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Abstract

RUMD is a general purpose, high-performance molecular dynamics (MD) simulation
package running on graphical processing units (GPU’s). RUMD addresses the challenge
of utilizing the many-core nature of modern GPU hardware when simulating small to
medium system sizes (roughly from a few thousand up to hundred thousand particles).
It has a performance that is comparable to other GPU-MD codes at large system sizes
and substantially better at smaller sizes. RUMD is open-source and consists of a library
written in C++ and the CUDA extension to C, an easy-to-use Python interface, and a set
of tools for set-up and post-simulation data analysis. The paper describes RUMD’s main
features, optimizations and performance benchmarks.
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1 Introduction

This paper describes the Roskilde University Molecular Dynamics (RUMD) package. RUMD is
a molecular dynamics [1, 2] (MD) code running on Graphical Processing Units (GPU’s) from
NVIDIA. RUMD was developed to achieve good performance at small and medium system sizes,
while remaining competitive with other GPU-MD codes at large sizes. The attention paid to
small sizes distinguishes RUMD from many other GPU-MD codes. It has been in development
since 2008, and available as open-source software,1 since 2011. The newest version 3.3, was
released in June 2017.

The rise of GPU-based computation has been discussed by various authors [3–9]. MD is a
good candidate for GPU-acceleration, as discussed by Stone et al. [5], since it involves a reason-
ably high arithmetic intensity, that is number of floating point operations per memory access.
Several groups have developed MD codes based on GPUs from scratch or incorporated GPU-
acceleration into existing projects. Examples of the former include HOOMD-Blue [10–13],
ACEMD [14], OpenMM [15, 16] and HAL’s MD [17] while the latter include NAMD [18],
LAMMPS [19], AMBER [20,21] and Gromacs [22] and GENESIS [23]. Other works involving
GPU-based MD codes, going back to 2007, can be found in Refs. [24–35]. We omit a detailed
exposition of GPU programming basics here; for a good overview of massive multi-threading
using CUDA see the relevant section in the article by Anderson et al. [10]. For further informa-
tion the reader can consult the book by Kirk and Hwu [36] as well as the CUDA programming
guide [37].

The large computational power of modern GPUs comes primarily from the large number
of hardware cores, each executing a number of software threads. Here we focus on two of
the most recent architectures, Kepler (2012) [38] and Pascal (2016) [39]. As an example, the
GeForce Gtx780Ti card (Kepler architecture) has 2880 cores and a theoretical single-precision
peak-performance of 5.0 TFlops (5×1012 floating point operations per second). A key element
to achieve good performance from a GPU is that the number of active software threads should
be much larger than the number of hardware cores in order to hide latency of memory access.
This makes it a challenge to utilize the GPU hardware when the number of particles N is
relatively small (N ∼ 103 − 104). The obvious choice for parallelization, namely having one
thread compute the forces for one particle, is clearly not efficient when the optimal number
of threads exceeds the number of particles. There are three reasons to focus on utilizing the
GPU hardware even at small system sizes; i) Simulating long time scales rather than large
systems. This is of interest, for example, in the field of glass-forming liquids. Here a system
size of 104 particles is considered large, but the interest is in studying as long time scales
as possible. Note that finite size effects are relatively limited in these systems; for example
Karmakar, Dasgupta, and Sastry [40] found convergence of diffusivity and relaxation time
for a standard model glass-former already at N=1000. ii) As a building block for multi-GPU
simulations [41] (RUMD currently uses one GPU per simulation). If one wants to simulate,

1RUMD software is freely available at http://rumd.org.
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# Import RUMD
import rumd
from rumd.Simulation import Simulation

# Create a simulation object , and import an initial configuration.
sim = Simulation("start.xyz.gz")

# Create a pair potential and associate it with the simulation object
pot = rumd.Pot_LJ_12_6(cutoff_method=rumd.ShiftedForce)
pot.SetParams(i=0, j=0, Sigma =1.0, Epsilon =1.0, Rcut =2.5)
sim.SetPotential(pot)

# Create an integrator and associate it with the simulation object
itg = rumd.IntegratorNVT(timeStep =0.004 , targetTemperature =1.0)
sim.SetIntegrator(itg)

# Run a simulation. Data are saved on disk , can be analyzed by various tools
sim.Run (1000000)

Figure 1: Script showing the Python code needed to run a simple simulation, in this case a
single-component Lennard-Jones fluid simulated at constant temperature 1.0 for one million
time steps of size 0.004 (Lennard-Jones units). The number of particles and the density is
determined by the initial configuration contained in the file start.xyz.gz

say, 105 particles using 10 GPU’s, the single-GPU performance obviously needs to be good for
104 particles. iii) Much of the future development in GPU and other many-core hardware will
probably be in increasing the number of physical cores. Thus, what might today be considered
a large system, might in the future be considered a small/medium sized system where special
care needs to be taken to utilize the GPU hardware. To optimize the use of the hardware
RUMD allows multiple threads per particle; this approach has also been considered in two
recent publications [42, 43]. Finally, we note a very recent paper describing the use of large
ensembles of MD simulations of small systems [44], an approach which would also be very
much suited to running on GPUs.

