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Abstract

Semi-Dirac fermions are known to exist at the critical points of topological phase tran-
sitions requiring fine-tuning of the parameters. We show that robust semi-Dirac points
can appear in a heterostructure consisting of superconducting Sr2IrO4 and a t2g elec-
tron system (t2g-ES) without fine-tuning. They are topologically stable in the presence
of the symmetries of the model, metallic t2g-ES and a single active band in Sr2IrO4. If
the t2g metal is coupled to two different layers of Sr2IrO4 (effectively a multiband su-
perconductor) in a three-layer-structure the semi-Dirac points can split into two stable
Dirac points with opposite chiralities. A similar transition can be achieved if the t2g-ES
supports intrinsic triplet superconductivity. By considering Sr2RuO4 as an example of a
t2g-ES we predict a rich topological phase diagram as a function of various parameters.
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1 Introduction

Native triplet superconductivity is typically fragile and appears only at very low tempera-
tures [1–4]. Therefore, driven by the desire to realize exotic topological phases and Majorana
zero modes [4–8], a great deal of research has been invested in different ways of engineer-
ing materials so that their low-energy theory is described by effective triplet pairing correla-
tions [2, 9–16]. Recently, the idea to utilize strong intraionic spin-orbit coupling in a middle
layer to convert singlet Cooper pairs into triplet ones in a three layer heterostructure was pro-
posed [17], and the growth technology for the realization of such kind of heterostructures is
under development [18]. The advantage of this idea is that the conversion from singlet to
triplet Cooper pairs can take place in a single atomic layer, so that the induced superconduct-
ing order parameter is determined by microscopic energy scales given by tunneling amplitudes
between the layers and the superconducting gap in the singlet superconductor.

In this manuscript we explore the possibility and consequences of triplet pairing correla-
tions in a heterostructure where doped superconducting Sr2IrO4 with strong intraionic spin
orbit coupling is tunnel coupled to a t2g electron system (t2g -ES). Sr2IrO4 is a layered 5d5 tran-
sition metal oxide (TMO) where the strong spin-orbit coupling mixes the t2g orbitals (|yz〉,
|zx〉 and |x y〉) [19–21] so that there exists only one active band described by the hybridized
jeff = 1/2 states labelled by the pseudospin

| f ,⇑〉=
1
p

3
[|x y,↑〉+ |yz,↓〉+ i|xz,↓〉],

| f ,⇓〉=
1
p

3
[|x y,↓〉 − |yz,↑〉+ i|xz,↑〉]. (1)

Due to strong correlation effects Sr2IrO4 is a Mott insulator at half-filling [22–24] and it is
expected to become a high-temperature superconductor upon doping [21, 24, 25]. It may
be considered as the best studied member of the family of the iridate compounds which are
anticipated to support a zoo of topological spin liquid and superconducting phases due to co-
operative action of spin-orbit coupling and Coulomb interactions. These topological phases
include the Kitaev spin liquid phase [19, 26], different types of three dimensional spin liquid
phases [27–30], the chiral d-wave superconductor phase [31, 32], p-wave superconductors
with helical, chiral and flat Majorana edge modes [32–35] and three-dimensional nodal su-
perconducting [36] phases. In contrast to these more complicated compounds, Sr2IrO4 has a
square lattice and upon electron doping it is expected to support a d-wave superconducting
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Figure 1: (a) Due to the strong spin-orbit coupling the active pseudospin orbitals in Sr2IrO4
are described by strongly entangled spin and orbital degrees of freedom. (b) When Sr2IrO4 is
tunnel coupled to a t2g electron system, the tunneling of the pseudospin singlet Cooper pairs
[described by the order parameter ∆I(k)] into the t2g -ES leads to an apperance of singlet
∆n(k) and triplet dn(k) components of the induced order parameter in each band n = α,β ,γ
of the t2g -ES. These order parameters can have similar magnitudes ∆n(k) ∼ |dn(k)| leading
to a possibility of a robust semi-Dirac phase.

phase analogously to the cuprates [21,24,25]. Moreover, the first experimental signatures of
the d-wave superconductivity have already been observed in doped Sr2IrO4 [37,38]. However,
in contrast to cuprates, the strong spin-orbit coupling in Sr2IrO4 causes the Cooper pairs to be
formed as pseudospin singlets, where the pseudospin [Eq. (1)] describes entangled orbital and
spin degrees of freedom (see Fig. 1). This has no consequences in the earlier studies where the
isolated Sr2IrO4 was studied. However, we show that the differences to cuprate superconduc-
tors become evident when Sr2IrO4 is tunnel coupled to another system in a heterostructure.

In this paper we consider a heterostructure consisting of a doped superconducting Sr2IrO4
tunnel coupled to a reasonably thin layer of a t2g -ES. Suitable candidates for the t2g -ES are the
extensively studied 4d TMOs Sr2RuO4 and Sr2RhO4 because they have similar crystal struc-
tures as Sr2IrO4 [3, 39–42]. Sr2RhO4 is observed to be metallic down to the lowest experi-
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mentally accessible temperatures and Sr2RuO4 supports an interesting superconducting phase
at low temperatures, where the order parameter is of multi-orbital nature and not yet fully
understood [43–46]. We show that the tunneling of the pseudospin singlet Cooper pairs from
Sr2IrO4 into the t2g -ES naturally leads to an apperance of both triplet and singlet Cooper pairs
in the t2g -ES, so that the triplet and singlet components of the induced order parameter are
of similar magnitude (see Fig. 1).

We find that in the case of a metallic t2g -ES the Bogoliubov-de Gennes (BdG) Hamiltonian
generically supports robust semi-Dirac points. Moreover, we generalize this result for a class
of superconductor-metal heterostructures. The semi-Dirac points can be described with an
effective low-energy Hamiltonian

HSD = ħhvqxσx +C 1(C qx +Dqy)
2σy , (2)

where qx and qy are the deviations of the momentum from the two-fold degenerate nodal
point in the quasiparticle spectrum perpendicular and parallel to the Fermi line of the t2g -
ES metal, respectively. The descriptive picture of the semi-Dirac Hamiltonian (2) is that the
quasiparticles are (massless) relativistic particles along the qx -direction with velocity v but
they are nonrelativistic in the qy -direction with an effective mass ħh

2

2m = C1D2 [47–54]. For
generality we have allowed two dimensionless constantsC and D in addition to v andC1, but
these parameters are not important for the qualitative low-energy properties as long as v 6= 0
and C1D2 6= 0.

Semi-Dirac nodal points are previously known to exist in different systems as critical points
of a topological phase transition where as a function of some parameterM two Dirac points
with opposite chiralities will meet and merge in the momentum space [47–50, 54]. In the
presence of chiral symmetry this transition can be described with an effective Hamiltonian of
the form

H = hx(q)σx + hy(q)σy , (3)

hx(q) = ħhvqx , hy(q) =C1(C qx +Dqy)
2 − (M −Mc),

where ~h(q) describes an effective momentum-dependent pseudomagnetic field in the vicinity
of the merging point and M is a parameter which drives the quantum phase transition at
M =Mc . For simplicity we assume ħh

2

2m = C1D2 > 0,Mc > 0 and C = 0, but these assump-
tions are not important as long as v,C1,D 6= 0. The spectrum of this Hamiltonian is then given
by

E±(q) = ±E(q) = ±

√

√

√

ħh2v2q2
x +

�ħh2q2
y

2m
− (M −Mc)

�2

. (4)

For M > Mc this Hamiltonian describes two Dirac points located at qx = 0 and
qy = ±

p

2m(M −Mc)/ħh (see Fig. 2). These two Dirac points are described by low-energy
Hamiltonians

HD(qx ,δqy) = ħhvqxσx ±ħhvyδqyσy , (5)

where the velocity in y-direction is vy =
p

2(M −Mc)/m, and δqy = qy∓
p

2m(M −Mc)/ħh
describes the deviation of the momentum from the Dirac point. The pseudomagnetic field
~h(q) forms vortices around the Dirac points [Fig. 2(a), (b)], and based on the direction of the
winding of ~h(q) around them it is possible to define topological charges QD = ±1 for the Dirac
points. WhenM approachesMc from above the two Dirac points with opposite topological
charges approach each other in the momentum space and they meet at M =Mc forming a
semi-Dirac point described by Hamiltonian (2). ForM <Mc the vortices are annihilated and
the spectrum E(q) is fully gapped. Although this type of merging transitions have been ex-
perimentally observed in different systems [55–59], it is difficult to study the phenomenology
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Figure 2: Illustration of the appearance of a semi-Dirac point as a critical point of a topological
phase transition described by Hamiltonian (3). Figures (a)-(d) show the direction of the pseu-
domagnetic field ~h(q)/|~h(q)| [Eq. (3)] and figures (e)-(h) the energy spectrum E(q) [Eq. (4)] as
a function of momentum q for different values ofM : (a),(e)M = 2Mc , (b),(f)M = 1.3Mc ,
(c),(g) M = Mc and (d),(h) M = 0. For M > Mc this Hamiltonian describes two Dirac
points located at qx = 0 and qy = ±

p

2m(M −Mc)/ħh [(e), (f)]. The pseudomagnetic field
~h(q) forms vortices around these points with opposite chiralities (i.e. a vortex-antivortex pair)
[(a), (b)]. Therefore, it is possible to define topological charges QD = ±1 for the Dirac points
based on the direction of the winding of ~h(q) around them [(a), (b)]. WhenM approaches
Mc from above the two Dirac points with opposite topological charges approach each other
in the momentum space and they meet atM =Mc forming a semi-Dirac point described by
Hamiltonian (2) [(c), (g)]. For M < Mc the vortex-antivortex pair is annihilated and the
spectrum E(q) of the system is fully gapped [(d), (h)]. We have chosen ħh

2

2m = C1D2 > 0,
Mc > 0 and C = 0.

of the semi-Dirac points in these systems, because the semi-Dirac point appears only at the
critical point atM =Mc .

In the presence of additional symmetries and constraints the semi-Dirac points may how-
ever become stable against small perturbations of the parameters of the model. Such kind of
situation has been predicted to occur in a specific model [52], where there exists two overlap-
ping bands which are not coupled directly but only virtually via a third band, and there exists
a specific symmetry (mirror symmetry) which forbids this coupling to the third band within a
particular high-symmetry line (mirror line). In this kind of situation the semi-Dirac points are
stable and they always appear at the high-symmetry line. The robust semi-Dirac points of the
Bogoliubov quasiparticles discussed in this manuscript have a very different origin. They do
not require the existence of a high-symmetry line, which means that they can appear anywhere
in the momentum space. Moreover, their robustness is of topological nature so that they carry
topological charges QSD (definition will be given below). This is a surprising result because
the semi-Dirac points are not associated with Berry phases and therefore one might expect
them to be unstable towards gapping or splitting into Dirac points. We also show that semi-
Dirac points with opposite charges are always nucleated/annihilated in a pairwise manner as
a function of the parameters of the model. The merging transitions of the semi-Dirac points
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Figure 3: Different types of topological phase transitions occurring in heterostructures where
Sr2IrO4 is tunnel coupled to a t2g -ES. (a) Lower plane: a pair of semi-Dirac points carrying
topological charges QSD = ±1. They are protected against small perturbations in the presence
of symmetries of the model, metallic t2g -ES and a single active band in Sr2IrO4. Upper plane:
Each semi-Dirac point can become gapped or split into two Dirac points with opposite topo-
logical charges QD = ±1 if these conditions are intentionally broken so that the t2g metal is
coupled to two different layers of Sr2IrO4 (effectively a multiband superconductor) or the t2g -
ES supports an intrinsic superconducting order parameter. These transitions are described by
Hamiltonian (3). (b) In the constrained parameter space, where the semi-Dirac points are sta-
ble against small perturbations, two semi-Dirac points with opposite topological charges QSD

can be nucleated or annihilated in a pairwise manner. These merging transitions are desribed
by Hamiltonian (6). (c) In the unconstrained parameter space, where a semi-Dirac point can
split into two Dirac points, the Dirac points can move in the momentum space and merge with
Dirac points (carrying opposite QD) that have emerged from other semi-Dirac points. When
this merging occurs at the mirror lines (thick blue lines) these transitions lead to topological
mirror superconductivity.

can be described with a low-energy Hamiltonian

H = ħhvqxσx +C1

�

C qx + D̃q2
y − (M

SD −M SD
c )

�2
σy . (6)

Interestingly, atM SD =M SD
c the dispersion is linear along the qx direction and quartic along

the qy direction. The merging point of two semi-Dirac points may be considered as a si-
multaneous merging of four Dirac points. Such kind of transitions can usually only exist if
several different parameters are simultaneously fine-tuned to particular values [60]. In the
heterostructures studied in this manuscript they appear as critical points between the semi-
Dirac phase and trivial phase (or two topologically distinct semi-Dirac phases as discussed
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Model Constr. Topologically distinct phases
parameter

space

Minimal Model

Bi-layer:
Yes Stable semi-Dirac points

SC / metal
Tri-layer:

No
Semi-Dirac points can be gapped or splitted into

SC / metal / SC Dirac-points. Topological mirror superconductivity.

Microscopic Model

Bi-layer:
Yes Stable semi-Dirac points

Sr2IrO4 / metallic t2g -ES
Tri-layer:

No
Semi-Dirac points can be gapped or splitted into

Sr2IrO4 / metallic t2g -ES / Sr2IrO4 Dirac-points. Topological mirror superconductivity.
Bi-layer:

No
Semi-Dirac points can be gapped or splitted into

Sr2IrO4 / superconducting t2g -ES Dirac-points. Topological mirror superconductivity.

Table 1: Summary of the models discussed in the paper. For each model it is specified whether
it is in the constrained parameter space, and we have also summarized the topologically dis-
tinct phases it can support. The minimal models are discussed in Section 2 and the microscopic
models in Sections 3-8.

below) and therefore they can be realized as a function of any single parameter which can be
used to drive a quantum phase transition between these topologically distinct phases.

We find that the semi-Dirac points in the superconductor-metal heterostructures are topo-
logically stable in the presence of the symmetries of the model (time-reversal symmetry, two-
fold rotational symmetry and inversion symmetries within the layers), metallic t2g -ES and a
single active band in the superconductor. This finding opens a path for breaking the protection
of the semi-Dirac points intentionally in a controlled manner. Namely, each semi-Dirac point
can become gapped or split into two Dirac points with opposite topological charges QD = ±1
if the t2g metal is coupled to two different layers of Sr2IrO4 (effectively a multiband super-
conductor) or the t2g -ES supports intrinsic triplet superconductivity. These transitions are
described by Hamiltonian (3). Moreover, arbitrary weak perturbations breaking this protec-
tion will lead to these transitions demonstrating the nature of the semi-Dirac points as critical
points of topological phase transitions in the unconstrained parameter space. In addition to
the splitting-merging transition of Dirac points described by Hamiltonian (3) and the merg-
ing of semi-Dirac points (6), we find that systems supporting an additional mirror symmetry
can support a third type of topological phase transition. Namely, in the unconstrained pa-
rameter space, where a semi-Dirac point can split into two Dirac points, the Dirac points can
move in the momentum space and merge with Dirac points (carrying opposite QD) that have
emerged from other semi-Dirac points. When this merging occurs at the mirror lines [as il-
lustrated in Fig. 3] these transitions lead to topological mirror superconductivity [61–63]. All
these different types of topological phase transitions are summarized in Fig. 3. By consider-
ing Sr2RuO4 as a specific example of t2g -ES we predict a rich topological phase diagram as
a function of various parameters. Moreover, we discuss the properties of the surface states
and the other experimental signatures of the different phases and phase transitions. In Table
1 we have summarized the conclusions for the different systems studied in this work. In the
next section we study two simplified models: a bi-layer superconductor/metal heterostructure
and a tri-layer superconductor/metal/superconductor heterostructure. The simplified models
allow to analytically demonstrate the main result discussed above. From Section 3 onwards
we show that similar results are obtained by studying more realistic microscopic models: a
bi-layer Sr2IrO4/metallic t2g -ES heterostructure, a tri-layer Sr2IrO4/metallic t2g -ES/Sr2IrO4
heterostructure and a bi-layer Sr2IrO4/superconducting t2g -ES heterostructure.
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2 Minimal model for robust semi-Dirac points and unconventional
phase transitions

The full model for Sr2IrO4 tunnel coupled to t2g -ES is a reasonably complex system so that
we need to partially rely on numerical calculations. Therefore, it is useful to first illustrate the
basic ideas using the simplest possible model that already gives rise to the robust semi-Dirac
points and unconventional topological phase transitions illustrated in Fig. 3. We stress that the
model used in this section is constructed mainly for illustration purposes, and we are not aware
of suitable materials and conditions under which this model would be realized. However, given
the simplicity of this model it seems plausible that in the future it will be possible to identify
physical systems where this model is faithfully realized.

Namely, in this section we first consider a single-band s-wave superconductor tunnel cou-
pled to a single-band metal. The Hamiltonian for the s-wave superconductor can be written
in the Nambu basis Ψ†

k = (c
†
k⇑, c†

k⇓, c−k⇑, c−k⇓) as

HSC(k) =

�

ξSC(k)σ0 i∆SCσy
−i∆SCσy −ξSC(k)σ0

�

, (7)

where σi are the Pauli spin matrices. We have assumed that the superconductor obeys time-
reversal and inversion symmetries so that there exists degenerate Kramer’s partners |k ⇑〉 and
|k ⇓〉 at each momentum, and the singlet pairing takes place within this internal degree of
freedom. It turns out that the dispersion of the superconductor ξSC(k) is unimportant (see
sections below) so in this section we neglect it by assuming ξSC(k) = 0. We fix the gauge so
that the superconducting order parameter satisfies ∆SC > 0. In this section we also neglect
the possible momentum dependence of the singlet order parameter ∆SC , because it is not
important for the appearance of the semi-Dirac points and unconventional topological phase
transitions (see sections below). We assume that the metal obeys time-reversal and inversion
symmetries so that there also exists degenerate Kramer’s partners at each momentum in the
metal. In general these internal degrees of freedom in the metal and superconductor are
different from each other, and this is important in the following. The Hamiltonian of the
metal in the basis of the eigenfunctions of the metal (in Nambu space) can then be written as

HM (k) =

�

ξM (k)σ0 0
0 −ξM (k)σ0

�

. (8)

For simplicity, we assume that the metal has a spherical Fermi surface with dispersion

ξM (k) = ħhv(|k| − kF ). (9)

The metal and the superconductor are tunnel coupled via a tunneling matrix T (k), so that the
Hamiltonian for the full system (in the Nambu space) is

H =

�

HM (k) HT (k)
H†

T (k) HSC(k)

�

, HT (k) =

�

T (k) 0
0 −T ∗(−k)

�

. (10)

We assume that the tunneling matrix obeys time-reversal

σy T ∗(−k)σy = T (k), (11)

and two-fold rotational symmetries

σz T (−k)σz = T (k). (12)
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In the following the essential requirement for the tunneling matrix is that it contains both
diagonal and off-diagonal elements (momentum even and momentum odd components) of
similar magnitude so that it mixes the internal degrees of freedom in the metal and supercon-
ductor. Such kind of tunneling matrices have been rarely considered in the literature because
it is not obvious how they can be realized in physical systems. However, this kind of tunneling
matrix is naturally realized when one of the layers (metal or superconductor) has a very large
intraionic spin-orbit coupling so that the internal degree of freedom in that layer is the pseu-
dospin discussed in Section 1. In the following sections we consider situations where the very
strong intraionic spin-orbit coupling appears in the superconducting layer, but we point out
that similar tunneling matrices are obtained also if the metallic layer has a strong intraionic
spin-orbit coupling instead of the superconductor. To be explicit we assume

T (k) =
At⊥p

3
σ0 +

2Bt⊥p
3
(σx sin ky −σy sin kx), (13)

where t⊥ describes the overall magnitude of the tunneling, and A and B are dimensionless
constants describing the relative magnitudes of momentum even and momentum odd compo-
nents of the tunneling matrix. We discuss one possible realization of the tunneling matrix (13)
below, but in this section this can be considered just as a simple model giving rise to semi-Dirac
points.

