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Abstract

We compute exactly the von Neumann entanglement entropy of the eta-pairing states
- a large set of exact excited eigenstates of the Hubbard Hamiltonian. For the singlet
eta-pairing states the entropy scales with the logarithm of the spatial dimension of the
(smaller) partition. For the eta-pairing states with finite spin magnetization density, the
leading term can scale as the volume or as the area-times-log, depending on the momen-
tum space occupation of the Fermions with flipped spins. We also compute the correc-
tions to the leading scaling. In order to study the eigenstate thermalization hypothesis
(ETH), we also compute the entanglement Rényi entropies of such states and compare
them with the corresponding entropies of thermal density matrix in various ensembles.
Such states, which we find violate strong ETH, may provide a useful platform for a de-
tailed study of the time-dependence of the onset of thermalization due to perturbations
which violate the total pseudospin conservation.
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1 Introduction

The question of how equilibration and thermalization arise in isolated quantum (many-body)
systems led to the eigenstate thermalization hypothesis (ETH) [1–4]. ETH states that in the
thermodynamic limit, the eigenstate expectation value of a few-body operator in a typical
eigenstate of a many-body Hamiltonian at energy E is equal to the microcanonical average at
the mean energy per volume E/V . The two main interpretations of the ETH, the weak versus
strong ETH, state that almost all versus all the finite energy density eigenstates of a many-body
Hamiltonian appear thermal to all local measurements [5].

The ETH also has fundamental implications on quantum information-inspired quantities
that characterize the excited states. More specifically, the entanglement spectrum and the
resulting entanglement entropy have long become powerful diagnostics of topological order,
gapless or gapped nature of ground-states, and other properties [6]. One implication of the
ETH is that thermal states have volume law entanglement as opposed to area-type entangle-
ment entropy of the ground state and low-lying excited states of the system. The volume law
entanglement is then thought to return to an area law entanglement when/if the many-body
localization sets in [4].

Unfortunately, the paucity of exact results makes it difficult to test or demonstrate ETH
and its consequences in generic, non-integrable, many-body models in more than one space
dimension with realistic electron-electron interactions. Numerical studies are limited to the
very small system sizes imposed by the exact diagonalization. Motivated by the fact that a
class of exact excited eigenstates of the Hubbard model is known [7, 8], that the number of
such states is a exponentially large in volume [9], and that their energy density differs from the
ground state energy density by a finite amount, here we obtain the closed form exact expres-
sions for the entanglement spectrum, the von Neumann entanglement and Rényi entropies
of such states. The entanglement entropy for these states shows either a ln(V ) law, or a V
(volume) law, or even an area-times-log law, depending on the number and the momentum
space distribution of the flipped spins in the state. When their entropy is sub-extensive, such
states therefore clearly violate strong ETH. Even when the entropy scales with V , the pref-
actor is independent of the Hubbard U , and is not expected to correspond to the entropy in
the microcanonical average, which should be a non-trivial function of U . Despite being in
the middle of the full Hubbard spectrum, the pure spin singlet eta-pairing states, which show
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ln(V ) entanglement, are simultaneously the ground-states and the most excited states in their
specific quantum number sectors. Kantian et.al. proposed an interesting way to prepare the
eta-pairing state with cold atoms in optical lattice [10]. If successfully implemented, our re-
sults make a concrete prediction about the reduced density matrix of a small subsystem, and
the precise way that the remainder serves as a thermal bath.

The eta-pairing states with flipped spins are richer. They display either volume or
area-times-log entanglement, depending on the momentum space occupation of the flipped
Fermions. We find that even for the states with volume law entanglement, the entanglement
Rényi entropies do not match those of the thermal density matrix in the canonical ensemble.
They match the Rényi entropy of the thermal density matrix in a grand canonical ensemble,
but with additional constraints on the quantum numbers of the states.

2 The model

We consider the Fermionic Hubbard model on a hypercubic lattice in any dimension. The
Hamiltonian is Ĥ = T̂ + V̂ where

T̂ = t
∑

〈rr′〉,σ

�

ĉ†
rσ ĉr′σ + ĉ†

r′σ ĉrσ

�

−µ
∑

rσ

ĉ†
rσ ĉrσ, (1)

V̂ = U
∑

r

ĉ†
r↑ ĉr↑ ĉ

†
r↓ ĉr↓, (2)

ĉ†
rσ is the Fermionic creation operator at a site r (belonging to the hypercubic lattice) and spin

projection σ =↑ or ↓. The total number of sites is M and the first sum is over the nearest
neighbor links.

The exact, 2N -particle, spin-singlet, normalized, eta-pairing eigenstate [7] of Ĥ that we
firstly focus on is

|ψN 〉= CN

�

∑

r

eiπ·r ĉ†
r↓ ĉ

†
r↑

�N

|0〉, (3)

where CN =
Ç

(M−N)!
M !N ! , and π = (π,π, . . . ,π). This follows readily from the commutator of Ĥ

and
∑

r eiπ·r ĉ†
r↓ ĉ

†
r↑; its energy is EψN

= (U − 2µ)N [7,8]. As shown by C.N. Yang [7], this state
is not the ground state of the Hubbard model for either U ≶ 0. At half filing, µ = U/2 and
the energy of this state vanishes. For repulsive U , the ground state at half filling is an anti-
ferromagnetic insulator [11] with negative energy per particle (see e.g. [12]). For attractive
U the ground states are an s-wave superconductor and a charge density wave [13], also with
negative energy per particle. At weak coupling (U � t) and near half filing, |ψN 〉 sits near
the middle of the energy spectrum. That is because the weakly perturbed filled Fermi sea with
momenta centered near k = 0 is near the bottom of the many-body band and with momenta
centered near k = π is near its top. In the Appendix we introduce a generalization of the
Hubbard model Eq[2] for which there exist similar eta-pairing eigenstates.

We partition the M sites into a group A with MA sites and a group B with MB = M − MA
sites and compute the reduced density matrix ρ̂A by tracing all the degrees of freedom in the
group B. We then take the thermodynamic limit N →∞, M →∞ such that the boson filling
N/M → ν ∼ O(1). After this limit, we then take MA � 1. The system A is therefore small
compared to B so that B can serve as its bath, but still large enough to allow scaling of its
entanglement entropy.
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3 Reduced density matrix

We now sketch the derivation of the reduced density matrix.1 We use integration over the
contour C encircling the origin in the complex z-plane counterclockwise to re-write the eta-
pairing state as:

|ψN 〉= CN N !

∮

C

dz
2πi

1
zN+1

ez
∑

r eiπ·r ĉ†
r↓ ĉ

†
r↑ |0〉. (4)

Terms in the sum
∑

r eiπ·r ĉ†
r↓ ĉ

†
r↑ commute, therefore we can write the exponential of the sum

as the product of the exponentials. Moreover since (ĉ†
r↓ ĉ

†
r↑)

2 = 0 we see that the operator part

of Eq. 4 becomes
∏

r

�

1+ zeiπ·r ĉ†
r↓ ĉ

†
r↑

�

|0〉. We then obtain:

ρ̂A = TrB (|ψN 〉〈ψN |)

=
(M − N)!N !