The paper is organized as follows. Section 2 contains a brief overview of RUMD’s features.
The main part of the paper focuses on the methods used for calculating the non-bonding
pair interactions and the generation of the neighbor-list. These are the most computationally
demanding parts of an MD simulation and where RUMD distinguishes itself from most other
GPU-MD codes. Section 3 discusses the challenges of utilizing the GPU hardware at small
system sizes, and section 4 gives an overview of the optimization strategies employed in RUMD.
Section 5 describes the calculation of non-bonding pair-forces, while sections 6 and 7 describe
two different methods for generating the neighbor-list. Section 8 provides benchmarks of
RUMD in comparison to three different GPU extensions of LAMMPS [19], as well as an analysis
of the effect of the different optimizations employed in RUMD. Section 9 describes RUMD’s
performance for electrostatic (Coulomb) interactions. Section 10 provides a short summary.

2 RUMD: Features

Below we list the main features of RUMD; for more information please see the tutorial and
user manual included with the software and available from the project’s website rumd.org.

Python interface: The user controls the software via a Python interface which allows simu-
lations of considerable complexity to be implemented straightforwardly. An example of
a simple user Python-script is given in Fig. 1.
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Pair potentials: 12-6 Lennard-Jones, generalized Lennard-Jones, inverse power law, Gaus-
sian core, Buckingham, Dzugotov, Girifalco, Yukawa, and more. New pair potentials are
easily added, as described in the tutorial. Three different “cutoff methods” for truncating
the pair potential are provided: simple truncation with no shift, truncation plus shift of
the potential energy to ensure continuity, and truncation plus shift of the pair force [45]
to ensure its continuity (this corresponds to adding a linear term in the potential).

Other interactions: Intramolecular interactions, including both rigid-body constraints [46,
47] and flexible terms—bond-stretching forces, angular forces and dihedral forces.
Three-body angle-dependent non-bonding interactions [48]. Many-body interactions
for metals based on effective medium theory [49].

Integrators: NVE (Verlet/Leap-frog), NVT (Nosé-Hoover), NPT [50], NVU (geodesics on the
constant potential energy surface) [51, 52]. Couette shear flow using the SLLOD equa-
tions of motion and Lees-Edwards boundary conditions.

File formats: Configurations are stored in the xyz format with extensions, compressed using
gzip; data can be saved block-wise logarithmically in time for efficient use of disk space
while allowing the study of a large range of time scales in a single simulation; molecular
structure (bonds, angles and dihedrals) is specified in separate topology files. Tools for
creating initial configurations and topology files are provided.

Analysis tools: Basic statistics of energy, pressure, etc. for thermodynamics. Measures of
structure: radial distribution function, static structure factor, radius of gyration, mean-
square end-to-end distance. Measures of dynamics: mean-square displacement, inco-
herent intermediate scattering function, non-Gaussian parameter, end-to-end vector au-
tocorrelation function, Rouse-mode autocorrelation function. New analysis tools are
added regularly. Analysis tools work on data stored during simulations and can be ap-
plied at the end of or during a simulation. The user may define customized on-the-fly
analysis tools written in Python.

Autotuner: A script for optimizing internal parameters—specifically, the choice of algorithm
for generating the neighbor list, the neighbor-list skin size, and the way the generation
of the neighbor list and the calculation of non-bonding forces are distributed among the
GPU threads. The autotuner is described in the appendix.

RUMD is mostly implemented in single precision. This leads to a drift in the total energy
when running long constant-energy (NVE) simulations, but is not an issue for NVT and NPT
simulations where a thermostat is applied. RUMD can be made fully double precision by a
search and replace in the source code - we are planning to implement a more elegant way
for the user to choose between single and double precision. RUMD uses a single GPU per
simulation; support for multiple GPU simulations is planned for future development.

3 The challenge of utilizing the GPU at small system sizes

Consider NVIDIA’s Kepler GK110 architecture that appeared in 2013. One of the Kepler design
goals was power efficiency, which was partly achieved by increasing the number of cores while
decreasing the clock speed compared to the previous Fermi architecture. Thus each streaming
multiprocessor (of type SMX) has 192 cores, and the GPU has up to 15 SMX units. The GTX
780Ti card contains the maximum 15 SMX units, giving 2880 cores. Furthermore, the number
of software threads needs to be much larger than the number of physical cores, in order to hide
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Figure 2: Schematic diagram representation of the two algorithms for neighbor-list generation,
and the force calculation algorithm. The latter uses multiple threads per particle (tp), but an
implementation also exists for the special case tp= 1.

memory access latency. This poses a challenge when small systems of the order of thousands
of particles are concerned. In order to use as many threads as possible, one must therefore
have multiple threads computing the force on one particle.

Having multiple threads per particles entails some overhead, in particular the summing of
the force contributions over the threads allocated to a given particle. This means that as the
system size increases, it becomes less useful to have more than one thread per particle. We
control this by the parameter tp (threads per particle, denoted TPerPart in the code), and let
the autotuner pick the optimal value for a given simulation. The optimal value of tp depends
primarily on the number of particles, but also on density and the range of the potential. We
use a separate kernel involving a single thread per particle for larger sizes (see Fig. 2); this is
faster than setting tp = 1 in the general kernel.