The superconductor is fully gapped, so we can concentrate on the metallic layer. The low-
energy BdG Hamiltonian for the metal can be expressed as

H(k) =

�

ξM (k)σ0 ∆ind(k)
∆†

ind(k) −ξM (k)σ0

�

, (14)

where ∆ind(k) is the induced order parameter i.e. the anomalous part of the self-energy eval-
uated at the Fermi energy. It is given by

∆ind(k)≡ i[∆(k)σ0 + d(k) · ~σ]σy = i
�

T (k)T †(k)
∆SC

�

σy , (15)

where∆(k) and d(k) are the induced singlet and triplet superconducting order parameters. To
arrive to this expression we have utilized the time-reversal symmetry of the tunneling matrix
[Eq. (11)]. The induced order parameter∆ind(k) satisfies∆T

ind(−k) = −∆ind(k), which means
that ∆(−k) = ∆(k) and d(−k) = −d(k). Moreover, dz(k) = 0 due to symmetries. For the
explicit form of the tunneling matrix (13) we obtain

dx(k) =
4t2
⊥

3∆SC
AB sin ky , dy(k) = −

4t2
⊥

3∆SC
AB sin kx ,

∆(k) =
t2
⊥

3∆SC

�

A2 + 4B2(sin2 ky + sin2 kx)
�

. (16)

By diagonalizing the Hamiltonian (14) we find that the quasiparticle energies are
E(k) = ±E±(k), where

E±(k) =
r

ξ2
M (k) +

�

∆(k)± |d(k)|
�2

. (17)

The BdG Hamiltonian (14) contains a particle-hole redundancy, which gives rise to a Majorana
constraint Γ †

E (k) = Γ−E(−k) for the creation and annihilation operators obtained as solutions of
the BdG equation. Therefore, the positive and negative energy solutions do not describe inde-
pendent degrees of freedom and the quasiparticles can be considered as their own antiparticles
i.e. they are Majorana fermions [64–67]. This is a generic property of all Bogoliubov quasi-
particles, which means that all the quasiparticles considered in this paper have this Majorana
character.
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It is easy to see from Eq. (17) that there are nodes in the quasiparticle spectrum at the
momenta where ξM (k) = 0 and ∆(k) = |d(k)|. Importantly, it follows from the symmetries
(11) and (12) that the matrix elements of T (k) satisfy T11(k) = T ∗22(k) and T12(k) = T ∗21(k) so
that det[T (k)] ∈ R. Moreover, it is possible to show that

∆(k)− |d(k)|=
1
∆SC

det2[T (k)]
(|T11(k)|+ |T12(k)|)2

. (18)

Thus the induced singlet order parameter is always larger or equal to the induced triplet order
parameter ∆(k) ≥ |d(k)| and they are equal if and only if det[T (k)] = 0. The conditions for
the appearance of the nodes in the quasiparticle spectrum can therefore be expressed as

E(k) = 0 ⇐⇒ det[T (k)] = 0 and ξM (k) = 0. (19)

The appearance of the nodes when these conditions are satisfied can be verified also using the
Hamiltonian (10).

At first sight it seems that the conditions given in Eq. (19) are difficult to satisfy simul-
taneously, since in general det[T (k)] ∈ C, and therefore three equations would need to be
satisfied by varying two variables kx and ky . However, as discussed above, in the presence of
the symmetries of the model det[T (k)] ∈ R, and therefore these conditions can be satisfied
in a robust manner if det[T (k)] changes sign along the Fermi line where ξM (k) = 0. We will
now illustrate the appearance of these robust nodal points in the case of the specific tunneling
matrix (13). In this case

∆(k)− |d(k)|=
t2
⊥

3∆SC

�

|A| − 2|B|
Ç

sin2 ky + sin2 kx

�2

,

det[T (k)] =
t2
⊥

3

�

A2 − 4B2(sin2 ky + sin2 kx)
�

. (20)

Therefore, it is possible to realize the situation illustrated in Fig. 4 where the regions of
ξM (k)< 0 and det[T (k)]< 0 partially overlap, and due to continuity of these functions there
must exist values of kx and ky , where ξM (k) = 0 and det[T (k)] = 0 are simultaneously satis-
fied. Furthermore, these nodal points are robust against small variations of parameters because
the only way to remove them is to deform the regions of ξn(k)< 0 and det[T (k)]< 0 in such a
way that their boundaries no longer cross each other in the momentum space. Thus the nodal
points exist in a full phase in the parameter space and they are always nucleated/annihilated
in a pairwise manner (see Fig. 4). Using Eqs. (9) and (20) and assuming kF < π, we find that
the condition for the existence of nodes is

∃k s.t.E(k) = 0 ⇐⇒ 2sin kF ≤
�

�

�

�

A
B

�

�

�

�

≤ 2
p

2sin
�

kFp
2

�

(21)

and the system is fully gapped otherwise.
We can formalize the topological protection of these nodal points by defining a topological

charge QSD
m for the mth node at k= km as

QSD
m = −

i
2π

∮

km

dk ·
1

ZSD(k)
∇kZSD(k),

ZSD(k) = ξM (k)/(ħhvkF ) + i det
�

T (k)/t⊥
�

, (22)

where the integral is calculated around a path enclosing the nodal point at k = km. QSD
m are

always integers, and the nodal points can be considered as vortices in the k-space formed in
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(b)

(a)

semi-Dirac phase

Figure 4: Illustration of the apperance of robust semi-Dirac points. (a) In the semi-Dirac phase
the regions of ξM (k)< 0 and det[T (k)]< 0 partially overlap, so that there exists robust nodal
points at the intersection points of the lines ξM (k) = 0 and det[T (k)] = 0. These nodal points
are therefore stable against small perturbations of the parameters of the model and they carry
topological charges QSD = ±1 [Eq. (22)]. The low-energy theory in the vicinity of these nodal
points is described by the semi-Dirac Hamiltonian [Eq. (2)] i.e. the dispersion is linear in the
direction perpendicular to the Fermi line, and quadratic in the direction along the Fermi line.
(b) Phase diagram for the model described by the Hamiltonian (10) with tunneling matrix
(13). The semi-Dirac phase appears for 2 sin kF <

�

�A/B
�

� < 2
p

2sin
�

kF/
p

2
�

. Outside this
region of parameters the system is in a trivial fully gapped phase. The semi-Dirac points with
opposite topological charges are nucleated/annihilated in a pairwise manner, so that in the
vicinity of the transition points between the semi-Dirac phase and the trivial phase the system
is described by the Hamiltonian (6). At

�

�A/B
�

� = 2 sin kF the merging of the semi-Dirac points
occurs at (kx , ky) =: (±kF , 0), (0,±kF ). At

�

�A/B
�

� = 2
p

2 sin
�

kF/
p

2
�

the merging occurs at
(kx , ky) =: (±kF ,±kF )/

p
2. In the figures we have chosen kF = 5π/6.
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the field defined by ZSD(k). The pairs of the nodal points which are nucleated/annihilated
together carry opposite topological charges.

By projecting the Hamiltonian (14) to the basis determined by the eigenvectors at the nodal
point where ξM (k) = 0 and det[T (k)] = 0 we find that the generic low-energy theory for each
band can be expressed as

Heff(k) = ξM (k)σx + [∆(k)− |d(k)|]σy . (23)

Because [∆(k)− |d(k)|]∝ det2[T (k)], we can usually expand the Hamiltonian (23) around
the nodal point in a form described by the semi-Dirac Hamiltonian [Eq. (2)]. Here we have
used the polar coordinates qx = |k|− kF and qy = kF (ϕ−ϕm), where ϕ is the polar angle and
km = kF (cosϕm, sinϕm). Therefore, the nodal points discussed above are semi-Dirac points
and the corresponding phase in parameter space, where the semi-Dirac points are present, can
be called semi-Dirac phase.

The phase diagram for the model described by the Hamiltonian (10) with tunneling matrix
(13) is shown in Fig. 4(b). The semi-Dirac phase appears if the conditions given in Eq. (21)
are satisfied. Outside this region of parameters the system is in a trivial fully gapped phase.
The semi-Dirac points with opposite topological charges are nucleated/annihilated in a pair-
wise manner, so that in the vicinity of the transition points between the semi-Dirac phase
and the trivial phase the system is described by the Hamiltonian (6). At

�

�A/B
�

� = 2 sin kF
the merging of the semi-Dirac points occurs at (kx , ky) =: (±kF , 0), (0,±kF ), whereas at
�

�A/B
�

�= 2
p

2 sin
�

kF/
p

2
�

the merging occurs at (kx , ky) =: (±kF ,±kF )/
p

2.
As discussed in Sec. 1, the semi-Dirac points, described by the low-energy Hamiltonian

(2), are known to exist in different systems as critical points of a topological phase tran-
sition where two Dirac points meet and merge in the momentum space. In contrast to
these previous studies, the semi-Dirac points in the kind of superconductor-metal heterostruc-
tures are stable against small perturbations so that they exist within a full phase in the pa-
rameter space. The reason for this stability is that the induced order parameters satisfy
[∆(k) − |d(k)|] ∝ det2[T (k)] and this quantity determines one of the components of the
pseudomagnetic field hy(k) = ∆(k)− |d(k)| in the low-energy theory of the system (23). On
one hand, it follows from these relations that the induced singlet order parameter is always
larger or equal to the induced triplet order parameter |∆(k)| ≥ |d(k)|. This immediately re-
sults in no-go theorems as it prevents the possibility of topologically nontrivial fully gapped
triplet dominating superconducting phase in this kind of systems in agreement with previous
findings [68,69]. Moreover, it also prevents the possibility of a gapless nodal superconducting
phase with a Dirac Hamiltonian (5) around the nodal point because hy(k) does not change
sign at the nodal point.1 On the other hand, the fact that hy(k) ∝ det2[T (k)] means that
it is possible to define a generalized square root of hy(k) in such a way that it is a polyno-
mial function of the parameters of the Hamiltonian. This generalized square root is essentially
det[T (k)] which then enters into the definition of the topological charge for the semi-Dirac
point [Eq. (22)]. The generalized roots which are polynomial functions of the Hamiltonian
parameters are in general a resource of topological invariants because they can change sign
when the energy gap closes as a function of various parameters [70]. However, to our knowl-
edge the topological charge for semi-Dirac points [Eq. (22)] has not been previously proposed
in the literature. The significance of this result is that for the realization of the semi-Dirac
phase one only needs to find superconductor-metal heterostructures supporting topologically

1This statement is true as long as we are considering time-reversal invariant single-band singlet superconduc-
tors where ∆SC (k) does not change sign. In the case of more general singlet order parameters (e.g. d-wave
superconductors) Dirac points can appear. However, they are still constrained to exist within particular lines in the
momentum space where ∆SC (k) changes sign.
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nontrivial tunneling matrices T (k) such that det[T (k)] changes sign along the Fermi line of the
metal ξM (k) = 0.

In the following sections we identify more carefully the conditions under which the semi-
Dirac points are stable. We find that they are topologically stable in the presence of time-
reversal symmetry, two-fold rotational symmetry, inversion symmetries within the layers and
a single active band in the superconductor. If parameters of the model are changed within the
constrained parameter space where these conditions are satisfied the semi-Dirac points are
stable against small perturbations and they are always annihilated/nucleated in a pairwise
manner. However, we can also break the protection of the semi-Dirac points intentionally in a
controlled manner. Namely, each semi-Dirac point can become gapped or split into two Dirac
points if the metallic layer is tunnel coupled to two separate superconducting layers in a three-
layer-structure. In this case there are two distinct superconducting bands so that the system
is effectively coupled to a multiband superconductor. Alternatively, this kind of splitting can
occur if the metallic layer is replaced with a superconductor supporting an intrinsic supercon-
ducting order parameter. Moreover, arbitrary weak perturbations breaking this protection will
lead to these transitions demonstrating the nature of the semi-Dirac points as critical points of
topological phase transitions in the unconstrained parameter space.

We can demonstrate the different types of possible transitions in the unconstrained param-
eter space using a simple modification of our minimal model

H(k) =

�

ξM (k)σ0 ∆ind(k) + ∆̃(k)
∆†

ind(k) + ∆̃
†(k) −ξM (k)σ0

�

, (24)

where
∆̃(k) = i[∆̄(k)σ0 + d̄(k) · ~σ]σy (25)

is a perturbation in the order parameter, which can originate either from an intrinsic order
parameter or it can be an induced order parameter from another superconducting band or
another independent superconducting layer. In this section we choose a specific form for ∆̃(k)

∆̄(k) = −( t̃⊥/t⊥)
2∆(k), d̄(k) = ( t̃⊥/t⊥)

2d(k). (26)

In Sec. 6 we show that this can be realized in a three-layer heterostructure where the metallic
layer is tunnel coupled to two different superconductors with relative phase difference of the
order parameters ϕ = π. In this setup t̃⊥ describes the overall magnitude of the tunneling to
the second superconducting layer. However, in this section | t̃⊥/t⊥| can simply be considered
as a dimensionless parameter, and we can study the behavior of the system when it is varied.
Without loss of generality we assume | t̃⊥/t⊥|< 1.

The Hamiltonian (24) satisfies particle-hole symmetry

τxσ0HT (−k)τxσ0 = −H(k) (27)

and time-reversal symmetry

τ0σy HT (−k)τ0σy = H(k), (28)

where the Pauli matrices τi and σi act in the particle-hole and the "spin" (Kramer’s partners
in the normal state Hamiltonian of the metal) spaces, respectively. Together these two sym-
metries give rise to a chiral symmetry

CH(k)C = −H(k), C = τxσy . (29)

Therefore the Hamiltonian (24) can be block-off-diagonalized into a form

V †H(k)V =

�

0 D(k)
D†(k) 0

�

, (30)
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Figure 5: Phase diagram for the system described by the Hamiltonian (24) as a function of
the parameter | t̃⊥/t⊥| describing the breaking of the protection of the semi-Dirac points. The
parameters |A/B| = 1.5 and kF = 5π/6 are chosen so that for | t̃⊥/t⊥| = 0 the system is in
the semi-Dirac phase [Eq. (21)]. For | t̃⊥/t⊥| = 0 (within the constrained parameter space)
the system supports 8 semi-Dirac points carrying topological charges QSD = ±1 [Eq. (22)].
By increasing | t̃⊥/t⊥| (entering the unconstrained parameter space) each semi-Dirac point
splits into two Dirac points [Eq. (3)], so that for 0 < | t̃⊥/t⊥| < | t̃⊥/t⊥|c1 [Eq. (35)] the
system is in a Dirac phase supporting 16 Dirac points. Each Dirac point carries a topolog-
ical charge QD = ±1 [Eq. (34)]. At | t̃⊥/t⊥| = | t̃⊥/t⊥|c1 there occurs merging transitions
of Dirac points at (kx , ky) =: (±kF , 0), (0,±kF ) [Eq. (3)]. These Dirac points were nucle-
ated from two different semi-Dirac points and due to this merging transition the topological
mirror invariants W M ,0

x and W M ,0
y [Eq. (46)] change from zero to −1 and 1. Therefore, for

| t̃⊥/t⊥|c1 < | t̃⊥/t⊥|< | t̃⊥/t⊥|c2 [Eq. (47)] the system is in a topologically nontrivial mirror su-
perconducting phase, and additionally there exists also 8 Dirac points. At | t̃⊥/t⊥|= | t̃⊥/t⊥|c2
there occurs another merging of Dirac points at (kx , ky) =: (±kF ,±kF )/

p
2 [Eq. (3)]. For

| t̃⊥/t⊥|> | t̃⊥/t⊥|c2 the system is in a fully gapped topologically nontrivial phase in class DIII,
which is topologically equivalent to a helical p-wave superconductor.

where D(k) = ξM (k)σy +∆ind(k) + ∆̃(k) and V = (τ0σ0 + iτyσy)/
p

2. We find that the
conditions for the existence of nodal points in the quasiparticle spectrum are now

E(k) = 0 ⇐⇒ det[∆ind(k) + ∆̃(k)] = 0 and ξM (k) = 0. (31)

Using the explicit form of the order parameters (16) corresponding to the tunneling matrix
(13), the conditions for the existence of nodes can be written as

ξM (k) = 0 and

�

�

�

�

t̃⊥
t⊥

�

�

�

�

=

�

�|A| − 2|B|
q

sin2 kx + sin2 ky

�

�

|A|+ 2|B|
q

sin2 kx + sin2 ky

. (32)

In the following we choose |A/B| = 1.5 and kF = 5π/6 so that for | t̃⊥/t⊥| = 0 the system is
in the semi-Dirac phase [Eq. (21)]. This means that for | t̃⊥/t⊥| = 0 (within the constrained
parameter space) there exists 8 semi-Dirac points located at the momenta where conditions

ξM (k) = 0 and |A|= 2|B|
Ç

sin2 kx + sin2 ky (33)

14

https://scipost.org
https://scipost.org/SciPostPhys.3.6.041


SciPost Phys. 3, 041 (2017)

are satisfied (see Fig. 5). In the unconstrained parameter space the system is fine tuned to
criticality when | t̃⊥/t⊥|= 0. Therefore, by increasing | t̃⊥/t⊥|we find using Eqs. (32) that each
semi-Dirac point splits into two nodal points (Fig. 5). (With a different type of perturbation in
the unconstrained parameter space the semi-Dirac points can also become gapped as discussed
in sections 6 and 8.) After this splitting the dispersions around the nodal points obtained
from Eqs. (32) are linear in both directions i.e. they are described by a massless Dirac cone,2

and these splitting transitions where each semi-Dirac point splits into two Dirac points are
described by the Hamiltonian (3). The systems satisfying a chiral symmetry are known to
support gapless topological phases and topologically protected flat bands at the surfaces [35,
71–76]. Namely, it is possible to define a topological charge QD

n for each Dirac nodal point
k= kn in the quasiparticle spectrum

QD
n = −

i
2π

∮

kn

dk ·
1

Z(k)
∇kZ(k), (34)

where Z(k) = det[D(k)]/|det[D(k)]|, D(k) is the block off-diagonal part of the Hamiltonian in
Eq. (30), and the integral is calculated around a path enclosing the nodal point kn [8,73,75].
These topological charges are always integers, and from the viewpoint of topological defects
the nodal points can be considered as vortices in the momentum space with winding numbers
QD

n . According to the bulk-boundary correspondence of topological media, QD
n determine the

momentum space structure of the topologically protected flat bands at the surface. We discuss
this correspondence in detail in Sec. 4. Because each semi-Dirac point splits into two Dirac
points the system supports 16 Dirac points if

Dirac phase 0<

�

�

�

�

t̃⊥
t⊥

�

�

�

�

<

�

�

�

�

t̃⊥
t⊥

�

�

�

�

c1
≡
|A| − 2|B| sin kF

|A|+ 2|B| sin kF
. (35)

At | t̃⊥/t⊥| = | t̃⊥/t⊥|c1 there occurs merging transitions of Dirac points at
(kx , ky) =: (±kF , 0), (0,±kF ) [Eq. (3)]. These Dirac points were nucleated from two different
semi-Dirac points and this merging transition leads to a change of topological mirror invari-
ants. Namely, due to the fact that T (kx , ky) obeys mirror symmetries

σy T (kx , ky)σy = T (kx ,−ky),

σx T (kx , ky)σx = T (−kx , ky), (36)

the BdG Hamiltonian (24) obeys mirror symmetries

M†
x H(kx , ky)Mx = H(kx ,−ky), Mx = −iτ0σy ,

M†
y H(kx , ky)My = H(−kx , ky), My = −iτzσx . (37)

The mirror symmetry operators Mi (i = x , y) can be diagonalized with transformations

Ux =
1
p

2







0 −i 0 i
0 1 0 1
−i 0 i 0
1 0 1 0






, Uy =

1
p

2







0 1 0 −1
0 1 0 1
−1 0 1 0
1 0 1 0






. (38)

2In three dimensional semimetals the four-fold degenerate nodal points are called Dirac points and the two-
fold degenerate nodal points are called Weyl points. In the two dimensional case the terminology is not well
established: In some references both two- and four-fold degenerate nodal points are called Dirac points, whereas in
other references two-fold degenerate nodal points are called Weyl points. Depending on the choice of terminology
the two-fold degenerate Majorana nodal points in two dimensional superconductors can either be called Majorana-
Dirac points or Majorana-Weyl points. For brevity, we often call these nodal points just Dirac points.
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At the mirror lines ky = 0 and ky = π the y-component of k satisfies ky = −ky , and there-
fore the mirror symmetry Mx at these lines allows to block-diagonalize the Hamiltonian.
Similarly at the mirror lines kx = 0 and kx = π the mirror symmetry My allows to block-
diagonalize the Hamiltonian. Therefore the Hamiltonians at the mirror lines can be expressed
as [H0,π

x (kx) = H(kx , ky = {0,π}), H0,π
y (ky) = H(kx = {0,π}, ky)]

