

which, in general, is not a singlet state: as long as
∑

j a j1a j2 6= 0, angular momentum is
violated in this process ∀θ .

15

https://scipost.org
https://scipost.org/SciPostPhys.3.5.036


SciPost Phys. 3, 036 (2017)

C Electroweak processes with helicity dependence

Finally, we provide in this appendix explicit expressions for tree-level electroweak processes
with helicity dependence, first for the Z decay into e−e+, and then for the e−e+ → µ−µ+

process, mediated by a Z boson and finally including the effects of Z/γ interference.

C.1 Z decay into e−e+

We now analyze the helicity structure of Z boson decay to e−e+. As Z is a massive particle, it
has three possible polarizations: right- and left-handed circular polarizations, and longitudinal
polarization, which we will denote as |0〉. As me� mZ we can neglect the electron mass. The
non-vanishing helicity amplitudes for this decay process are:

M|0〉→|RL〉 = gRmZ sinθ ,

M|0〉→|LR〉 = gLmZ sinθ ,

M|R〉→|RL〉 = gRmZ
p

2 sin2(θ/2) ,

M|R〉→|LR〉 = −gLmZ
p

2cos2(θ/2) , (42)

M|L〉→|RL〉 = gRmZ
p

2 cos2(θ/2) ,

M|L〉→|LR〉 = −gLmZ
p

2sin2(θ/2) ,

where we have defined gR = (gV − gA)/2 and gL = (gV + gA)/2.
If the Z boson is longitudinally polarized, the concurrence of the final leptons becomes

∆0 =
2|gL gR|
g2

L + g2
R

, (43)

Then one can see that the leptons pair is maximally entangled provided that |gL|= |gR|, i.e. if
gA = 0 or gV = 0. As gA = T3/2 6= 0 the only possible solution is gV = 0 which leads to the
value θW = π/6 of the weak mixing angle.

For a Z boson initially polarized with either a right- or left-handed polarization, the con-
currence becomes instead

∆R =
2|gL gR| sin2 θ

|2
�

g2
L − g2

R

�

cosθ +
�

g2
L + g2

R

�

(1+ cos2 θ )|
, (44)

∆L =
2|gL gR| sin2 θ

|2
�

g2
L − g2

R

�

cosθ −
�

g2
L + g2

R

�

(1+ cos2 θ )|
. (45)

We already showed in Fig. 3 the dependence of gR/gL for the maximum concurrence as a
function of scattering angle θ . As long as gR/gL = ± cot2(θ/2), for an initial right-handed po-
larization, or gR/gL = ± tan2(θ/2), for an initial left-handed polarization, MaxEnt is achieved.
However, if we assume the same relation between gR/gL independently of the initial polariza-
tion, then only one solution is possible: gR/gL = ±1, i.e. the same solution as for longitudinal
polarization, gV = 0 or equivalently θW = π/6.

C.2 e−e+→ µ−µ+ mediated by Z boson

Let us consider e−e+→ µ−µ+ scattering mediated by a Z boson in the high energy limit, where
mZ is neglected. The resulting scattering amplitudes are:

MLR ∼ (1+ cosθ )g2
L |LR〉+ (−1+ cosθ )gL gR|RL〉 ,

MRL ∼ (−1+ cosθ )gR gL|LR〉+ (1+ cosθ )g2
R|RL〉 ,

(46)
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where gL = gV + gA and gR = gV − gA, and their concurrences for |~p| � mZ read:

∆LR (RL) '
sin2 θ |gL gR|

2(c4 g2
L + s4 g2

R)

�

sin2 θ |gL gR|
2(s4 g2

L + c4 g2
R)

�

, (47)

where c = cosθ/2 and s = sinθ/2 depend on the scattering angle θ . Applying the MaxEnt
requirement to the above concurrences we find c2 gL ± s2 gR = 0 (s2 gL ± c2 gR = 0) for the
LR (RL) initial states. Note that in general concurrence maximization occurs for different
values of θ for each initial state.

Both concurrences are simultaneously maximized for θ = π/2, where gR = ±gL . There-
fore, either the axial coupling is zero, recovering the known QED result, or the vector coupling
is zero, leading to a Weinberg angle of sin2 θW = 1/4.

C.3 e−e+→ µ−µ+ with Z/γ interference

We now revisit the e−e+→ µ−µ+ scattering processes, now taking into account the effects of
Z/γ interference. Given that me, mµ� mZ , we can neglect the masses of both leptons. In this
process, the amplitudes with equal initial helicities vanish, while the scattering amplitudes for
opposite initial helicity configurations are given by:

M|RL〉→|RL〉 = −
�

4µ2 g2
R

(4µ2 − 1)
sec2 θW +Q2 sin2 θW

�

(1+ cosθ ) ,

M|RL〉→|LR〉 =

�

4µ2 gR gL

(4µ2 − 1)
sec2 θW +Q2 sin2 θW

�

(1− cosθ ) , (48)

M|LR〉→|RL〉 =M|RL〉→|LR〉 (gR↔ gL) ,

M|LR〉→|LR〉 =M|RL〉→|RL〉 (gR↔ gL) ,

where we have defined µ≡ |~p|/mZ .
The purely weak scattering process e−e+ → µ−µ+, i.e., where the two currents exchange

a Z boson instead of a photon like in QED, can be obtained if we set Q = 0 in the amplitudes
of Eq. (48).

The introduction of the photon channel complicates the expressions for the concurrences.
They simplify if we express them in terms of Q and T3, in which case we find

∆RL =
2Q (Q− T3) sin2 θ

2 (2Q− T3) T3 cosθ +
�

(Q− T3)
2 +Q2

�

(1+ cos2 θ )
, (49)

∆LR =
Q (Q− T3) sin2 θ sin2 θW

�

T2
3 +Q2 sin2 θW − 2QT3 sin2 θW

�

2Q2 (Q− T3)
2 sin4(θ/2) sin4 θW + 2

�

T2
3 +Q2 sin2 θW − 2QT3 sin2 θW

�2
cos4(θ/2)

.

Note that ∆RL does not depend on the weak mixing angle, but ∆LR does.
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