Rovigatti et al. [53] have recently discussed the possible advantages of “vertex-based”
(atom-decomposition [54], one thread per particle) versus “edge-based” (force-decomposition
[54], one thread per interaction) parallelism. Our approach includes the former and a range
of intermediate cases, while not taking it to the extreme of one thread per interaction.

4 Optimization strategies used in RUMD

As in any general purpose MD software a data structure to keep track of neighbors for the
non-bonding pair interactions is necessary to reduce the complexity of the force calculation
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from O(N2) to O(N) [1,2]. We use a classical Verlet-type neighbor list, stored as 2-dimensional
fixed-size array of size Nnmax where nmax is the assumed maximum number of neighbors per
particle. If this happens to be exceeded the neighbor-list is automatically re-allocated with
doubled capacity. For smaller systems we set nmax = N from the start to avoid the overhead
of checking for overflow. Neighbors within rc + s are listed, where rc is the maximum cut-off
associated with the potential, and s is the extra skin included so that the neighbor-list does not
need to be rebuilt every step. The optimal value of the skin is determined by the autotuner.

We now describe the methods employed in the calculation of short-range non-bonding
forces and the generation of the neighbor-list. The main four optimizations are as follows:

1. Multiple threads per particle (tp ≥ 1) in force calculation and neighbor-list generation.
The autotuner chooses the best value for tp.

2. Two methods for rebuilding the neighbor-list: O(N2) method (tp ≥ 1) for small system
sizes, and an O(N) method (tp = 1) for larger sizes. The autotuner picks the best
method.

3. Use of the so-called “read only data-cache” for reading positions (for NVIDIA devices of
so-called “compute capability” [37] at least 3.5 this can be done straightforwardly via
the function __ldg()).

4. Use of pre-fetching when reading from the neighbor-list to compensate for memory ac-
cess latency.

5 Force calculation

The force calculation kernel (routine executed on the GPU) is shown in Fig. 3. Short-hand
notation for common quantities used in this and the following CUDA-kernels are given in Table
1. The force kernel uses in general tp ≥ 1, although a separate implementation for tp = 1 (not
shown) was made because at large sizes it is no longer beneficial to have more than one thread
per particle, and the overhead of the code associated with summing over threads is noticeable.
The neighbor-list is arranged in column-major order, i.e., the first neighbors of all particles are
consecutive in memory, then the second neighbors, etc. This allows for efficient (coalesced)
memory access.

Note the use of pre-fetching when reading from the neighbor-list; while the force contri-
bution of neighbor i is computed, the index of neighbor i + 1 is being read from the neighbor
list.

Within the kernel a call is made to a function fij (not shown), which calculates the
contribution to the pair force on the current particle from a neighbor particle. fij itself

quantity name in kernel CUDA variable
Number of thread-blocks NumBlocks gridDim.x
Particles per block (pb) PPerBlock blockDim.x
Threads per particle (tp) TPerPart blockDim.y
Particle index within block MyP threadIdx.x
Thread index w.r.t. particle MyT threadIdx.y
Index of thread-block MyB blockIdx.x
Global index of particle MyGP MyP+MyB*PPerBlock

Table 1: Short-hand notation for common quantities used in CUDA-kernels.

6

https://scipost.org
https://scipost.org/SciPostPhys.3.6.038


SciPost Phys. 3, 038 (2017)

__global__ void Calcf_NBL_tp( ... )
[ Declare shared memory ]
float4 my_f = {0.0f, 0.0f, 0.0f, 0.0f}; // Initialize the force
float4 my_r = LOAD(r[MyGP]); // Position of this particle
int type_i = __float_as_int(my_r.w); // Type of this particle
[ Read information on the simulation box from device memory ]
[ Copy potential parameters to shared memory ]
__syncthreads (); // Parameters loaded to shared memory before proceeding

int nb, my_num_nbrs = num_nbrs[MyGP]; // Read number of neighbors
nb_prefetch = nbl[nvp*MyT + MyGP]; // Read first neighbor
for (int i=MyT; i<my_num_nbrs; i+= TPerPart) { // Loop over neighbors

nb = nb_prefetch;
if(i+TPerPart < my_num_nbrs)

nb_prefetch = nbl[nvp*(i+TPerPart) + MyGP]; // Prefetch next neighbor
float4 r_i = LOAD(r[nb]); // Read position of neighbor
int type_i = __float_as_int(r_i.w); // Type of neighbor
// Add contribution from this pair to my_f:
fij( potential , my_r , r_i , &my_f , [parameters , simulation box] );

}
__syncthreads ();

// Now use the shared memory for summing force contributions:
s_r[MyP+MyT*PPerBlock] = my_f;
__syncthreads ();
// Sum over threads associated with the same particle:
if( MyT == 0 ) {

for( int i=1; i < TPerPart; i++ ) my_f += s_r[MyP + i*PPerBlock ];
my_f.w *= 0.5f; // Compensate for double counting of potential energy
// Write result to device memory
f[MyGP] = my_f;

