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Abstract

In this paper, we explore the relationship between strong spin-orbit coupling and spin
liquid physics. We study a very general model on the triangular lattice where spin-orbit
coupling leads to the presence of highly anisotropic interactions. We use variational
Monte Carlo to study both U(1) quantum spin liquid states and ordered ones, via the
Gutzwiller projected fermion construction. We thereby obtain the ground state phase
diagram in this phase space. We furthermore consider effects beyond the Gutzwiller
wavefunctions for the spinon Fermi surface quantum spin liquid, which are of particular
importance when spin-orbit coupling is present.
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1 Introduction

Quantum spin liquids (QSLs) are exotic phases of correlated electrons possessing highly entan-
gled ground states, exotic fractionalized excitations, and typically, the absence of any magnetic
order [1, 2]. Historically, studies of QSLs focused on spin-rotationally invariant Heisenberg
models, but in recent years, strongly anisotropic interactions arising from spin-orbit coupling
have come under focus [3]. In the famous Kitaev honeycomb model, bond-dependent interac-
tions lead to an exactly solvable model with a spin liquid ground state [4]. Remarkably, it was
later shown that these directional interactions can be generated in real materials when spin-
orbit effects are present [5,6]. In turn, this has led to the recent discoveries of many candidate
‘Kitaev’ materials and has paved the way for the study of spin liquid physics in spin-orbital
systems. One recent example of particular interest is the material YbMgGaO4 [7–11]. This
system very likely contains directional interactions of significant strength. Moreover, thermo-
dynamic and inelastic neutron scattering measurements have been interpreted as supporting
a QSL state with a Fermi surface of neutral spin-1/2 excitations, “spinons”, in this material.

Spin-orbit generated interactions invariably lead to a strong breaking of spin-rotation sym-
metry. A consideration of this symmetry in spin liquids can then reveal new and unexpected
physics. One striking feature is that the lowered symmetry allows for new distinct spin-liquid
phases which do not exist in the rotationally invariant case [12, 13]. There exists a system-
atic method of classifying these phases, given by the so-called projective symmetry group
(PSG) [14]. This approach also gives a method for constructing a wave function for each
phase, as a Gutzwiller projection of a free fermion state.

We will study a very general spin-orbit coupled model on a triangular lattice which is
believed to describe YbMgGaO4 [15–17] and focus specifically on the possibility that this model
contains spin liquid physics. We look at the allowed spin liquid phases and use the PSG as a
starting point of our analysis. However, our main tool throughout this work is the variational
Monte Carlo (VMC) technique. With this numerical technique, one performs Monte Carlo
sampling of the quantum wave function in the many-body basis where electrons are localized
on each site, allowing one to work with trial states which would otherwise be intractable.

In this paper, we broadly address three points. First, we expound on the relationship be-
tween our model and the PSG wave functions. The VMC allows us to quantitatively compare
the energies of the different candidate QSL phases. This approach complements recent stud-
ies that work with the states phenomenologically [18, 19]. We focus on gapless spin liquids
with emergent fermionic excitations and highlight the differences between states with isolated
Dirac-like quasiparticles and those with a Fermi surface of gapless excitations.

Second, we compare the QSL states to magnetically ordered states, seeking the region of
stability of the former ones. We show that a QSL is favored if we allow for second-neighbor
interactions, but that spin-orbit effects work to reduce the size of this phase, in agreement
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with Ref. [20]. We then go further and show that, if a natural third-neighbor interaction is
also included, then the spin liquid phase is energetically competitive, even in the presence of
significant spin-orbit interactions.

Finally, we look at how spin-orbit coupling modifies the properties of a QSL, and how this
may lead to distinct observables for experiment. We develop a novel method to incorporate
modifications beyond the simplest Gutzwiller projected free fermion state into our trial wave
function. This method proceeds by calculating many-body corrections order by order in per-
turbation theory, and sampling these using VMC. We find that this technique is particularly
useful for our problem where spin-orbit interactions introduce qualitative differences between
the ground state and our trial states. In particular, we study the effect of spin-orbit coupling on
the energies of certain trial states and also demonstrate how unique properties of these wave
functions appear in the spin structure factor and in thermal transport properties.

The remainder of this paper is structured as follows. In section II, we define the general
spin model on the triangular lattice that we study in our work. In section III, we introduce
the variational wave functions given by the PSG analysis, which will form the basis for the
rest of our discussion. We first calculate the energies of the different candidate spin liquid
ansätze using variational Monte Carlo, then allow for the possibility of magnetic order in our
simulation, and finally plot the full variational phase diagram for our Hamiltonian. In section
IV, we introduce our new method for improving the simple PSG wave functions. We calculate
the corrections to the energy and the spin structure factor of the spinon Fermi surface spin
liquid state. We also show how the spin-orbit interactions may result in an appreciable thermal
Hall conductivity in this system. Finally, in section V, we summarize our results and discuss
the relevance of our work to the material YbMgGaO4.

2 The model

In many physical systems, the spin and orbital degrees of freedom of the localized electrons
are highly entangled. In these cases, when the rotation symmetry is broken by the surrounding
crystal structure, the spin-rotation symmetry is broken as well. Superexchange processes then
lead to the generation of highly anisotropic terms in the effective spin Hamiltonian. In these
strongly spin-orbit coupled systems, lattice symmetry transformations are accompanied by an
equivalent transformation in spin space. Following Ref. [15], we consider the Hamiltonian

H = H± +Hz +H±± +H±z ,

H± = J±H± = J±
∑

〈i j〉

�

S+i S−j + S−i S+j
�

,

Hz = JzHz = Jz

∑

〈i j〉

Sz
i Sz

j , (1)

H±± = J±±H±± = J±±
∑

〈i j〉

�

γi jS
+
i S+j + γ

∗
i jS
−
i S−j

�

,

H±z = J±zH±z

= iJ±z

∑

〈i j〉

�

(γ∗i jS
z
i S+j − γi j Sz

i S−j ) + (i↔ j)
�

,

where γi j = 1, e2πi/3, e−2πi/3 for bonds 〈i j〉 along the ~a1, ~a2, ~a3 directions, respectively (see
Fig. 1a)). This is the most general nearest-neighbor Hamiltonian which is invariant under the
symmetry generators of the system: the translations T1,2 along the ~a1,2 directions, the sixfold
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roto-reflection S6 within the plane of the lattice, the twofold rotation C2 around a bond in
the ~a3 direction, and time reversal Θ. (Note that the threefold rotation C3 = S 2

6 and the
inversion I = S 3

6 are both generated by the sixfold roto-reflection. Conversely, the sixfold
roto-reflectionS6 =C 2

3 I is a combination of a 120◦ rotation and an inversion.) The symmetry
generators are all discrete and act simultaneously in real space and spin space. In particular,
they transform the coordinates x1, x2 of a general lattice point ~r = x1~a1 + x2~a2 as

T1 : (x1, x2)→ (x1 + 1, x2),

T2 : (x1, x2)→ (x1, x2 + 1),

C2 : (x1, x2)→ (x2, x1), (2)

S6 : (x1, x2)→ (x1 − x2, x1),

Θ : (x1, x2)→ (x1, x2),

while they transform the spin components (S x , S y , Sz) as

T1,2 : (S x , S y , Sz)→ (S x , S y , Sz),

C2 : (S x , S y , Sz)→ (−
1
2

S x +
p

3
2

S y ,

p
3

2
S x +

1
2

S y ,−Sz), (3)

S6 : (S x , S y , Sz)→ (−
1
2

S x +
p

3
2

S y ,−
p

3
2

S x −
1
2

S y , Sz),

Θ : (S x , S y , Sz)→ (−S x ,−S y ,−Sz).