M !

∮

C

dz1

2πi

∮

C

dz2

2πi
(1+ z1z2)MB

(z1z2)N+1
ez1

∑

r∈A eiπ·r ĉ†
r↓ ĉ

†
r↑ |0A〉〈0A|ez2

∑

r∈A e−iπ·r ĉr↑ ĉr↓ , (5)

|0A〉 denotes the state with all sites in the region A empty. Only the same powers of z1 and z2
survive the contour integration. Expanding (1+z1z2)MB using binomial expansion, performing
the contour integration and eliminating the sum coming from the binomial expansion, gives
the entanglement spectrum:

ρ̂A =
MA
∑

k=0

λk|k〉〈k|; λk =

�

MB
N − k

��

MA
k

�

�

M
N

� . (6)

We assumed MA < N . The states |k〉 are orthonormal eta-pairing states of the A side:

|k〉=
√

√(MA− k)!
MA!k!

�

∑

r∈A

eiπ·r ĉ†
r↓ ĉ

†
r↑

�k

|0A〉. (7)

A Vandermonde convolution confirms that
∑MA

k=0λk = 1. Similar result for a ferromagnetic
Heisenberg model appears in Ref. [14]. Ref. [15] also studies the η-pairing state, but uses
a different normalization; an expression for λk in which N appears only via N/M is quoted
in [16].

Eq. 6 shows that for each k, the eigenvalue of the density matrix is equal to the number
of ways to simultaneously place k pairs on MA sites and N − k pairs on MB = M − MA sites,
divided by the number of ways to place N pairs onto M sites. The system is subject to the
constraint on no double pair occupancy. In the thermodynamic limit, the largest number of
configurations corresponds to the uniform particle density, i.e. λk should be very sharply
peaked about km = MA(N/M).

In the limit of interest, we can use the Stirling formula n! ≈
p

2πnen(ln n−1) where n is
large. Then,

λk ≈
1

p
2πκ

e−
1

2κ (k−km)2 , (8)

1We provide detailed derivations of our results in the Appendix, including an extension to the “generalized”
Hubbard model.
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where κ = ν(1 − ν)MA. This form is valid as long as ν is not infinitesimally close to 0
or 1. Substituting the above Gaussian form into the von Neumann entanglement entropy
SA = −

∑MA
k=0λk lnλk, and replacing the discrete sum over k with an integral we obtain that

SA scales as the logarithm [15,16] of the number of sites in the region A:

SA =
1
2
(1+ ln [2πν(1− ν)MA]) . (9)

The small value of SA seems to be in a contradiction with the ETH motivated expectation
that finite energy density excited states in the middle of the many-body spectrum should ther-
malize with the entanglement entropy scaling as the volume (∼ MA). However, it is not, due to
the existence of additional pseudospin symmetry operators [8], and the eta-pairing states are
the only states in their symmetry sector. The existence of a global conserved pseudospin [7,8]
is special to the Hubbard model, and the corresponding operator is [7,8]

Ĵ2 =
1
2

�

Ĵ+ Ĵ− + Ĵ− Ĵ+
�

+ Ĵ2
0 , (10)

where Ĵ+ =
∑

r eiπ·r ĉ†
r↓ ĉ

†
r↑, Ĵ− = Ĵ†

+, and Ĵ0 =
1
2(N̂ − M). Because Ĵ2 commutes with Ĵ+, the

state |ψN 〉 corresponds to the maximal eigenvalue of the Ĵ2, namely M
2

�M
2 + 1

�

, independent
of N . Different members of this highest J = M

2 multiplet have a different value of J0 (hence
different particle number). Note that the spin singlet pairs in |ψN 〉 are not severed by the A−B
partition. If each state in this multiplet was equally likely, the entropy within this sector would
be the logarithm of the multiplicity of the multiplet. There are ∼ MA states in the multiplet
which are accessible in the region with MA sites, hence SA ∼ ln MA. The pre-factor 1

2 originates
from Eq. 8 being Gaussian distributed with the width ∼

p

MA.
The eta-pairing states have a natural generalization when Ĵ+ acts on any fully polarized

states instead of the vacuum. This class of spin-flip eta-pairing states is:

|ψ{k}N 〉 = ĉk
N

�

∑

r

eiπ·r ĉ†
r↓ ĉ

†
r↑

�N
∏

k∈F

ĉ†
↓(k)|0〉, (11)

where ĉσ(k) =
1p
M

∑

r e−ik·r ĉrσ. The set F consists of any of the wavevectors in the 1st Bril-
louin zone. We denote the number of k’s inF by Nk. We normalize these states by computing

ĉk
N =

r

(M−Nk−N)!
(M−Nk)!N ! , where clearly N + Nk ≤ M . For large M , there are ∼ M2 × 2M−2 of such

eigenstates [9]. Although this is a very large number, the total number of states in the Hilbert
space is larger i.e. 4M . Thus the relative fraction of eta-pairing states vanishes as M →∞ [9].
The eigenenergy of |ψ{k}N 〉 is

E
ψ
{k}
N
= (U − 2µ)N +

∑

k∈F

(εk −µ), (12)

where εk are the energies of the kinetic term (i.e. in two dimensions εk = 2t(cos kx +cos ky)).
Consider first the states in Eq. 11 with N = 0; all such states can be easily constructed, as
they are non-interacting. For a given Nk, such fully spin polarized states are highest weight
spin states Sz = S = Nk

2 . They also have J0 = −J = 1
2(Nk − M), i.e. they are lowest weight

pseudospin states.
The states in Eq. 11 are the J0 =

1
2 (2N + Nk −M) states of the J = 1

2(M −Nk) pseudospin
multiplet and highest weight spin states Sz = S = Nk

2 . Up to global spin SU(2) rotations – ob-
tained by repeated application of Ŝ± – the states of Eq. 11 are the only states with J+S = M

2 . If
there were others, we could lower their J0 by applying Ĵ− N -times until we got to J0 = S− 1

2 M .
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From the definition of Ĵ0 below Eq. 10, this is a state with 2S spin-1/2 Fermions and total spin
S - therefore fully spin polarized. The only such states are non-interacting.