}
}

Figure 3: Kernel calculating forces on particles given the neighbor-list (nbl) shown in the
simplest version where only the force and potential energy of each particle are computed. For
a given particle each of tp threads (MyT= 0,1, ..., tp−1) computes part of the total force, which
is summed up at the end. The function fij (not shown) adds an individual pair contribution
to the current thread’s force (my_f). Note the use of __syncthreads to synchronize threads
within a thread-block. This is to ensure that all data are available in shared memory before
any thread reads from it (first and third occurrences) or that all threads are done with the data
in shared memory before it is used for other data (second occurrence). LOAD() is a macro
that reads from device memory via the read-only data-cache using __ldg() on cards where
this is available.

calls a function ComputeInteraction unique to each type of pair potential and selected
via templating. Templating is used so that it is known when compiling fij which potential,
and thus which ComputeInteraction, is to be called. Templating is also used for some of
the other user-chosen variables, including the type of boundary conditions (represented by a
SimulationBox class) and the cutoff-method. This means that the force calculation kernel is
compiled for all possible combinations of these parameters, and the user can choose the appro-
priate one at run time. The code for the conditional statements which allows this is tedious,
but is generated automatically by a Python script. The main disadvantage of using templating
is that it increases the compile time considerably.
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__global__ void calculateNBL_N2( ... ) {
const unsigned int tid = MyP + MyT*PPerBlock; // Thread -index within block
[ Declare shared memory: s_r , s_Count , s_cut_skin2 ]

if (updateRequired [0]) {
if (MyT ==0) s_Count[MyP ]=0; // Count of neighbors for this particle
[ Copy cut -offs plus skin squared to shared memory]
float4 my_r = r[MyGP]; // Position of this particle

// Loop over blocks of particles
for (FirstGP =0; FirstGP <numParticles; FirstGP += TPerPart*PPerBlock) {

// Read particle positions in block into shared memory
if (FirstGP + tid <numParticles) s_r[tid] = r[FirstGP + tid];
__syncthreads (); // Shared data in s_r ready

// Loop over particles in block
for (int i=0; i<PPerBlock*TPerPart; i+= TPerPart) {

OtherP = i + MyT; OtherGP = FirstGP + OtherP;
if (MyGP <numParticles && MyGP!= OtherGP && OtherGP < numParticles) {

float4 r_i = s_r[OtherP ]; // Position of other particles
[ Read squared cutoff distance from shared memory based on types ]
[ Calculate squared distance dist2 ]
if (dist2 < RcutSk2) {

// Atomically increment counter for this particle:
unsigned int nextNbrIdx = atomicInc (& s_Count[MyP], numParticles);
[ If space insert index into NB-list at position nextNbrIdx ]

} // if(dist2 ... )
} // if (MyGP ... )

} // for(int i ... )
__syncthreads ();

} // for (int firstGP ... )
__syncthreads ();

if (MyT == 0) {
[ Store the number of neighbors for this particle]
[ Store its position so can check when rebuild needed ]
[ Detect whether ran out of space and set flag to inform host ]
if (MyP == 0) atomicDec (&( updateRequired [0]), NumBlocks);

} // if (MyT == 0 ... )
} // if(update_required [0])

}

Figure 4: Kernel for order-N2 neighbor-list generation. Note that because the number of par-
ticles is not in general a multiple of pb, there are some threads in the last block which should
not do anything, hence statements such as if(MyGP<numParticles).

6 Neighbor-list generation: Order-N2

This neighbor-list generating algorithm (see Fig. 4) has O(N2) complexity and is thus suitable
only for small system sizes. In a serial code there would be a double loop; in a parallel code
one loop (over particles whose neighbors are to be found) is handled completely by paral-
lelization. Part of the loop over “other” particles is handled by looping over tp-sized groups,
while parallelization (the tp threads for that particle) accounts for looping within these groups
(we do not make use of Newton’s third law). Shared memory is used to reduce the amount
of reads from device memory; in a straight forward implementation without shared memory
a total of N2 reads of particle positions is necessary. By using a block-wise reading into the
shared memory, this is reduced to N2/pb, where pb is the number of particles in a block (de-
noted PPerBlock in the code). From this consideration pb should be as large as possible,
but on the other hand a too large pb value would mean that the number of blocks (≈ N/pb)
becomes too small to utilize all the available SMX multiprocessors. RUMD uses the autotuner
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__global__ void calculateNBL_CellsSorted( ... ) {
gtid = blockIdx.x*blockDim.x + threadIdx.x; Count = 0;
[ Declare shared memory: s_r , s_cut_skin2 ]
[ Copy cut -offs plus skin squared to shared memory ]
__syncthreads ();
if (gtid <numParticles) {

float4 my_r = r[gtid];
int3 my_CellCoordinates = calculateCellCoordinates(my_r , ...);
int3 OtherCellCoordinates;

// Loop over neighboring cells , applying periodic boundary conditions
for (int dZ=-2; dZ <=2; dZ++) {