Importantly, the Hamiltonian does not generically have a continuous spin-rotation symmetry
because the XXZ terms H± and Hz break the SU(2) spin symmetry down to an in-plane U(1)
spin symmetry, while the remaining terms H±± and H±z further break the U(1) spin symmetry
down to discrete spin symmetries that are intertwined with appropriate lattice symmetries.

It is helpful to write the H±± and H±z terms in a slightly different form to further expose
the symmetries:

H±± =
∑

〈i j〉

(γi jS
+
i S+j + h.c.)

= 4
∑

〈i j〉

�

(~Si · n̂i j)(~S j · n̂i j)−
1
2
(S x

i S x
j + S y

i S y
j )
�

,

H±z =
∑

〈i j〉

�

(iγi jS
+
i Sz

j + h.c.) + (i↔ j)
�

(4)

= 2
∑

〈i j〉

�

{(~Si × n̂i j) · ẑ}Sz
j + (i↔ j)

�

.

where n̂i j is the unit vector pointing from site i to site j. The term H±± has a ‘clock’ structure
where spins would like to align along the 120◦ bond directions, and the term H±z also has a
bond dependent structure that incorporates the ẑ direction.

There are several cursory reasons one may expect to find spin liquid physics in this model.
For one, due to its strong frustration, the triangular lattice has a long and storied history
as a spin liquid candidate [21–25]. Beyond that, the form of the anisotropic part of H is
highly reminiscent of the interactions in the Kitaev honeycomb model [4], where the direction-
dependent spin-spin interactions frustrate the coupling in a way which renders all magnetic
orders energetically unfavorable.
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a) b) c)

Figure 1: a) The three lattice bonds a1, a2, and a3. The two commensurate magnetic orders
we consider are b) stripe order and c) 120◦ antiferromagnetic order.

3 Spin liquid wave functions

3.1 Generalities of parton wavefunctions

The ground state wave function in a quantum spin liquid is completely symmetric under all the
symmetries of the Hamiltonian. The PSG gives a systematic classification of the allowed spin
liquid phases under such a set of symmetries [14]. In the process, it also gives a construction
of a representative wave function for each phase. It is a surprising fact that, in many cases,
the number of allowed spin liquid phases increases as the symmetry is reduced [12,13]. Spin
liquids are fundamentally defined by their fractionalized quasiparticle excitations, whose be-
havior can be described phenomenologically by a mean-field Hamiltonian. The PSG classifies
the fractionalized symmetry by identifying the allowed form of the mean-field Hamiltonians.
In general, these excitations can realize the symmetries of the original Hamiltonian in a non-
trivial manner.

One starts by writing the physical spin operator ~Si in terms of fermionic parton operators:

~Si =
1
2

f †
iα ~σαβ fiβ . (5)

The parton operators fiσ, f †
iσ live in a larger Hilbert space than the spins Si . To remedy this,

one must also include the strict gauge constraint on the allowed states:
∑

σ

f †
iσ fiσ = 1. (6)

In this paper, we enforce Eq. (6) at the level of the wave function. This is accomplished by
applying the Gutzwiller projection operator P to a state |ψ0〉 in the fermionic space:

|Ψ〉=P |ψ0〉,

P =
∏

i

ni(2− ni). (7)

The projected wave function |Ψ〉 lives in the proper Hilbert space of spins and, with a suitable
choice of |ψ0〉, is highly entangled in real space. Furthermore, with some minor improvements,
such an ansatz can be made to give variational energies which are competitive with the most
state of the art 2D DMRG calculations [23].

For the state |ψ0〉, we take a “mean field” wavefunction, which is the ground state of some
quadratic fermion Hamiltonian. The parameters of that fiduciary Hamiltonian then become
variational parameters in the ansatz. When the fermions are allowed to hop in the mean
field Hamiltonian, the partons become deconfined in the corresponding spin liquid phase. In
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general, the quadratic mean-field Hamiltonian can be written as

Hmf =
∑

i, j,α

Tr
�

σαΦiu
α
i jΦ

†
j

�

, (8)

Φi =

�

fi↑ f †
i↓

fi↓ − f †
i↑

�

, (9)

where α = 0, x , y, z. A local gauge transformation, such as fiσ → eiθiσ
z
fiσ, changes Hmf but

leaves the physical spin operator ~Si unchanged. Since the physical wave function is unchanged,
all mean-field Hamiltonians related by such local gauge transformations must be equivalent.
The parton Hamiltonian Hmf can therefore ostensibly break the symmetries of H as long as
there exists a local gauge transformation which restores the symmetry. In this case, we say
that the quasiparticle realizes the symmetry nontrivially. The role of the PSG is to determine
the set of allowed mean-field Hamiltonians which cannot be connected to each other by such
a gauge transformation. Importantly,Hmf is always invariant under some global transforma-
tions Φ→ Φ ·W , where W ∈ G. The group G ⊇ Z2 of such global transformations is known as
the ‘invariant gauge group’ (IGG) and determines the form of the gauge group around which
fluctuations of the gauge field may occur. In this work, we consider U(1) spin liquids with IGG
= U(1).

A more complete study would also include Z2 spin liquids (IGG = Z2). However, even
restricting to nearest-neighbor couplings, there are at least 18 different Z2 mean-field ansätze.
To avoid this complexity, we neglect these candidate QSLs for the present work. This is at
least consistent with recent work on several related triangular lattice spin systems, for which
the U(1) spin liquids have proven to have competitive energies [21, 23]. Furthermore, the
spinon Fermi surface QSL suggested by several previous papers for YbMgGaO4 falls into the
U(1) class.

3.2 Six specific parton states

The PSG classification of U(1) QSLs for the space group of our model was done in Ref. [18].
There are 6 distinct nearest-neighbor mean-field Hamiltonians:

H (1)
mf =

∑

〈i j〉,σ

�

t i j f †
iσ f jσ + h.c.

�

, (A1/B1)

H (2)
mf = i

∑

〈i j〉

�

t i j f †
iα(~σαβ · ~ni j) f jβ + h.c.

�

, (A2/B2)

H (3)
mf = i

∑

〈i j〉

�

t i j f †
iα{(~σαβ × ~ni j) · ẑ} f jβ +λi j f †

iασ
z
αβ f jβ + h.c.

