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Abstract

We obtain recursion formulas for the Bethe vectors of models with periodic boundary
conditions solvable by the nested algebraic Bethe ansatz and based on the quantum
affine algebra Uq(Òglm). We also present a sum formula for their scalar products. This for-
mula describes the scalar product in terms of a sum over partitions of the Bethe param-
eters, whose factors are characterized by two highest coefficients. We provide different
recursions for these highest coefficients.

In addition, we show that when the Bethe vectors are on-shell, their norm takes the
form of a Gaudin determinant.
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1 Introduction

Integrable models have the striking property that their physical data are exactly computable,
without the use of any perturbative expansion or asymptotic behavior. For this reason, they
have always attracted the attention of researchers. In the twentieth century, quantum inte-
grable models have been the source of many developments originating in the so-called Bethe
ansatz, introduced by H. Bethe [1]. In a few words, the Bethe ansatz is an expansion of Hamil-
tonian eigenvectors over some clever basis (similar to planar waves) using some parameters
(the Bethe parameters, which play the role of momenta). Demanding the vectors to be eigen-
vectors of the Hamiltonian leads to a quantization of the Bethe parameters which takes the
form of a system of coupled algebraic equations called the Bethe equations. Knowing the form
of the Bethe ansatz and the Bethe equations is in general enough to get a large number of
information on the physical data of the system.

In continuity to the Bethe ansatz technics, the Quantum Inverse Scattering Method (QISM),
mainly elaborated by the Leningrad/St-Petersburg School [2–5], has been the core of a wide
range of progress. These developments were performed in continuity with (or parallel to) the
works of C. N. Yang, R. Baxter, M. Gaudin, and many others, see e.g. [6–12].

The Bethe ansatz and QISM have provided a lot of interesting results for the models based
on gl2 symmetry and its quantum deformations. Among them, we can mention the determi-
nant representations for the norm and the scalar products of Bethe vectors [13, 14]. Focusing
on spin chains with periodic boundary conditions, it is worth mentioning the explicit solution
of the quantum inverse scattering problem [15–17]. These results were used to study correla-
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tion functions of quantum integrable models in the thermodynamic limit via multiple integral
representations [18–20] or form factor expansion [21–23].

For higher rank algebras, that is to say for multicomponent systems, glm spin chains and
their quantum deformation, or their Z2-graded versions, results are scarcer, although the gen-
eral ground has been settled many years ago [24–29]. Nevertheless, some steps have been
done, in particular for models with periodic boundary conditions: an explicit expression for
Bethe vectors of models based on Y (gl(m|n)) and on Uq(Òglm) can be found in [30–32] and
[33–37]. The calculation of scalar product and form factors have been addressed for some
specific algebras. The case of the Y (gl3) algebra has been studied in a series of works present-
ing some explicit forms of Bethe vectors [38], the calculation of their scalar product [39–43]
and the expression of the form factors as determinants [44, 45]. Results for models based
on the deformed version Uq(Ògl3) have been also obtained: explicit forms of Bethe vectors can
be found in [46], their scalar products in [47–49] and a determinant expression for scalar
products and form factors of diagonal elements was presented in [50]. The supersymmetric
counterpart of Y (gl3), the superalgebra Y (gl(2|1)) has been dealt in [51–54]. Some partial
results were also obtained for superalgebras in connection with the Super-Yang–Mills theo-
ries [55–57]. However a full understanding of the general approach to compute correlation
functions is still lacking. Recently, some general results on the scalar product and the norm of
Bethe vectors for Y (gl(m|n))models have been obtained in [58, 59], in parallel to the original
results described in [13, 39]. The present paper contains similar results for models based on
the quantum affine algebra Uq(Òglm).

It is known (see e.g. [13, 14, 60]) that most of the results concerning the scalar products of
Bethe vectors in the models described by the Y (gl2) and Uq(Ògl2) algebras can be formulated in
a sole universal form. This is because the R-matrices in both cases correspond to the six-vertex
model. An analogous similarity takes place in the general Y (glm) and Uq(Òglm) cases. In spite
of some differences between the R-matrices of Y (glm) and Uq(Òglm) based models the general
structure for the recursions on Bethe vectors, their scalar products, and the properties of the
scalar product highest coefficients, is almost identical. Moreover, most proofs literally mimic
each other for both cases. Thus, we do not reproduce the proofs entirely, referring the reader
to the works [58, 59] for the details. Instead, we mostly focus on the differences between
these two cases.