OtherCellCoordinates.z = (my_CellCoordinates.z + dZ +
num_cells_vec.z)%num_cells_vec.z;

for (int dY=-2; dY <=2; dY++) {
OtherCellCoordinates.y = (my_CellCoordinates.y + dY +

num_cells_vec.y)%num_cells_vec.y;
for (int dX=-2; dX <=2; dX++) {

OtherCellCoordinates.x = (my_CellCoordinates.x + dX +
num_cells_vec.x)%num_cells_vec.x;

// Loop over particles in cell
int otherCellIndex = calculateCellIndex(OtherCellCoordinates ,

num_cells_vec);
int Start = cellStart[otherCellIndex ];
int End = cellEnd[otherCellIndex ];
for (int OtherP=Start; OtherP <=End; OtherP ++) {

if (gtid != OtherP) {
float4 r_i = LOAD(r[OtherP ]);
[ Read squared cutoff distance from shared memory based on

types ]
[ Calculate squared distance dist2 ]
if (dist2 < RcutSk2)

[ If space insert index into NB-list and increment Count ,
else break]

}
} // end for (int OtherP ....)

}
}

} // end for (int dZ ... )
[ Store this particles number of neighbors]
[ Store its position so can check when rebuild needed ]
[ Detect whether ran out of space and set flag to inform host]
if ( gtid ==0 ) updateRequired [0] = 0;

} // if(gtid < numParticles)
}

Figure 5: Kernel for order-N neighbor-list generation. calculateCellCoordinates(...)
calculates the coordinates of the cell that a particle belongs to. calculateCellIndex(..)
calculates the index of a cell given its coordinates. The arrays cellStart and cellEnd
contain the indices of the first and last particles, respectively, associated with a given cell.

to pick the optimal value of pb.
The kernel uses tp threads for a given particle to search for neighbors. This means that we

have to deal with the situation that several or all of them find a neighbor at the same time, and
the writing to the neighbor list should be performed without race-conditions. This is achieved
by a so-called atomic operation. When several threads perform an atomic operation on the
same variable, all operations are guaranteed to be performed in (an unspecified) sequential
order. Here we use the atomic increment function, atomicInc(), which ensures that the
number of neighbors is counted correctly. When a thread calls atomicInc(), the function
returns the value the variable had before the increment of the given thread is performed. This
is here used to specify a unique position in the neighbor list (nextNbrIdx).

The information about whether the neighbor-list needs to be rebuilt resides on the de-
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vice, generated by a different kernel. The kernel in Fig. 4 is called at every timestep and
checks via if(updateRequired) whether there is anything to be done. This is faster than
copying the value of a flag to the host and having the host decide whether to launch the
rebuild-kernel. updateRequired is initially equal to the number of thread-blocks. One thread
from each block decrements it with an atomic operation (atomicDec()) when it (its thread-
block) is done, so that when all blocks are finished, it is zero. At the next time step, assum-
ing no particles have moved more than half the skin distance, updateRequired will still be
zero and therefore the kernels immediately exit. Using an atomic operation to decrement
updateRequired is necessary because the thread-blocks execute asynchronously, so none of
them knows when/whether the others are finished, or even started; any unfinished blocks
need to see a non-zero value of the counter.

The above means that for small systems the simulations are performed entirely on the
GPU without any communication with the CPU (except when output is required). Avoiding
the overhead associated with communication between the GPU and CPU is important for the
performance at small system sizes.

7 Neighbor-list generation: Order-N

The order-N algorithm is based on a cell-index method [1, 2] and involves (1) dividing the
simulation box into rectangular spatial cells whose size is related to the potential cutoff; (2)
associating particles with the appropriate cell based on the coordinates; (3) sorting the parti-
cles according to cell-index and rearranging all particle data to the sorted order (this can be
done quickly with the Thrust library [55]). The advantage of rearranging the particle data
to the sorted order is two-fold; i) the information about which particles are in a given cell
can be stored simply as two integers indicating the first (cellStart) and the last particle
(cellEnd); ii) better performance of the data-cache when reading the particle information
both in the neighbor-list creation and in the force calculation.

The kernel in Fig. 5 is called after steps (1) to (3) have been carried out via a series of small
kernels and Thrust operations. It involves, for a given particle, identifying its cell coordinates
and looping over neighboring cells in three dimensions to find neighbors. We have chosen cell
lengths in each direction to be of order (not less than) (rc + s)/2, where s is the neighbor-list
skin. This means that the loop extends to plus/minus two cells in each direction, or 125 cells
altogether. Such a choice of cell length means one searches a volume 58% 2 of that searched
when using cells of length rc+s. This kernel is called with one thread per particle, since that is
generally most efficient at larger sizes, which is also when the linear method of neighbor-list
generation becomes relevant. It is conceivable that some gain at intermediate sizes could be
achieved by implementing a tp > 1 version of the kernel, but this has not been tried yet.

In this Neighbor-list method the information about whether to rebuild the neighbor-list
must be communicated to the host because several kernels and Thrust functions must be called
(the use of Dynamic Parallelism, available since CUDA 5.0, could change this, but has not been
tried). Thus the updateRequired flag is not used in the kernel because the kernel only runs
at all if a rebuild is required; the flag is simply set to zero at the end by the thread handling
particle 0.