�

. (A3/B3)

The ground state of each mean-field Hamiltonian defines |ψ0〉 for the corresponding type of
QSL. We distinguish two versions for each mean-field HamiltonianH (n)

mf , which differ only in
the way translation symmetry is realized. In the A states, translation acts in the usual way
as t i j = −1 for all nearest-neighbor bonds 〈i j〉. Conversely, in the B states, translation acts
nontrivially; this is achieved by setting t i j = ±1 such that the unit cell is doubled and a π flux
is thread through every other triangle. In the A1/B1/A2/B2 cases, there are no variational
parameters (since the overall scale of the Hamiltonian leaves its ground state unchanged),
while in the A3/B3 cases, there is a single variational parameter λ/t.

We note that, importantly, the spinon band structure determines the physical properties of
the wave functions and that it is gapless in all 6 states. This is necessary for a U(1) spin liquid
to be stable in two dimensions. We now discuss some aspects of these states.
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The (A1) state has no mixing between the up and down spin states. In order to satisfy the
constraint 〈 f †

i fi 〉= 1, the band structure then must contain a large Fermi surface. We refer to
this state as the uniform Fermi surface (uFS) or spinon metal state. Notably, although the
microscopic Hamiltonian H has only discrete symmetries, the mean-field Hamiltonian of this
uFS state is spin-rotationally invariant. This accidental “emergent SU(2) symmetry” is surpris-
ingly robust, and is not an accident of assuming a nearest-neighbor form forHmf . In fact, the
PSG does not allow any spin-dependent terms [which would break SU(2) symmetry] inHmf ,
even for hoppings of arbitrary distance. The argument for this hinges on the fact that both
time-reversal (Θ) and inversion (I ) symmetries act trivially in this class. First, the operators
which implement these symmetries both involve a complex conjugation, time-reversal by def-
inition and inversion due to a site-exchange which corresponds to a Hermitian conjugation.
Then, since spin is even under inversion and odd under time reversal, it is odd under their
combination, and so a spin-dependent term with any complex coefficient is forbidden in the
presence of such a combined symmetry.

The (B1) state also has no mixing of the spin states, but translations act nontrivially on the
spinons. The unit cell is then doubled and the band structure contains two Dirac cones. We
therefore refer to this state as the Dirac spin liquid state. The uFS and Dirac states are the
two U(1) spin liquids that can also occur in rotationally invariant systems. Note, however, that
spin-dependent quadratic terms are not generically prohibited in the case of the (B1) state and
that they in fact appear at the level of third-nearest-neighbor hoppings.

The (A2) and (B2) states are called the 120◦ clock spin liquid (ClSL) and the 120◦ clock+
π spin liquid (ClπSL), respectively. These ansätze do mix the spin flavors and orbital degrees
of freedom by including bond dependent hoppings. The band structures in both cases contain
protected Dirac cones at the Γ , M , and K points in the Brillouin zone.

The (A3) state, called the Rashba spin liquid (RSL), also has Dirac cones at the Γ , M ,
and K points when λ = 0 or t = 0, and a gap opens at the Γ point for intermediate values of
λ/t. Finally, the (B3) state, called the Rashba + π spin liquid (RπSL), contains 4 bands and
a small Fermi surface for intermediate values of λ/t.

3.3 Energetics of PSG wave functions

The PSG method gives us the full set of allowed free fermion wave functions that are invariant
under the symmetries of the system once the gauge constraint, Eq. (6), is enforced. It tells
us nothing, however, about the energies of these wave functions. The PSG gives us a starting
ansatz, but is completely agnostic about which state may actually be the ground state.

One simple way to proceed is to work directly with the single particle wave functions by
satisfying Eq. (6) on average: 1

N

∑

i,σ〈 f
†
iσ fiσ〉 = 1. However, such a mean field approach

requires an infinite number of approximations, the resulting wave functions do not even live
in the proper Hilbert space, and thus it cannot give reliable energy estimates. Instead, we carry
out a variational analysis based on the fully projected wavefunctions in Eq. (7). We calculate
the variational energy Es = 〈Ψs|H|Ψs〉, where s indicates one of the six QSL ansätze.

The results are highly constrained by how the projective symmetries are implemented in
the given mean-field Hamiltonian. In particular, the uniform Fermi surface and Dirac spin
liquid states are completely SU(2) invariant, and therefore the expectation values of the J±±
and Jz± terms vanish in these states. Similarly, while both the ‘clock’ and ‘Rashba’ Hamiltoni-
ans have some spin-orbit terms, only the Rashba Hamiltonians include spin-orbit terms both
within and perpendicular to the x y plane. Consequently, the ‘clock’ wave functions also yield
vanishing expectation values for the J±z terms.

We performed a variational Monte Carlo simulation and measured the energies of each of
our trial wave functions on finite size lattices for system sizes up to N = 32× 32 sites. Each
mean-field wave function, when projected, gives a different pattern of entangled spins, giving
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Figure 2: The phase diagram showing only the lowest-energy spin liquid ground states a) in
the J±± − J±z plane with J2 = 0, and b) in the J±± − J2 plane when J±z = 0. We set the third
neighbor coupling J3 = 0. All energies are measured in units of J± = 1. See the main text for
a description of the further neighbor terms J2 and J3.

rise to different spin correlations. When λ = 0, none of the wave functions have any free
parameters. Setting J± = 1 and scaling to the thermodynamic limit, the corresponding energy
densities are then given by

EDirac/N = −0.7050(1)[1+ Jz/4],

EuFS/N = −0.4682(5)[1+ Jz/4], (10)

EClock/N = −0.0645(2) + 0.325(1)Jz − 0.716(1)J±±,

ERashba/N = −0.1663(4) + 0.258(1)Jz + 0.741(1)J±±,

EClπ/N = −0.0619(6)− 0.321(1)Jz − 0.582(1)J±±,

ERshπ/N = +0.1173(4) + 0.256(1)Jz + 0.525(1)J±±.

A few observations are apparent. First, we see that the (ClπSL) and (RπSL) ansätze are never
competitive energetically in our regimes of interest. While the Dirac state has the lowest
energy at J±± = 0, the clock and Rashba spin liquid states become energetically favorable for
large positive and negative J±±, respectively. The Rashba states (and only the Rashba states)
have an energy which is modified by including λ 6= 0, which is beneficial only when J±z 6= 0.
In this case, we determine the optimal Rashba state for a given value of J±z by numerically
minimizing the energy with respect to λ/t.

The results for a full comparison of energies are presented in Fig. 2a), which shows the
state of lowest variational energy amongst the 6 QSLs for all values of J±± and J±z . (Note
that the phase diagram is qualitatively similar for all values of Jz .) Looking ahead, it has been
suggested [11] that next-nearest-neighbor interactions may be important in stabilizing a spin
liquid ground state for our model. We therefore also looked at the variational energies of
our ansätze when XXZ-like next-nearest-neighbor interactions are added (see Eq. 13 in Sec.
3.4.2). In Fig. 2b), we plot the lowest energy states as a function of the next-nearest-neighbor
coupling J2 for J±z = 0. Notice that the Fermi surface state only becomes competitive in energy
for very large next-nearest-neighbor coupling.