The plan of the article is as follows. We describe our general framework in the two first
sections: section 2 contains the algebraic framework used to handle integrable models, and
section 3 gathers some properties of the Bethe vectors of Uq(Òglm) based models. Section 4
presents our results, which are of two types. Firstly, we show results obtained for generic
Bethe vectors: several recursion formulas for the Bethe vectors (section 4.1); a sum formula
for their scalar products (section 4.2); and properties of the scalar product highest coefficients
(section 4.3). Secondly, considering on-shell Bethe vectors, we give a determinant form à la
Gaudin for their norm (section 4.4). The following sections are devoted to the proofs of our
results. Section 5 deals with the Bethe vectors constructed within the algebraic Bethe ansatz
and presents the proofs for the results given in section 4.1. Section 6 contains the proof of the
sum formula, and in section 7 we consider the symmetry properties of the highest coefficients.
Appendix A presents the explicit construction of Bethe vectors in a particular simple case. Some
of the results obtained in the present paper were already presented in the case of Uq(Ògl3) in
different articles: we make the connection with them in appendix B. A coproduct property for
dual Bethe vectors is proven in appendix C.
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2 Description of the model

2.1 The Uq(Òglm) based quantum integrable model

Let R(u, v) be a matrix associated with the vector representation of the quantum affine algebra
Uq(Òglm):

R(u, v) = f (u, v)
∑

1≤i≤m

Eii ⊗ Eii +
∑

1≤i< j≤m

�

Eii ⊗ E j j + E j j ⊗ Eii

�

+
∑

1≤i< j≤m

g(u, v)
�

uEi j ⊗ E ji + vE ji ⊗ Ei j

�

,
(2.1)

where (Ei j)lk = δilδ jk, i, j, l, k = 1, . . . , m are elementary unit matrices and the rational func-
tions f (u, v) and g(u, v) are

f (u, v) =
qu− q−1v

u− v
, g(u, v) =

q− q−1

u− v
, (2.2)

with q a complex parameter not equal to zero. This matrix acts in the tensor product Cm⊗Cm

and defines commutation relations

R(u, v)
�

T (u)⊗ 1
��

1⊗ T (v)
�

=
�

1⊗ T (v)
��

T (u)⊗ 1
�

R(u, v) (2.3)

for the quantum monodromy matrix T (u) of some quantum integrable model.
Equation (2.3) holds in the tensor product Cm ⊗ Cm ⊗H , where H is a Hilbert space of

the model. Being projected onto specific matrix element the commutation relation (2.3) can
be written as the relation for the monodromy matrix elements acting in the Hilbert spaceH

[Ti, j(u) , Tk,l(v)] =
�

f (u, v)− 1
�

¦

δl j Tk, j(v)Ti,l(u)−δik Tk, j(u)Ti,l(v)
©

+ g(u, v)
¦

�

uδl< j + vδ j<l

�

Tk, j(v)Ti,l(u)−
�

uδi<k + vδk<i

�

Tk, j(u)Ti,l(v)
©

,
(2.4)

where δi< j = 1 if i < j and 0 otherwise.
The transfer matrix is defined as the trace of the monodromy matrix

T (u) = tr T (u) =
m
∑

j=1

T j, j(u). (2.5)

It follows from the RT T -relation (2.3) that [T (u) , T (v)] = 0. Thus the transfer matrix can
be used as a generating function of integrals of motion of an integrable system.

We call such a model Uq(Òglm) based quantum integrable model because of the R-matrix
used in definition of the commutation relations (2.3) and also because the centerless quan-
tum affine algebra Uq(Òglm) itself can be defined using the commutation relations (2.3) by
identification of the quantum monodromy matrix T (u) with the generating series of the Borel
subalgebra elements in Uq(Òglm).