The reduced density matrix ρ̂{k}A = TrB

�

|ψ{k}N 〉〈ψ
{k}
N |
�

can be computed using the Schmidt
decomposition of the Slater determinant part of Eq. 11,

∏

k∈F

ĉ†
↓(k)|0〉 =

Nk
∏

m=1

�
p

γmâ†
m +

p

1− γm b̂†
m

�

|0〉. (13)

Here

â†
m =

1
p
γm

1
p

M

∑

r∈A

�

∑

k∈F

eik·rφ∗m(k)

�

ĉ†
r↓, (14)

b̂†
m =

1
p

1− γm

1
p

M

∑

r∈B

�

∑

k∈F

eik·rφ∗m(k)

�

ĉ†
r↓, (15)

and γm and φm(k) are respectively the eigenvalues and orthonormal eigenvectors of the Her-
mitian Nk×Nk matrix [17] Γkk′ =

1
M

∑

r∈A ei(k−k′)·r, with k and k′ ∈ F . The Fermion operators
in Eqs. 14-15 obey

�

â†
m, âm′

	

=
�

b̂†
m, b̂m′

	

= δm,m′ , and, because they live in different regions
in real space,

�

â†
m, b̂m′

	

= 0.
Using Eq. 13, we can write

∏

k∈F

ĉ†
↓(k)|0〉=

∑

{mA}

α{mA}|{mA}〉 ⊗ |{mB}〉, (16)

where the sum is over all the different 2Nk ways to partition the Nk “orbitals” m into those
occupied by a†’s, denoted by the set {mA}, and the complementary set {mB} occupied by b̂†’s.
If, for any given partition, there are NA “orbitals” in the set {mA}, then there are Nk − NA
“orbitals” in the set {mB}. Here,

α{mA} =

 

∏

m∈{mA}

p

γm

! 

∏

m∈{mB}

p

1− γm

!

. (17)

The states in Eq. 16 are

|{mA}〉=
∏

m∈{mA}

â†
m|0〉, |{mB}〉=

∏

m∈{mB}

b̂†
m|0〉. (18)

The reduced density matrix can again be calculated with the help of the contour integral rep-
resentation of |ψ{k}N 〉

ρ̂
{k}
A =

∑

{mA}

MB−(Nk−NA)
∑

j=0

α2
{mA}
λk

j |N − j, {mA}〉〈N − j, {mA}|,

λk
j =

�

MB − (Nk − NA)
j

��

MA− NA
N − j

�

�

M − Nk
N

� (19)

where |N − j, {mA}〉 are orthonormal.
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The von Neumann entanglement entropy is then

Sk
A = −

∑

{mA}

MB−(Nk−NA)
∑

j=0

α2
{mA}
λk

j ln
�

α2
{mA}
λk

j

�

. (20)

Using the Vandermonde convolution, we can write the above as

Sk
A = S̃k

A −
∑

{mA}

MB−(Nk−NA)
∑

j=0

α2
{mA}
λk

j lnλk
j . (21)

where S̃k
A = −

∑

{mA}α
2
{mA}

lnα2
{mA}

is the von Neumann entropy of the free Fermi gas. As
computed in Fig. 1 (for the two dimensional case) and as discussed by Lai and Yang [18], it
can result in either the volume or the area-times-log “law”, depending on which k-points are
occupied.

To analyze the second term in Eq. 21, we note that the sum over the partitions is sharply
peaked around NA ≈

Nk
M MA, which is large in the limit of interest. Therefore, λk

j is peaked
about a large value of j and we can use Stirling’s approximation. Again, replacing the discrete
sum by an integral, we finally find

Sk
A = S̃k

A +
1
2
+

1
2

ln
�

2πν
�

1−
ν

1− νk

�

MA

�

, (22)

where νk = Nk/M . We see that the leading order scaling comes from the free Fermion part
(i.e. S̃k

A), and the correction scales with the logarithm of the number of sites in the region A.
Logarithmically diverging subleading contribution was also argued for in Ref. [19] , but with
a different prefactor.

The Rényi entropy, Sk,(n)
A = 1

1−n ln
�

TrAρ̂
n
A

�

, can be computed for the states Eq. 11 using
similar techniques. In the same limit as before, we find

Sk,(n)
A = S̃k,(n)

A +
1
2

ln n
n− 1

+
1
2

ln

�

2πν
�

1−
ν

1− νk

� 1− ν(n)A

1− νk
MA

�

. (23)

where S̃k,(n)
A is the Rényi entropy of the free Fermi gas and

ν
(n)
A =

1
MA

∑

m

1
�

1
γm
− 1

�n
+ 1

. (24)

Note that ν(1)A = 1
MA

TrΓ = νk. The formulas Eq. 22 and Eq. 23 are therefore identical as n→ 1.
Again, the leading scaling comes from the free Fermi part and the correction scales as ∼ ln MA.

In the context of the ETH, it is interesting to ask whether the entanglement entropy density
– be it von Neumann or Rényi – for the above mentioned exact eigenstates of the Hubbard

model match the entropy density for the thermal density matrix ρ̂th = e−β(Ĥ−µ
(1)
th Ĵ0−µ

(2)
th Ĵ) with

Ĥ being the Hubbard Hamiltonian. We included µ(1,2)
th to separately control the average value

of Nk and N . If the trace of ρ̂th is to be performed over all the states in the Hilbert space of the
Hubbard model, then they should not match, because Trρ̂th should depend on the interaction
U while ρ{k}A is U-independent. However, if the trace is restricted to states of the type Eq. 11,
and the distribution of the occupied k states results in the “volume” law (see Fig.1), then the
first (leading) term in Eq. 23, indeed matches the “thermal” Rényi entropies computed in the
grand canonical ensemble:

S(n)th =
1

1− n

∑

k

ln
�

f n
k + (1− fk)

n
�

, (25)

fk =
1

eβ(εk−µ̄) + 1
, (26)

7

https://scipost.org
https://scipost.org/SciPostPhys.3.6.043


SciPost Phys. 3, 043 (2017)

2

3

4

5

6

7

8

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

80 100 120 140 160 180 200 220 240

Figure 1: Upper panel: Sk
A computed from Eq. 21 for three different distributions in the Brillouin

zone: a Fermi sea distribution (a), a regular pattern with a small random offset (b) and a fully
random distribution (c). The distributions are shown as an inset of the lower panel, each black
pixel being an occupied state. The system has M = 256× 256 sites with Nk = 16384 particles
and N = 2048 pairs. The region A is a square of perimeter L. We actually show Sk

A/L and
we have rescaled the values obtain for (a) by a factor of 10. The lines are the free Fermi gas
entropies S̃k

A. Note that the distribution (b) has a crossover between area law (for small L)
and L ln L (for large L). Lower panel: Difference between Sk

A and the von Neumann entropy of
the free system S̃k

A as a function of L for the three distributions. The dashed line is the analytic
difference given by Eq. 22.

n Sk,(n)
A /MA S(n)th /M n Sk,(n)

A /MA S(n)th /M
1 0.560261 0.562334 6 0.345661 0.344944
2 0.468519 0.470002 7 0.336312 0.335553
3 0.412948 0.413339 8 0.329527 0.328758
4 0.379767 0.379486 9 0.324403 0.323636
5 0.359168 0.358576 10 0.320407 0.319645