3.4 Magnetic order

3.4.1 Parton formulation of ordered states

The PSG wave functions can be used as a starting point on which magnetic order can be added.
This is done by adding a site dependent magnetic field ~hi to the mean-field Hamiltonians,
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Figure 3: The full J±± − J2 − Jz magnetic phase diagram for J3 = J±z = 0. Green is stripe
order, red is 120◦ AFM order, and blue is the Dirac spin liquid phase. Stripe order dominates
the phase diagram, except for small J2 and J±±. The spin liquid regime also depends strongly
on the value of Jz and is greatly reduced when Jz moves away from the isotropic point Jz = 2.
The horizontal axis on each subplot gives the value of J±±. All energies are measured in units
of J± = 1.

which define our trial states:

Hmo =Hmf −
∑

i

~hi · ~Si . (11)

Magnetic order can be induced in this way on top of any of the 6 QSL states. In practice, the
lowest energies are found by usingH (1B)

mf , i.e., by perturbing the Dirac spin liquid. Notably, the
Zeeman term in this case fully gaps the partons. Consequently, the usual Polyakov argument,
which applies to an emergent U(1) gauge theory with fully gapped Dirac fermions in two
dimensions, implies that monopole instantons proliferate and the Dirac spinons are confined.
Thus, the projected wavefunction built fromHmo describes a state adiabatically connected to
a conventional magnetically ordered one.

If | ~hi| → ∞, Eq. (11) describes classical magnetic order with |〈~Si〉| = 1/2 on each site.
If instead a finite field is used, the value of the magnetic moment can be greatly reduced.
In general, the energy should be optimized with respect to the full set of Zeeman fields ~hi
on all sites. In practice, such an optimization would have too many parameters. Instead,
we guess an appropriate pattern for these fields, and then optimize |h|/t to give the lowest
variational energy. For example, in the Heisenberg limit, we choose the field to have a constant
magnitude but an orientation with a three-sublattice structure of total vector sum zero (the
symmetry pattern of the 120◦ state):

~hi = |h|(cos(~q · ~ri +φ), sin(~q · ~ri +φ), 0), (12)

where ~q, |h| and a phase φ are variational parameters. In this case, the optimal magnetic field
of our simple ansatz gives a staggered magnetic moment |〈~Si〉| ≈ 0.30, while the correspond-
ing DMRG calculations for the triangular-lattice Heisenberg model find a staggered magnetic
moment M ∼ 0.20 [24]. Including local correlations in our variational state, for example, by
including Jastrow factors, will in general reduce the value of 〈S〉 further. It is interesting that
our PSG analysis provides a general way to construct any ansatz satisfying the constraint of
Eq. (6), even allowing us to construct energetically competitive magnetic states in addition to
giving a general classification of all spin liquid states.

3.4.2 Extended model

Implementation of the above method shows that the nearest-neighbor Hamiltonian Hnn in
Eq. (1) is dominated by magnetic order. To find actual spin liquid physics, we therefore extend
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Figure 4: a) The classical phase diagram from the Luttinger-Tisza method and b) the same
quantum phase diagram from variational Monte Carlo at Jz/J± = 1 and J±± = J±z = 0.

the model to include second- and third-neighbor interactions. Keeping the same relative XY
anisotropy, we study the Hamiltonian:

H = Hnn + J2

∑

〈〈i j〉〉

�

S+i S−j + S−i S+j +
Jz

J±
Sz

i Sz
j

�

+ J3

∑

〈〈〈i j〉〉〉

�

S+i S−j + S−i S+j +
Jz

J±
Sz

i Sz
j

�

. (13)

To avoid complications involving canted magnetic orders, we restrict our attention to the case
of J±z = 0. With this in mind, in this section, we undertake the somewhat ambitious goal of
describing the entire four-dimensional phase diagram in terms of the free parameters Jz , J±±,
J2, and J3, all relative to J± = 1.

We first review what is already known about the ground state phase diagram of Eq. (13):

• In the absence of second- and third- neighbor interactions (J2 = J3 = 0), the Luttinger-
Tisza analysis of Ref. [15] tells us the magnetic order when ~S is treated as a classical
vector. In that case, there is a phase transition from the 120◦ staggered antiferromagnetic
state [ordered at wavevector ~q120 = (

4π
3 , 0)] at small |J±±| to a striped phase [ordered

at wavevector ~qs = (0, 2πp
3
)] for |J±±|¦ 0.25.

• There is also a great deal of literature on the quantum J1 − J2 model (J±± = J3 = 0), in
the Heisenberg limit (Jz = 2J±) [24,25]. In this case, growing evidence suggests that a
spin liquid phase interpolates between the 120◦ phase for small J2 and the stripe phase
at large J2.

3.4.3 VMC results

The advantage of using variational Monte Carlo with simple trial wave functions is that we
are able to explore a huge phase space of our Hamiltonian. We consider several ansätze for
magnetic order, taking the Zeeman field in the form of Eq. (12) with wavevector ~qv = (q, 0)
or ~qv = (0, q), where q, |h|, and a phase φ are variational parameters, which allows for both
commensurate and incommensurate ordering. In practice, we find that the energies of all our
ansätze, except for the striped phase with ~qs = (0, 2πp

3
), are independent of φ, even when the

U(1) symmetry is broken by H±±. In the stripe phase, we find that the minimum energy is
always obtained for φ = 0 when J±± > 0, giving the ordering pattern seen in Fig. 1b), and
for φ = π/2 when J±± < 0, which rotates all spins by 90◦. In Fig. 3, we present our result
for the full quantum Jz − J±± − J2 phase diagram. Notice that our results agree well with the
previously understood limits. When J2 = 0, the system acts very similar to the classical case,
with a transition between the 120◦ and stripe orders around J±± ≈ 0.20 + 0.05Jz . When a
second-neighbor interaction is added, we indeed see that a Dirac spin liquid appears between
the 120◦ and stripe phases. This phase is stable for small J±±, but both large J2 and J±±
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Figure 5: The full J±±− J2− J3 quantum phase diagram for Jz = 1 and J±z = 0. Note that the
color scheme is the same as in Fig. 4. Third neighbor interactions J3 strongly disfavor stripe
order (dark green) and increase the range of the spin liquid phase (light blue). The horizontal
axis on each subplot gives the value of J±±. All energies are measured in units of J± = 1.

favor stripe order, leading to the triangular shape of the spin liquid regime which we see in
Fig. 3. It is also notable that the extent of the spin liquid phase shrinks dramatically when Jz is
lowered from the Heisenberg point. This is in agreement with the DMRG results on this model
in Ref. [20].

We are also able to go beyond this model to look at the effect of the third-neighbor XXZ
interaction J3. Since both the second- and third-neighbor sites are separated by two lattice
bonds, a simple superexchange picture implies that such a term would be present in materials
with J3 ∼ 0.5J2. We will see that the effect of such a term is to enhance the size of the spin
liquid regime.