Assume that the operator

L = lim
u→∞

T (u) with L =
m
∑

i, j=1

Ei j ⊗Li, j

is well defined. We call such operators Li, j zero modes operators1 and it follows from the
commutation relations (2.4) that2

Li,i Tk,l(u) = qδil−δik Tk,l(u)Li,i . (2.6)

1In fact the zero mode generators exist whatever is the asymptotic behavior of T (u) at u=∞. We have taken
this particular behavior to simplify the presentation.

2To get this result one needs to assume that the zero mode matrix L is upper-triangular.
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Matrix elements Ti, j(u) of the monodromy matrix T (u) form the algebra with the commu-
tation relations (2.4) which we denote asA q

m. Further on we will consider certain morphisms

which relate algebrasA q
m andA q−1

m (see section 3) as well as embeddings of the smaller rank
algebraA q

m−1 into the bigger rank algebraA q
m.

We wish here to make some comments on the distinction between A q
m and Uq(Òglm) alge-

bras. The R-matrix we use is definitely the one associated to the Uq(Òglm) algebra. However,
in order to define this algebra, more elements are needed, such as the Lax operator(s) and
their expansion with respect to the spectral parameter. On the other hand, the definition of
an integrable model ‘only’ needs a monodromy matrix obeying an RT T -relation. Hence, we
refer to the A q

m algebra when dealing with this monodromy matrix, while the denomination
Uq(Òglm) will be used when mentioning the underlying models.

Most of the time, one may identify theA q
m algebra with a Borel subalgebra in the quantum

affine algebra Uq(Òglm). This allows to define the model and its Bethe vectors. However, when
considering dual Bethe vectors and the morphism Ψ (see section 3.2) the situation is more
delicate. This is particularly acute when the central charge is not zero, and we use the A q

m

algebra to bypass these subtleties. In particular, the morphism Ψ maps A q
m to A q−1

m , while it
maps U+q to U−q−1 , where U+q and U−q are dual Borel subalgebras in Uq(Òglm).

A similar discussion can be found in [32] on the Yangian case.

2.2 Notation

In this paper we use notation and conventions of the work [58]. Besides the functions g(u, v)
and f (u, v) (2.2), we introduce the rational functions

g(r)(u, v) = v g(u, v) , g(l)(u, v) = u g(u, v) . (2.7)

Let us formulate now a convention on the notation. We denote sets of variables by bar,
for example, ū. When dealing with several of them, we may equip these sets or subsets with
additional superscript: s̄i , t̄ν, etc. Individual elements of the sets or subsets are denoted
by Latin subscripts, for instance, u j is an element of ū, t i

k is an element of t̄ i etc. Subsets
complementary to the elements u j (resp. t i

k) are denoted by bar, i.e. ū j (resp. t̄ i
k). Thus,

ū j = ū\{u j} and t̄ i
k = t̄ i \{t i

k}. For any set ū, we will note #ū the cardinality of the set ū. As a
rule, the number of elements in the sets is not shown explicitly in the equations, however we
give these cardinalities in special comments to the formulas.

We use a shorthand notation for products of functions f , g or g(l,r): if some function
depends on a set of variables (or two sets of variables), this means that one should take the
product over the corresponding set (or double product over the two sets). For example,

g(l)(ū, v) =
∏

u j∈ū

g(l)(u j , v), f ( t̄µj , tµj ) =
∏

tµ
`
∈ t̄µ

6̀= j

f (tµ
`
, tµj ), f (s̄ j , t̄ i) =

∏

s j
k∈s̄ j

∏

t i
`
∈ t̄ i

f (s j
k, t i

`). (2.8)

The same convention is applied to the products of commuting operators. Note that (2.4)
implies in particular that

[Ti, j(u) , Ti, j(v)] = 0, ∀ i, j = 1, . . . , m. (2.9)

Thus, the notation
Ti, j(ū) =

∏

uk∈ū

Ti, j(uk) (2.10)

is well defined.
By definition, any product over the empty set is equal to 1. A double product is equal to