Table 1: Rényi entropies per unit of volume. The second column is the Rényi entropy per unit
of volume computed for a 16×16 patch using the same system than in Fig. 1 and the random
distribution (c). The third column is the thermal Rényi entropy per unit of volume evaluated
using the fitted parameters of β and µ̄.

provided the values of β and µ̄ are selected so that
∑

k∈F εk =
∑

k εk fk and Nk =
∑

k fk. For
the k-distribution shown in Fig. 1, the comparison is shown in the Table 1. We note in passing
that if the thermal Rényi entropy density is computed in the canonical ensemble, they do not
match Sk,(n)

A /MA for n> 1.
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4 Conclusion

In conclusion, we have obtained the exact closed-form expression for the entanglement spec-
trum of exact many-body excited eigenstates of the Hubbard model. Despite being exact ex-
cited eigenstates with finite energy density above the ground state, these states violate strong
ETH. This is either because their entanglement entropy is sub-extensive or because it is inter-
action independent. Nevertheless, despite an exponentially large number of these states [9],
the fraction of these state in the Hilbert space vanishes in the thermodynamic limit. As such,
they may provide a useful starting point for studying the onset of thermalization due to per-
turbations which violate the total pseudospin conservation.
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Appendix

In this Appendix, we provide detailed derivations of our results discussed in the main article.
We also discusses extensions to the “generalized” Hubbard model and to a larger class of spin-
flip eta-pairing states.

A Hubbard Hamiltonian and SO(4) symmetry

In this section, we introduce the extended Hubbard model and its symmetries. We consider a
Hamiltonian

Ĥ = T̂ + V̂β , (27)

where the kinetic energy T̂ is

T̂ =
∑

k,σ

(εk −µ)(ĉ
†
kσ ĉkσ) (28)

while the potential energy is a density-density "shifted" interaction:

V̂β = U
∑

r

ĉ†
r+β↑ ĉr+β↑ ĉ

†
r↓ ĉr↓ (29)

The case considered in the main text of the paper is β = 0, but for now we keep a generic β .
For notation simplicity, bold symbols (such as r or β) represent vectors in the d-dimensional
space. We also define the shifted momentum

P̂ =
∑

k

�

k−
1
2

G
�

(ĉ†
k↑ ĉk↑ + ĉ†

k↓ ĉk↓) (30)

where G is a given vector on the lattice, to be determined later.
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A.1 Spin symmetry

An extension of the usual SU(2) spin symmetry exists in Eq. 27. We define the operator:

ζ̂α =
∑

r

ĉr+α↑ ĉ
†
r↓ =

∑

k

eik·α ĉk↑ ĉ
†
k↓ (31)

We have
[ζ̂†
α, ζ̂α] =

∑

r

(ĉ†
r↑ ĉr↑ − ĉ†

r↓ ĉr↓) (32)

Using [ζ̂θ , [ζ̂†
α, ζ̂α]] = 2ζ̂θ we find that any of the ζ̂α operators and the Ŝz "spin" operator can

form a SU(2) algebra:

ζ̂†
α = Ŝx + iŜy , Ŝz =

1
2

∑

r

(ĉ†
r↑ ĉr↑ − ĉ†

r↓ ĉr↓) (33)

Ŝz clearly commutes with Ĥ and for any α we have [ζ̂α, T̂] = [ζ̂α, P̂] = 0 For α = β , the ζ̂β
operators also commutes with the density density part of the Hamiltonian:

[ζ̂β , V̂β] = 0 (34)

ζ̂β , ζ̂†
β

, Ŝz form an SU(2) spin algebra.

A.2 η symmetry

We now define an η̂ operator:

η̂α =
∑

r

e−iG·r ĉr+α↑ ĉr↓ =
∑

k

eik·α ĉk↑ ĉG−k↓ (35)

with an algebra:
[η̂†
α, η̂α] =

∑

r

(ĉ†
r↑ ĉr↑ + ĉ†

r↓ ĉr↓)−M (36)

where M is the total number of sites in the problem. The general commutation relation
[η̂γ, [η̂

†
θ

, η̂α]] = 2η̂α+γ−θ means that any of the η̂α operators and the number of particle
operator form an SU(2) algebra:

η̂†
α = Ĵx + iĴy , Ĵz =

1
2

∑

r

(ĉ†
r↑ ĉr↑ + ĉ†

r↓ ĉr↓)−
1
2

M (37)

with the usual [Ĵx , Ĵy] = iĴz , relations of the SU(2) algebra. This algebra is true for any α.
The η̂α, ζ̂α operators commute, forming an SU(2)× SU(2) algebra

[η̂α, ζ̂α] = [η̂
†
α, ζ̂α] = [η̂

†
α, Ĵz] = [ζ̂

†
α, Ŝz] = 0 (38)

For any G, we have [η̂α, P̂] = 0. We now check the general conditions when η̂α has interesting
commutation relations with the Hamiltonian. For the kinetic term of the Hamiltonian we find:

[η̂α, T̂] =
∑

k

eik·α ĉk↑ ĉπ−k↓(εk + εG−k + 2µ) (39)

For any (εk + εG−k) independent of k the right hand side is just η̂α. For the nearest neighbor
(or any "odd" neighbor) hopping where εk = 2t

∑

i=x ,y,... cos(ki) and hence

G= π (40)
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where π is a d-dimensional vector with all components equal to π. In that case, we have
[η̂α, T̂] = 2µη̂α. However, only η̂β (i.e. for α= β) commutes with the potential part V̂β from
Eq. 29:

[η̂β , V̂β] = Uη̂β (41)

Hence:
[η̂β , Ĥ] = (2µ+ U)η̂β (42)

We now have proved that η̂β , η̂†
β

, Ĵz and ζ̂β , ζ̂†
β

, Ŝz form and SU(2)× SU(2) symmetry gener-

ators that inter-commute. η̂β also has a nice commutation with the Hamiltonian Ĥ. In fact,
we can shift µ= −U/2 and have η̂β commute with the Hamiltonian T̂ + V̂β .

B Explicit eigenfunctions of Ĥ

The spectrum of Ĥ can be placed in eigenvalues of Ĵ2, Ĵz , Ŝ2, Ŝz , Ĥ, P̂. We will now write
down a large number of exact eigenstates. Out of Ĵz , Ŝz we can make two (linearly dependent
operators) quantum numbers, N̂↑ =

∑

r ĉ†
r↑ ĉr↑ and N̂↓ =

∑

r ĉ†
r↓ ĉr↓:

Ĵz =
N̂↑ + N̂↓ −M

2
, Ŝz =

N̂↑ − N̂↓
2

(43)

The numbers of ↑ and ↓ spins are independently conserved and will be used to interchangeably
denote states.