First, we present the results in the classical limit. When J±± = 0, the system has U(1)
symmetry and we can solve for the classical magnetic order using the Luttinger-Tisza method
since any coplanar magnetic order with a single ordering wave vector will satisfy the hard
constraint that ~Si = 1/2 on every site. The result is that, in addition to the usual 120◦ and
stripe phases, J3 favors two additional incommensurate magnetic phases, with ordering wave
vectors at (q, 0) and (0, q). These phases can be thought of as the incommensurate versions of
the 120◦ and stripe phases, respectively. A third incommensurate order with wave vector (q, q)
also appears classically, but we will ignore this as such a phase never appears in the quantum
case. The full classical phase diagram is shown in Fig. 4a) and is independent of Jz since the
ordering is always in the x y plane.

Our VMC results on the quantum model agree remarkably well with the classical phase
diagram, considering we have used completely different methods. Fig. 4b) shows the results
for Jz = 1.0. We see that the shapes of the magnetic phases are largely the same as in the
classical case, but the intermediate region where the phases meet is occupied by a broad spin
liquid regime.

In Fig. 5, we show the full J2 − J3 − J±± phase diagram for Jz = 1.0. In addition to the
presence of incommensurate magnetic order, the major feature of the data is that the spin
liquid regime is enhanced with respect to the J3 = 0 case. The third-neighbor interaction
provides further frustration and finds stripe order particularly unfavorable. The spin liquid
phase therefore survives to a large value of J±± when J3 is included.

As mentioned previously, more accurate energies can be found by adding further varia-
tional parameters to the wave function, such as allowing for Jastrow factors [26, 27] or per-
forming a small number of Lánczos steps [28]. However, we find that supplementing the PSG
wave functions in this way only gives small improvements in the energies, leading to very
small shifts of the phase boundaries. In section IV, we look at how we can make qualitative
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changes to the spin liquid ansätze.
In summary, our variational Monte Carlo calculation allowed us to explore a huge parame-

ter space of the Hamiltonian in Eq. (13) and to obtain quantitative results for the ground state
in each parameter regime. When a second-neighbor interaction is added, the Dirac spin liquid
appears as the ground state between the 120◦ and stripe phases. This phase shrinks dramat-
ically away from the Heisenberg limit, but is in fact enhanced when a small third-neighbor
interaction is included.

4 Beyond the PSG wave function

4.1 Perturbative correction to the wave function

In this section, we take a more phenomenological approach to studying a quantum spin liquid
in the presence of strong spin-orbit coupling. We propose modifications to the mean-field
ansätze which can be implemented numerically in the variational wave functions.

The plain mean field ansätze are limited in the amount of complexity they can accommo-
date. The main issue with the VMC simulation in this context is that the two most energetically
competitive states, the Fermi surface and the Dirac spin liquid ones, possess too much sym-
metry. Our trial wave functions have no coupling between the spin and orbital degrees of
freedom, which is a feature one would expect to find in the Hamiltonian’s true ground state.
Furthermore, according to the PSG analysis, no fermion bilinear operators inducing such spin
orbit coupling can be added to the uniform Fermi surface Hamiltonian, not even at the further-
neighbor level.

Instead, we formulate a method to incorporate many-body effects which modify our wave
functions. Inspired by the path integral formulation for an interacting quantum field theory,
we consider the variational state

|Ψ〉= e−αHP |ψ0〉, (14)

where H= H±± is defined in Eq. (1). This form is reminiscent of the Lánczos algorithm, where
applications of large powers of an operator project a trial state into the ground state of the
given operator. Indeed, if we let α →∞, this operator projects into the ground state of H.
Instead, however, we take a slightly different approach, and let α be a small perturbation on
P |ψ0〉, treating |Ψ〉 as a variational wave function.

There have been previous works combining the Lánczos algorithm with variational Monte
Carlo [23, 28]. This proceeds by applying a finite number of Lánczos steps and working with
the wave function |Ψ(n)〉= (1+

∑n
p=1αpH p)|ψ0〉, where the series is truncated for some small

n, and the αp are left as variational parameters. While this works well if the initial state is
very close to the ground state of H, it is less effective as a phenomenological tool. The reason
is that corrections at any finite order n necessarily scale to zero in the thermodynamic limit.
When calculating the correction to an expectation value using |Ψ(n)〉, “disconnected” powers
of the Hamiltonian are subtracted off in the numerator, but not in the denominator. The
normalization factor in the denominator therefore necessarily grows faster than the numerator
with system size. Additional powers of n are then needed to compensate for this fact, but a
fully extensive correction is only found at n∼ N .

Instead, we have found that the best way to work with the wave function in Eq. (14)
numerically is to implement the correction perturbatively in α, but to all powers in n. To do
this, we realize that the expectation value of any operator with respect to our improved wave
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Figure 6: Finite size scaling of the lowest-order correction to a) 〈H±±〉 and b) 〈H±〉, for both
the uFS (yellow) and Dirac (blue) spin liquid states. The corresponding change in energy is
∆E ∼ αJ±±〈H±±〉+α2J±〈H±〉.

function can be written as

⟪O ⟫=



e−αHO e−αH
�

0



e−2αH
�

0

, (15)

where 〈· · · 〉0 is the expectation value taken with respect to the unperturbed wave function
P |ψ0〉. We use the symbol ⟪· · ·⟫ to differentiate the theoretical operator expectation values
in Eq’s (15) and (16) from expectation values we evaluate directly within the VMC simulation.

It is now possible to expand Eq. (15) analogously to diagrammatic perturbation theory.
For any Hermitian operator O , the expanded correction reads

⟪O ⟫=
�

〈O 〉0 − 2αRe[〈OH〉0] +α2
�

〈HOH〉0 +Re[〈H2O 〉0]
�

+O(α3)
�

(1− 2α〈H〉0 + 2α2〈H2〉0 +O(α3))
. (16)

The subtle difference is that now, by including all powers of n, all terms in the denominator ex-
actly cancel the higher order “disconnected" pieces in the numerator. In the VMC calculation,
this is expressed by the fact that 〈Hi jHk`〉 ≈ 〈Hi j〉〈Hk`〉 as |(i j) − (kl)| → ∞. This way, we
are able to measure, in our numerical simulation, many-body corrections to the wave function
which survive in the thermodynamic limit. Note that Eq. (16) can not be measured directly
within the VMC simulation, but instead can be measured approximately by expanding pertur-
batively in α. As such, the results of our calculation are only variational up to the accuracy of
the asymptotic expansion.

In principle, applying the operator exp[−αH] to our unperturbed trial wave function could
cause a phase transition, and we would no longer be working with a spin liquid state. For small
α, however, we expect that the spin liquid ground state should be stable to such a perturbation.
In the spinon metal, in a similar vein to Fermi liquid theory, we expect that these terms only
give a correction to the self-energy of spinons near the Fermi surface [29].

4.2 Correction to the Energy

To begin, we measure the correction to the energy of the Dirac and uniform Fermi surface
states, which arises from including the spin-orbit interaction in our variational wave function.
We can directly measure the first and second order corrections numerically.