1 if at least one of the sets is empty. Below we will extend this convention to the products of
eigenvalues of the diagonal monodromy matrix entries and their ratios (see (3.3)).
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3 Bethe vectors

Pseudovacuum vector. The entries Ti, j(u) of the monodromy matrix T (u) act in a Hilbert
space H . We do not specify H , but we assume that it contains a pseudovacuum vector |0〉,
such that

Ti,i(u)|0〉= λi(u)|0〉, i = 1, . . . , m,

Ti, j(u)|0〉= 0, i > j ,
(3.1)

where λi(u) are some scalar functions. In the framework of the generalized model [13] consid-
ered in this paper, the scalar functions λi(u) remain free functional parameters. Let us briefly
recall that the generalized model is a class of models possessing the same R-matrix (2.1) and
having a pseudovacuum vector with the properties (3.1) (see [13, 58] for more details). Any
representative of this class can be characterized by a set of functional parameters that are the
ratios of the vacuum eigenvalues λi:

αi(u) =
λi(u)
λi+1(u)

, i = 1, . . . , m− 1. (3.2)

We extend to these functions the convention on the shorthand notation (2.8), for instance:

λk(ū) =
∏

u j∈ū

λk(u j) , αi( t̄
i) =

∏

t i
`
∈ t̄ i

αi(t
i
`). (3.3)

Coloring. In physical models, the space H is generated by states with quasiparticles of dif-
ferent types (colors). In Uq(Òglm) based models quasiparticles may have N = m− 1 colors. For
any set {r1, . . . , rN} of non-negative integers, we say that a state has coloring {r1, . . . , rN}, if it
contains ri quasiparticles of the color i. This definition can be formalized at the level of the
quantum algebra Uq(Òglm) through the diagonal zero modes operators Lk,k (2.6). The colors
correspond to the eigenvalues under the commuting generators3

h j =
j
∏

k=1

Lk,k , j = 1, ..., m− 1. (3.4)

Indeed, one can check from (2.6) that

h j Tk,l(z) = qε j(k,l) Tk,l(z)h j with











ε j(k, l) = −1, if k ≤ j < l,

ε j(k, l) = +1, if l ≤ j < k,

ε j(k, l) = 0 otherwise.

(3.5)

The eigenvalues ε j(k, l) just correspond to the coloring mentioned above.

To get a zero coloring of the vector |0〉, one needs to shift h j to h j = h j
∏ j

k=1λk[0]−1,
where λk[0] is the eigenvalue of |0〉 under Lk,k. Then, all states inH have positive (or null)
colors. A state with a given coloring can be obtained by successive application of the creation
operators Ti, j with i < j to the vector |0〉. Acting on a state, an operator Ti, j with i < j adds
one quasiparticle of each colors i, . . . , j−1. In particular, the operator Ti,i+1 creates one quasi-
particle of the color i, the operator T1,m creates N quasiparticles of N different colors. The
diagonal operators Ti,i are neutral, the matrix elements Ti, j with i > j play the role of anni-
hilation operators. They remove from any state the quasiparticles with the colors j, . . . , i − 1,
one particle of each color. In particular, if j−1< k < i, and the annihilation operator Ti, j acts
on a state in which there are no particles of the color k, then its action yields zero.

3The last generator hm is central, see (3.5).
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Bethe vectors. Bethe vectors belong to the space H . Their distinctive feature is that when
Bethe equations are fulfilled (see section 3.3) they become eigenvectors of the transfer matrix
(2.5). Several explicit forms for Bethe vectors can be found in [37]. We do not use them in
the present paper, however, in section 4.1 we give a recursion that formally allows the Bethe
vectors to be explicitly constructed. In the present section, we only fix their normalization.

Generically, Bethe vectors are certain polynomials in the creation operators Ti, j applied
to the vector |0〉. These polynomials are eigenvectors under the Cartan generators Lk,k, and
hence they are also eigenvectors of the color generators h j . Thus, Bethe vectors have a definite
coloring and contain only terms with the same coloring.