U†
x H0,π

x (kx)Ux =

�

H0,π
x ,+(kx) 0

0 H0,π
x ,−(kx)

�

(39)

and

U†
y H0,π

y (kx)Uy =

�

H0,π
y,+(kx) 0

0 H0,π
y,−(kx)

�

. (40)

Because the chiral symmetry operator C [Eq. (29)] commutes with the mirror symmetry oper-
ators Mx and My [Eqs. (37)] the transformations (38) also block-diagonalize the chiral sym-
metry operator

U†
x(y)CUx(y) =

�

Cx(y),+ 0
0 Cx(y),−

�

. (41)

Therefore, each block of the Hamiltonian now obeys a chiral symmetry

Cx(y),±H0,π
x(y),±(kx(y))Cx(y),± = −H0,π

x(y),±(kx(y)). (42)

In the formulation of a mirror invariant we can concentrate only on one of the blocks H0,π
x(y),+ in

each mirror line. Due to the presence of chiral symmetries Cx(y),+ we can block-off diagonalize
the Hamiltonians with the transformations

Ũ†
x H0,π

x ,+(kx)Ũx =

�

0 D0,π
x (kx)

[D0,π
x (kx)]† 0

�

,

Ũ†
y H0,π

y,+(ky)Ũy =

�

0 D0,π
y (ky)

[D0,π
y (ky)]† 0

�

, (43)

where

Ũx =
1
p

2

�

1 −1
1 1

�

, Ũy =
1
p

2

�

i −i
1 1

�

, (44)

and

D0,π
x (kx) =

�

ξ(kx , ky)− i
�

1−
�

� t̃⊥/t⊥
�

�

2�
∆(kx , ky)− i

�

1+
�

� t̃⊥/t⊥
�

�

2�
dy(kx , ky)

	�

�

ky=0,π

D0,π
y (ky) =

�

ξ(kx , ky)− i
�

1−
�

� t̃⊥/t⊥
�

�

2�
∆(kx , ky)− i

�

1+
�

� t̃⊥/t⊥
�

�

2�
dx(kx , ky)

	�

�

kx=0,π (45)

The four different topological mirror invariants W M ,{0,π}
x(y) for each mirror line can be defined

as

W M ,{0,π}
x(y) =

−i
2π

∫ π

−π
dkx(y)

1

Z0,π
x(y)(kx(y))

dZ0,π
x(y)(kx(y))

dkx(y)
,

Z0,π
x(y)(kx(y)) =

det[D0,π
x(y)(kx(y))]

|det[D0,π
x(y)(kx(y))]|

. (46)
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From these equations we find that the mirror invariants W M ,0
x and W M ,0

y change from zero to
−1 and 1, respectively, at | t̃⊥/t⊥|= | t̃⊥/t⊥|c1, so that the system is in a topologically nontrivial
mirror superconducting phase (TMS) [61–63] for

TMS

�

�

�

�

t̃⊥
t⊥

�

�

�

�

c1
<

�

�

�

�

t̃⊥
t⊥

�

�

�

�

<

�

�

�

�

t̃⊥
t⊥

�

�

�

�

c2
≡

2
p

2|B| sin
� kFp

2

�

− |A|

2
p

2|B| sin
� kFp

2

�

+ |A|
, (47)

where there exists additionally also 8 Dirac points. The Dirac points give rise to Majorana flat
bands at the edge of the system, where the momentum space structure depends on the direc-
tion of the edge in a similar way as discussed in Sec. 4. Due to the mirror superconductivity
there exists also helical Majorana edge modes if the direction of the edge is such that the edge
remains invariant in the mirror symmetry operation [61–63].

For | t̃⊥/t⊥| > | t̃⊥/t⊥|c2 the system is in a fully gapped topologically nontrivial phase in
class DIII, which is topologically equivalent to a helical p-wave superconductor [77]. It sup-
ports helical Majorana edge modes independently on the direction of the edge.

3 Model

The Hamiltonian for the system Ĥ = ĤI + Ĥt2g + ĤI ,t2g consists of the Hamiltonians ĤI and
Ĥt2g for the doped superconducting iridate and the thin layer of the t2g -ES, respectively, and
the Hamiltonian ĤI ,t2g describing the tunneling between them.

Sr2IrO4 is a layered material so that it can be described with a standard two-dimensional
single band Hubbard model on a square lattice where the spin is replaced by the pseudospin de-
gree of freedom [Eq. (1)]3 [20,21]. It supports a Mott insulator phase at half-filling [22–24],
and therefore according to the resonating valence bond theory of high-Tc superconductiv-
ity [78–81] one expect that the electron doped Sr2IrO4 will support a high-Tc d-wave super-
conducting phase where the usual spin-singlet Cooper pairs are now just replaced by pseu-
dospin singlets [21, 24, 25]. The BdG Hamiltonian for the doped superconducting Sr2IrO4 in
the Nambu-pseudospin basis Ψ†

k = ( f
†
k⇑, f †

k⇓, f−k⇑, f−k⇓) can then be written as

HI(k) =

�

ξI(k)σ0 i∆I(k)σy
−i∆I(k)σy −ξI(k)σ0

�

, (48)

where ξI(k) = −2t I(cos kx + cos ky)− 4t ′I cos kx cos ky − µI and ∆I(k) = ∆0(cos kx − cos ky)
describe the single particle dispersion and the momentum dependence of the superconducting
order parameter in the iridate layer, respectively. We assume that the tight-binding parameters
satisfy t ′I = 0.23t I [21], which produces Fermi surfaces with a similar shape as observed in
experiments [82]. The hopping t I is renormalized by the strong correlations and it depends on
the doping level. We assume that µI = 0.9t I , which corresponds to the electron doping cho-
sen close to the optimal doping for superconductivity, which according to Ref. [25] is around
20%. Based on the bare value of the hopping amplitude [21] and the crudest approximation
for the renormalization of the hopping amplitude [80], we estimate t I ∼ 0.05 eV. We assume
∆0 = 0.2t I , which is consistent with the experimentally observed d-wave gap [38] and theo-
retical estimates based on the resonating valence bond theory [80].

3We do not take into account the lattice distortion caused by the rotation of the oxygen octahedra around the
Iridium sites by ±11o. It is known that this kind of structural distortion can cause non-perturbative effects in
Sr2RhO4 because it couples the |x y〉 and |x2 − y2〉 bands, which both exist in the vicinity of Fermi level in this
material [40]. However, in Sr2IrO4 the |x2− y2〉 band does not exist in the vicinity of Fermi level and therefore we
expect that this structural distortion can be treated perturbatively, and it will not change our results qualitatively.
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For the t2g -ES we first consider the 4d TMOs Sr2RhO4 and Sr2RuO4 in their normal states.
In these systems the intraionic spin-orbit coupling is significantly smaller than in Sr2IrO4, and
as a consequence also the correlation effects are expected to be much weaker. While the
Sr2RhO4 is observed to be metallic down to the lowest experimentally accessible temperatures,
Sr2RuO4 supports an interesting superconducting phase at low temperatures, where the order
parameter is of multi-orbital nature and not yet fully understood [43–46]. These intrinsic
superconducting correlations can be neglected as a first approximation if the induced order
parameter from the Sr2IrO4 is much larger than the intrinsic order parameter of Sr2RuO4
or the temperature is much larger than the critical temperature of Sr2RuO4. Because the
critical temperature and superconducting order parameter are much larger for Sr2IrO4 than
for Sr2RuO4, there exists a large parameter regime where these conditions are satisfied. The
advantages of Sr2RuO4 in comparison to Sr2RhO4 are the very pure crystal structure with long
mean free path and the fact that in Sr2RhO4 a structural distortion causes mixing of |x y〉 and
|x2− y2〉 orbitals so that the |x y〉 band is completely below the fermi level [40,41]. Therefore,
in the following we mainly use the bulk tight-binding parameters for Sr2RuO4 although we
expect that our results are also qualitatively applicable to Sr2RhO4 especially if it is slightly
hole doped so that the |x y〉 band becomes active. Via epitaxial stabilization it is also possible to
realize thin films of Ba2RuO4 which are isostructural and isoelectronic to Sr2RuO4 [83], so that
this material is also a suitable candidate for metallic t2g -ES. Moreover, it is possible to control
the lattice constants and the electronic structures of Sr2RuO4 and Ba2RuO4 in a disorder-free
manner by growing thin films of these materials on lattice mismatched substrates [83].

The use of the bulk tight-binding parameters for Sr2RuO4 is a simplification because the
Fermi surfaces have a weak dependence on the out-of-plane momentum [84] and in thin layers
the γ band can be closer to a Lifshitz transition than in the bulk system [83]. However, these
effects and the number of atomic layers in the t2g -ES are not important for our qualitative
conclusions, because the semi-Dirac points are robust as long as the symmetries are present and
the tunneling matrices are topologically nontrivial as discussed in the previous section. The
modifications of the tight-binding parameters result in a renormalizion of the critical points
of phase transitions in the phase diagrams discussed below. Thus, the possibility to control
the tight-binding parameters for example by chemical doping, gates and strain engineering is
interesting because it may allow to drive the system through topological phase transitions in
a controlled way.

The Hamiltonian for the metallic t2g -ES in the basis
c†
k = (c†

kyz↑, c†
kyz↓, c†

kxz↑, c†
kxz↓, c†

kx y↑, c†
kx y↓) [here c†

kyzσ, c†
kxzσ and c†

kx yσ are the creation
operators for |yz〉, |zx〉 and |x y〉 bands, respectively] can be written as

Ĥt2g =
∑

k

c†
kh0(k)ck, (49)

where

h0(k) =





ξyz(k)σ0 ξD(k)σ0 +
iλ
2 σz − iλ

2 σy

ξD(k)σ0 −
iλ
2 σz ξxz(k)σ0 i λ2σx

iλ
2 σy −i λ2σx ξx y(k)σ0



 .

Here

ξyz/xz(k) = −2tL cos ky/x − 2tS cos kx/y −µ,

ξx y(k) = −2tL(cos kx + cos ky)− 4t ′L cos kx cos ky −∆E −µ

and
ξD(k) = −4tD sin kx sin ky .
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We assume the relative strengths of the tight-binding parameters from Ref. [45]. They can be
understood in the following way. The |x y〉 orbitals are in plane producing equivalent tight-
binding hopping parameters tL and t ′L = 0.4tL in all directions. The two other orbitals have
lobes both in plane and out of plane giving rise to one large tL and one small tS = 0.1tL
hopping elements. Additionally the |yz〉 and |xz〉 orbitals are hybridized by a diagonal hopping
tD = 0.1tL . Due to the layered structure the |x y〉 band is lowered in energy by ∆E = 0.2tL
with respect to the other bands. The chemical potential is chosen so that the bands have correct
fillings, and it is approximately µ= 1.1tL . By comparing the experimentally measured value of
the spin-orbit coupling to the width of the energy bands [42,43] we estimate that the strength
of the spin-orbit coupling in Sr2RuO4 is λ = 0.17tL . The Fermi surfaces for α, β and γ bands
obtained by diagonalizing the Hamiltonian (49) and using these tight-binding parameters are
shown in Fig. 1(b), and they are in good agreement with experimentally measured Fermi
surfaces in Sr2RuO4 [42]. The band width in Sr2RuO4 is significantly larger than the estimated
renormalized hopping amplitude in Sr2IrO4, so that we choose t I = 0.1tL . In the following
we will also consider a t2g -ES with various values of λ but if not otherwise stated we use the
value λ= 0.17tL .

We will also consider situations where the t2g -ES supports intrinsic superconductivity in
sections 7 and 8. When this kind of intrinsic order parameter is present the BdG Hamiltonian
for the t2g -ES in the Nambu space [Φ†

k = (c
†
k, ck)] becomes

Hsc
t2g =

�

h0(k) ∆t2g(k)
∆†

t2g(k) −hT
0 (−k)

�

, (50)

where the intrinsic order parameter ∆t2g(k) should be solved self-consistently taking into
account also the induced order parameter from the Sr2IrO4. We postpone the discussion of
the self-consistently solved intrinsic order parameter ∆t2g(k) to Section 7.

We now turn to the description of the tunneling Hamiltonian ĤI M when a heterostruc-
ture consisting of the Sr2IrO4 and t2g -ES is formed.4 This can be obtained by identifying the
tunneling paths between the layers allowed by the symmetries and projecting the Hamilto-
nian obtained this way to the pseudospin orbitals [Eq. (1)]. By taking into account only the
dominant tunneling paths we obtain after a lengthy calculation5

ĤI M =
∑

k,θ=yz,xz,x y

( f †
k⇑, f †

k⇓)T f ,θ (k)

�

ckθ↑
ckθ↓

�

+ h.c., (51)

where the tunneling matrices are

T f ,x y(k) =
At⊥p

3
σ0 +

2Bt⊥p
3
(σx sin ky −σy sin kx),

T f ,xz(k) =
2iBt⊥p

3
σ0 sin ky +

i t⊥p
3
σx ,

T f ,yz(k) =
2iBt⊥p

3
σ0 sin kx −

i t⊥p
3
σy . (52)

Here t⊥ describes the interlayer hopping parameter for a process where a tunneling occurs
between two orbitals directly on top of each other which have lobes out of plane.6 Therefore,

4We do not expect the interface effects to be dramatic because we consider materials with similar crystal struc-
tures. Nevertheless, when a heterostructure of two different materials is constructed the layers will always undergo
electronic reconstruction where electrons will be transferred from one layer to the other. As the lowest order ap-
proximation this will only result in renormalization of the tight-binding parameters, and small renormalization of
the parameters will not influence our results qualitatively.

5See the Appendices for more details.
6See footnote 5.
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it is expected to be the largest interlayer hopping amplitude. The dimensionless parameter A
describes the reduction of the tunneling amplitude when the tunneling occurs between two
orbitals which have lobes only in the plane and the dimensionless parameter B describes the
reduction when the tunneling occurs between two orbitals which are not directly on top of
each other but have lobes out of plane.7 Therefore we expect |A|, |B| < 1, but their signs and
relative magnitudes are not known. Due to the layered structure we expect that t⊥� tL , and
in the following we use t⊥ = 0.04tL . This tunneling Hamiltonian (51) is consistent with the
symmetries of the system.8

4 Topological properties of the superconducting Sr2IrO4

As discussed above Sr2IrO4 supports a d-wave superconducting phase so that the only dif-
ference to the cuprates is that the Cooper pairs are formed as pseudospin singlets, where
the pseudospin describes entangled orbital and spin degrees of freedom. This has no conse-
quences if Sr2IrO4 is isolated and therefore the topological properties of isolated Sr2IrO4 are
similar to the other d-wave superconductors studied earlier [71, 72]. In this section we will
briefly review these properties so that they can be compared to the topological properties of
the heterostructures in the following sections.

The Hamiltonian (48) satisfies particle-hole [Eq. (27)], time-reversal [Eq. (28)] and chiral
[Eq. (29)] symmetries, where the Pauli matrices τi and σi act in the particle-hole and the
pseudospin spaces, respectively. Because of the chiral symmetry, the Hamiltonian (48) can be
block-off-diagonalized into a form

V †HI(k)V =

�

0 DI(k)
D†

I (k) 0

�

, (53)

where DI(k) = [ξI(k)+ i∆I(k)]σy . It is easy to see that there exists nodes in the quasiparticle
spectrum if ξI(k) = 0 and ∆I(k) = 0. Because ∆I(k) = 0 along the lines at kx = ±ky ,
nodes are found at the four momenta kn =: (±k0,±k0) where also ξI(kn) = 0 [see Fig. 6(a)].
The low-energy theory around the node at k = kn consist of two copies of a massless Dirac
Hamiltonian on top of each other

H = (k− kn) ·
�

∇kξI(k)
�

�

k=kn
σx +∇k∆I(k)

�

�

k=kn
σy

�

, (54)

so that the velocity of the massless particle in the direction perpendicular to the Fermi line is
determined by ∇kξ(k)

�

�

k=kn
and along the Fermi line by ∇k∆(k)

�

�

k=kn
. The BdG Hamiltonian

(48) contains a particle-hole redundancy, which gives rise to a Majorana constraint. Therefore
in the description of the theory where the nodal points are four-fold degenerate the quasi-
particles should be considered as Majorana fermions. In the case of a singlet superconductor
with SU(2)-symmetry, such as Hamiltonian (48), it is possible to describe the quasiparticles
with usual fermion operators without the Majorana constraint and in this kind of description
the nodal points are just two-fold degenerate. However, the description with the Majorana
constraint is necessary when the system is tunnel coupled to t2g -ES, and therefore we will
consistently use the Majorana fermion basis everywhere.

The systems satisfying a chiral symmetry are known to support gapless topological phases
and topologically protected flat bands at the surfaces [35, 71–76]. To understand these flat
bands, we utilize the topological charges QD

n for each nodal point kn, which can be calculated

7See the Appendices for more details.
8See footnote 7.
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Figure 6: (a) Quasiparticle dispersion E(k) =
q

ξ2
I (k) +∆

2
I (k) for the Hamiltonian (48)

describing an isolated d-wave superconductor. There exists four nodes at momenta
kn =: (±k0,±k0) where ξI(kn) = 0. The topological charges for these Dirac nodes are
QD = ±2. (b) The edge state spectrum depends on the direction of the edge. We illustrate
the appearance of the flat bands at the edge for the specific direction shown in the figure. (c)
The period d along the edge is in general different from the lattice constant. Therefore the
momentum along the edge is restricted to the reduced Brillouin zone −π/d ≤ k̃x ≤ π/d. In
order to cover the full Brillouin zone we need to consider an extended Brillouin zone in the
perpendicular direction −πd ≤ k̃y ≤ πd. (d) The topological invariant WI(k̃x) can be defined
as a function of the momentum along the edge and it determines the number of Majorana zero
energy states at that momentum. The topological invariant WI(k̃x) changes only at the values
of k̃x corresponding to the projected nodal points kn, and the corresponding jumps in WI(k̃x)
are determined by the topological charges QD. (e) If the Sr2IrO4 layer is tunnel coupled to
a t2g -ES the four-fold degenerate Majorana nodal points are split into two-fold degenerate
nodes. Each of these nodes carries a topological charge QD = ±1. (f) The splitting of the
four-fold degenerate nodal points leads to the appearance of odd number of Majorana flat
bands at edge in certain intervals of k̃x . The value of t⊥ has been increased fourfold compared
to the value in the text to make the changes clearly visible. The tight-binding parameters
are described in the text. For the tunneling amplitudes we have used values A = −0.2 and
B = −0.62.
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as discussed in Sec. 2 [Eq. (34)]. The topological charges QD
n = ±2 obtained for the nodal

points of the d-wave superconductor are shown in Fig. 6(a).
According to the bulk-boundary correspondence of topological media, these topological

charges determine the momentum space structure of the topologically protected flat bands
at the surface. Namely, we can consider an arbitrary direction of the edge of the sample as
illustrated in Fig. 6(b). There exists a translational symmetry along the direction of the edge,
which means that the momentum k̃x along the edge is a good quantum number. The period of
the system d̃ along this direction is in general different from the lattice constant (normalized
to 1), and it depends on the chosen direction. Therefore, we can restrict k̃x to the reduced Bril-
louin zone |k̃x | ≤ π/d̃. Moreover, we can perform a coordinate transformation of Hamiltonian
(53) k= k(k̃x , k̃y) so that we can identify a matrix DI(k̃x , k̃y) and correspondingly ZI(k̃x , k̃y).
These quantities are periodic as a function of the momentum component perpendicular to the
edge k̃y with a period 2πd̃ defining an extended Brillouin zone in this direction |k̃y | ≤ πd̃ [see
Fig. 6(c)]. Therefore we can define a topological invariant (winding number)

WI(k̃x) = −
i

2π

∫ πd̃

−πd̃
dk̃y

1

ZI(k̃x , k̃y)

dZI(k̃x , k̃y)

dk̃y
, (55)

for all values of k̃x where there is no gap closing as a function of k̃y , and this invariant is
an integer which determines the number of Majorana zero energy edge states for each k̃x .
Moreover, WI(k̃x) can change only at the momenta k̃x where there is a gap closing as a function
of k̃y . Therefore, a fixed number of zero energy Majorana edge states exist in the interval of
k̃x in between the projected nodal points, forming Majorana flat bands at the edge. The jumps
in WI(k̃x) occurring at the edge momenta k̃x corresponding to the projected nodal points kn
are given by the topological charges QD

n . The number of flat bands WI(k̃x) as a function of k̃x
for an isolated d-wave superconductor and a particular direction of the edge is illustrated in
Fig. 6(d).