For any operator O , we write the nth order correction to the expectation value ⟪O ⟫ from
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Figure 7: The rotationally invariant spin structure factor (top left) and the perturbative cor-
rections to the spin-polarized structure factors measured with spins pointing perpendicular to
the three lattice bond directions ~a1, ~a2, and ~a3, within the plane of the triangular lattice.

applying exp[−αH] as αn〈O (n)〉. Expanding Eq. (16) gives

〈O (1)〉= −2(Re[〈HO 〉0]− 〈H〉0〈O 〉0), (17)

〈O (2)〉= 〈HOH〉0 +Re[〈H2O 〉0]− 4Re[〈H〉0〈OH〉0]

− 2〈H2〉0〈O 〉0 + 4〈H〉20〈O 〉0.

In our case, H = H±± and 〈H±±〉0 = 〈H±±H±〉0 = 0. Therefore, the spin-orbit part of the
Hamiltonian is altered at order α, while the rotationally invariant part is corrected at order
α2:

〈H(1)±±〉= −2〈H2
±±〉0, (18)

〈H(2)± 〉= Re[

�

H±±,H±
	

H±±
�

0]− 2〈H2
±±〉0〈H±〉0,

〈H(2)z 〉= Re[

�

H±±,Hz

	

H±±
�

0]− 2〈H2
±±〉0〈Hz〉0.

In Fig. 6, we show the resulting scaling of 〈H(1)±±〉 and 〈H(2)± 〉 to the thermodynamic limit.
The result is that the spinon metal is more susceptible, compared to the Dirac state, to en-
ergetically beneficial corrections to H±± and less susceptible to detrimental corrections to H±
and Hz . Putting this together, we find that the optimal value of the variational parameter is
αmin ∼ J±±/(J±+ Jz), which gives an energy correction ∆E ∼ −J2

±±/(J±+ Jz). More precisely,
we find that the energy densities after the lowest-order corrections are given by

EuFS/N = −0.4682(1+ Jz/4)−
1.56 J2

±±

J± + 1.42Jz
,

EDirac/N = −0.7050(1+ Jz/4)−
0.84 J2

±±

J± + 0.87Jz
. (19)

This implies that that the Fermi surface state becomes energetically superior to the Dirac state
between J±± = 0.57 at Jz = 0 and J±± = 1.54 at Jz = 2.0. One caveat, of course, is that these
values of J±± may fall outside the perturbative regime. Also, while smaller Jz appears to be
more favorable for the spinon Fermi surface, this is also the parameter regime which is more
susceptible to magnetic order.

4.3 Correction to the spin structure factor

Studying the improved variational wave function makes it clear that the spinon metal state
in a spin-orbit coupled environment has several unique properties, despite the fact that the
mean-field Hamiltonian retains its rotational invariance. Taking our analogy to Fermi liquid
theory seriously, the spin-orbit interaction gives a momentum and spin dependent correction
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to the self energy. This appears as a momentum dependent correction to the structure factor,
which we can again measure directly in our simulation.

We differentiate between the various spin polarized contributions to the spin-spin correla-
tion function:

S αβ(~q) =
∑

i

ei~q·~ri 〈Sαi Sβ0 〉. (20)

The first-order correction to the correlation function is

〈Sαi Sβj 〉1 = −2
�

Re[〈Sαi Sβj H±±〉0]− 〈S
α
i Sβj 〉0〈H±±〉0

�

. (21)

The results are shown in Fig. 7. The corrections to the spin-polarized structure factor are
direction-dependent broad peaks at the M points of the Brillouin zone which appear at order
α ∼ J±±/(J± + Jz). Therefore, in a spinon metal with spin-orbit coupling, spin-spin corre-
lations when measured with different spin polarizations are direction dependent. This type
of measurement could prove to be an important test to show both the presence of spin-orbit
interactions and the absence of spontaneous symmetry breaking. Similar directional peaks
can be seen in related models when spin-orbit terms are directly included in the ground state
ansatz [30]. We note that these kinds of direction-dependent structure factors have already
been measured experimentally by resonant elastic x-ray scattering in the honeycomb lattice
iridate Na2IrO3 [31].

4.4 Thermal Hall conductivity

4.4.1 General considerations

Thermal transport measurements can be a powerful tool for studying magnetic insulators.
The idea is to set up a thermal gradient ∇T (which is analogous to an electric field) and then
measure the heat current jth in response to it (which is analogous to an electric current).
Any heat current in the insulator must be carried by the emergent quasiparticles, giving us a
probe of the low energy excitations. The thermal conductivity, κ, can be defined within linear
response as

jthµ = −κµν∂νT. (22)

The spinon Fermi surface QSL is unusual due to the large number of gapless excitations. This
leads to a predicted linear T term appearing in the diagonal component of κ, similar to what
one would expect in a metal. The deconfined spinons carry heat in the same way physical
electrons carry charge in an electrical conductor. A major difficulty is that many degrees of
freedom, most notably phonons, can contribute to the diagonal thermal conductivity, making
the measurement challenging.

The thermal Hall conductivity, however, given by the off-diagonal component of κ, should
not contain a phonon term. Furthermore, as explained in Ref. [32], it is very difficult to find an
effect generated by magnons on the triangular lattice due to a cancellation of the contributions
from neighboring edge sharing plaquettes. A large nonzero thermal Hall conductivity could
therefore be a strong indicator of exotic physics. Indeed, in Ref. [32], the authors also pre-
dict that a spinon metal would display such an effect. However, the reasoning is very subtle,
depending on a coupling of the orbital motion of the spinons to the external electromagnetic
field through the interaction with the internal gauge field.

Here, we argue that there exists a distinct contribution to the thermal Hall conductivity in
the spinon metal which is unique to spin-orbit coupled systems and relies only on a Zeeman
coupling to the external electromagnetic field. For itinerant fermions with conserved charge,
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the presence of spin-orbit coupling can lead to a nontrivial Berry curvature which may in-
duce an anomalous component of the charge Hall conductivity, in the absence of any Lorentz
force. This mechanism of anomalous Hall conductivity was explored intensely for Rashba two-
dimensional electron gases and in many other models. In the following, we adapt this idea to
study the thermal conductivity of the Fermi surface QSL state.

The U(1) QSL states studied here have an emergent conserved charge, which is the fermion
number associated with the emergent U(1) gauge symmetry. Consequently, at the parton
level, we can define a current associated with this charge, and we may consider, formally, the
emergent conductivity tensorσqp

µν defined with respect to the emergent current and a potential
coupling to the associated emergent charge density. This is not the true electrical conductivity,
since this is an insulator, and it is also not the thermal conductivity. Thus we proceed in two
stages. First, we consider the anomalous emergent Hall conductivity of the spinons. Then, we
relate it to the more easily measurable thermal Hall conductivity (in principle, the emergent
conductivity should also be measureable, but it is not obvious how to do so).

4.4.2 Effective quasiparticle Hamiltonian

At the mean field level, the emergent Hall conductivity can be extracted as an integral over
the Berry curvature of the occupied spinon bands. Within the simple PSG wave function,
the spinon metal is spin-rotationally invariant and therefore has zero Berry curvature. On
symmetry grounds, however, we expect that a Hall conductivity should microscopically arise.
To estimate it, we consider the ‘improved’ wave function, and infer a self-energy correction
which breaks spin-rotational symmetry and induces a non-zero Berry curvature.