2One must search for neighbors in a given particle’s own cell and one (two) neighboring cells for cell length
rc + s (rc + s/2). In the former case the search volume is 27 (rc + s)3; in the latter it is 125 ((rc + s)/2)3 giving a
ratio (125/8)/27=0.58.
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Figure 6: The Lennard-Jones LAMMPS benchmark: a melting FCC crystal is simulated at
constant energy. LAMMPS results are downloaded from the LAMMPS webpage (see text).
The vertical axis shows the number of simulated time steps per second of wall-clock time. At
large system sizes all codes follows the ideal 1/N scaling, and the GPU’s are 10-20 faster than
LAMMPS running on 12 xeon cores. For RUMD good scaling is maintained down to quite small
systems N ∼ 2000, and at small system sizes RUMD is thus considerably faster than the three
GPU versions of LAMMPS.

8 Benchmarks and performance analysis

To illustrate the performance of RUMD, we first compare to the “Lennard-Jones” benchmark
results published on the LAMMPS homepage.3 There are two reasons for this choice: i) the
LAMMPS benchmark results include data for small systems (down to 2048 particles); ii) data
is provided for three different GPU extensions of Lammps. The LAMMPS benchmark involves
an FCC crystal of Lennard-Jones particles which is given a kinetic energy sufficient to melt
it at constant total energy (NVE). Figure 6 shows as open symbols the number of timesteps
per second (TPS) achieved by different versions of LAMMPS: A pure CPU version running on
12 Intel Xeon cores (dual hex-core 3.47 GHz Intel Xeons X5690), and three different GPU-
extensions, KOKKOS/CUDA, USER-CUDA, and GPU, all running on a K20x card with 2688
cores. The corresponding results for RUMD running on the comparable Gtx780Ti card are
plotted as filled circles. All the GPU-accelerated versions of LAMMPS, together with RUMD,
give similar performance for large N (above ∼ 3 × 105). In this regime near perfect scaling
with N is observed, and the GPU versions are 10-20 times faster than LAMMPS running on 12
Intel Xeon cores. At smaller system sizes the near perfect scaling breaks down: for two of the
GPU versions of LAMMPS (the red and blue curves) running a simulation with 2000 particles
takes as much time as one with 20000 particles; clearly the GPU hardware is under-utilized.
In fact, for these two implementations it is faster to use the pure CPU version of LAMMPS
at the smallest system sizes. RUMD, on the other hand, maintains reasonable (though not
perfect) scaling down to around N = 2000. We have included even smaller system sizes, to
illustrate that RUMD eventually also begins to struggle to utilize the hardware at very small
system sizes.

Table 2 gives the parameters chosen by the autotuner, as a function of system size. Except
for the two smallest system sizes, the autotuner chooses the total number of threads (N × tp)
to be at least 16000. This illustrates the point made in the introduction, that the number of
threads should be much larger than the number of physical cores (here 2880) to get good
performance. The reason that fewer threads are used for the two smallest system sizes is

3http://lammps.sandia.gov/bench.html#gpucluster
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Figure 7: Analyzing the effect of optimization features in RUMD. The upper panel shows
the performance of the full-RUMD and three other versions in which one feature has been
disabled: multiple threads per particle (tp > 1), use of read only data-cache to read positions
(__ldg()), and pre-fetching. The lower panel shows the same data in terms of the relative
boost in performance that each feature gives, as a function of system size.

N NB pb tp skin TPS
512 N2 16 14 0.452 31201

1024 N2 16 10 0.5 26729
2048 N2 48 8 0.611 20504
4096 N2 32 4 0.746 11222
8192 N 192 2 0.824 6292

16384 N 192 1 0.5 4772
32768 N 192 1 0.5 2710
65536 N 128 1 0.452 1458

131072 N 192 1 0.409 771
262144 N 128 1 0.409 382
524288 N 128 1 0.370 194

1048576 N 128 1 0.370 100
2097152 N 96 1 0.335 50

Table 2: Performance parameters chosen by the autotuner and the resulting TPS (Timesteps
Per Second) on a Gtx780Ti card (5.0 TFlops sp, 336GB/s).
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N NB pb tp skin TPS SpeedUp
512 N2 16 4 0.335 35354 1.13

1024 N2 16 5 0.370 34226 1.28
2048 N2 64 8 0.5 31454 1.53
4096 N2 32 4 0.55 17508 1.56
8192 N 32 1 0.611 8824 1.40

16384 N 128 1 0.452 6617 1.3
32768 N 32 1 0.553 3075 1.13
65536 N 128 1 0.452 1798 1.23

131072 N 192 1 0.409 948 1.23
262144 N 192 1 0.409 495 1.30
524288 N 128 1 0.370 239 1.23

1048576 N 192 1 0.370 126 1.26
2097152 N 192 1 0.370 58 1.16

Table 3: Performance parameters chosen by the autotuner and the resulting TPS (Timesteps
Per Second) on a Gtx1080 card (8.2 TFlops sp, 320GB/s). Last column is speed-up compared
to the Gtx 780Ti card (Table 2).

probably that the required large tp values inflict too large a penalty due to the sequential
summation of the tp different contributions to the force (see Fig. 3). The switch between the
two methods for neighbor-list generation happens at around 8000 particles. In this range of
system sizes both methods are sub-optimal and the autotuner compensates by increasing the
skin size to make neighbor-list updates less frequent.