The linearly dispersing Majorana-Dirac points in the Sr2IrO4 layer discussed in this section
are present also when this system is coupled to the t2g -ES. The only possible effect of the tunnel
coupling to the t2g -ES is a small splitting of the four-fold degenerate Majorana nodal points
into two-fold degenerate nodes with linear dispersions around each of them. To illustrate how
this splitting occurs we first find that the low-energy effective Hamiltonian for the Sr2IrO4
layer in presence of the tunnel coupling to the t2g -ES can be expressed as

Heff
I (k) =

�

ξI(k)σ0 +δHI(k) i∆I(k)σy
−i∆I(k)σy −ξI(k)σ0 −δHT

I (−k)

�

, (56)

where δHI(k) is the self-energy induced by the coupling to the t2g -ES. In the vicinity of the
nodal points k= kn the self-energy can be evaluated at the zero energy, and it can be expressed
as

δHI(k) = −
∑

n

1
ξn(k)

T †
n (k)Tn(k), (57)

where Tn(k) are the tunneling matrices from the iridate to different bands (n = α,β ,γ)
in the t2g -ES and ξn(k) are the dispersions of these bands. Furthermore, by utiliz-
ing the time-reversal symmetry of the tunneling matrix, which in a suitable basis9 can
be written as σy T ∗n (−k)σy = Tn(k), and the inversion symmetry ξn(k) = ξn(−k), we

9In particular, the time-reversal symmetry will take this form when we fix the overall phase of the single particle
eigenstates of Hamiltonian (49) in such a way that the eigenvector components corresponding to the |x y〉 orbitals
are real and positive. We will use this gauge choice in all calculations presented in this manuscript. If λ= 0 some
of the eigenstates will have zero weight in the |x y〉 orbitals, but this situation can be considered as the limit λ→ 0.
See the Appendices for more details.
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find that the Hamiltonian (56) satisfies particle-hole, time-reversal and chiral symme-
tries. Therefore, it can be block-off-diagonalized, and the block-off-diagonal matrix is now
Deff

I (k) = [ξI(k)σ0+δHI(k)]σy+ i∆I(k)σy . This way we can find the nodal points for Hamil-
tonian (56) and compute the topological charges for them. We generically find that each of
the four-fold degenerate Majorana nodal points at kn with topological charge QD

n = ±2 splits
into two two-fold degenerate Majorana nodal points at knA and knB each carrying a topological
charge QD

nA = QD
nB = ±1. This leads to an appearance of odd number of Majorana flat bands

at the edge in the interval of edge momenta between the projected nodal points k̃x ,nA and
k̃x ,nB. The splitting of the nodal points and the Majorana flat band spectrum at the edge are
illustrated in Fig. 6(e) and (f) for particular values of the tunneling amplitudes.

In the following sections we do not concentrate on these nodes appearing in the Sr2IrO4
layer since they are present in all regimes of the parameters considered in this manuscript.

5 Induced order parameters in the t2g-ES and the appearance of
robust semi-Dirac points

The main goal of this section is to show that robust Majorana semi-Dirac points appear in the
heterostructure consisting of Sr2IrO4 tunnel coupled to a t2g -ES layer as a result of the mixture
of the induced singlet and triplet order parameters. We also generalize the results of Sec. 2 to
more complicated situations and we identify the conditions under which the semi-Dirac points
are stable in this kind of heterostructures. Moreover, we will compute the phase-diagrams to
demonstrate that the stable semi-Dirac points appear in a large portion of the parameter space
of the model.

The momentum dependent energy gap for the full model is shown in Fig. 7 for a specific
choice of the microscopic parameters illustrating the type of nodal points generically present in
the spectrum in one quarter of the Brillouin zone (the other quarters are related to each other
via the mirror symmetries). There exists 8 Dirac points (two for each band of the model) at the
diagonal lines where∆I(k) = 0. These Dirac points are present independently of the choice of
model parameters, and they are similar to the Dirac points discussed in Sec. 4. Therefore, in
the following we focus on the additional nodal points appearing outside these high-symmetry
lines, and we show that they are semi-Dirac points localized in the t2g -ES layer similarly as in
Sec. 2.

In order to study the nature of the nodal points localized in the t2g -ES layer we first notice
that if the t2g -ES, described by the Hamiltonian (49) is isolated, there exist both inversion
symmetry and time-reversal symmetry, and therefore each band is doubly degenerate with
dispersions ξn(k) = ξn(−k) (n = α,β ,γ), i.e. due to this combination of symmetries there
exists Kramer’s partners at each momentum separately. Thus, when we couple the t2g -ES to
the iridate, the low-energy BdG Hamiltonians for each band can be expressed as

Hn(k) =

�

ξn(k)σ0 +δHn(k) ∆ind,n(k)
∆†

ind,n(k) −ξn(k)σ0 −δHT
n (−k)

�

, (58)

where δHn(k) and ∆ind,n(k) are given by the normal and anomalous (induced superconduc-
tivity) part of the self-energy evaluated at the Fermi energy. They can be obtained from the
expressions

δHn(k) = hn0(k)σ0 + hn(k) · ~σ
∆ind,n(k) = i[∆n(k)σ0 + dn(k) · ~σ]σy (59)
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Figure 7: The momentum dependent energy gap E(q) for the full model. The semi-Dirac
nodes (green) and the Dirac nodes (red) are also shown. The splitting of the Dirac nodes
along kx = ky is too small to be visible in the plot. The tight-binding parameters are described
in the text. For the tunneling amplitudes we have used values A= 0.68 and B = 0.44.
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Figure 8: (a)-(d) Phase diagrams for the system as a function of the interlayer coupling
strengths A and B for different spin orbit coupling strengths λ=: 0, 0.06tL , 0.12tL , 0.17tL , re-
spectively. Each phase is characterized by three vectors QSD

n (n= α,β ,γ) labeling the charges
of the semi-Dirac nodes as illustrated in (e). The semi-Dirac points shown in (e) are realised
for λ = 0.17tL and A= −0.68 and B = −0.34. The tight-binding parameters are described in
the text.

where

hn0(k)σ0 + hn(k) · ~σ = −
ξI(k)

ξ2
I (k) +∆

2
I (k)

Tn(k)T
†
n (k)

∆n(k)σ0 + dn(k) · ~σ =
∆I(k)

ξ2
I (k) +∆

2
I (k)

Tn(k)T
†
n (k). (60)
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Here hn0(k) and hn(k) describe the renormalization of the dispersion and the induced spin-
orbit coupling in the t2g -ES due to the coupling to the iridate,∆n(k) and dn(k) are the induced
singlet and triplet superconducting order parameters, and Tn(k) are the tunneling matrices
from the iridate to different bands (n= α,β ,γ) in the t2g -ES.

The semi-Dirac nodes outside the high-symmetry lines appear if the conditions ξn(k) = 0
and det[T (k)] = 0 are satisfied, and they can be understood in the same way as in Sec. 2.
Namely, the tunneling matrices Tn(k) satisfy the time-reversal (11) and two-fold rotational
(12) symmetries so that det[Tn(k)] ∈ R. Therefore, the semi-Dirac points carry topologi-
cal charges QSD = ±1 [Eq. (22)], they are robust against small perturbations, and if one
considers large perturbations semi-Dirac points with opposite topological charges are always
nucleated/annihilated in a pairwise manner. The low-energy theory can be expressed as

Heff
n (k) = hx(k)σx + hy(k)σy ,

hx(k) = ξn(k) + hn0(k)− sgn[∆n(k)]
hn(k) · dn(k)
|dn(k)|

= ξn(k)−
ξI(k)

ξ2
I (k) +∆

2
I (k)

det2[Tn(k)]
(|T11(k)|+ |T12(k)|)2

,

hy(k) =∆n(k)− sgn[∆n(k)]|dn(k)|

=
∆I(k)

ξ2
I (k) +∆

2
I (k)

det2[Tn(k)]
(|T11(k)|+ |T12(k)|)2

. (61)

Therefore, we can expand the Hamiltonian (61) around the semi-Dirac points as

HsD =
�

ħhvqx +C2(C qx +Dqy)
2
�

σx +C1(C qx +Dqy)
2σy . (62)

Here we have used a curvilinear coordinate system, where ξ(qx , qy) = ħhvqx and qy is the
deviation from the nodal point along the constant ξ(k) curves, so that ξ(qx , qy) is independent
of qy . Therefore, these nodal points generically are described by a linear dispersion in the qx -
direction and a parabolic dispersion along qy i.e. they realize the semi-Dirac points described
by Eq. (2). (We have included also an additional term proportional to C2, but this term is
unimportant for qualitative considerations.)

In contrast to the simple model considered in Sec. 2 there can now be a varying number
of semi-Dirac points present in the different bands. This gives rise to a rich phase diagram
as a function of the tunneling amplitudes and spin-orbit coupling strength as shown in Fig. 8.
Similar phase diagrams are expected as a function of arbitrary parameters of the model. There-
fore, we expect that it is possible to tune the system through the phase transitions with the
help of externally controllable parameters such as gate voltages and strain [85]. At the phase
transitions between topologically distinct phases semi-Dirac points with opposite topological
charges are nucleated/annihilated in pairwise manner similarly as discussed in Sec. 2.

In this section we have found semi-Dirac points, which are topologically stable in the pres-
ence of time-reversal symmetry, two-fold rotational symmetry, inversion symmetries within
the layers, metallic t2g -ES and a single active band in the superconductor. In the following
sections we consider two possible ways for breaking the protection of the semi-Dirac points
in a controlled manner. First we show that each semi-Dirac point can become gapped or split
into two Dirac points if the metallic layer is tunnel coupled to two separate superconducting
layers in a three-layer-structure. In this case there are two distinct superconducting bands so
that the system is effectively coupled to a multiband superconductor. Secondly, we show that
these transitions can occur also if the metallic layer is replaced with a superconductor support-
ing an intrinsic superconducting order parameter. These transitions demonstrate the nature
of the semi-Dirac points as critical points of topological phase transitions in the unconstrained
parameter space.
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Figure 9: Phase diagram for the three layer system as a function of the tunneling strength
t̃⊥ to the upper Sr2IrO4 for the phase difference between the superconductors ϕ = π. As t̃⊥
is increased the system goes through several phase transitions as Dirac nodes are nucleated
and annihilated close to the Fermi lines of the α, β and γ bands. In the last transition shown
with increasing t̃⊥ the system becomes a topological mirror superconductor with W M ,0

x = 1
and W M ,0

y = 1 as pairs of Dirac nodes on the Fermi line of the γ band annihilate at the kx = 0
and ky = 0 lines. The tight-binding parameters are described in the text. For the tunneling
amplitudes we have used the values Ã= A= 0.68 and B̃ = B = 0.44.

6 Topological phase diagram for the three layer heterostructure

We now consider a three-layer-structure, where there are superconducting Sr2IrO4 layers both
below and above the t2g -ES layer. We assume that the lower superconducting Sr2IrO4 layer
has the order parameter∆I(k) and it is tunnel coupled to the t2g -ES via the tunneling matrices
(52). Moreover, we assume that the upper superconducting Sr2IrO4 layer is identical to the
lower one except that we allow the possibility of applying a phase-bias between the supercon-
ductors so that the order parameter in the upper layer is ∆I(k)eiϕ. In order to preserve the
time-reversal symmetry we only consider the two possibilities ϕ = 0,π. Due to the nature of
the orbitals the tunneling matrices between the upper layer and the t2g -ES layer can be written
as the following9

T̃ f ,x y(k) =
Ãt̃⊥p

3
σ0 −

2B̃ t̃⊥p
3
(σx sin ky −σy sin kx),

T̃ f ,xz(k) = −
2iB̃ t̃⊥p

3
σ0 sin ky +

i t̃⊥p
3
σx ,

T̃ f ,yz(k) = −
2iB̃ t̃⊥p

3
σ0 sin kx −

i t̃⊥p
3
σy . (63)

If the two interfaces are equivalent Ã= A, B̃ = B and t̃⊥ = t⊥, the system obeys an inversion
symmetry.

We assume that Ã = A, B̃ = B and consider t̃⊥ as a parameter which can be controlled
with the help of a tunnel barrier. (We have checked that introducing small asymmetries Ã 6= A
and B̃ 6= B does not change the results qualitatively.) Under these conditions we find that
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if ϕ = π the two induced order parameters satisfy the relations (26), whereas the signs in
these relations are changed for ϕ = 0. As a result, we find that for ϕ = 0 the introduction of
t̃⊥ 6= 0 always leads to an opening of a gap at the semi-Dirac points, and for ϕ = π we gener-
ically obtain similar splitting transitions and phase diagrams as a function of t̃⊥ as discussed
in Sec. 2. The only difference is that splitting transitions can now occur in all three bands
(α,β ,γ) leading to much richer phase diagrams. A phase diagram for particular values of the
tunneling amplitudes as a function of t̃⊥ is shown in Fig. 9 demonstrating the appearance of
different types of Dirac phases and a topologically nontrivial mirror superconducting phase.
We point out that the fully gapped topologically nontrivial phase cannot be realized in this
system because nodal points always exist at the lines kx = ±ky due to the d-wave nature of
the order parameter ∆I(k) in Sr2IrO4.

7 Intrinsic order parameter in Sr2RuO4 in the presence of induced
superconductivity from Sr2IrO4

The superconductivity in Sr2RuO4 has been studied extensively [3], because Sr2RuO4 is of-
ten considered to be a candidate material for supporting chiral p-wave superconductivity.
However, in reality the order parameter is of multi-orbital nature and not yet fully under-
stood [43–46], and Sr2RuO4 is likely to be characterized by a subtle competition between
different phases. The important consequence of this is that there exists many nearly degener-
ate solutions for the superconducting order parameter making the system sensitive to all kinds
of perturbations. In our system, the proximity induced superconducting order parameter acts
as a strong perturbation causing a Josephson coupling between order parameters in Sr2IrO4
and Sr2RuO4. Therefore, we may expect that this coupling selects a particular order parame-
ter in Sr2RuO4, which obeys the same symmetries as the proximity induced order parameter.
Below we demonstrate that this is indeed the case by utilizing a similar approach as used in
Ref. [35]. In that reference it was studied how a Zeeman field can lead to a reconstruction
of the order parameter when several different superconducting order parameters are nearly
degenerate, which is practically always the case in triplet superconductors. Here, the physics
is very similar but the reconstruction just appears because of the Josephson coupling to the
superconducting order parameter in Sr2IrO4.

The intrinsic singlet and triplet order parameters in Sr2RuO4, ∆nR(k) and dnR(k) (for
each band n = α,β ,γ), can be expressed with the help of basis functions ∆(n)m (k), d(n)m (k)
(m= 1,2, 3...) as

∆nR(k) =
∑

m

ψnm∆
(n)
m (k) (64)

and
dnR(k) =

∑

m

ηnmd(n)m (k), (65)

where ψnm and ηnm are complex coefficients. We express them as ψnm = ψTnm + iψNnm
(ψTnm,ψNnm ∈ R) and ηnm = ηTnm + iηNnm (ηTnm,ηNnm ∈ R). The superscripts refer to the parts of
the order parameter obeying T and not obeying N time-reversal symmetry. The basis func-
tions ∆(n)m (k), d(n)m (k) can be obtained by projecting the most general singlet and triplet order
parameters into the irreducible representations of the symmetry group G of the model [2,86].
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They can be written as

∆
(n)
1 (k) = a(n)11 (cos kx − cos ky) + a(n)12 [cos(2kx )− cos(2ky)] + a(n)13 [cos(2kx ) cos ky − cos(2ky) cos kx] + ..,

∆
(n)
2 (k) = a(n)21 + .., ∆(n)3 (k) = a(n)31 sin kx sin ky + .., ∆(n)4 (k) = a(n)41 sin kx sin ky(cos kx − cos ky) + ..,

d(n)1 (k) = b(n)11 (ex sin ky + ey sin kx ) + b(n)12 (cos kx − cos ky)(ex sin ky − ey sin kx ) + ..,

d(n)2 (k) = b(n)21 (ex sin ky − ey sin kx ) + ..,d(n)3 (k) = b(n)31 (ex sin kx − ey sin ky) + ..,

d(n)4 (k) = b(n)41 (ex sin kx + ey sin ky) + .., d(n)5A (k) = b(n)5A1ez sin kx + .., d(n)5B (k) = b(n)5B1ez sin ky + .. . (66)

These basis functions are a natural starting point for the development of the free en-
ergy expansion because the linearized gap equation is an eigenvalue problem, where the
eigenvalue determines the critical transition temperature, and therefore the possible super-
conducting order parameters corresponding to the largest transition temperature must form
a basis of an irreducible representation of the symmetry group of the model [2]. Each
of these basis functions contains in general an infinite number of terms and transforms in
a specific way in the symmetry transformations gk (g ∈ G). For singlet basis functions
there exists four different possibilites dinstinguished by the different signs in the transfor-
mations ∆(n)m (−kx , ky) = ±∆(n)m (kx , ky) and ∆(n)m (ky , kx) = ±∆(n)m (kx , ky). All of these irre-
ducible representations are one-dimensional. For the triplet order parameters there exists
similarly four one-dimensional irreducible representations where the basis functions are dis-
tinguished by the different signs in the transformations d(n)m,x(−kx , ky) = ±d(n)m,x(kx , ky) and

d(n)m,x(ky , kx) = ±d(n)m,y(kx , ky). Additionally, there exists one two-dimensional irreducible rep-

resentation where the basis functions d(n)5A (k) and d(n)5B (k) are parallel to ez and transform as

d(n)5A,z(−kx , ky) = −d(n)5A,z(kx , ky) and d(n)5B,z(kx ,−ky) = −d(n)5B,z(kx , ky). For the singlet basis func-
tions the full expressions consistent with these transformations are given in Ref. [86] and for
the triplet basis functions they can be obtained in a similar manner. The coefficients a(n)mk ∈ R
and b(n)mk ∈ R are in principle variational parameters (for each band n independently of the
others), and they should be chosen so that the free energy is minimized. Therefore, we have
included a superscript (n) in all basis functions indicating that these coefficients can be differ-
ent in each band n= α,β ,γ. As explained below the exact values of these coefficients are not
important for our qualitative results, and therefore in the end we will select the relevant coef-
ficients phenomenologically for each band so that the overlap between intrinsic and induced
order parameters is maximized.

In the discussion above, we have assumed that the order parameter for each band can be
solved independently of the other bands, and we have neglected the possibility of interband
order parameters. However, due to similar arguments as presented below, we expect that the
intrinsic interband order parameters do not spontaneously break any of the symmetries of the
model, and therefore we do not expect them to change our results qualitatively.