The Berry gauge field (Berry connection) is defined for a single particle system as

~A(k) = −ı̇ 〈uk| ~∇k|uk〉, (23)

where |uk〉 is defined as in the Bloch wave function. The anomalous Hall conductivity is then
given by

σqp
x y =

∮

∂ S

~A(k) · d~k =
∫

S
[ ~∇k × ~A(k)] d2k, (24)

where the first (line) integral is taken around the Fermi surface ∂ S, while the second (area)
integral is taken over the area S spanned by it. This physical quantity is invariant under U(1)
gauge transformations, as is immediately evident from its expression in terms of the Berry
curvatureB(k) = ~∇k × ~A(k).

To obtain the Berry curvature, we suppose that the system is described by an effective
quasiparticle Hamiltonian including a self-energy correction Σ(k) and a Zeeman coupling to
an external magnetic field ~B = hẑ:

Heff(k) =
�

f †
k↑ f †

k↓

�

�

ε(k)− h Σ∗(k)
Σ(k) ε(k) + h

�

�

fk↑
fk↓

�

. (25)

We determine the self-energy Σ(k) by requiring that the off-diagonal expectation value
Π↑↓(k) ≡ 〈 f

†
k↑ fk↓〉 calculated using the improved wave function matches that calculated using

the effective HamiltonianHeff(k).
To proceed, we consider an improved wave function similar to that in Eq. (14):

|Ψ〉= e−α̃H̃P |ψ0〉, (26)

where now we take H̃ = H±z . The reason for this change is that the previously-considered
correction due to H±± gives exactly zero contribution to Π↑↓ because it conserves the total
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spin Sz modulo 2. The analogous contribution due to H±z , however, does contribute. We
expect that the energetically optimal value of the variational parameter is α̃ ∼ J±z/J0, where
J0 is on the order of the other exchange couplings (J± and Jz).

Using the same perturbative expansion as above, the first-order form of Π↑↓(k) becomes

Π↑↓(k) =
¬

e−α̃H̃ f †
k↑ fk↓e

−α̃H̃
¶

0

= −α̃
�

〈 f †
k↑ fk↓H̃〉0 + 〈H̃ f †

k↑ fk↓〉0
�

≡ Π(1)R (k) +Π
(1)
L (k). (27)

If we represent the spin-spin interaction in momentum space with a momentum-dependent
form factor

γ̃(k) =
i
2

3
∑

µ=1

∑

±
γµe±i~k·~aµ , γµ ≡ γ~0,~aµ

, (28)

the first expectation value Π(1)R (k) takes the form

Π
(1)
R (k) = iα̃

¬

f †
k↑ fk↓

∑

〈mn〉

�

γmnSz
mS−n + (m↔ n)

�

¶

0

=
α̃

N

∑

k1,k2,k3

�

〈 f †
k↑ fk↓ f †

k1↑
fk2↑

f †
k3↓

f(k1−k2+k3)↑
〉0

− 〈 f †
k↑ fk↓ f †

k1↓
fk2↓

f †
k3↓

f(k1−k2+k3)↑
〉0
�

γ̃(k1 − k2)

= −
α̃

N

∑

q

�

〈 f †
k↑ fk↑ f †

q↑ fq↑〉0 〈 fk↓ f †
k↓〉0

+ 〈 f †
k↑ fk↑〉0 〈 fk↓ f †

k↓ fq↓ f †
q↓〉0

�

γ̃(k− q), (29)

where we arrive at the last line after conserving spin and momentum in the zeroth-order
expectation values as well as using γ̃(−k) = γ̃(k) and γ̃(0) = 0.

Performing similar manipulations on Π(1)L (k) and combining the two contributions gives

Π↑↓(k) = Π
(1)
R (k) +Π

(1)
L (k) = −α̃Λγ̃(k)Γ (k),

Γ (k) = 〈nk↑〉0〈1− nk↓〉0 + 〈nk↓〉0〈1− nk↑〉0
= coth(h/T )

�

〈nk↑〉0 − 〈nk↓〉0
�

, (30)

Λ=
1
N

∑

q

e±i~q·~aµ
�

〈nq↑〉0 + 〈1− nq↓〉0
�

∼ a2

∫

d2q e±i~q·~aµ
�

〈nq↑〉0 − 〈nq↓〉0
�

,

where nkσ = f †
kσ fkσ is a number operator and a = |~aµ| is the lattice constant. Importantly, Λ

is real and independent of both µ and ± due to the sixfold symmetry S6. Furthermore, in the
limit of T � |h|, the integrand is only non-zero in an annulus of thickness ∼ h/(aJ0) around
the Fermi surface of radius ∼ 1/a, and the integral can then be estimated as Λ∼ h/J0.
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Let us also calculate Π↑↓(k) from the effective Hamiltonian in Eq. (25). In the limit of
|Σ(k)| � |h|, we obtain

Π↑↓(k) = −
sgn(h)Σ(k)

2
p

h2 + |Σ(k)|2
�

〈nk↑〉0 − 〈nk↓〉0
�

= −
Σ(k)
2h

�

〈nk↑〉0 − 〈nk↓〉0
�

. (31)

Finally, from a comparison of Eqs. (30) and (31), the self-energy in the limit of T � |h| becomes

Σ(k) = 2|h|α̃Λγ̃(k). (32)

The real and imaginary parts of Σ(k) are plotted in Fig. 8. Note that the complex phase of
Σ(k)∝ γ̃(k) winds by 4π around the Γ point.

4.4.3 Berry curvature and Hall conductivity

Now we are in a position to calculate the emergent Hall conductivity. First, we rewrite the
effective quasiparticle Hamiltonian in Eq. (25) into the standard form

Heff(k) =
�

f †
k↑ f †

k↓

�

�

ε(k)σ0 − h ~β(k) · ~σ
�

�

fk↑
fk↓

�

,

~β(k) =
�

−
ReΣ(k)

h
, −

ImΣ(k)
h

, 1
�

, (33)

where | ~β(k)| ≈ 1 in the limit of |Σ(k)| � |h|. For such a Hamiltonian, the two bands have
Berry curvatures of opposite sign and equal magnitude given by

B(k)∼ ~β(k) ·
�

∂kx
~β(k)× ∂ky

~β(k)
�

∼
1
ρk

�

~β(k) ·
�

∂ρk
~β(k)× ∂ϕk

~β(k)
�	

(34)

∼
1

h2ρk
Im
�

∂ρk
Σ∗(k)∂ϕk

Σ(k)
�

,

where we use polar coordinates defined by kx = ρk cosϕk and ky = ρk sinϕk. Due to the
4π phase winding of Σ(k) (see Fig. 8), there is a finite azimuthal derivative ∂ϕk

Σ(k)∼ iΣ(k).
From ∂ρk

Σ∗(k)∼ aΣ∗(k), the Berry curvature at radius ρk ∼ 1/a is then on the order of

B(k)∼
a2|Σ(k)|2

h2
∼ α̃2a2

�

h
J0

�2

. (35)

Next, in terms of the Berry curvatures±B(k) of the two bands, the emergent Hall conductivity
takes the form

σqp
x y =

∫

d2kB(k)
�

〈nk↑〉0 − 〈nk↓〉0
�

. (36)

In the limit of T � |h|, the integrand is only non-zero in an annulus of thickness ∼ h/(aJ0)
around the Fermi surface of radius ∼ 1/a, and the Hall conductivity can then be estimated as
σ

qp
x y ∼ α̃2(h/J0)3.