Figure 7 shows the effect of disabling different optimization features. The upper panel
shows time steps per second like Fig. 6, but with different curves representing different dis-
abled features (the black curve is with all features enabled). The most dramatic difference is
when tp = 1 is enforced, for small and medium systems (N < 104). No difference is observed
at larger N because there tp = 1 is the optimal choice, see table 2. Disabling the use of the
read-only data-cache gives the green curve, a significant drop in performance across all sizes
except the very smallest N < 2000, while disabling pre-fetching gives a slight drop, more at
larger sizes. The lower panel of Fig. 7 shows the same data, but plotted as the ratio of the
speed of the full RUMD to that of RUMD with the given feature disabled. Plotting this ratio,
on a linear scale, shows the relative effects more clearly. In particular, reading via the read
only data-cache gives an effect of order 40%, while pre-fetching has an effect of order 10% at
the large sizes.

Table 3 gives results for RUMD running on a GTX 1080 card of the newer Pascal architec-
ture. This card has a single precision theoretical peak-performance of 8.2 TFlops (8.9 TFlops
in ’Boost’ mode), and a memory bandwidth of 320 GB/s. These numbers are, respectively,
64% higher and 5% lower than the corresponding numbers for the Gtx 780Ti card. Table 3
shows speed-ups in the range 13 to 56%. The largest speed-ups are found at N = 2048 and
N = 4096, where the N2 Nb-list method is chosen – this method has more calculations per
read from memory (see section VI), so the increased computational speed without increase in
memory bandwidth can better be utilized. It should be noted that cards of the Pascal architec-
ture with higher memory bandwidth have recently been released — our results suggest that
these should perform even better at the large system sizes.
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N 2 · 103 2 · 104 105

LAMMPS SP 3.26 5.66 6.06
LAMMPS WOLF 2.21 3.57 3.40
LAMMPS PPPM 0.54 0.40 0.35
RUMD SF 9.41 11.3 16.1

Table 4: Benchmarks for a system of charged Lennard-Jones particles (see text for details) for
LAMMPS (CPU) and RUMD (Gtx 780Ti). The metric shown is MATS (millions of atom time
steps per second). LAMMPS benchmarks were performed on a Dell 630 server with dual Intel
Xeon E5-2699 v3 2.3 GHz CPU’s for a total of 36 cores. Coulomb interactions were evaluated
using a simple shifted-potential cutoff at distance 6.0 (“SP”), using the Wolf method [56] with
the switching parameter α set to zero (“WOLF”, equivalent to the shifted force method), and
the Particle-Particle Particle-Mesh method (“PPPM”). RUMD benchmarks were performed on
an nVidia GTX 780 Ti, using a shifted force cut-off (SF) at distance 6.0.

9 Electrostatics

A general purpose MD code should include electrostatic (Coulomb) interactions and these
should be sufficiently accurate and computationally efficient. Implementation of the smooth
particle mesh Ewald method [21, 57–59] which can efficiently handle the long range part of
the electrostatic interactions is planned, but for our needs so far we have found it sufficient to
use Coulomb forces with a large shifted-force cut-off as documented in Ref. [60]. In that paper
it was shown that a shifted-force cutoff of order five inter-particle spacings gives, similar to the
Wolf [56] method, results in excellent agreement with Ewald-based methods in bulk systems.

To benchmark the performance of Coulomb interactions, we performed simulations of a
model molten salt in RUMD and the CPU version of LAMMPS. All particles have identical
Lennard-Jones parameters ε and σ. The charges are ±

p

4πε0εσ (50% each). The density is
0.3677 σ−3 and the temperature 2 ε/kB. The density is the same as was used by Hansen and
McDonald in their study of a similar model salt [61]. In Ref. [60] it was shown that a cutoff
of 6.0σ, corresponding to ∼ 330 neighbors per particle at this density, was sufficient to get
satisfactory accuracy. The time step is 0.004

p

m/εσ.
The data in Table 4 compare RUMD and the CPU-version of LAMMPS with different meth-

ods of evaluating Coulomb interactions. The benchmarks are expressed as MATS (million atom
time steps per second) for ease of comparing different system sizes. The smallest speed-up of
RUMD over LAMMPS is here a factor of two. This smaller speed-up compared to the previous
section is primarily due to the LAMMPS benchmarks being run on a faster CPU system, a Dell
630 server with 36 XEON cores. For comparison, at the time of writing the cost of the Dell
630 server is roughly 10,000$, whereas the cost of the GTX 780 Ti card is around 500$ (to
this should be added the cost of a fairly standard PC, which can hold three GPU cards).