The intrinsic order parameter can then be obtained by minimizing the free energy of the
system with respect to ψnm and ηnm. It is possible to show that due to symmetry reasons the
order parameter pairs (ψnm,ψnm′), (ηnm,ηnm′) and (ψnm,ηnm′) will couple to each other in
the quadratic order in the expansion of the free energy only if m = m′.10 We assume that
the temperature is above the critical temperature of the superconducting instability of any of
the eigenmodes obtained by diagonalizing the quadratic terms in the expansion of the free
energy. There exists a large range of temperatures where this assumption is valid because the
critical temperature in Sr2RuO4 is expected to be much lower than the critical temperature in
Sr2IrO4. Furthermore, this assumption is made in order to simplify the technical calculations
and to make them analytically tractable, but in fact we expect that the same intrinsic super-
conducting order parameter is realized also at low temperatures because it is always favored

10See the Appendices for more details.
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by the Josephson coupling, and in the absence of Josephson coupling the different options
for the order parameter are nearly degenerate. With this assumption the only nonzero order
parameters are the ones which obey the same symmetries as the proximity induced order pa-
rameters.11 Therefore, ψnm = 0 and ηnm = 0 for m ≥ 2. Morever, the proximity induced
order parameter couples only to the part of the ψn1 and ηn1 obeying time-reversal symmetry,
so that also ψNn1 = 0 and ηNn1 = 0.12 Therefore the free energy Fn corresponding to each band
n= α,β ,γ can be written as the following13

Fn = Fn0 − rns
1 ψ

T
n1 − rnt

1 η
T
n1 +mns|ψTn1|

2 +mnt |ηTn1|
2 −κnT

1 ψTn1η
T
n1, (67)

where Fn0 is a constant, rns
1 and rnt

1 arise due to the Josephson coupling, mns and mnt are the
Ginzburg-Landau coefficients for singlet and triplet order parameters (renormalized due to the
presence of induced order parameter), and κnT

1 is the coupling between the singlet and triplet
order parameters which appears only because of the presence of the induced order parameter.
By minimizing the free energy we obtain

ψTn1 =
κnT

1 rnt
1 + 2mnt rns

1

4mnsmnt − |κnT
1 |2

(68)

and

ηTn1 =
κnT

1 rns
1 + 2mnsrnt

1

4mnsmnt − |κnT
1 |2

. (69)

Because the magnitudes of the order parameters depend only on the ratios of the Ginzburg-

Landau coefficients, we expect that we can roughly estimate them with the following Fermi

surface integrals14

rns
1 = 2

∫

FS
dk
�

an1(k)∆n(k) + an2(k)|dn(k)|
�

∆
(n)
1 (k), rnt

1 = 2

∫

FS
dk
�

an1(k)|dn(k)|+ an2(k)∆n(k)
�d(n)1 (k) · dn(k)

|dn(k)|
,

mns =

∫

FS
dk
� 1

4kB Tcs
− an1(k)− 4bn1(k)

�

∆
(n)
1 (k)

2, κnT
1 = 2

∫

FS
dk
�

an2(k) + 4bn2(k)
�

∆
(n)
1 (k)

d(n)1 (k) · dn(k)

|dn(k)|
,

mnt =

∫

FS
dk
§�

1
4kB Tc t

− an1(k)− an2(k)
∆2

n(k) + |hn(k)|2

hn0(k)
hn(k)·dn(k)
|dn(k)|

+∆n(k)|dn(k)|

�

|d(n)1 (k)|
2

−
�

4bn1(k)− an2(k)
∆2

n(k) + |hn(k)|2

hn0(k)
hn(k)·dn(k)
|dn(k)|

+∆n(k)|dn(k)|

� [d(n)1 (k) · dn(k)]2

|dn(k)|2

ª

,

an1(k) = an+(k) + an−(k), bn1(k) = bn+(k)
�

∆n(k) + |dn(k)|
�2
+ bn−(k)

�

∆n(k)− |dn(k)|
�2

,

an2(k) = an+(k)− an−(k), bn2(k) = bn+(k)
�

∆n(k) + |dn(k)|
�2 − bn−(k)

�

∆n(k)− |dn(k)|
�2

,

an±(k) =
tanh

�

β |E0
n±(k)|/2

�

4|E0
n±(k)|

, bn±(k) =
β |E0

n±(k)| − 2 tanh
�

β |E0
n±(k)|/2

�

− β |E0
n±(k)| tanh2

�

β |E0
n±(k)|/2

�

32|E0
n±(k)|3

,

|E0
n±(k)|=

√

√

√

�

hn0(k)±
hn(k) · dn(k)
|dn(k)|

�2

+
�

∆n(k)± |dn(k)|
�2

. (70)

Here the subscript FS indicates that the integrals are computed over the Fermi surfaces ξn(k) = 0
of each band n (n = α,β ,γ), Tcs and Tc t are the native critical temperatures of singlet and
triplet superconductivity in Sr2RuO4 (for simplicity we assume that they are independent on
the band index n but this is not essential for our qualitative results), E0

n±(k) are the quasi-
particle energies at the Fermi surfaces, and hn0(k), hn(k) and ∆n(k), dn(k) are the normal

11See the Appendices for more details.
12See footnote 11.
13See footnote 11.
14See footnote 11.
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and superconducting parts of the self-energy induced by the Sr2IrO4 to the different bands
discussed in Sec. 5. In order to be able to compute the coefficients ψTn1 and ηTn1, we need to

fix also the coefficients a(n)1k and b(n)1k in the expressions of ∆(n)1 (k) and d(n)1 (k) for each band
n = α,β ,γ. In principle they should be fixed so that the free energy is minimized. Thus, we
expect that the momentum dependence of∆(n)1 (k) and d(n)1 (k) in each band n is determined by
the competition between the type of order parameter favoured by the intrinsic interactions and
the type of order parameter which has maximum overlap with the induced order parameter.
Since the full interacting model is not available, we cannot use these coefficients as variational
parameters but we have to fix them phenomenologically. Therefore, we will fix them so that
the overlap with the induced order parameter is maximized. Since the singlet [triplet] order
parameters∆(n)1 (k) and∆n(k) [d

(n)
1 (k) and dn(k)] transform in the same way in the symmetry

transformations gk (g ∈ G), we can simply choose

∆
(n)
1 (k) =

∆n(k)
max{|∆n(k)|}

, d(n)1 (k) =
dn(k)

max{|dn(k)|}
, (71)

where we have normalized the basis functions by dividing the induced order parameters∆n(k)
and dn(k) with their maximum values at the Fermi surfaces max{|∆n(k)|} and max{|dn(k)|},
respectively. We point out that the normalization of the basis functions can be chosen arbitrar-
ily because it will be compensated in the values of ψTn1 and ηTn1 calculated from Eqs. (68) and
(69). The advantage of our convention is that the parameters ψTn1 and ηTn1 directly describe
the relevant energy scales of the intrinsic singlet and triplet order parameters. We also stress
that the exact expressions for the basis functions are not important as long as they will have
sufficiently large overlap with the induced order parameters.

We point out that although the absolute values of the Ginzburg-Landau coefficients are
incorrect due to the fact that we have computed the integrals only over the fermi surface, we
expect that their ratios will be approximately correct in the vicinity of the critical temperatures.
For example in the case of the standard BCS superconductivity using a free energy calculated
around the Fermi surface gives rise to a reasonably good agreement with the results obtained
with the full free energy if the temperature is reasonably close to the critical temperature.
Therefore, we expect that for our qualitative analysis (see below), where the exact quantitative
values of ψTn1 and ηTn1 are unimportant, this approach should be sufficient.

8 Topological phase diagram for the Sr2RuO4/Sr2IrO4 heterostruc-
ture

We can now follow a similar approach as used above to study the phase diagram of the
Sr2RuO4/Sr2IrO4 heterostructure. The basic idea is that once the temperature is lowered so
that it approaches the critical temperature of Sr2RuO4 an intrinsic order parameter appears in
the Sr2RuO4 layer breaking the protection of the semi-Dirac points. Therefore, this intrinsic
order parameter is expected to cause an opening of a gap at the semi-Dirac point or a splitting
transition similar to the ones studied in sections 2 and 6 depending on the nature of the in-
trinsic order parameter. We compute the intrinsic order parameter using the Ginzburg-Landau
theory derived in Sec. 7. Since this theory is valid only at finite temperatures we have to fix
the temperature so that T > Tcs, Tc t . In order to study the more relevant T → 0 limit we
would need to specify the full microscopic theory. However, we emphasize that the nature of
the order parameter is not expected to change dramatically as one lowers the temperature.
Therefore the intrinsic order parameter obtained at the finite temperature is representative
for all temperatures and the phase diagram which we obtain using this order parameter is ex-
pected to qualitatively represent the phase diagram at T = 0 limit. Due to the approximations
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Figure 10: Phase diagram for the two layer system in the presence of intrinsic order param-
eters in the t2g -ES as a function of Tcs/Tc t . The tight-binding parameters are described in
the text and the tunneling amplitudes are chosen to be A= B = −0.7, so that in the absence
of intrinsic order parameters the system supports semi-Dirac points in α and γ bands. For
0.035 < Tcs/Tc t < 0.085 the system supports a Dirac phase, where each semi-Dirac point has
splitted into two Dirac points. For Tcs� Tc t (the leftmost phase) the system supports topolog-
ically nontrivial mirror superconductivity with W M ,0

x = 1 and W M ,0
y = 1. For Tcs/Tc t > 0.085

the semi-Dirac point in the γ band becomes gapped but Dirac points still exist in the α band.
If Tcs/Tc t would be further increased also the Dirac points shown in the α band would even-
tually become gapped. Because the Ginzburg-Landau theory is valid only for T > Tcs, Tc t we
have computed the intrinsic order parameters at finite temperature T . However, we expect
that the nature of the intrinsic order parameters does not change dramatically as a function
of temperature. Therefore, we expect that the phase diagram will stay qualitatively similar if
the intrinsic order parameter is calculated in the limit T → 0, but the locations of the phase
boundaries will change quantitatively. In the calculation of the intrinsic order parameter the
temperature is chosen to be kB T = 5 ·10−4 tL and the triplet critical temperature Tc t = 0.95T .

used in the derivation of the Ginzburg-Landau theory the predictions concerning the intrinsic
order parameter are not expected to be quantitatively correct anyway.

On the level of the approximations discussed above the phase diagram of the
Sr2RuO4/Sr2IrO4 heterostructure therefore depends only on a single parameter Tcs/Tc t in ad-
dition to the parameters of the non-interacting model. We have extensively studied the phase
diagrams as a function Tcs/Tc t by fixing the other parameters to different values. This way
we generically find that if the triplet instability is the dominating one Tc t � Tcs we find split-
ting transitions of semi-Dirac points, whereas for dominating singlet instability Tcs � Tc t the
semi-Dirac points become generically gapped by lowering the temperature. Additionally, if
Tc t � Tcs it is possible to find situations where additional merging transitions lead to an ap-
pearance of topologically nontrivial mirror superconductivity similarly as discussed in sections
2 and 6. An example of a phase diagram as a function of Tcs/Tc t demonstrating these different
possibilities is shown in Fig. 10 for a particular choice of other parameters.
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9 Summary and discussion

In the absence of constraints the semi-Dirac point can always be considered as a critical point
of a topological phase transition where two Dirac points meet and merge in the momentum
space. However, we have found that in a specific type of superconductor-metal heterostruc-
tures there naturally exists constraints which guarantee the topological stability of the semi-
Dirac points. Furthermore, we have proposed that this kind of stable semi-Dirac phases can be
realized if one of the layers in the heterostructure supports a large intraionic spin-orbit cou-
pling. These systems can also support topologically distinct semi-Dirac phases with varying
number of semi-Dirac points in the system. Therefore, it may be possible also to experimen-
tally observe merging transitions of semi-Dirac points in these systems. Finally, we have shown
that the protection of the semi-Dirac points can be broken in a controllable manner in a three-
layer heterostructure and alternatively the protection can also become intrinsically broken if
the metallic layer undergoes a transition to a superconducting state supporting an intrinsic or-
der parameter. In the unconstrained parameter space where the protection of the semi-Dirac
points is broken, these systems can support topologically distinct phases with various number
of Dirac points in the different bands. The merging transition of Dirac points at the mirror
lines can also lead to appearance of a topologically nontrivial mirror superconducting phase.
If the superconducting layers support a fully gapped superconducting phase, it is possible also
to obtain fully gapped topologically nontrivial phases in these heterostructures.

There are various experimental signatures of the topologically distinct phases and phase
transitions discussed in this manuscript. The existence of semi-Dirac points and the various
merging transitions shows up for example in the density of states of the system. In particular
the density of states D(E)∝

p
E in the presence of semi-Dirac points whereas the Dirac points

lead to D(E)∝ E. The density of states shows up in thermodynamic observables such as heat
capacity, and it can also be studied with the help of tunneling voltage-current characteristics
and ARPES. The different topological phases can also be probed with the help of surface states.
In particular, the Dirac points give rise to Majorana flat bands at the edge and the topologically
nontrivial mirror superconducting phases support helical Majorana edge modes.

There are also interesting directions for future research. The splitting-gapping transitions
appearing in the three layer structure can be induced dynamically by applying a voltage be-
tween the superconductors. We expect that this will lead to interesting signatures in the ac
Josephson effect of this system. On the other hand, the fact that the variation of the different
parameters of the model only moves the semi-Dirac points in the momentum space allows for
a possibility to design artificial gauge fields similarly as in the case of Weyl points [4]. In this
manuscript we have studied clean systems. However, we point out that the effects of disor-
der may be different in the system with protected semi-Dirac points in comparison to those
appearing at the critical points of the merging transitions [87,88]. From the viewpoint of phe-
nomenology we expect that the systems supporting semi-Dirac points will also share common
features also with their three dimensional analogues. A three dimensional analog of the semi-
Dirac dispersion (masless relativistic particle in one direction and nonrelativistic dispersion in
the other two directions) can take place in double Majorana-Weyl superconductors [89] and
double Weyl semimetals [90, 91]. Furthermore, they can be stable in condensed matter sys-
tems because of the symmetries of the system [91]. The existence of such kind of fermions has
been speculated also in the particle physics context based on the assumption that special and
general relativity are emergent properties of the quantum vacuum and the Lorentz invariance
may be violated at very low energy [89]. Another 3D analog (massless relativistic particle in
two directions and nonrelativistic parabolic dispersion in the third direction) is the merging
point of two Weyl points with opposite chiralities [92–94].
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A Detailed description of the symmetries of the model

The symmetries of the system put strong constraints on the Hamiltonian. We will here con-
sider the invariance of the system under mirroring about the x-axis, Mx : (x , y)→ (x ,−y),
mirroring about the y-axis, My : (x , y) → (−x , y), 90◦ rotation about the z-axis,
R : (x , y)→ (y,−x), and time reversal, T .

In the basis Ci,k = (cyz,i,k,↑ cyz,i,k,↓ cxz,i,k,↑ cxz,i,k,↓ cx y,i,k,↑ cx y,i,k,↓)T , where i is a layer index
(i = I for iridate and i = M for t2g electron system), an operator bO in the Hamiltonian can be
expressed in terms of a matrix O as

bO =
∑

k

C†
i,kOi j(k)C j,k. (72)

Invariance of the Hamiltonian underMx ,My , Rx and T means that

Oi j(kx , ky) = MxOi j(kx ,−ky)M
†
x ,

Oi j(kx , ky) = MyOi j(−kx , ky)M
†
y ,

Oi j(kx , ky) = ROi j(ky ,−kx)R
†,

Oi j(kx , ky) = ΘO∗i j(−kx ,−ky)Θ
†, (73)

respectively, where

Mx =





−iσy 0 0
0 iσy 0
0 0 −iσy



 , (74)

My =





iσx 0 0
0 −iσx 0
0 0 −iσx



 , (75)

R=





0 e−iπσz/4 0
−e−iπσz/4 0 0

0 0 −e−iπσz/4



 , (76)

Θ =





iσy 0 0
0 iσy 0
0 0 iσy



 . (77)

A tunneling Hamiltonian between all states in the iridate layer and the t2g metal can be
expressed as

ÒHI M =
∑

k

C̃†
I ,kTI M (k)CM ,k + h.c., (78)

where C̃I ,k ≡ ( fk,⇑ fk,⇓ gk,⇑ gk,⇓ hk,⇑ hk,⇓)T = USOCI ,k. Here

USO =







ip
3
σy − ip

3
σx

1p
3
σ0

ip
2
σz

1p
2
σ0 0

ip
6
σy − ip

6
σx −

q

2
3σ0






(79)
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diagonalizes the atomic spin-orbit coupling term in the Hamiltonian. Because the atomic spin-
orbit coupling in the iridate layer dominates all other terms, f , g and h orbitals describe the
eigenstates in the iridate layer. Moreover, g and h orbitals are fully occupied and the low-
energy theory for the iridate layer can be constructed using only the f orbitals. We can now
apply the constraints (73) to U†

SOTI M (k), which is expressed in the t2g basis. We find

TI M (kx , ky) = USOMx U†
SOTI M (kx ,−ky)M

†
x ,

TI M (kx , ky) = USOMy U†
SOTI M (−kx , ky)M

†
y ,

TI M (kx , ky) = USORU†
SOTI M (ky ,−kx)R

†,

TI M (kx , ky) = USOΘU T
SOT ∗I M (−kx ,−ky)Θ

†. (80)

The tunneling matrices T f ,yz , T f ,xz , T f ,x y , corresponds to the first row of 2×2 matrices of TI M .
If we express the tunneling matrices as

T f ,n(k) = T f ,n,0(k)σ0 + T f ,n(k) ·σ (n= yz, xz, x y), (81)

it follows from the constraints (80) that

T f ,yz,0(k) = iJAS(kx , ky) T f ,yz,x(k) = iJAA(kx , ky)

T f ,yz,y(k) = iJSS(kx , ky) T f ,yz,z(k) = JSA(kx , ky)

T f ,xz,0(k) = iJAS(ky , kx) T f ,xz,x(k) = −iJSS(ky , kx)

T f ,xz,y(k) = −iJAA(ky , kx) T f ,xz,z(k) = −JSA(ky , kx)

T f ,x y,0(k) = KSS(kx , ky) T f ,x y,x(k) = KSA(kx , ky)

T f ,x y,y(k) = −KSA(ky , kx) T f ,x y,z(k) = iKAA(kx , ky). (82)

Here the functions K and J are real and the subscript S (A) designates that the function is
symmetric (anti-symmetric) with respect to the corresponding momentum component. For
example KSA(kx , ky)means that KSA(−kx , ky) = KSA(kx , ky) and KSA(kx ,−ky) = −KSA(kx , ky).

We also need the tunneling matrices Tn(k) from the iridate f -orbitals to the n =: α,β ,γ
bands in the t2g -ES. Therefore, we rewrite the tunneling Hamiltonian as

ÒHI M =
∑

k

C̃†
I ,k T̄I M (k)C̄M ,k + h.c., (83)

where C̄M ,k ≡ (cα,k,↑ cα,k,↓ cβ ,k,↑ cβ ,k,↓ cγ,k,↑ cγ,k,↓)T = U0(k)CM ,k, T̄I M (k) = TI M (k)U
†
0(k), and

U0(k) diagonalises the Hamiltonian of the t2g -ES,

U0(k)h0(k)U
†
0(k) =





ξα(k)σ0 0 0
0 ξβ(k)σ0 0
0 0 ξγ(k)σ0



 . (84)

U0(k) is in general not unique. However, the derivations can be simplified considerably if we
fix a particular convention for it. Therefore we fix the structure of U0(k) to be

U†
0(k) =

















0 uα,yz(k) 0 uβ ,yz(k) 0 uγ,yz(k)
−u∗α,yz(k) 0 −u∗

β ,yz(k) 0 −u∗γ,yz(k) 0
0 uα,xz(k) 0 uβ ,xz(k) 0 uγ,xz(k)

−u∗α,xz(k) 0 −u∗
β ,xz(k) 0 −u∗γ,xz(k) 0

uα,x y(k) 0 uβ ,x y(k) 0 uγ,x y(k) 0
0 uα,x y(k) 0 uβ ,x y(k) 0 uγ,x y(k)

















. (85)
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Here
(0 − u∗n,yz(k) 0 − u∗n,xz(k) un,x y(k) 0)T

and
(un,yz(k) 0 un,xz(k) 0 0 un,x y(k))

T

for n = α,β ,γ are normalized eigenvectors of h0(k) with eigenvalue ξn(k). Notice that we
have used here the fact that in an individual layer there exists both time-reversal and inversion
symmetries which guarantee that the eigenvalues are doubly degenerate. Moreover, we fix
un,x y(k) to be real and positive. With these conventions U0(k) is unique. (This procedure is
not well-defined if un,x y(k) = 0, but in these cases U0(k) can be constructed using analytic
continuation.) By using that h0(k) satisfies (73) we find that

U†
0(kx ,−ky) = M†

x U†
0(kx , ky)M̃x ,

U†
0(−kx , ky) = M†

y U†
0(kx , ky)M̃y ,

U†
0(ky ,−kx) = R†U†

0(kx , ky)R̃,

U†
0(−kx ,−ky) = Θ

T U T
0 (kx , ky)Θ̃

∗. (86)

Here we have introduced matrices M̃x , M̃y , R̃ and Θ̃ in order to guarantee that the structure
of U0(k) [Eq. (85)] stays invariant in the transformations. We find that these matrices can be
arbitrary block-diagonal matrices and U0(k) still diagonalizes the Hamiltonian h0(k), but the
structure described in Eq. (85) is obeyed with a specific choice

M̃†
x = i





σy 0 0
0 σy 0
0 0 σy



 , M̃†
y = i





σx 0 0
0 σx 0
0 0 σx



 ,

R̃† =
−1
p

2





σ0 + iσz 0 0
0 σ0 + iσz 0
0 0 σ0 + iσz



 , Θ̃†
x = −i





σy 0 0
0 σy 0
0 0 σy



 . (87)

By using Eq. (86) the invariance of T̄I M underMx ,My , Rx and T leads to

T̄I M (kx , ky) = USOMx U†
SO T̄I M (kx ,−ky)M̃

†
x ,

T̄I M (kx , ky) = USOMy U†
SO T̄I M (−kx , ky)M̃

†
y ,

T̄I M (kx , ky) = USORU†
SO T̄I M (ky ,−kx)R̃

†,

T̄I M (kx , ky) = USOΘU T
SO T̄ ∗I M (−kx ,−ky)Θ̃

†. (88)

By considering only the tunneling between the f -band and the α, β and γ-bands in the t2g -ES,
Eq. (88) reduces to

Tn(kx , ky) = σy Tn(kx ,−ky)σy , (89)

Tn(kx , ky) = σx Tn(−kx , ky)σx , (90)

Tn(kx , ky) =
σ0 − iσzp

2
Tn(ky ,−kx)

σ0 + iσzp
2

, (91)

Tn(kx , ky) = σy T ∗n (−kx ,−ky)σy , (92)

where n= α,β ,γ.
From Eqs. (89) and (90) it follows that Tn is invariant under 2D inversion if

Tn(kx , ky) = σz Tn(−kx ,−ky)σz . (93)
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Similarly it follows from Eqs. (89) and (91) that Tn is invariant under mirroring about the
diagonal if

Tn(kx , ky) = Md Tn(ky , kx)Md , (94)

where Md =
1p
2
(σx −σy).