A generic Bethe vector of Uq(Òglm) based model depends on N = m − 1 sets of variables
t̄1, t̄2, . . . , t̄N called Bethe parameters. We denote Bethe vectors by B( t̄), where

t̄ = {t1
1, . . . , t1

r1
; t2

1, . . . , t2
r2

; . . . ; tN
1 , . . . , tN

rN
}, (3.6)

and the cardinalities ri of the sets t̄ i coincide with the coloring. Thus, each Bethe parameter
t i
k can be associated with a quasiparticle of the color i.

Bethe vectors are symmetric over permutations of the parameters t i
k within the set t̄ i (see

e.g. [37]). However, they are not symmetric over permutations over parameters belonging to
different sets t̄ i and t̄ j .

We have already mentioned that a generic Bethe vector has the form of a polynomial in
Ti, j with i < j applied to the pseudovacuum |0〉. Among all the terms of this polynomial, there
is one monomial that contains the operators Ti, j with j − i = 1 only. Let us call this term the
main term and denote it by eB( t̄). Then

B( t̄) = eB( t̄) + . . . , (3.7)

where the ellipsis stands for all the terms with the same coloring that contain at least one
operator Ti, j with j − i > 1. We fix the normalization of the Bethe vectors by requiring the
following form of the main term

eB( t̄) =
T1,2( t̄1) . . . TN ,N+1( t̄N )|0〉

∏N
i=1λi+1( t̄ i)

∏N−1
i=1 f ( t̄ i+1, t̄ i)

. (3.8)

Recall that we use here the shorthand notation for the products of the functions λ j+1 and f , as
well as for a set of commuting operators Ti,i+1. Let us stress that this normalization is different
from the one used in [37] where the coefficient of the operator product in the definition of
eB( t̄) was just 1. This additional normalization factor is convenient, in particular because the
scalar products of the Bethe vectors depend on the ratios αi (3.2) only.

Since the operators Ti,i+1 and T j, j+1 do not commute for i 6= j, the main term can be
written in several forms corresponding to different ordering of the monodromy matrix entries.
The ordering in (3.8) naturally arises if we construct Bethe vectors via the nesting procedure
corresponding to the embedding ofA q

m−1 inA q
m to the lower-right corner of the monodromy

matrix T (u).

3.1 Morphism of Bethe vectors

The quantum algebrasA q
m andA q−1

m are related by a morphism ϕ [37]:

ϕ
�

T (u)
�

= U eT t(u)U−1, i.e. ϕ
�

Ta,b(u)
�

= eTm+1−b,m+1−a(u) , (3.9)

where U =
∑m

i=1 Ei,m+1−i and we put a tilde on the generators of A q−1

m to distinguish them

from those of A q
m. ϕ defines an idempotent isomorphism from A q

m to A q−1

m . This mapping
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also acts on the vacuum eigenvalues λi(u) (3.1) and their ratios αi(u) (3.2)

ϕ :

¨

λi(u) → eλm+1−i(u), i = 1, . . . , m ,

αi(u) →
1

eαm−i(u)
, i = 1, . . . , m− 1 .

(3.10)

We can extend this morphism to representations, defining ϕ(|0〉) = f|0〉, where |0〉 and f|0〉
are the pseudovacua inH and fH respectively. It has been shown in [37] that this morphism
induces the following correspondence between Bethe vectors

Lemma 3.1. The morphism ϕ induces a mapping of Bethe vectors Bq( t̄) ∈ H to Bethe vectors
Bq−1( t̄) ∈ fH :

ϕ
�

Bq(
−→t )
�

=
Bq−1(←−t )

∏N
k=1 eαN+1−k( t̄k)

, (3.11)

where we have introduced the special orderings of the sets of Bethe parameters4

−→t = { t̄1, t̄2, . . . , t̄N} and ←−t = { t̄N , . . . , t̄2, t̄1}. (3.12)

3.2 Dual Bethe vectors

Dual Bethe vectors belong to the dual Hilbert spaceH ∗, and they are polynomials in Ti, j with
i > j applied from the right to the dual pseudovacuum vector 〈0|. This vector possesses the
properties similar to (3.1)

〈0|Ti,i(u) = λi(u)〈0|, i = 1, . . . , m,

〈0|Ti, j(u) = 0 , i < j ,
(3.13)

where the functions λi(u) are the same as in (3.1).
We denote dual Bethe vectors by C( t̄), where the set of Bethe parameters t̄ consists of

several sets t̄ i as in (3.6). As it was done for Bethe vectors, we can introduce the coloring of
the dual Bethe vectors, with now the role of creation and annihilation operators reversed.