B.1 Set of eigenstates

First consider the eigenstates of the Hamiltonian for which the number N↑ of ↑ particles is zero.
For these states, the interaction do not appear and we have N↓ = Nk noninteracting fermions,
each with their momenta:

�

�

�Ψ
{k}
0,0

¶

=
�

�k1, . . . , kNk

�

=
∏

k∈F

ĉ†
↓(k) |0〉 (44)

where F consists of any set of Nk wavevectors in the 1st Brillouin zone. The energy and
momentum of these states is:

E�
�

�Ψ
{k}
0,0

¶ =
∑

k∈F

εk −µNk (45)

P�
�

�Ψ
{k}
0,0

¶ =
∑

k∈F

k−
1
2

Nkπ mod 2π (46)

We can see that these states have:

η̂β

�

�

�Ψ
{k}
0,0

¶

= 0, ζ̂β
�

�

�Ψ
{k}
0,0

¶

= 0,

Ĵz

�

�

�Ψ
{k}
0,0

¶

= Nk−M
2

�

�

�Ψ
{k}
0,0

¶

, Ŝz

�

�

�Ψ
{k}
0,0

¶

= −Nk
2

�

�

�Ψ
{k}
0,0

¶

(47)

and hence these are the lowest weight states of a multiplet:
�

�

�Ψ
{k}
N1,N2

¶

= (η̂†
β
)N1(ζ̂†

β
)N2

�

�

�Ψ
{k}
0,0

¶

(48)

with N1 = 0, . . . , M − Nk, N2 = 0, . . . , Nk. These states have the quantum numbers under
Ĥ, P̂, Ĵz , Ŝz respectively:

E�
�

�Ψ
{k}
0,0

¶ − (µ−
1
2

U)N1, P�
�

�Ψ
{k}
0,0

¶,
Nk −M

2
+ N1, −

Nk

2
+ N2 (49)
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This is a large number of states: the different F configurations are

�

M
N↓

�

for a total of

M
∑

N↓=0

�

M
N↓

�

(M − N↓ + 1)(N↓ + 1). (50)

The state in Eq. 11 of the main text, is the N1 = N , N2 = 0, Nk = N↓ representative of Eq. 48
and was first introduced by C. N. Yang in Ref. [7].

In Ref. [7], C.N. Yang built the one state |N1, 0, 0〉 of the set Eq. 48, the so-called eta-pairing
states. He then proceeded to building another set of states, η̂N

β η̂
†
α |0〉 which he then proved

were also eigenstates of the Hamiltonian. This state is, however, linearly dependent on
�

�

�Ψ
{k}
N1,N2

¶

and hence not a new state. CN Yang’s state |α〉 = η̂†
α |0〉 , ∀ α 6= β has the Jz , Sz quantum

numbers Ĵz |α〉=
2−M

2 |α〉 , Ŝz |α〉= 0. It belongs to a multiplet
�

�N3, N4,α
�

= (η̂†
β
)N3(ζ̂†

β
)N4 |α〉

where and N3 = 0, . . . , M −2 and N4 = −1,0, 1 (the notation is (ζ̂†
β
)−1 = ζ̂β). By direct calcu-

lation we find that the lowest weight states |0,−1,α〉 are (an energy −2µ) linear combination

of the states
�

�

�Ψ
{k}
N1,N2

¶

= |0,0; k,π− k〉 of Eq. 48:

ζ̂β |α〉=
∑

k

ei(β−α)·k ĉ†
↓(k)ĉ

†
↓(π− k) |0〉 (51)

This in fact had to be so because we will now prove that the states Eq. 48 are the only states
(and their η and ζ̂ ) in the J + S = M/2 sector. Since

�

�N3, N4,α
�

also have J + S = M/2, they
must hence be a linear combination of the states in Eq. 48 .

B.2 Completeness

The states in Eq. 48 have J , S quantum numbers that satisfy the relation J +S = M/2: given a
configuration of momentaF , they have the same J , S quantum numbers Eq. 47 as their lowest
weight counterparts Eq. 44, which immediately satisfy the aforementioned identity. We now
prove that all the states with J+S = M/2 are part of multiplets where the lowest (and highest)
weight states are noninteracting. In other words, the set of states in Eq. 48 saturate the Hilbert
space of quantum numbers J + S = M/2 (irrespective of Jz , Sz , P)

Pick any states |J , S, Jz , Sz , P〉 in the Hilbert space of the Hubbard model, with J+S = M/2.
We can always apply the η̂β , ζ̂β lowering operators the appropriate amount of times to
bring this state to the lowest weight of both SU(2) ⊗ SU(2): |J , S, Jz = −J , Sz = −S, P〉. For
this last state, we have Jz + Sz = −(J + S) = −M/2. Eq. 43 relates the quantum num-
bers to the number of ↑,↓ particles existent in the system. It is then trivial to see that the
states |J , S, Jz = −J , Sz = −S, P〉 has N↑ = 0 (without any restriction on N↓). Since only N↓
particles are present, there is no Hubbard U interaction, and all the lowest weight states
|J , S, Jz = −J , Sz = −S, P〉 (J + S = M/2) can be labeled by the momenta of the ↓ particle,
as in Eq. 44. No other states can exist in these quantum number sectors.

B.3 Norm of the
�

�

�Ψ
{k}
N1,N2

¶

states

To fully define the states, we compute their norm. We first present a method which will be
used extensively in the calculations in this section. First, we note that we can write a Kronecker
δ-function using contour integration as

δm,n =

∮

C

dz
2πi

1
zn+1

zm (52)

12

https://scipost.org
https://scipost.org/SciPostPhys.3.6.043


SciPost Phys. 3, 043 (2017)

where the contour C encircles the origin in the complex z-plane counterclockwise. Using this
and the commutation relations [ĉ†

r′↓ ĉ
†
r′+β↑, ĉr↓ ĉ

†
r+β↑] = 0 we re-write the states:

�

�

�Ψ
{k}
N1,N2

¶

= N1!N2!

∮ ∮

dz1

2πi
dz2

2πi
1

zN1+1
1

1

zN2+1
2

∞
∑

n1=0

1
n1!
(z1

∑

r ′
eiπ·r′ ĉ†

r↓′ ĉ
†
r′+β↑)

n1

×
∞
∑

n2=0

1
n2!
(z2

∑

r

ĉr↓ ĉ
†
r+β↑)

n2

�

�

�Ψ
{k}
0,0

¶

= N1!N2!

∮ ∮

dz1

2πi
dz2

2πi
1

zN1+1
1

1

zN2+1
2

e
z1
∑

r′ eiπ·r′ ĉ†
r′↓ ĉ

†
r′+β↑ez2

∑

r ĉr↓ ĉ
†
r+β↑

�

�

�Ψ
{k}
0,0

¶

= N1!N2!

∮ ∮

dz1

2πi
dz2

2πi
1

zN1+1
1

1

zN2+1
2

∏

r′
(1+ z1eiπ·r′ ĉ†

r′↓ ĉ
†
r′+β↑)

×
∏

r

(1+ z2 ĉr↓ ĉ
†
r+β↑)

�

�

�Ψ
{k}
0,0

¶

= N1!N2!