The symmetries (92) and (93) are used in the main text to guarantee the stability of the
semi-Dirac points. The mirror symmetries (89) and (90) are needed to prove the existence of
topological mirror invariants. All these symmetries are also used to simplify the expressions
in the Ginzburg-Landau theory derived in Sec. C of this supplementary material.

B Microscopic analysis of the tunneling matrices

An explicit form for the tunneling matrices can be found by considering the dominating tun-
neling paths between two t2g layers on top of each other. The orientation and shape of the
t2g orbitals are shown in Fig. 11(a). We assume lattice matched square lattices for the layers.
The hoppings between a yz orbital in the bottom layer to the t2g orbitals in the layer above
are shown in the left column of Fig. 11(b). The system is seen from above. Due to the orien-
tation of the lobes we see that the tunneling matrices from the yz orbital located at the two
dimensional position r in the bottom layer to the yz orbitals in the neighbouring sites in the
top layer are given by

〈yz, t, r|H|yz, b, r〉= −t t b,0
yz,yz , (95)

〈yz, t, r± dex |H|yz, b, r〉= −t t b,x
yz,yz , (96)

〈yz, t, r± dey |H|yz, b, r〉= t t b,y
yz,yz , (97)

where t and b designates the top and bottom layer, respectively. We assume that the spin
is conserved in these hopping processes. Similar considerations show that there will be no
coupling between an yz orbital in the bottom layer to the nearest neighbour x y orbital in the
top layer, as well as to the next nearest neighbour x y orbitals along the y-direction in the
top layer. However, there will be a coupling to the next nearest x y orbitals above along the
x-direction, but these matrix elements come with opposite sign

〈x y, t, r|H|yz, b, r〉= 0 , (98)

〈x y, t, r± dex |H|yz, b, r〉= ∓t t b,x
x y,yz , (99)

〈x y, t, r± dey |H|yz, b, r〉= 0. (100)

In a similar way we find that there are no coupling between a yz orbital in the bottom layer
and xz orbitals in the top layer up to next nearest neighbours.

To reduce the number of free parameters we will only keep the matrix elements of dom-
inating order for each pair of orbitals in the two layers. By similarly considering the xz and
x y orbitals in the bottom layer and the t2g orbitals in the top layer the tunneling part of the
Hamiltonian Ĥt b takes the form

Ĥt b =
∑

r

�

−t t b,0
yz,yzc†

yz,t,rcyz,b,r − t t b,x
x y,yz

�

c†
x y,t,r+dex

− c†
x y,t,r−dex

�

cyz,b,r

− t t b,0
xz,xzc†

xz,t,rcxz,b,r − t t b,y
x y,xz

�

c†
x y,t,r+dey

− c†
x y,t,r−dey

�

cxz,b,r

− t t b,x
yz,x y

�

c†
yz,t,r+dex

− c†
yz,t,r−dex

�

cx y,b,r

−t t b,y
xz,x y

�

c†
xz,t,r+dey

− c†
xz,t,r−dey

�

cx y,b,r + t t b,0
x y,x y c†

x y,t,rcx y,b,r

i

+ h.c. (101)
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dyz
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(a)
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yz,yz
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0
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0
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yz,xy
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xy ! xz

xy ! xy

x

y

z

Figure 11: (a) The different t2g orbitals and their orientation. (b) The possible tunneling
paths between an orbital (thin lines) in the bottom layer to the nearest and and next nearest
orbitals (thick lines) in the layer above. Also the corresponding matrix elements are shown.
The orbitals are seen from above.

Due to the assumption of a square lattice it is from Fig. 11 apparent that t t b,x
x y,yz = t t b,y

x y,xz ,

t t b,x
yz,x y = t t b,y

xz,x y and t t b,0
yz,yz = t t b,0

xz,xz . For simplicity we assume also that t t b,x
yz,x y = t t b,x

x y,yz , but this
is not important for the qualitative results. After a Fourier transform the tunneling part of the
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Hamiltonian takes the form

Ĥt b =
∑

k

t⊥
�

−c†
yz,t,kcyz,b,k − i2B sin kx c†

x y,t,kcyz,b,k − c†
xz,t,kcxz,b,k − i2B sin ky c†

x y,t,kcxz,b,k

+Ac†
x y,t,kcx y,b,k − i2B sin kx c†

yz,t,kcx y,b,k − i2B sin ky c†
xz,t,kcx y,b,k

�

+ h.c., (102)

where we have defined t⊥ = t t b,0
yz,yz and A= t t b,0

x y,x y/t t b,0
yz,yz and B = t t b,x

yz,x y/t t b,0
yz,yz . Based on this

kind of simple analysis we can not say anything definite about the magnitude and the sign
of the parameters t⊥, A and B. However, since t⊥ = t t b,0

yz,yz corresponds to hopping between
orbitals directly on top of each other with out of plane lobes, we expect this energy scale to be
dominating so that |A|, |B| < 1. Moreover, based on the nature of the tunneling paths shown
in Fig. 11 we expect A and B to be roughly of similar magnitude.

The tunneling matrices between the f orbitals in the bottom iridate layer and the t2g
orbitals in the top layer can be found by projecting the t2g operators for the bottom layer onto
the f -band

cyz,b,k,α→−
i
p

3
σy,αβ fk,β , cxz,b,k,α→

i
p

3
σx ,αβ fk,β , cx y,b,k,α→

1
p

3
σ0,αβ fk,β , (103)

where α and β are the spin and the pseudospin degree of freedom, respectively. The tunneling
matrices are then easily found to be

T f ,yz(k) =
i t⊥p

3

�

2B sin kxσ0 −σy

�

, (104)

T f ,xz(k) =
i t⊥p

3

�

2B sin kyσ0 +σx

�

, (105)

T f ,x y(k) =
t⊥p

3

�

Aσ0 + 2B(sin kyσx − sin kxσy)
�

. (106)

These tunneling matrices are used in the main text.
If the iridate layer is on the top of the t2g layer we use Eq. (102) and project the operators

for the top layer onto the f -band. This yields

T̃ f ,yz(k) =
i t̃⊥p

3

�

−2B̃ sin kxσ0 −σy

�

, (107)

T̃ f ,xz(k) =
i t̃⊥p

3

�

−2B̃ sin kyσ0 +σx

�

, (108)

T̃ f ,x y(k) =
t̃⊥p

3

�

Ãσ0 − 2B̃(sin kyσx − sin kxσy)
�

. (109)

These tunneling matrices are used in the main text in the case of the three-layer heterostruc-
ture, and we have denoted the parameters as t̃⊥, Ã and B̃ to allow the possibility of different
magnitudes of the tunneling amplitudes to the top and bottom layers.

C Derivation of Ginzburg Landau theory for Sr2RuO4 in the pres-
ence of induced order parameter

The intrinsic order parameters can be obtained by minimizing the free energy of the system
with respect to them. The total free energy consist of the term FI arising from the decoupling
interaction term (see below) and the free energy for the Bogoliubov quasiparticles

Fqp =
∑

k

Fqp(k) = −β−1
∑

k

∑

m

ln[2 cosh(βEm(k)/2)]. (110)
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Here β is the inverse temperature, Em(k) are the positive quasiparticle energies, and the mo-
mentum summation should be calculated over the Brillouin zone. For the sake of analytical
transparency, we will make several simplifying assumptions. First, we assume that the order
parameters for the different bands α, β and γ can be computed independently of each other
i.e. we neglect the effects of the interband order parameters. Secondly, instead of computing
the Free energy of the full Brillouin zone we will calculate it only over the Fermi surfaces for
each of the bands i.e. over the lines ξn(k) = 0 (n= α,β ,γ). This approximation is reasonable
since we expect that the behavior of the free energy in the vicinity of the Fermi surface will
be qualitatively similar as elsewhere in the Brillouin zone and the intrinsic order parameter
will have the largest effect on Fqp(k) in the vicinity of the Fermi surface. Finally, we assume
that the overal magnitudes of the intrinsic order parameters in all bands satisfy β |dnR| � 1,
β |∆nR| � 1 (n = α,β ,γ), and the temperature is above the critical temperature of the super-
conducting instability in Sr2RuO4. We expect that these assumptions do not affect the results
qualitatively, so that all the qualitative results presented in the manuscript will remain similar
also in the parameter regimes where these assumptions are not satisfied.

In the vicinity of the Fermi surfaces ξn(k) = 0 the BdG Hamiltonians can be written in the
form

Hn(k) =

�

hn(k) ∆̃n(k)
∆̃†

n(k) −hT
n (−k)

�

, (111)

where hn(k) = hn0(k)σ0 + hn(k) · ~σ is the induced normal part arising due to the coupling to
the iridate, ∆̃n(k) = i{[∆n(k)+∆nR(k)]σ0+[dn(k)+dnR(k)] · ~σ}σy , and∆n(k) [∆nR(k)] and
dn(k) [dnR(k)] are the induced [intrinsic] singlet and triplet order parameters, respectively.
Assuming that the self-energy arising due to the coupling to the iridate can be evaluated at
zero energy (which should be a reasonably good approximation close to the Fermi surface),
the induced terms in the Hamiltonian satisfy

hn0(k)σ0 + hn(k) · ~σ = −
ξI(k)

ξ2
I (k) +∆

2
I (k)

Tn(k)T
†
n (k),

∆n(k)σ0 + dn(k) · ~σ =
∆I(k)

ξ2
I (k) +∆

2
I (k)

Tn(k)T
†
n (k), (112)

where Tn(k) is the tunneling matrix from iridate to the band n= α,β ,γ in the ruthenate.
The free energy for the Bogoliubov quasiparticles over the Fermi surfaces (n= α,β ,γ) can

be expressed as

Fqp,n =

∫

FS
dk Fqp,n(k) = −β−1

∫

FS
dk
∑

σ=±
ln[2cosh(βEnσ(k)/2)], (113)
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where
∫

FS
dkF(k) =

∫

{k|ξn(k)=0}
dkF(k),

En±(k) =
q

|E0
n±(k)|2 + εn±(k),

|E0
n±(k)|=

√

√

√

�

hn0(k)±
hn(k) · dn(k)
|dn(k)|

�2

+
�

∆n(k)± |dn(k)|
�2

,

εn±(k) = 2
�

∆n(k)± |dn(k)|
�

∆TnR(k) + 2
�

|dn(k)| ±∆n(k)
�dTnR(k) · dn(k)

|dn(k)|

+ |∆TnR(k)|
2 ± 2∆TnR(k)

dTnR(k) · dn(k)

|dn(k)|

+
�

1±
∆2

n(k) + |hn(k)|2

hn0(k)
hn(k)·dn(k)
|dn(k)|

+∆n(k)|dn(k)|

�

|dTnR(k)|
2

∓
∆2

n(k) + |hn(k)|2

hn0(k)
hn(k)·dn(k)
|dn(k)|

+∆n(k)|dn(k)|

[dTnR(k) · dn(k)]2

|dn(k)|2

+ |∆NnR(k)|
2 ± 2∆NnR(k)

dNnR(k) · dn(k)

|dn(k)|

+
�

1±
|dn(k)|
∆n(k)

�

|dNnR(k)|
2 ∓
|dn(k)|
∆n(k)

[dNnR(k) · dn(k)]2

|dn(k)|2

± 2
∆n(k)± |dn(k)|

∆n(k)
hn0(k)

q

h2
n0(k) +∆2

n(k)
dTnR(k) ·

dNnR(k)× dn(k)

|dn(k)|
. (114)

Here we have separated the intrinsic order parameters ∆nR(k) = ∆TnR(k) + i∆NnR(k) and
dnR(k) = dTnR(k)+idNnR(k) to the contributions obeying [∆TnR(k) ∈ R,dTnR(k) ∈ R

3] and breaking
[∆NnR(k) ∈ R,dNnR(k) ∈ R

3] the time-reversal symmetry. Using these expressions we obtain
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Fqp,n ≈ F0,n −
∫

FS
dk
∑

σ=±

�

anσ(k)εnσ(k) + bnσ(k)ε
2
nσ(k)

�

≈ F0,n −
∫

FS
dk
§

2
�

an1(k)∆n(k) + an2(k)|dn(k)|
�

∆TnR(k)

+ 2
�

an1(k)|dn(k)|+ an2(k)∆n(k)
�dTnR(k) · dn(k)

|dn(k)|

+ an1(k)|∆TnR(k)|
2 + 2an2(k)∆

T
nR(k)

dTnR(k) · dn(k)

|dn(k)|

+ an1(k)|∆NnR(k)|
2 + 2an2(k)∆

N
nR(k)

dNnR(k) · dn(k)

|dn(k)|

+
�

an1(k) + an2(k)
∆2

n(k) + |hn(k)|2

hn0(k)
hn(k)·dn(k)
|dn(k)|

+∆n(k)|dn(k)|

�

|dTnR(k)|
2

+
�

an1(k) + an2(k)
|dn(k)|
∆n(k)

�

|dNnR(k)|
2

− an2(k)
∆2

n(k) + |hn(k)|2

hn0(k)
hn(k)·dn(k)
|dn(k)|

+∆n(k)|dn(k)|

[dTnR(k) · dn(k)]2

|dn(k)|2

− an2(k)
|dn(k)|
∆n(k)

[dNnR(k) · dn(k)]2

|dn(k)|2

+ 2
an2(k)∆n(k) + an1(k)|dn(k)|

∆n(k)
hn0(k)

q

h2
n0(k) +∆2

n(k)
dTnR(k) ·

dNnR(k)× dn(k)

|dn(k)|

+ 4bn1(k)|∆TnR(k)|
2 + 4bn1(k)

[dTnR(k) · dn(k)]2

|dn(k)|2
+ 8bn2(k)∆

T
nR(k)

dTnR(k) · dn(k)

|dn(k)|

ª

,

(115)

where F0,n does not depend on the intrinsic order parameters, an1(k) = an+(k) + an−(k),

an2(k) = an+(k) − an−(k), bn1(k) = bn+(k)
�

∆n(k) + |dn(k)|
�2
+ bn−(k)

�

∆n(k) − |dn(k)|
�2

,

bn2(k) = bn+(k)
�

∆n(k) + |dn(k)|
�2 − bn−(k)

�

∆n(k)− |dn(k)|
�2

and

an±(k) =
tanh

�

β |E0
n±(k)|/2

�

4|E0
n±(k)|

,

bn±(k) =
β |E0

n±(k)| − 2 tanh
�

β |E0
n±(k)|/2

�

− β |E0
n±(k)| tanh2

�

β |E0
n±(k)|/2

�

32|E0
n±(k)|3

. (116)

We can express the intrinsic singlet [triplet] order parameter with the help of basis functions
for irreducible representations ∆(n)m (k) [d

(n)
m (k)] (m= 1,2, 3...) as

∆TnR(k) =
∑

m

ψTnm∆
(n)
m (k), ∆

N
nR(k) =

∑

m

ψNnm∆
(n)
m (k),

dTnR(k) =
∑

m

ηTnmd(n)m (k), dNnR(k) =
∑

m

ηNnmd(n)m (k), (117)

where ψTnm,ψNnm,ηTnm,ηNnm ∈ R. The basis functions ∆(n)m (k), d(n)m (k) can be obtained by pro-
jecting the most general singlet and triplet order parameters into the irreducible representa-
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tions of the symmetry group G of the model. They can be written as

∆
(n)
1 (k) = a(n)11 (cos kx − cos ky) + a(n)12 [cos(2kx )− cos(2ky)] + a(n)13 [cos(2kx ) cos ky − cos(2ky) cos kx] + ..,

∆
(n)
2 (k) = a(n)21 + ..,

∆
(n)
3 (k) = a(n)31 sin kx sin ky + ..,

∆
(n)
4 (k) = a(n)41 sin kx sin ky(cos kx − cos ky) + . . . ,

d(n)1 (k) = b(n)11 (ex sin ky + ey sin kx ) + b(n)12 (cos kx − cos ky)(ex sin ky − ey sin kx ) + . . . ,

d(n)2 (k) = b(n)21 (ex sin ky − ey sin kx ) + . . . ,

d(n)3 (k) = b(n)31 (ex sin kx − ey sin ky) + . . . ,

d(n)4 (k) = b(n)41 (ex sin kx + ey sin ky) + . . . ,

d(n)5A (k) = b(n)5A1ez sin kx + . . . ,

d(n)5B (k) = b(n)5B1ez sin ky + . . . . (118)

Each of these basis functions contains in general an infinite number of terms and transforms in
a specific way under the symmetry transformations gk (g ∈ G). The coefficients a(n)mk ∈ R and

b(n)mk ∈ R are in principle variational parameters (for each band n independently of the others),
and they should be chosen so that the free energy is minimized. Therefore, we have included
a superscript (n) in all basis functions indicating that these coefficients can be different in each
band n = α,β ,γ. As explained below the exact values of these coefficients are not important
for our qualitative results, and therefore in the end we will select the relevant coefficients
phenomenologically for each band so that the overlap between intrinsic and induced order
parameters is maximized.

This way we get (notice that n= α,β ,γ denotes the band index and m= 1,2, 3... describes
the basis functions)

Fqp,n ≈ F0,n −
∑

m

[rns
mψ

T
nm + rnt

m η
T
nm]

−
∑

m,m′

�

f nsT
m,m′ψ

T
nmψ

T
nm′ + f nsN

m,m′ψ
N
nmψ

N
nm′ + f ntT

m,m′η
T
nmη

T
nm′ + f ntN

m,m′ η
N
nmη

N
nm′

�

−
∑

m,m′

�

κnT
m,m′ψ

T
nmη

T
nm′ +κ

nN
m,m′ψ

N
nmη

N
nm′

�

−
∑

m,m′
κnT N

m,m′ η
T
nmη

N
nm′ , (119)
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where

rns
m = 2

∫

FS
dk
�

an1(k)∆n(k) + an2(k)|dn(k)|
�

∆(n)m (k),

rnt
m = 2

∫

FS
dk
�

an1(k)|dn(k)|+ an2(k)∆n(k)
�d(n)m (k) · dn(k)

|dn(k)|
,

f nsT
m,m′ =

∫

FS
dk
�

an1(k) + 4bn1(k)
�

∆(n)m (k)∆
(n)
m′ (k),

f nsN
m,m′ =

∫

FS
dk an1(k)∆

(n)
m (k)∆

(n)
m′ (k),

f ntT
m,m′ =

∫

FS
dk
§�

an1(k) + an2(k)
∆2

n(k) + |hn(k)|2

hn0(k)
hn(k)·dn(k)
|dn(k)|

+∆n(k)|dn(k)|

�

d(n)m (k) · d
(n)
m′ (k)

+
�

4bn1(k)− an2(k)
∆2

n(k) + |hn(k)|2

hn0(k)
hn(k)·dn(k)
|dn(k)|

+∆n(k)|dn(k)|

�[d(n)m (k) · dn(k)][d
(n)
m′ (k) · dn(k)]

|dn(k)|2

ª

,

f ntN
m,m′ =

∫

FS
dk
§�

an1(k) + an2(k)
|dn(k)|
∆n(k)

�

d(n)m (k) · d
(n)
m′ (k)

− an2(k)
|dn(k)|
∆n(k)

[d(n)m (k) · dn(k)][d
(n)
m′ (k) · dn(k)]

|dn(k)|2

ª

,

κnT
m,m′ = 2

∫

FS
dk
�

an2(k) + 4bn2(k)
�

∆(n)m (k)
d(n)m′ (k) · dn(k)

|dn(k)|
,

κnN
m,m′ = 2

∫

FS
dk an2(k)∆

(n)
m (k)

d(n)m′ (k) · dn(k)

|dn(k)|
,

κnT N
m,m′ = 2

∫

FS
dk

an2(k)∆n(k) + an1(k)|dn(k)|
∆n(k)

hn0(k)
q

h2
n0(k) +∆2

n(k)
d(n)m (k) ·

d(n)m′ (k)× dn(k)

|dn(k)|
.