One can obtain dual Bethe vectors via the special antimorphism Ψ given by

Ψ
�

T (u)
�

= eT t(u−1), i.e. Ψ
�

Ta,b(u)
�

= eTb,a(u
−1). (3.14)

Ψ defines an idempotent antimorphism from A q
m to A q−1

m . Let us extend the action of this
antimorphism to the pseudovacuum vectors by

Ψ
�

|0〉
�

= f〈0|, Ψ
�

A|0〉
�

= f〈0|Ψ
�

A
�

,

Ψ
�

〈0|
�

= f|0〉, Ψ
�

〈0|A
�

= Ψ
�

A
�

f|0〉,
(3.15)

where A is any product of Ti, j . Then it turns out that [37]

Ψ
�

Bq( t̄)
�

= Cq−1( t̄ −1), Ψ
�

Cq( t̄)
�

= Bq−1( t̄ −1), (3.16)

where, again, we put a subscript on (dual) Bethe vectors to distinguish the ones of A q
m from

those ofA q−1

m . We used the notation

t̄ −1 ≡
1
t̄
≡
¦ 1

t1
1

,
1

t1
2

, ...,
1
t1

r1

,
1

t2
1

, ...,
1

tN
rN

©

.

4Let us stress that the order of the Bethe parameters within every subset t̄k is not essential.
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The main term of the dual Bethe vector can be obtained from (3.8) via the mapping5 Ψ:

eC( t̄) =
〈0|TN+1,N ( t̄N ) . . . T2,1( t̄1)

∏N
i=1λi+1( t̄ i)

∏N−1
i=1 f ( t̄ i+1, t̄ i)

. (3.17)

Finally, using the morphismϕ we obtain a relation between dual Bethe vectors correspond-

ing to the quantum algebrasA q
m andA q−1

m

ϕ
�

Cq(
−→t )
�

=
Cq−1(←−t )

∏N
k=1 eαN+1−k( t̄k)

. (3.18)

3.3 On-shell Bethe vectors

For generic Bethe vectors, the Bethe parameters t i
k are generic complex numbers. If these

parameters satisfy a special system of equations (the Bethe equations, see (3.19)), then the
corresponding vector becomes an eigenvector of the transfer matrix (2.5). In this case it is
called on-shell Bethe vector. In most of the paper we consider generic Bethe vectors. However,
for the calculation of the norm of Bethe vectors we will consider on-shell Bethe vectors. In
that case, the parameters t̄ and αµ will be related by the following system of Bethe equations

αν(t
ν
j ) =

f (tνj , t̄νj ) f ( t̄
ν+1, tνj )

f ( t̄νj , tνj ) f (t
ν
j , t̄ν−1)

, ν= 1, . . . , N , j = 1, . . . , rν, (3.19)

and we recall that t̄νj = t̄ν \ {tνj }. Usually, when the functions αµ are given (and define a
physical model), one considers these equations as a way to determine the allowed values for
the Bethe parameters t̄. For the generalized models, where the functions αµ are not fixed,
the Bethe equations form a set of relations between the functional parameters αµ(t

µ
j ) and the

Bethe parameters tνk .

3.4 Coproduct property and composite models

The proofs for the results shown in the present paper rely on a coproduct property for Bethe
vectors, which connects the Bethe vectors belonging to the spacesH (1) andH (2) to the Bethe
vectors in the spaceH (1)⊗H (2). This property is intimately related to the notion of composite
model, that we introduce now. It is important to point out that in this section we consider
Bethe vectors corresponding to different monodromy matrices. We stress it by adding the
monodromy matrix to the list of the Bethe vectors arguments. Namely, the notation B( t̄|T )
means that the Bethe vector B( t̄) corresponds to the monodromy matrix T .