∮ ∮

dz1

2πi
dz2

2πi
1

zN1+1
1

1

zN2+1
2

∏

r

(1+ z1eiπ·r ĉ†
r↓ ĉ

†
r+β↑ + z2 ĉr↓ ĉ

†
r+β↑)

�

�

�Ψ
{k}
0,0

¶

(53)

The product over r is taken over all lattice sites. We are now in a position to calculate the norm.

Using the fact that
�

�

�Ψ
{k}
0,0

¶

contains only Nk b- particles, and with the help of the identity

eαĉ†
r↓ ĉr↓ = 1+ (eα − 1)ĉ†

r↓ ĉr↓, (54)

we find

D

Ψ
{k′}
N ′1,N ′2
|Ψ{k}N1,N2

E

= N ′1!N ′2!N1!N2!

∮ ∮ ∮ ∮

dz1

2πi
dz2

2πi
dz3

2πi
dz4

2πi
1

zN1+1
1

1

zN2+1
2

1

z
N ′1+1
3

1

z
N ′2+1
2

×
D

Ψ
{k′}
N ′1,N ′2

�

�

�

∏

r

(1+ z1z3 ĉr↓ ĉ
†
r↓ + z2z4 ĉ†

r↓ ĉr↓)
�

�

�Ψ
{k}
0,0

¶

(55)

The integrand can be massaged
D

Ψ
{k′}
N ′1,N ′2

�

�

�

∏

r

(1+ z1z3 ĉr↓ ĉ
†
r↓ + z2z4 ĉ†

r↓ ĉr↓)
�

�

�Ψ
{k}
0,0

¶

= (1+ z1z3)
M
¬

Ψ
{k′}
0,0

�

�

�

∏

r

elog(1+ z2z4−z1z3
1+z1z3

)ĉ†
r↓ ĉr↓

�

�

�Ψ
{k}
0,0

¶

= (1+ z1z3)
M
¬

Ψ
{k′}
0,0

�

�

� elog( 1+z2z4
1+z1z3

)
∑

r ĉ†
r↓ ĉr↓

�

�

�Ψ
{k}
0,0

¶

= (1+ z1z3)
M elog( 1+z2z4

1+z1z3
)Nk
¬

Ψ
{k′}
0,0

�

�

�Ψ
{k}
0,0 〉

= (1+ z1z3)
M−Nk(1+ z2z4)

NkδF ′,F (56)

and provides the first Kronecker delta function of the momenta configurations F and F ′.
Simple integration then provides for:

D

Ψ
{k′}
N ′1,N ′2
|Ψ{k}N1,N2

E

=
Nk!N2!(M − Nk)!N1!

(Nk − N2)!(M − Nk − N1)!
δN ′1,N1

δN ′2,N2
δF ′,F (57)

C Entanglement spectrum of
�

�

�Ψ
{k}
N1,N2

¶

states

The entanglement spectrum of the states
�

�

�Ψ
{k}
N1,N2

¶

can be analytically computed for β = 0. We

sketch this calculation in the current section. The strategy to diagonalized the reduced density
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matrix will be to first perform the Schmidt decomposition of the non-interacting lowest weight

states
�

�

�Ψ
{k}
0,0

¶

. In this basis, we then form the states
�

�

�Ψ
{k}
N1,N2

¶

and apply techniques similar to

those of Eq. 53 and Eq. 57 to diagonalize the density matrix. In all our calculations, we will
assume that a partition of the space of M sites has been performed in an A and B parts.

C.1 Schmidt decomposition of
�

�

�Ψ
{k}
0,0

�

The strategy for performing a Schmidt decomposition of a non-interacting state
�

�

�Ψ
{k}
0,0

¶

=
∏

k∈F ĉ†
k↓ |0〉 into A (left) and B (right) regions is well known and has been first

presented by Peschel in Ref. [17]. We build and diagonalize the one-body density matrix of
the A side:

Γk,k′ =
1
M

∑

r∈A

e−i(k−k′)r and
∑

k′∈F

Γk,k′φm(k
′) = γmφm(k), k ∈ F

where we normalize our complete basis:
∑

k∈F φm(k)?φm′(k) = δmm′ . Any eigenvalues which
are 0, 1 and their respective eigenstates are discarded. Using this complete basis we want to
build eigenstates with support fully in either region A or B. If for any γm 6= 0,1, we rescale

φm(r) =
1

p
M
p
γm

∑

k∈F

eik·rφm(k), r ∈ A (58)

and

φm(r) =
1

p
M
p

1− γm

∑

k∈F

eik·rφm(k), r ∈ B (59)

we have found normalized operators in the A and B side of the system:

∑

r∈A

φ?m(r)φm′(r) =
1

Mγm

∑

k,k′∈F

�

φm(k)
?φm′(k)

∑

r∈A

e−i(k−k′)·r

�

=
1
γm

∑

k,k′∈F

φm(k)
?φm′(k)Γkk′

=
∑

k∈F

φm(k)φm′(k) = δm,m′ (60)

And similarly for the B region.
We are now ready to Schmidt decompose the state. As φm(k) is a unitary transformation

(keep all the γm’s, even if 0, 1), we perform the canonical transformation:

ĉ†
m =

∑

k∈F

φm(k)ĉ
†
k (61)

which keep the state
�

�

�Ψ
{k}
0,0

¶

invariant:

�

�

�Ψ
{k}
0,0

¶

=
∏

m=1

ĉ†
m |0〉 (62)
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We now separate ĉ†
m into orthogonal left and right second quantized operators:

ĉ†
m =

∑

k∈F

φm(k)c
†(k)

=
1
M

∑

r∈A+B

∑

k∈F

eik· jφm(k)ĉ
†
r

=
p

γm

∑

r∈A

φm(r)ĉ
†
r +

p

1− γm

∑

r∈B

φm(r)ĉ
†
r

=
p

γma†
m +

p

1− γm b†
m (63)

Where am =
∑

r∈Aφm(r)ĉr, bm =
∑

r∈Bφm(r)ĉr are canonical fermionic operators with support
exclusively on the left and right hand side respectively. Hence:

�

�

�Ψ
{k}
0,0

¶

=
∏

m=1

(
p

γma†
m +

p

1− γm b†
m) |0〉 (64)

No ↑ fermions are present in the state. The many-body Schmidt decomposition of the state
can be decomposed in sectors that contain NA particles in the A side and Nk − NA particles on
the B side. Each NA sector on the A side can be obtained by filling a set of {mA} single-particle
eigenstates m. Written like this, the state is easily decomposed in

�

�

�Ψ
{k}
0,0

¶

=
∑

{mA}α{mA}|{mA}〉 ⊗ |{mB}〉,

(65)

where the sum is over all the different 2Nk ways to partition the Nk ↓-“orbitals” m
into those occupied by a†’s, denoted by the set {mA} - for the NA particle state
|{mA}〉 =

∏

m∈{mA} a†
m|0〉, and the complementary set {mB} occupied by b̂†’s for the Nk − NA-

particle state |{mB}〉=
∏

m∈{mB} b̂†
m|0〉. Here

α{mA} =

 

∏

m∈{mA}

p

γm

! 