Finally, by virtue of the Wiedemann-Franz law that relates the emergent and the thermal
conductivities, the quasiparticle contribution to the thermal Hall conductivity is on the order
of

κx y ∼ Tσqp
x y ∼ α̃

2T
�

h
J0

�3

∼
Th3J2

±z

J5
0

. (37)
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Figure 8: The a) real and b) imaginary components of Σ(k) in a magnetic field ~B = hẑ. Lighter
(darker) contours are positive (negative) contributions. The positions of the spin up and spin
down Fermi surfaces in the presence of a nonzero Zeeman field∝ h are also shown.

Interestingly, κx y is proportional to the third power of the magnetic field. Note, however, that
this result is valid for a relatively large field (T � |h| � J0). For a small field (|h| � T � J0),
the factor coth(h/T ) in Eq. (30) contributes an additional factor ∼ (T/h)2 to κx y , which is
then linearly proportional to the magnetic field.

5 Discussion

5.1 Relationship to other work

In this paper, we have provided a comprehensive commentary on the possibility of spin liquid
physics in a very general spin-orbit coupled model on the triangular lattice. In the process, we
have attempted to consolidate several previous results on this topic. We began by looking at
the U(1) PSG wave functions derived in Ref. [18]. Instead of working with these wave func-
tions phenomenologically, we go beyond their simple mean-field analysis and find quantitative
estimates of the energies of these ansätze using variational Monte Carlo.

We also use VMC to give a complete picture of magnetic order in our model. Our results
improve on the classical magnetic phase diagrams presented in Refs. [15,16]. In those works,
a phase transition between the 120◦ and stripe phases is found in the nearest-neighbor model,
and it is conjectured that large spin fluctuations may lead to the presence of a nonmagnetic
phase. In our work, by building on the PSG ansätze, we also find a phase transition between
the two magnetic phases in a similar parameter regime. We further find that second-neighbor
interactions are necessary to create a spin liquid ground state and we identify the Dirac spin
liquid as the lowest energy state. This confirms and extends earlier studies of the isotropic
Heisenberg model [23].

The only other calculation of the full quantum phase diagram in this model was given by
the DMRG analysis in Ref. [20]. Our phase diagram agrees with the DMRG analysis when
second-neighbor interactions are included. The XXZ anisotropy and J±± interactions both
work to limit the spin liquid phase to a very small region of parameter space. However, we
go beyond this and also include a third-neighbor interaction, which we believe gives a more
complete picture on the behavior of the spin liquid phase. We find that even a very small
third-neighbor interaction can greatly stabilize the spin liquid regime.

5.2 Relevance to materials

This model has recently attracted much attention for its potential relevance to the material
YbMgGaO4. Experiments find enticing evidence for a spinon Fermi surface state from ther-
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modynamic and inelastic neutron scattering measurements [9, 11]. Our work addressed the
theoretical basis for such physics.

Our results support the claim of Ref. [20] that YbMgGaO4 likely falls outside of the spin
liquid phase in the presence of only first- and second-neighbor interactions. We found, how-
ever, that a very small third-neighbor interaction can greatly increase the size of the spin liquid
phase and may appear quite naturally in the material. However, using the simple PSG picture,
we always find that the Dirac spin liquid is energetically favored over the spinon Fermi surface
state.

While the above results do not support the spinon Fermi surface state, we did find some
effects which could tilt the balance in its favor. We saw that the spin-orbit interactions favor
the spinon Fermi surface over the Dirac spin liquid state when we include effects beyond the
simple projected mean-field wave functions. This leaves open the possibility that the spinon
metal could be energetically favorable, perhaps assisted by other factors such as disorder or a
small ring-exchange interaction.

If we assume that a spinon metal state does exist, interesting features emerge due to spin-
orbit coupling. We showed how the spin-orbit interactions could explain the existence of broad
peaks at the M points in the spin structure factor and also predicted that measurements of the
spin-polarized structure factors would display specific polarization-dependent peaks reflecting
the anisotropic interactions. We also propose that the spin-orbit coupled spinon metal state
may have a rather large thermal Hall conductivity which could be a very clear signature of
spin liquid physics in such a system.

5.3 Future directions and implications

Looking forward, we anticipate a number of implications for the results and techniques devel-
oped in this work. For our spin-orbit coupled triangular systems, we showed that the restric-
tions imposed on the standard Gutzwiller-projected free fermion states by the PSG are quite
severe for several of the U(1) QSL states. Consequently, they are unable to adapt to strongly
anisotropic interactions, and this may open the door to competition from Z2 QSL states in
the case of such anisotropic models. In turn, this would be of considerable interest as the
Gutzwiller-based approach almost always favors U(1) states in Heisenberg models. The pos-
sibility of inducing fully gapped topological QSLs should be explored in the future by VMC
techniques.

We argued that the thermal Hall effect should be a key signature of itinerant spinon exci-
tations in spin-orbit coupled systems. While we obtained such an effect for the U(1) spinon
Fermi surface state on the triangular lattice, it was in fact suppressed by the PSG-mandated
vanishing of effective spin-orbit coupling on the fermionic spinons at the free-particle level.
Ultimately, this suppression owes itself to the presence of inversion symmetry, which, in con-
junction with time-reversal symmetry, act on the spinons analogously to the way they do on
real electrons. As is well known, the combination of inversion and time reversal in that con-
text imply an exact two-fold Kramers degeneracy of the full electronic band structure, and a
similar effect occurs here. When inversion is absent, for example, when an electric field is
present normal to a two-dimensional electron gas, spin splitting occurs. The Rashba spin-orbit
coupling induced by such a field is known to induce a large anomalous Hall effect in that con-
text [33]. This strongly suggests that one should look for an enhanced thermal Hall effect in
two-dimensional magnetic materials in which the magnetic layer has an asymmetric environ-
ment. This criteria, along with the requirement of large spin-orbit coupling, should assist in a
search for this phenomenon.

Our methodology offers a consistent and quantitative method to compare QSLs and or-
dered phases for anisotropic magnetic Hamiltonians. This should have broad applicability to
other materials such as the Kitaev compounds α-RuCl3, Na2IrO3, and Li2IrO3 in all its struc-
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tural variations, and to three-dimensional systems like rare earth pyrochlores and spinels. The
ability of VMC-based methods to tackle large systems is a unique numerical advantage. We
expect many insights from such studies in the future.
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