(120)

By utilizing the symmetries (89)-(94), we obtain hnz(k) = dnz(k) = 0,

∆n(±kx , ky) =∆n(kx , ky), ∆n(kx ,±ky) =∆n(kx , ky), ∆n(ky , kx) = −∆n(kx , ky),

dnx(±kx , ky) = dnx(kx , ky), dnx(kx ,±ky) = ±dnx(kx , ky), dnx(ky , kx) = dny(kx , ky),

dny(±kx , ky) = ±dny(kx , ky), dny(kx ,±ky) = dny(kx , ky), dny(ky , kx) = dnx(kx , ky),

hn0(±kx , ky) = hn0(kx , ky), hn0(kx ,±ky) = hn0(kx , ky), hn0(ky , kx) = hn0(kx , ky),

hnx(±kx , ky) = hnx(kx , ky), hnx(kx ,±ky) = ±hnx(kx , ky), hnx(ky , kx) = −hny(kx , ky),

hny(±kx , ky) = ±hny(kx , ky), hny(kx ,±ky) = hny(kx , ky), hny(ky , kx) = −hnx(kx , ky).
(121)

The basis functions in Eqs. (118) have been chosen in such a way that they all behave dif-
ferently in these transformations. Moreover, we have ordered them so that ∆1(k) and d1(k)
behave similarly as ∆n(k) and dn(k), respectively. Therefore, we can straightforwardly show
that

rns
m = δm,1rns

1 , rnt
m = δm,1rnt

1 . (122)

By utilizing the transformations (121) and the corresponding transformations for the basis
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functions, we obtain

f nsT
m,m′ = δm,m′ f

nsT
m,m , f nsN

m,m′ = δm,m′ f
nsN

m,m , f ntT
m,m′ = δm,m′ f

ntT
m,m , f ntN

m,m′ = δm,m′ f
ntN

m,m ,

κnT
m,m′ = δm,m′κ

nT
m,m, κnN

m,m′ = δm,m′κ
nN
m,m, κnT N

m,m′ = 0. (123)

The equation κnT N
m,m′ = 0 also directly follows from the transformation of the integrand k→−k

in Eq. (120). We have also fixed the relative orderings of the singlet and triplet basis functions
in a specific way in order to make sure that κnT

m,m′ and κnN
m,m′ are non-zero only if m= m′. Since

κnT
m,m′ and κnN

m,m′ are only nonvanishing for m = m′, we will in the following simplify notation
by renaming κnT

m,m′ and κnN
m,m′ to κnT

m and κnN
m , respectively.

Additionally the free energy contains also the term arising from the decoupling of the
interaction term

FI ,n =
∑

m

�

1
gnms

(ψTnmψ
T
nm +ψ

N
nmψ

N
nm) +

1
gnmt

(ηTnmη
T
nm +η

N
nmη

N
nm)
�

, (124)

where gnms and gnmt describe the strengths of the effective attractive interactions in the singlet
and triplet channels, respectively. Their calculation would require the specification of the full
microscopic interaction model. However, the exact values of gnms and gnmt are not important
in the following.

This way we obtain

Fn ≈ F0,n +
∑

m

�

FTn,m + FNn,m

�

,

FTn,m = −δm,1

�

rns
1 ψ

T
n1 + rnt

1 η
T
n1

�

+
�

ψTnm,ηTnm

�

M̄Tn,m

�

ψTnm,ηTnm

�T
,

FNn,m =
�

ψNnm,ηNnm

�

M̄Nn,m

�

ψNnm,ηNnm

�T
, (125)

where the stability matrices M̄n,m are

M̄Tn,m =

�

g−1
nms − f nsT

m,m −κnT
m /2

−κnT
m /2 g−1

nmt − f ntT
m,m

�

, M̄Nn,m =

�

g−1
nms − f nsN

m,m −κnN
m /2

−κnN
m /2 g−1

nmt − f ntN
m,m

�

. (126)

Since the intrinsic order parameters are obtained by minimizing the free energy, it is clear from
this expression that each pair of order parameters

�

ψTnm,ηTnm

�

and
�

ψNnm,ηNnm

�

, respectively,
can be solved independently of each other. Furthermore, we can diagonalize the stability
matrices by introducing a change of variables

ψT (N )nm = χT (N )nm1 sinθT (N )nm −χT (N )nm2 cosθT (N )nm ,

ηT (N )nm = χT (N )nm1 cosθT (N )nm +χT (N )nm2 sinθT (N )nm ,

sinθT (N )nm =
1
p

2

√

√

√

√1+
g−1

nmt − f ntT (N )
m,m − g−1

nms + f nsT (N )
m,m

Ç

(g−1
nmt − f ntT (N )

m,m − g−1
nms + f nsT (N )

m,m )2 + (κnT (N )
m )2

,

cosθT (N )nm =
1
p

2

κnT (N )
m

|κnT (N )
m |

√

√

√

√1−
g−1

nmt − f ntT (N )
m,m − g−1

nms + f nsT (N )
m,m

Ç

(g−1
nmt − f ntT (N )

m,m − g−1
nms + f nsT (N )

m,m )2 + (κnT (N )
m )2

. (127)

For these new variables χT (N )nm1(2), which are the eigenmodes of the linearized gap equations and
describe specific linear combinations of singlet and triplet order parameters, the free energy
becomes

FTn,m = −δm,1

�

rnχ
11 χ

T
n11 + rnχ

12 χ
T
n12

�

+MT
nm1|χ

T
nm1|

2 +MT
nm2|χ

T
nm2|

2,

FNn,m =M
N
nm1|χ

N
nm1|

2 +MN
nm2|χ

N
nm2|

2, (128)
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where the Josephson couplings rnχ
11 and rnχ

12 for the eigenmodes χTn11 and χTn12, respectively,
are

rnχ
11 = rns

1 sinθTn1 + rnt
1 cosθTn1, rnχ

12 = −rns
1 cosθTn1 + rnt

1 sinθTn1 (129)

and

MT (N )
nm1 =

g−1
nms − f nsT (N )

m,m + g−1
nmt − f ntT (N )

m,m

2

−

Ç

�

g−1
nmt − f ntT (N )

m,m − g−1
nms + f nsT (N )

m,m
�2
+
�

κ
nT (N )
m

�2

2
,

MT (N )
nm2 =

g−1
nms − f nsT (N )

m,m + g−1
nmt − f ntT (N )

m,m

2

+

Ç

�

g−1
nmt − f ntT (N )

m,m − g−1
nms + f nsT (N )

m,m
�2
+
�

κ
nT (N )
m

�2

2
. (130)

The instability for the different eigenmodes (corresponding to the appearance of supercon-
ducting order parameters) appears whenMT (N )

nm1(2) becomes negative. In order to simplify the
theory, we assume that the temperature T is above all the critical temperatures for supercon-
ducting instability in Sr2RuO4. This means that χT (N )nm1(2) = 0 for m ≥ 2, χNn11 = 0 and χNn12 = 0
i.e.

ψT (N )nm = 0 for m≥ 2, ηT (N )nm = 0 for m≥ 2,ψNn1 = 0, ηNn1 = 0, (131)

and thus we only need to solve χTn11 and χTn12 determining ψTn1 and ηTn1 for each band
n= α,β ,γ. By minimizing the free energy, we obtain

χTn11 =
rnχ
11

2MT
n11

, χTn12 =
rnχ
12

2MT
n12

. (132)

Thus

ψTn1 = χ
T
n11 sinθTn1 −χ

T
n12 cosθTn1 =

κnT
1 rnt

1 + 2
�

g−1
n1t − f ntT

1,1

�

rns
1

4
�

g−1
n1s − f nsT

1,1

��

g−1
n1t − f ntT

1,1

�

− |κnT
1 |2

,

ηTn1 = χ
T
n11 cosθTn1 +χ

T
n12 sinθTn1 =

κnT
1 rns

1 + 2
�

g−1
n1s − f nsT

1,1

�

rnt
1

4
�

g−1
n1s − f nsT

1,1

��

g−1
n1t − f ntT

1,1

�

− |κnT
1 |2

. (133)

The effective interactions gn1s and gn1t are related to the native critical temperatures for singlet
Tcs and triplet Tc t superconductivity (observed in the absence of induced superconductivity)
in Sr2RuO4, respectively. In the framework of our approximations (where all the coefficients
are computed as if the contribution would only come from the Fermi surface) we can express
these relations as

g−1
n1s =

1
4kB Tcs

∫

FS
dk ∆(n)1 (k)

2,

g−1
n1t =

1
4kB Tc t

∫

FS
dk |d(n)1 (k)|

2. (134)

By denoting

mns = g−1
n1s − f nsT

1,1 , mnt = g−1
n1t − f ntT

1,1 , (135)

we arrive to the expressions used in the main text.

45

https://scipost.org
https://scipost.org/SciPostPhys.3.6.041


SciPost Phys. 3, 041 (2017)

References

[1] A. J. Leggett, A theoretical description of the new phases of liquid 3He, Rev. Mod. Phys. 47,
331 (1975), doi:10.1103/RevModPhys.47.331.

[2] M. Sigrist and K. Ueda, Phenomenological theory of unconventional superconductivity, Rev.
Mod. Phys. 63, 239 (1991), doi:10.1103/RevModPhys.63.239.

[3] A. P. Mackenzie and Y. Maeno, The superconductivity of Sr2RuO4 and the physics of spin-
triplet pairing, Rev. Mod. Phys. 75, 657 (2003), doi:10.1103/RevModPhys.75.657.

[4] G. E. Volovik, The Universe in a Helium Droplet, Oxford University Press, ISBN
9780198507826 (2003).

[5] N. Read and D. Green, Paired states of fermions in two dimensions with breaking of par-
ity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61,
10267 (2000), doi:10.1103/PhysRevB.61.10267.

[6] D. A. Ivanov, Non-Abelian Statistics of Half-Quantum Vortices in p-Wave Superconductors,
Phys. Rev. Lett. 86, 268 (2001), doi:10.1103/PhysRevLett.86.268.

[7] A. Yu. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Usp. 44, 131 (2001),
doi:10.1070/1063-7869/44/10S/S29.

[8] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topo-
logical quantum matter with symmetries, Rev. Mod. Phys. 88, 035005 (2016),
doi:10.1103/RevModPhys.88.035005.

[9] J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep.
Prog. Phys. 75, 076501 (2012), doi:10.1088/0034-4885/75/7/076501.

[10] C. W. J. Beenakker, Search for Majorana Fermions in Superconductors, Annu. Rev. Condens.
Matter Phys. 4, 113 (2013), doi:10.1146/annurev-conmatphys-030212-184337.

[11] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven, Sig-
natures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices,
Science 336, 1003 (2012), doi:10.1126/science.1222360.

[12] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A.
Bernevig, A. Yazdani, Observation of Majorana fermions in ferromagnetic atomic chains
on a superconductor, Science 346, 602 (2014), doi:10.1126/science.1259327.

[13] F.S. Bergeret, A.F. Volkov, and K.B. Efetov, Long-Range Proximity Effects in
Superconductor-Ferromagnet Structures, Phys. Rev. Lett. 86, 4096 (2001),
doi:10.1103/PhysRevLett.86.4096.

[14] M. Eschrig and T. Löfwander, Triplet supercurrents in clean and disordered half-metallic
ferromagnets, Nat. Phys. 4, 138 (2008), doi:10.1038/nphys831.

[15] M. Sato, Y. Takahashi, and S. Fujimoto, Non-Abelian Topological Order in s-Wave
Superfluids of Ultracold Fermionic Atoms, Phys. Rev. Lett. 103, 020401 (2009),
doi:10.1103/PhysRevLett.103.020401.

[16] J.D. Sau, R.M. Lutchyn, S. Tewari, and S. Das Sarma, Generic New Platform for Topolog-
ical Quantum Computation Using Semiconductor Heterostructures, Phys. Rev. Lett. 104,
040502 (2010), doi:10.1103/PhysRevLett.104.040502.

46

https://scipost.org
https://scipost.org/SciPostPhys.3.6.041
http://dx.doi.org/10.1103/RevModPhys.47.331
http://dx.doi.org/10.1103/RevModPhys.63.239
http://dx.doi.org/10.1103/RevModPhys.75.657
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1103/RevModPhys.88.035005
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1259327
http://dx.doi.org/10.1103/PhysRevLett.86.4096
http://dx.doi.org/10.1038/nphys831
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.104.040502


SciPost Phys. 3, 041 (2017)

[17] M. Horsdal, G. Khaliullin, T. Hyart, and B. Rosenow, Enhancing triplet superconductivity
by the proximity to a singlet superconductor in oxide heterostructures, Phys. Rev. B 93,
220502 (2016), doi:10.1103/PhysRevB.93.220502.

[18] A. M. Petrzhik, G. Cristiani, G. Logvenov, A. E. Pestun, N. V. Andreev, Yu. V. Kislinskii, and
G. A. Ovsyannikov, Growth technology and characteristics of thin strontium iridate films
and iridate-cuprate superconductor heterostructures, Tech. Phys. Lett. 43, 554 (2017),
doi:10.1134/S1063785017060244.

[19] G. Jackeli and G. Khaliullin, Mott Insulators in the Strong Spin-Orbit Coupling Limit:
From Heisenberg to a Quantum Compass and Kitaev Models, Phys. Rev. Lett. 102, 017205
(2009), doi:10.1103/PhysRevLett.102.017205.

[20] H. Jin, H. Jeong, T. Ozaki, and J. Yu, Anisotropic exchange interactions
of spin-orbit-integrated states in Sr2IrO4, Phys. Rev. B 80, 075112 (2009),
doi:10.1103/PhysRevB.80.075112.

[21] F. Wang and T. Senthil, Twisted Hubbard Model for Sr2IrO4: Magnetism and Pos-
sible High Temperature Superconductivity, Phys. Rev. Lett. 106, 136402 (2011),
doi:10.1103/PhysRevLett.106.136402.

[22] B. J. Kim et al., Novel Jeff = 1/2 Mott State Induced by Relativistic Spin-Orbit Coupling in
Sr2IrO4, Phys. Rev. Lett. 101, 076402 (2008), doi:10.1103/PhysRevLett.101.076402.

[23] B.J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, and T. Arima, Phase-
Sensitive Observation of a Spin-Orbital Mott State in Sr2IrO4, Science 323, 1329 (2009),
doi:10.1126/science.1167106.

[24] J. Kim et al., Magnetic Excitation Spectra of Sr2IrO4 Probed by Resonant Inelastic X-Ray
Scattering: Establishing Links to Cuprate Superconductors, Phys. Rev. Lett. 108, 177003
(2012), doi:10.1103/PhysRevLett.108.177003.

[25] H. Watanabe, T. Shirakawa, and S. Yunoki, Monte Carlo Study of an Unconventional Su-
perconducting Phase in Iridium Oxide Jeff=1/2 Mott Insulators Induced by Carrier Doping,
Phys. Rev. Lett. 110, 027002 (2013), doi:10.1103/PhysRevLett.110.027002.

[26] A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006),
doi:10.1016/j.aop.2005.10.005.

[27] E. K.-H. Lee, R. Schaffer, S. Bhattacharjee, and Y. B. Kim, Heisenberg-Kitaev
model on the hyperhoneycomb lattice, Phys. Rev. B 89, 045117 (2014),
doi:10.1103/PhysRevB.89.045117.

[28] I. Kimchi, J. G. Analytis, and A. Vishwanath, Three-dimensional quantum spin liquids in
models of harmonic-honeycomb iridates and phase diagram in an infinite-D approximation,
Phys. Rev. B 90, 205126 (2014), doi:10.1103/PhysRevB.90.205126.

[29] R. Schaffer, E. K.-H. Lee, Y.-M. Lu, and Y. B. Kim, Topological Spinon Semimetals and
Gapless Boundary States in Three Dimensions, Phys. Rev. Lett. 114, 116803 (2015),
doi:10.1103/PhysRevLett.114.116803.

[30] M. Hermanns, K. O’Brien, and S. Trebst, Weyl Spin Liquids, Phys. Rev. Lett. 114, 157202
(2015), doi:10.1103/PhysRevLett.114.157202.

47

https://scipost.org
https://scipost.org/SciPostPhys.3.6.041
http://dx.doi.org/10.1103/PhysRevB.93.220502
http://dx.doi.org/10.1134/S1063785017060244
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1103/PhysRevB.80.075112
http://dx.doi.org/10.1103/PhysRevLett.106.136402
http://dx.doi.org/10.1103/PhysRevLett.101.076402
http://dx.doi.org/10.1126/science.1167106
http://dx.doi.org/10.1103/PhysRevLett.108.177003
http://dx.doi.org/10.1103/PhysRevLett.110.027002
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1103/PhysRevB.89.045117
http://dx.doi.org/10.1103/PhysRevB.90.205126
http://dx.doi.org/10.1103/PhysRevLett.114.116803
http://dx.doi.org/10.1103/PhysRevLett.114.157202


SciPost Phys. 3, 041 (2017)

[31] A. M. Black-Schaffer and S. Doniach, Resonating valence bonds and mean-
field d-wave superconductivity in graphite, Phys. Rev. B 75, 134512 (2007),
doi:10.1103/PhysRevB.75.134512.

[32] T. Hyart, A. R. Wright, G. Khaliullin, and B. Rosenow, Competition between d-wave and
topological p-wave superconducting phases in the doped Kitaev-Heisenberg model, Phys.
Rev. B 85, 140510 (2012), doi:10.1103/PhysRevB.85.140510.

[33] Y. Z. You, I. Kimchi, and A. Vishwanath, Doping a spin-orbit Mott insulator: Topo-
logical superconductivity from the Kitaev-Heisenberg model and possible application to
(Na2/Li2)IrO3, Phys. Rev. B 86, 085145 (2012), doi:10.1103/PhysRevB.86.085145.

[34] S. Okamoto, Global phase diagram of a doped Kitaev-Heisenberg model, Phys. Rev. B 87,
064508 (2013), doi:10.1103/PhysRevB.87.064508.

[35] T. Hyart, A. R. Wright, and B. Rosenow, Zeeman-field-induced topological
phase transitions in triplet superconductors, Phys. Rev. B 90, 064507 (2014),
doi:10.1103/PhysRevB.90.064507.

[36] J. Schmidt, A. Bouhon, and A. M. Black-Schaffer, From chiral d-wave to nodal line su-
perconductivity in the harmonic honeycomb lattices, Phys. Rev. B 94, 104513 (2016),
doi:10.1103/PhysRevB.94.104513.

[37] Y. J. Yan, M. Q. Ren, H. C. Xu, B. P. Xie, R. Tao, H. Y. Choi, N. Lee, Y. J. Choi, T. Zhang,
and D. L. Feng, Electron-Doped Sr2IrO4: An Analogue of Hole-Doped Cuprate Supercon-
ductors Demonstrated by Scanning Tunneling Microscopy, Phys. Rev. X 5, 041018 (2015),
doi:10.1103/PhysRevX.5.041018.

[38] Y. K. Kim, N. H. Sung, J. D. Denlinger, and B. J. Kim, Observation of a d-wave gap in
electron-doped Sr2IrO4, Nat. Phys. 12, 37 (2015), doi:10.1038/nphys3503.