In a composite model, the monodromy matrix T (u) is presented as a product of two partial
monodromy matrices [32, 62–64]:

T (u) = T (2)(u)T (1)(u). (3.20)

Here every T (l)(u) satisfies the RT T -relation (2.3) and has its own pseudovacuum vector |0〉(l)

and dual vector 〈0|(l), such that |0〉 = |0〉(1) ⊗ |0〉(2) and 〈0| = 〈0|(1) ⊗ 〈0|(2). The operators
T (2)i, j (u) and T (1)k,l (v) act in different spaces, and hence, they commute with each other. We
assume that

T (l)i,i (u)|0〉
(l) = λ(l)i (u)|0〉

(l),

〈0|(l)T (l)i,i (u) = λ
(l)
i (u)〈0|

(l),
i = 1, . . . , m, l = 1,2, (3.21)

5To get a dual Bethe vector in Uq(Òglm) one should start from Uq−1(Òglm), see [37] where these considerations are
detailed.
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where λ(l)i (u) are new free functional parameters. We also introduce

α
(l)
k (u) =

λ
(l)
k (u)

λ
(l)
k+1(u)

, l = 1, 2, k = 1, . . . , N . (3.22)

Obviously
λi(u) = λ

(1)
i (u)λ

(2)
i (u), αk(u) = α

(1)
k (u)α

(2)
k (u). (3.23)

The partial monodromy matrices T (l)(u) have the corresponding Bethe vectors B( t̄|T (l))
and dual Bethe vectors C(s̄|T (l)). A Bethe vector B( t̄|T ) of the total monodromy matrix T (u)
can be expressed in terms partial Bethe vectors B( t̄|T (l)) via coproduct formula [34, 35]

B( t̄|T ) =
∑

∏N
ν=1α

(2)
ν ( t̄

ν
i ) f ( t̄

ν
ii , t̄νi )

∏N−1
ν=1 f ( t̄ν+1

ii , t̄νi )
B( t̄i|T (1))⊗B( t̄ii|T (2)). (3.24)

Here all the sets of the Bethe parameters t̄ν are divided into two subsets t̄ν ⇒ { t̄νi , t̄νii}, and
the sum is taken over all possible partitions.

A similar formula exists for the dual Bethe vectors C(s̄|T ) (see appendix C)

C(s̄|T ) =
∑

∏N
ν=1α

(1)
ν (s̄

ν
ii) f (s̄

ν
i , s̄νii)

∏N−1
ν=1 f (s̄ν+1

i , s̄νii)
C(s̄ii|T (2))⊗C(s̄i|T (1)), (3.25)

where the sum is organised in the same way as in (3.24).

4 Main results

In this section we present the main results of the paper. For generic Bethe vectors, we provide
recursion formulas (section 4.1), sum formulas for their scalar products (section 4.2), and
recursions for the highest coefficients (section 4.3). For on-shell Bethe vectors, we exhibit a
Gaudin determinant form for their norm (section 4.4).

We would like to stress that all the results are given in terms of rational functions f (u, v)
(2.2), g(l,r)(u, v) (2.7), and ratios of the eigenvalues αi(u) (3.2). Therefore, they can easily
be compared with the results obtained in [58, 59] for the models with the Yangian R-matrix.
This comparison shows that in both cases the results have completely the same structure.
The only slight difference consists in the fact that in the case of the Yangian the functions
g(l)(u, v) and g(r)(u, v) degenerate into one function g(u, v). As we have already mentioned
in Introduction, this similarity of the results is not accidental. It is explained by the similarity
of the corresponding R-matrices. Due to this reason the proofs of most of the results listed
above for the Uq(Òglm) based models are identical to the corresponding proofs in the Yangian
case. To show this we give a detailed proof of the sum formula (4.11). However, for the proofs
of other statements we refer the reader to the works [58, 59].

The essential difference between models that are described by Y (glm) and Uq(Òglm) algebras
is the action of morphisms ϕ (3.9) and Ψ (3.14). In particular, in the case of the Yangian, the
antimorphism (3.14) turns into an endomorphism, while in the Uq(Òglm) case this mapping
connects two different algebras. Therefore, all the proofs based on the application of the
mappings ϕ and Ψ, are given in details.