∏

m∈{mB}

p

1− γm

!

(66)

The entanglement entropy is then
∑

{mA}

α2
{mA}

logα2
{mA}
=
∑

m

γm logγm + (1− γm) log(1− γm) (67)

For the below, it is important to remember that NA is a good quantum number of the decom-
position.

C.2 Entanglement spectrum of all the
�

�

�Ψ
{k}
N1,N2

¶

states for β = 0

Having obtained an A/B decomposition of the states
�

�

�Ψ
{k}
0,0

¶

, we now obtain the decomposition

for the full states
�

�

�Ψ
{k}
N1,N2

¶

. We start by building a new orthonormal basis for the A and B

sides away from the lowest weight limit. We build the η̂ and ζ̂ operators on the A and B sides
respectively:

η̂†
A/B =

∑

r∈A/B

eiπ·r ĉ†
r↓ ĉ

†
r↑, ζ̂

†
A/B =

∑

r∈A/B

ĉr↓ ĉ
†
r↑, (68)
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Using the Schmidt decomposition of left and right parts in
�

�

�Ψ
{k}
0,0

¶

Eq. 65, we define the eta-

pairing states of the A and B sides:

|n1, n2, {mA}〉= (η̂
†
A)

n1(ζ̂†
A)

n2 |{mA}〉 (69)

Using the same steps as in Eq. 57, it is easy to prove orthonormality of |n1, n2, {mA}〉:

〈n′1, n′2, {m′A} |n1, n2, {mA}〉=
1

n1!n2!n′1!n′2!

∮ ∮ ∮ ∮

dz3

2πi
dz4

2πi
dz2

2πi
dz1

2πi
1

zn1+1
3

1

zn2+1
4

1

z
n′1+1
2

1

z
n′2+1
1

×



{m′A}
�

�

∏

r∈A

(1+ z1âr ĉ†
r↓)
∏

r′∈A

(1+ z2e−iπ·r′ âr ′ ĉr′↓)

×
∏

r′′∈A

(1+ z3eiπ·r′′ ĉ†
r′′,↓â

†
r ′′)

∏

r′′′∈A

(1+ z4 b̂r ′′′ â
†
r ′′′)

�

�{m′A}
�

=
1

n1!n2!n′1!n′2!

∮ ∮ ∮ ∮

dz3

2πi
dz4

2πi
dz2

2πi
dz1

2πi
1

zn1+1
3

1

zn2+1
4

1

z
n′1+1
2

1

z
n′2+1
1

×



{m′A}
�

�

∏

r∈A

(1+ z1z4 ĉ†
r↓ ĉr↓ + z2z3 ĉr↓ ĉ

†
r↓) |{mA}〉 (70)

We have followed the same steps as in Eq. 57. The manipulations of the operators inside
the expectation value so far do not depend on the states as long as the left and right states do
not contain any ↑ particles, which the states |{mA}〉 satisfy. Using then the identical steps as
below Eq. 57 we have:

〈n′1, n′2, {m′A} |n1, n2, {mA}〉=
1

n1!n2!n′1!n′2!

∮ ∮ ∮ ∮

dz3

2πi
dz4

2πi
dz2

2πi
dz1

2πi
1

zn1+1
3

1

zn2+1
4

1

z
n′1+1
2

1

z
n′2+1
1

× (1+ z3z5)
MA−NA(1+ z4z6)

NAδ{m′A},{mA}

= δ{m′A},{mA}δn1,n′1
δn2,n′2

�

MA− NA
n1

��

NA
n2

�

(n1!)2(n2!)2 (71)

We now can find, using the normalized
�

�

�Ψ
{k}
N1,N2

¶

we find (the limits in the sum are obvious,
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for example in binomial coefficients, etc ):

TrA

�

�

�Ψ
{k}
N1,N2

¶¬

Ψ
{k}
N1,N2

�

�

�

=
1

�

M − Nk
N1

��

Nk
N2

�

∮ ∮ ∮ ∮

dz1

2πi
dz2

2πi
dz3

2πi
dz4

2πi
1

zN1+1
1

1

zN2+1
2

1

zN1+1
3

1

zN2+1
4

×
∑

{mA}

α2
{mA}

∑

n1,n2

�

MA− NA
n1

��

NA
n2

�

(z1z3)
n1(z2z4)

n2

∑

n3,n4,n5,n6

1
n3!n4!n5!n6!

zn3
1 zn4

2 zn5
3 zn6

4

× (η̂†
B)

n3(ζ̂†
B)

n4 |{mB}〉 〈{mB}| (ζ̂B)
n6(η̂B)

n5

=
1

�

M − Nk
N1

��

Nk
N2

�

∑

{mA}

α2
{mA}

∑

n1,n2

�

MA− NA
n1

��

NA
n2

�

1
((N1 − n1)!)2

1
((N2 − n2)!)2

× (η̂†
B)

N1−n1(ζ̂†
B)

N2−n2 |{mB}〉 〈{mB}| (ζ̂B)
N2−n2(η̂B)

N1−n1

=
1

�

M − Nk
N1

��

Nk
N2

�

∑

{mA}

α2
{mA}

∑

n1,n2

�

MA− NA
n1

��

NA
n2

��

MA− (Nk − NA)
N1 − n1

�

×
�

Nk − NA
N2 − n2

�

|N1 − n1, N2 − n2, {mB}〉 〈N1 − n1, N2 − n2, {mB}| (72)

where |N1 − n1, N2 − n2, {mB}〉 is a normalized state of Nk−NA−N2+ n2+N1− n1 ↓ particles
and N1 − n1 + N2 − n2 ↑ particles on the B-side. The limits in the summations over n1, n2
are implicit from the binomial formulas. The above expression gives the exact entanglement
spectrum. By Vandermonde identity, one can check that the trace of the density matrix is unity.
With the exact entanglement spectrum, it straightforward to obtain the expression of the Von
Neumann entanglement entropy

Sk
A =

∑

{mA}

α2
{mA}

log
�

α2
{mA}

�

+
∑

{mA}

α2
{mA}

∑

n1,n2

λk
n1,n2

log
�

λk
n1,n2

�

(73)

where

λk
n1,n2

=

�

MA− NA
n1

��

NA
n2

��

MA− (Nk − NA)
N1 − n1

��

Nk − NA
N2 − n2

�

�

M − Nk
N1

��

Nk
N2

� (74)

Note that for N1 = N and N2 = 0, Eqs. 73 and 74 reduce to Eqs. 21 and 19 in the main
text.