[39] R. S. Perry, F. Baumberger, L. Balicas, N. Kikugawa, N. J. C. Ingle, A. Rost, J. F. Mercure, Y.
Maeno, Z. X. Shen and A. P. Mackenzie, Sr2RhO4: a new, clean correlated electron metal,
New J. Phys. 8, 175 (2006), doi:10.1088/1367-2630/8/9/175.

[40] B. J. Kim, Jaejun Yu, H. Koh, I. Nagai, S. I. Ikeda, S.-J. Oh, and C. Kim, Miss-
ing x y-Band Fermi Surface in 4d Transition-Metal Oxide Sr2RhO4: Effect of the Oc-
tahedra Rotation on the Electronic Structure, Phys. Rev. Lett. 97, 106401 (2006),
doi:10.1103/PhysRevLett.97.106401.

[41] F. Baumberger, N. J. C. Ingle, W. Meevasana, K. M. Shen, D. H. Lu, R. S.
Perry, A. P. Mackenzie, Z. Hussain, D. J. Singh, and Z.-X. Shen, Fermi Sur-
face and Quasiparticle Excitations of Sr2RhO4, Phys. Rev. Lett. 96, 246402 (2006),
doi:10.1103/PhysRevLett.96.246402.

[42] M. W. Haverkort, I. S. Elfimov, L. H. Tjeng, G. A. Sawatzky, and A. Damascelli, Strong
Spin-Orbit Coupling Effects on the Fermi Surface of Sr2RuO4 and Sr2RhO4, Phys. Rev. Lett.
101, 026406 (2008), doi:10.1103/PhysRevLett.101.026406.

[43] C.N. Veenstra, Z.-H. Zhu, M. Raichle, B.M. Ludbrook, A. Nicolaou, B. Slomski, G. Lan-
dolt, S. Kittaka, Y. Maeno, J.H. Dil, I.S. Elfimov, M.W. Haverkort, and A. Damascelli,
Spin-Orbital Entanglement and the Breakdown of Singlets and Triplets in Sr2RuO4 Revealed
by Spin- and Angle-Resolved Photoemission Spectroscopy, Phys. Rev. Lett. 112, 127002
(2014), doi:10.1103/PhysRevLett.112.127002.

48

https://scipost.org
https://scipost.org/SciPostPhys.3.6.041
http://dx.doi.org/10.1103/PhysRevB.75.134512
http://dx.doi.org/10.1103/PhysRevB.85.140510
http://dx.doi.org/10.1103/PhysRevB.86.085145
http://dx.doi.org/10.1103/PhysRevB.87.064508
http://dx.doi.org/10.1103/PhysRevB.90.064507
http://dx.doi.org/10.1103/PhysRevB.94.104513
http://dx.doi.org/10.1103/PhysRevX.5.041018
http://dx.doi.org/10.1038/nphys3503
http://dx.doi.org/10.1088/1367-2630/8/9/175
http://dx.doi.org/10.1103/PhysRevLett.97.106401
http://dx.doi.org/10.1103/PhysRevLett.96.246402
http://dx.doi.org/10.1103/PhysRevLett.101.026406
http://dx.doi.org/10.1103/PhysRevLett.112.127002


SciPost Phys. 3, 041 (2017)

[44] Y. Imai, K. Wakabayashi, and M. Sigrist, Topological and edge state proper-
ties of a three-band model for Sr2RuO4, Phys. Rev. B 88, 144503 (2013),
doi:10.1103/PhysRevB.88.144503.

[45] C.M. Puetter, H.-Y. Kee, Identifying spin-triplet pairing in spin-orbit coupled multi-band
superconductors, EPL 98, 27010 (2012), doi:10.1209/0295-5075/98/27010.

[46] T. Scaffidi, J.C. Romers, and S.H. Simon, Pairing symmetry and dominant band in
Sr2RuO4, Phys. Rev. B 89, 220510 (2014), doi:10.1103/PhysRevB.89.220510.

[47] Y. Hasegawa, R. Konno, H. Nakano, and M. Kohmoto, Zero modes of tight-
binding electrons on the honeycomb lattice, Phys. Rev. B 74, 033413 (2006),
doi:10.1103/PhysRevB.74.033413.

[48] S. Katayama, A. Kobayashi, and Y. Suzumura, Pressure-Induced Zero-Gap Semiconducting
State in Organic Conductor α-(BEDT-TTF)2I3 Salt, J. Phys. Soc. Jpn. 75, 054705 (2006),
doi:10.1143/JPSJ.75.054705.

[49] P. Dietl, F. Piéchon, and G. Montambaux, New Magnetic Field Dependence of Lan-
dau Levels in a Graphenelike Structure, Phys. Rev. Lett. 100, 236405 (2008),
doi:10.1103/PhysRevLett.100.236405.

[50] G. Montambaux, F. Piéchon, J.-N. Fuchs, and M. O. Goerbig, Merging of
Dirac points in a two-dimensional crystal, Phys. Rev. B 80, 153412 (2009),
doi:10.1103/PhysRevB.80.153412;
G. Montambaux, F. Piéchon, J.-N. Fuchs, and M. O. Goerbig, A universal Hamiltonian for
motion and merging of Dirac points in a two-dimensional crystal, Eur. Phys. J. B 72(4),
509 (2009), doi:10.1140/epjb/e2009-00383-0.

[51] V. Pardo and W. E. Pickett, Half-Metallic Semi-Dirac-Point Generated by Quantum
Confinement in TiO2/VO2 Nanostructures, Phys. Rev. Lett. 102, 166803 (2009),
doi:10.1103/PhysRevLett.102.166803.

[52] S. Banerjee, R. R. P. Singh, V. Pardo, and W. E. Pickett, Tight-Binding Modeling and
Low-Energy Behavior of the Semi-Dirac Point, Phys. Rev. Lett. 103, 016402 (2009),
doi:10.1103/PhysRevLett.103.016402.

[53] V. Pardo and W. E. Pickett, Metal-insulator transition through a semi-Dirac point in oxide
nanostructures: VO2 (001) layers confined within TiO2, Phys. Rev. B 81, 035111 (2010),
doi:10.1103/PhysRevB.81.035111.

[54] J. Ahn, B.-J. Yang, Unconventional Topological Phase Transition in Two-Dimensional
Systems with Space-Time Inversion Symmetry, Phys. Rev. Lett. 118, 156401 (2017),
doi:10.1103/PhysRevLett.118.156401.

[55] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Creating, moving and merging
Dirac points with a Fermi gas in a tunable honeycomb lattice, Nature 483, 302 (2012),
doi:10.1038/nature10871.

[56] M. Bellec, U. Kuhl, G. Montambaux, and F. Mortessagne, Topological Transition
of Dirac Points in a Microwave Experiment, Phys. Rev. Lett. 110, 033902 (2013),
doi:10.1103/PhysRevLett.110.033902.

[57] M. C. Rechtsman, Y. Plotnik, J. M. Zeuner, D. Song, Z. Chen, A. Szameit, and M. Segev,
Topological Creation and Destruction of Edge States in Photonic Graphene, Phys. Rev. Lett.
111, 103901 (2013), doi:10.1103/PhysRevLett.111.103901.

49

https://scipost.org
https://scipost.org/SciPostPhys.3.6.041
http://dx.doi.org/10.1103/PhysRevB.88.144503
http://dx.doi.org/10.1209/0295-5075/98/27010
http://dx.doi.org/10.1103/PhysRevB.89.220510
http://dx.doi.org/10.1103/PhysRevB.74.033413
http://dx.doi.org/10.1143/JPSJ.75.054705
http://dx.doi.org/10.1103/PhysRevLett.100.236405
http://dx.doi.org/10.1103/PhysRevB.80.153412
http://dx.doi.org/10.1140/epjb/e2009-00383-0
http://dx.doi.org/10.1103/PhysRevLett.102.166803
http://dx.doi.org/10.1103/PhysRevLett.103.016402
http://dx.doi.org/10.1103/PhysRevB.81.035111
http://dx.doi.org/10.1103/PhysRevLett.118.156401
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1103/PhysRevLett.110.033902
http://dx.doi.org/10.1103/PhysRevLett.111.103901


SciPost Phys. 3, 041 (2017)

[58] L. Duca, T. Li, M. Reitter, I. Bloch, M. Schleier-Smith, U. Schneider, An Aharonov-
Bohm interferometer for determining Bloch band topology, Science 347, 288 (2015),
doi:10.1126/science.1259052.

[59] J. Kim et al., Observation of tunable band gap and anisotropic Dirac semimetal state in
black phosphorus, Science, 349, 723 (2015), doi:10.1126/science.aaa6486.

[60] Y. Hasegawa and K. Kishigi, Merging Dirac points and topological phase transitions in the
tight-binding model on the generalized honeycomb lattice, Phys. Rev. B 86, 165430 (2012),
doi:10.1103/PhysRevB.86.165430.

[61] F. Zhang, C. L. Kane, and E. J. Mele, Topological Mirror Superconductivity, Phys. Rev. Lett.
111, 056403 (2013), doi:10.1103/PhysRevLett.111.056403.

[62] C.-K. Chiu, H. Yao, and S. Ryu, Classification of topological insulators and super-
conductors in the presence of reflection symmetry, Phys. Rev. B 88, 075142 (2013),
doi:10.1103/PhysRevB.88.075142.

[63] T. Morimoto and A. Furusaki, Topological classification with additional symmetries from
Clifford algebras, Phys. Rev. B 88, 125129 (2013), doi:10.1103/PhysRevB.88.125129.

[64] C. Chamon, R. Jackiw, Y. Nishida, S.-Y. Pi, and L. Santos, Quantizing Majorana fermions
in a superconductor, Phys. Rev. B 81, 224515 (2010), doi:10.1103/PhysRevB.81.224515.

[65] C. W. J. Beenakker, Annihilation of Colliding Bogoliubov Quasiparticles
Reveals their Majorana Nature, Phys. Rev. Lett. 112, 070604 (2014),
doi:10.1103/PhysRevLett.112.070604.

[66] F. Wilczek, Majorana and condensed matter physics, in S. Esposito (Author), The Physics of
Ettore Majorana: Theoretical, Mathematical, and Phenomenological, Cambridge Univer-
sity Press, ISBN 9781107358362 (2014), doi:10.1017/CBO9781107358362.014.

[67] S. R. Elliott and M. Franz, Colloquium: Majorana fermions in nuclear, particle, and solid-
state physics, Rev. Mod. Phys. 87, 137 (2015), doi:10.1103/RevModPhys.87.137.

[68] P. M. R. Brydon, S. Das Sarma, H.-Y. Hui, and J. D. Sau, Odd-parity superconductivity from
phonon-mediated pairing: Application to CuxBi2Se3, Phys. Rev. B 90, 184512 (2014),
doi:10.1103/PhysRevB.90.184512.

[69] A. Haim, E. Berg, K. Flensberg, and Y. Oreg, No-go theorem for a time-reversal invariant
topological phase in noninteracting systems coupled to conventional superconductors, Phys.
Rev. B 94, 161110 (2016), doi:10.1103/PhysrevB.94.161110.

[70] L. Kimme and T. Hyart, Existence of zero-energy impurity states in different classes of topo-
logical insulators and superconductors and their relation to topological phase transitions,
Phys. Rev. B 93, 035134 (2016), doi:10.1103/PhysrevB.93.035134.

[71] C.-R. Hu, Midgap surface states as a novel signature for d2
xa-x2

b -wave superconductivity,
Phys. Rev. Lett. 72, 1526 (1994), doi:10.1103/PhysRevLett.72.1526.

[72] S. Ryu and Y. Hatsugai, Topological Origin of Zero-Energy Edge States
in Particle-Hole Symmetric Systems, Phys. Rev. Lett. 89, 077002 (2002),
doi:10.1103/PhysRevLett.89.077002.

[73] M. Sato, Y. Tanaka, K. Yada, and T. Yokoyama, Topology of Andreev bound states with flat
dispersion, Phys. Rev. B 83, 224511 (2011), doi:10.1103/PhysRevB.83.224511.

50

https://scipost.org
https://scipost.org/SciPostPhys.3.6.041
http://dx.doi.org/10.1126/science.1259052
http://dx.doi.org/10.1126/science.aaa6486
http://dx.doi.org/10.1103/PhysRevB.86.165430
http://dx.doi.org/10.1103/PhysRevLett.111.056403
http://dx.doi.org/10.1103/PhysRevB.88.075142
http://dx.doi.org/10.1103/PhysRevB.88.125129
http://dx.doi.org/10.1103/PhysRevB.81.224515
http://dx.doi.org/10.1103/PhysRevLett.112.070604
http://dx.doi.org/10.1017/CBO9781107358362.014
http://dx.doi.org/10.1103/RevModPhys.87.137
http://dx.doi.org/10.1103/PhysRevB.90.184512
http://dx.doi.org/10.1103/PhysrevB.94.161110
http://dx.doi.org/10.1103/PhysrevB.93.035134
http://dx.doi.org/10.1103/PhysRevLett.72.1526
http://dx.doi.org/10.1103/PhysRevLett.89.077002
http://dx.doi.org/10.1103/PhysRevB.83.224511


SciPost Phys. 3, 041 (2017)

[74] A. P. Schnyder and S. Ryu, Topological phases and surface flat bands in su-
perconductors without inversion symmetry, Phys. Rev. B 84, 060504 (2011),
doi:10.1103/PhysRevB.84.060504.

[75] T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, Flat bands in topological media, JETP Lett.
94, 233 (2011), doi:10.1134/S0021364011150045.

[76] A. P. Schnyder, P. M. R. Brydon, and C. Timm, Types of topological surface states
in nodal noncentrosymmetric superconductors, Phys. Rev. B 85, 024522 (2012),
doi:10.1103/PhysRevB.85.024522.

[77] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological in-
sulators and superconductors in three spatial dimensions, Phys. Rev. B 78, 195125 (2008),
doi:10.1103/PhysRevB.78.195125.

[78] P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature
superconductivity, Rev. Mod. Phys. 78, 17 (2006), doi:10.1103/RevModPhys.78.17.

[79] G. Baskaran, Z. Zou, and P. W. Anderson, The resonating valence bond state and high-
Tc superconductivity - A mean field theory, Solid State Commun. 63, 973 (1987),
doi:10.1016/0038-1098(87)90642-9.

[80] G. Kotliar, Resonating valence bonds and d-wave superconductivity, Phys. Rev. B 37, 3664
(1988), doi:10.1103/PhysRevB.37.3664.

[81] G. Kotliar and J. Liu, Superexchange mechanism and d-wave superconductivity, Phys. Rev.
B 38, 5142 (1988), doi:10.1103/PhysRevB.38.5142.

[82] Y. K. Kim, O. Krupin, J. D. Denlinger, A. Bostwick, E. Rotenberg, Q. Zhao, J. F. Mitchell, J.
W. Allen, and B. J. Kim, Fermi arcs in a doped pseudospin-1/2 Heisenberg antiferromagnet,
Science 345, 187 (2014), doi:10.1126/science.1251151.

[83] B. Burganov et al., Strain Control of Fermiology and Many-Body Interac-
tions in Two-Dimensional Ruthenates, Phys. Rev. Lett. 116, 197003 (2016),
doi:10.1103/PhysRevLett.116.197003.

[84] C. N. Veenstra, Z.-H. Zhu, M. Raichle, B. M. Ludbrook, A. Nicolaou, B. Slomski, G. Lan-
dolt, S. Kittaka, Y. Maeno, J. H. Dil, I. S. Elfimov, M. W. Haverkort, and A. Damascelli,
Spin-Orbital Entanglement and the Breakdown of Singlets and Triplets in Sr2RuO4 Revealed
by Spin- and Angle-Resolved Photoemission Spectroscopy, Phys. Rev. Lett. 112, 127002
(2014), doi:10.1103/PhysRevLett.112.127002.

[85] Y.-T. Hsu, W. Cho, A. F. Rebola, B. Burganov, C. Adamo, K. M. Shen, D. G. Schlom, C. J.
Fennie, and E.-A. Kim, Manipulating superconductivity in ruthenates through Fermi surface
engineering, Phys. Rev. B 94, 045118 (2016), doi:10.1103/PhysRevB.94.045118.

[86] F. Wenger and S. Östlund, d-wave pairing in tetragonal superconductors, Phys. Rev. B 47,
5977 (1993), doi:10.1103/PhysRevB.47.5977.

[87] D. Carpentier, A. A. Fedorenko, and E. Orignac, Effect of disorder on 2D topological merg-
ing transition from a Dirac semi-metal to a normal insulator, EPL 102, 67010 (2013),
doi:10.1209/0295-5075/102/67010.

[88] P. Adroguer, D. Carpentier, G. Montambaux, and E. Orignac, Diffusion of Dirac fermions
across a topological merging transition in two dimensions, Phys. Rev. B 93, 125113 (2016),
doi:10.1103/PhysRevB.93.125113.

51

https://scipost.org
https://scipost.org/SciPostPhys.3.6.041
http://dx.doi.org/10.1103/PhysRevB.84.060504
http://dx.doi.org/10.1134/S0021364011150045
http://dx.doi.org/10.1103/PhysRevB.85.024522
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1016/0038-1098(87)90642-9
http://dx.doi.org/10.1103/PhysRevB.37.3664
http://dx.doi.org/10.1103/PhysRevB.38.5142
http://dx.doi.org/10.1126/science.1251151
http://dx.doi.org/10.1103/PhysRevLett.116.197003
http://dx.doi.org/10.1103/PhysRevLett.112.127002
http://dx.doi.org/10.1103/PhysRevB.94.045118
http://dx.doi.org/10.1103/PhysRevB.47.5977
http://dx.doi.org/10.1209/0295-5075/102/67010
http://dx.doi.org/10.1103/PhysRevB.93.125113


SciPost Phys. 3, 041 (2017)

[89] G. E. Volovik, Reentrant violation of special relativity in the low-energy corner, JETP Lett.
73, 162 (2001), doi:10.1134/1.1368706.

[90] G. Xu, H. Weng, Z. Wang, X. Dai and Zhong Fang, Chern Semimetal and the
Quantized Anomalous Hall Effect in HgCr2Se4, Phys. Rev. Lett. 107, 186806 (2011),
doi:10.1103/PhysRevLett.107.186806.

[91] C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Multi-Weyl Topological Semimet-
als Stabilized by Point Group Symmetry, Phys. Rev. Lett. 108, 266802 (2012),
doi:10.1103/PhysRevLett.108.266802.

[92] G. E. Volovik, Quantum Phase Transitions from Topology in Momentum Space, in Quantum
Analogues: From Phase Transitions to Black Holes and Cosmology, Springer Berlin Heidel-
berg, Berlin, Heidelberg, ISBN 9783540708582 (2007), doi:10.1007/3-540-70859-6_3.

[93] S. Murakami, Phase transition between the quantum spin Hall and insulator phases in 3D:
emergence of a topological gapless phase, New J. Phys. 9, 356 (2007), doi:10.1088/1367-
2630/9/9/356.

[94] S. Murakami and S.-i. Kuga, Universal phase diagrams for the quantum spin Hall systems,
Phys. Rev. B 78, 165313 (2008), doi:10.1103/PhysRevB.78.165313.

52

https://scipost.org
https://scipost.org/SciPostPhys.3.6.041
http://dx.doi.org/10.1134/1.1368706
http://dx.doi.org/10.1103/PhysRevLett.107.186806
http://dx.doi.org/10.1103/PhysRevLett.108.266802
http://dx.doi.org/10.1007/3-540-70859-6_3
http://dx.doi.org/10.1088/1367-2630/9/9/356
http://dx.doi.org/10.1088/1367-2630/9/9/356
http://dx.doi.org/10.1103/PhysRevB.78.165313

	Introduction 
	Minimal model for robust semi-Dirac points and unconventional phase transitions 
	Model
	Topological properties of the superconducting Sr2 Ir O4 
	Induced order parameters in the t2g-ES and the appearance of robust semi-Dirac points 
	Topological phase diagram for the three layer heterostructure 
	Intrinsic order parameter in Sr2 Ru O4 in the presence of induced superconductivity from Sr2 Ir O4 
	Topological phase diagram for the Sr2 Ru O4/Sr2 Ir O4 heterostructure 
	Summary and discussion
	Detailed description of the symmetries of the model
	Microscopic analysis of the tunneling matrices
	Derivation of Ginzburg Landau theory for Sr2 Ru O4 in the presence of induced order parameter 
	References