10 Summary

We have described the RUMD software package for molecular dynamics simulation on GPUs,
concentrating on the optimization strategies that distinguish it from most other GPU MD codes.
We have documented its strong performance at small and medium system sizes and its perfor-
mance comparable to other GPU-based MD codes at larger sizes. Work will continue on RUMD
both with regard to features and optimization opportunities. The ability to split a simulation
over multiple GPUs will also be considered, which will not just allow larger systems, but also
even faster simulations of medium systems, given that RUMD already makes good use of the
hardware for such sizes.
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11 Appendix: The autotuner

Here we describe the algorithm used by the autotuner, which optimizes the choice of neighbor
list algorithm, the neighbor-list skin size, and the way the generation of the neighbor list and
the calculation of non-bonding forces are distributed among the GPU threads (pb and tp). The
basic strategy is to run a series of short simulations (a few hundred to a few thousand time
steps) varying the different parameters, to find a set of of parameters giving (close to) optimal
performance. Not all possible combinations of parameters are attempted in order to reduce
the time taken for tuning (for Lennard-Jones-type systems without molecules or Coulomb
interactions the tuning process takes under a minute for small systems, several minutes for
larger systems). The initial state of the system is stored so that all comparisons made by the
autotuner involve runs of the same length starting from the same configuration.

If the autotuner is not used, RUMD uses default values which depend on the system
size: “n2” neighbor-list method (section 6) for N < 8000, otherwise “sort” (section 7);
pb = 32, tp = 4 for N ≤ 10000, otherwise pb = 64, tp = 1. The default skin value is 0.5, which
assumes units of length such that the interparticle spacing is of order unity. In principle the
default skin should be based on the interparticle spacing (e.g. ρ−1/3/2), but in practice length
units in MD are generally of order the interparticle spacing and the autotuner can quickly deal
with a discrepancy. For some very small systems, N < 200, with not too small cutoff it can be
faster not to use a neighbor-list at all. The autotuner checks this possibility for systems with
N < 5000.

The dependence of performance on the parameters pb, tp and neighbor-list skin is simple:
the time taken shows a single minimum as a function of the parameter. This allows a relatively
straightforward optimization strategy to be used. The number of steps run for the different
stages depends on the system size (larger for smaller systems sizes to get better timing) and
can be altered by the user but should not need to be. The overall strategy is as follows:

1. Run some steps before tuning (default: 10000) to avoid the influence of transient effects
(associated for example with having changed the temperature).

2. Run with default parameters to get a baseline performance.

3. Phase I optimization: With the default pb and tp run with the different neighbor-list
methods, “none”, “n2”, “sort”. For each one the skin is optimized separately.

4. Phase II optimization: For the fastest neighbor-list method and other methods within
20% of the fastest, optimize the parameters pb and tp using a double loop: first pb
considering the values 16, 32, 48, 64, 96, 128 and 192. For each pb, values of tp are
tested starting from 1 and increasing until 64. For each combination of pb and tp the
skin length is re-optimized starting at the last identified optimal value.

5. If the neighbor-list method “n2” is included in phase II, it can still help to sort the particles
once every few hundred times, typically for system sizes near the crossover from “n2”
being optimal to “sort” being optimal. This is checked and the optimal sorting interval
found.

6. If more than one neighbor-list method was optimized in phase II, make a final compari-
son between the phase II-optimized sorting methods to choose the overall optimized set
of parameters (except close to the cross-over from one method to another, the phase II
optimization does not change which method is chosen, and in that case the difference is
small anyway).
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7. Run, using the optimized parameters, the same number of steps as for the baseline run
to determine the overall improvement due to tuning.

8. Write the tuned parameters to a file so that repeating the simulation in the same di-
rectory with the same “user parameters” does not require re-tuning. For this purpose,
“same user parameters” means: same number of particles of each type, same density
and temperature and potential parameters (within a tolerance), same integrator type
and timestep (within tolerance), and same GPU-type. The actual configuration does not
have to be the same. If there is any doubt about re-using the previously found parame-
ters, the file can just be deleted.

Some further details are noted here:

• The skin optimization starts from the default value (phase I) or previously identified
phase I-optimal value (phase II). Its value is increased and decreased in steps of 20%
(phase I) or 10% (phase II) until a minimum is identified in the time taken. Attempting
to optimize the skin to a precision of better than 10% is not worth the effort.

• The loop over tp breaks out when one of the following three conditions is met: (i) the
time taken exceeds the minimum time so far three times in a row; (ii) the time taken
exceeds the minimum time so far by 5%; (iii) some GPU resource-limit is exceeded,
either the number of threads per block (pb tp) or the total register count per block.

• The loop over pb breaks out when the time taken (having optimized tp and skin) exceeds
the previous best by 10% or more.

• For very large systems it doesn’t make sense to use anything other than the “sort” method
for the neighbor-list. The autotuner omits “none” for N > 5000 and “n2” for N > 50000.
Moreover, large systems generally require larger pb and so the autotuner omits pb = 16
for N > 4000 and pb = 32 for N > 105. Also for the largest systems only tp = 1 is
relevant; the autotuner omits checking other values for N > 105.
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