D Thermodynamic limit and scaling

In this section, we give a detailed derivation of the entropy formula in the thermodynamic
limit discussed in the main text. For sake of simplicity, we will focus on the case where N1 = N
and N2 = 0.
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D.1 Von Neumann entropy in the thermodynamic limit

The factor
∑

{mA}α
2
{mA}

in Eq. 73 is peaked about N ∗A ≈
MA
M Nk which is large. Therefore, MA−NA

in λk
n,0 is large, and so is M − Nk − (MA− NA). This forces the peak of λk

n,0 to appear at large
n. Thus we can use the Stirling’s approximation, which gives

λk
n,0 ≈

1
p

2πκ
e−

1
2κ (n−nmax)2 (75)

κ=
�

1−
N

M − Nk

�

N
M − Nk

�

1−
MA− NA

M − Nk

�

(MA− NA) (76)

MA−NA
∑

n=0

λk
n,0 lnλk

n,0 ≈
∫ ∞

−∞

dn
p

2πκ
e−

1
2κ (n−nmax)2 ln

�

1
p

2πκ
e−

1
2κ (n−nmax)2

�

= (77)

= −
1
2
(1+ ln (2πκ)) (78)

So,

Sk
A ≈ −

∑

NA

∑

{mA}

α2
{mA}

lnα2
{mA}
+
∑

NA

∑

{mA}

α2
{mA}

1
2
(1+ ln (2πκ))

≈ −
∑

NA

∑

{mA}

α2
{mA}

lnα2
{mA}
+

1
2

�

1+ ln
�

2πκN∗A

��

(79)

where

κN∗A
=
�

1−
N

M − Nk

�

N
M − Nk

�

1−
MA−

MA
M Nk

M − Nk

�

(MA−
MA

M
Nk), (80)

and using that
∑

{mA}α
2
{mA}

is sharply peaked about N ∗A ≈
MA
M Nk and that 1

2 (1+ ln (2πκ)) is a
smooth function of NA.

Define the density of pairs and the density of k’s (magnetization density) as

ν=
N
M

and νk =
Nk

M
(81)

then

κN∗A
= ν

�

1−
ν

1− νk

��

1−
MA

M

�

MA, (82)

which gives

Sk
A ≈ −

∑

NA

∑

{mA}

α2
{mA}

lnα2
{mA}
+

1
2

�

1+ ln
�

2πν
�

1−
ν

1− νk

��

1−
MA

M

�

MA

��

(83)

as given in the main text.

D.2 On why there must be a single peak in
∑

{mA}
α2
{mA}

as a function NA

Start from the saddle point equations (without the Gaussian correction, this does not change
the existence of the peak):

∑

{mA}

α2
{mA}
≈ e−(NA+1) ln z0+

∑Nk
m=1 ln(1−γm+z0γm) = eΦ(NA) (84)
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where z0 is defined by the implicit equation

NA+ 1 = z0

Nk
∑

m=1

γm

(1− γm) + z0γm
(85)

Note that Φ(NA) depends on NA both explicitly AND implicitly through the dependence of z0
on NA.

Then,

dΦ(NA)
dNA

= − ln z0 − (NA+ 1)
1
z0

dz0

dNA
+

Nk
∑

m=1

γm

1− γm + z0γm

dz0

dNA
(86)

= − ln z0 (87)

because the last two terms cancel due to the saddle point equation. Therefore, the extrema
occur when z0 = 1.

If we understand the dependence of z0 on NA, we understand how many extrema there
are in Φ and therefore in

∑

{mA}α
2
{mA}

. But, we will now show that z0(NA) is a monotonically
increasing function of its argument. First, note that we can solve the saddle point equation
by taking z0 → 0, which makes the right-hand-side vanish, therefore z0 = 0 is the solution
for NA = −1. Similarly, for z0 → ∞, the right-hand-side gives Nk, therefore, z0 → ∞ for
NA = Nk − 1. Now we have the two limiting cases: z0(−1) = 0 and z0(Nk − 1)→∞, and at
these two points dΦ(NA)

dNA
> 0 and dΦ(NA)

dNA
< 0, respectively.

Now, take the derivative of both sides of the saddle point equation with respect to NA. We
get,

1=
Nk
∑

m=1

γm(1− γm)
�

1
z0
(1− γm) + γm

�2

1

z2
0

dz0

dNA
(88)

leading to

dz0

dNA
=

z2
0

∑Nk
m=1

γm(1−γm)
�

1
z0
(1−γm)+γm

�2

≥ 0 (89)

because 0 < γm < 1. This proves that z0(NA) is monotonically increasing from 0 to∞ as NA
goes from −1 to Nk − 1. Therefore, there is a single value of NA at which z0 = 1, which is
where dΦ(NA)

dNA
= 0. Since dΦ(NA)

dNA
|NA=−1 > 0 and dΦ(NA)

dNA NA=Nk−1
< 0, the value NA at which z0 = 1

is the maximum of Φ.
How sharp is the maximum? Denote the value of NA which maximizes Φ by N ∗A . As shown

above,

z0(N
∗
A) = 1. (90)

Thus,

∑

{mA}

α2
{mA}
≈ eΦ(N

∗
A ) exp

�

(NA− N ∗A)
2

2
d2Φ

dN ∗A
2

�

(91)

But,

d2Φ(NA)
dN2

A

= −
1
z0

dz0

dNA
= −

z0
∑Nk

m=1
γm(1−γm)

�

1
z0
(1−γm)+γm

�2

. (92)
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Evaluating this at N ∗A gives

0> −
d2Φ

dN ∗A
2 =

1
∑Nk

m=1 γm(1− γm)
=

1
TrΓ − TrΓ 2

≈
M

MANk

�

1− MA
M −

Nk
M

� ≈ O
�

1
Nk

�

. (93)

where

Γkk′ =
1
M

∑

r∈A

e−i(k−k′)·r (94)

is the one-body density matrix already introduced in Eq. 58. Therefore,

∑

{mA}

α2
{mA}
≈ eΦ(N

∗
A ) exp

�

−
(NA− N ∗A)

2

2ρNk

�

, ρ ∼ O (1) (95)

The width of the peak is therefore of order
p

Nk. Therefore, as long as N ∗A � 1, the peak is
sharp.

But we can actually determine the value of N ∗A . Indeed going back to the saddle point
equation, we must have

N ∗A + 1=
Nk
∑

m=1

γm = Tr Γ (96)

Since the trace of the one-body density matrix satisfies

Tr Γ =
∑

k

Γkk = MA
M Nk (97)

we get,

N ∗A =
MA

M
Nk. (98)

leading in the thermodynamic limit to the formula

∑

{mA}

α2
{mA}
→

1
p

2π (Tr Γ − Tr Γ 2)
exp

�

−
(NA− Tr Γ )2

2 (Tr Γ − Tr Γ 2)

�

(99)
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