4.1 Recursion for Bethe vectors

Here we give recursions for (dual) Bethe vectors. The corresponding proofs are given in sec-
tion 5.

10

https://scipost.org
https://scipost.org/SciPostPhys.4.1.006


SciPost Phys. 4, 006 (2018)

Proposition 4.1. Bethe vectors of Uq(Òglm) based models satisfy a recursion

B(
�

z, t̄1
	

;
�

t̄k
	N

2 ) =
N+1
∑

j=2

T1, j(z)

λ2(z)

∑

part( t̄2,..., t̄ j−1)

B(
�

t̄1
	

;
�

t̄k
II

	 j−1
2 ;

�

t̄k
	N

j )

×

∏ j−1
ν=2αν( t̄

ν
I
) g(l)( t̄ν

I
, t̄ν−1

I
) f ( t̄ν

II
, t̄ν

I
)

∏ j−1
ν=1 f ( t̄ν+1, t̄ν

I
)

. (4.1)

Here for j > 2 the sets of Bethe parameters t̄2, . . . , t̄ j−1 are divided into disjoint subsets t̄ν
I

and t̄ν
II

(ν= 2, . . . , j−1) such that the subset t̄ν
I

consists of one element only: # t̄ν
I
= 1. The sum is taken

over all partitions of this type. We set t̄1
I
≡ z and t̄N+1 = ;. Recall also that N = m− 1.

We used the following notation in proposition 4.1

B(
�

z, t̄1
	

;
�

t̄k
	N

2 ) = B(
�

z, t̄1
	

; t̄2; . . . ; t̄N ),

B(
�

t̄1
	

;
�

t̄k
II

	 j−1
2 ;

�

t̄k
	N

j ) = B( t̄
1; t̄2

II
; . . . ; t̄ j−1

II
; t̄ j; . . . ; t̄N ).

(4.2)

Similar notation will be used throughout the paper.
Remark. We stress that each of the subsets t̄2

I
, . . . , t̄N

I
in (4.1) must consist of exactly one

element. However, this condition cannot be achieved if the original Bethe vector B(t) contains
an empty set t̄k = ; for some k ∈ [2, . . . , N]. In this case, the sum over j in (4.1) ends at j = k.
If B(t) contains several empty sets t̄k1 , . . . , t̄k` , then the sum finishes at j =min(k1, . . . , k`).

Using the mapping (3.9) one can obtain a second recursion for the Bethe vectors:

Proposition 4.2. Bethe vectors of Uq(Òglm) based models satisfy a recursion

B(
�

t̄k
	N−1

1 ;
�

z, t̄N
	

) =
N
∑

j=1

T j,N+1(z)

λN+1(z)

∑

part( t̄ j ,..., t̄N−1)

B(
�

t̄k
	 j−1

1 ;
�

t̄k
II

	N−1
j ; t̄N )

×

∏N−1
ν= j g(r)( t̄ν+1

I
, t̄ν

I
) f ( t̄ν

I
, t̄ν

II
)

∏N
ν= j f ( t̄ν

I
, t̄ν−1)

. (4.3)

Here for j < N the sets of Bethe parameters t̄ j , . . . , t̄N−1 are divided into disjoint subsets t̄ν
I

and
t̄ν

II
(ν= j, . . . , N − 1) such that the subset t̄ν

I
consists of one element: # t̄ν

I
= 1. The sum is taken

over all partitions of this type. We set by definition t̄N
I
≡ z and t̄0 = ;.

Remark. If the Bethe vector B(t) contains several empty sets t̄k1 , . . . , t̄k` , then the sum over
j in (4.3) begins with j =max(k1, . . . , k`) + 1.

Acting with the antimorphism (3.14) onto equations (4.1) and (4.3) we arrive at

Corollary 4.3. Dual Bethe vectors of Uq(Òglm) based models satisfy recursions

C(
�

z, s̄1
	

;
�

s̄k
	N

2 ) =
N+1
∑

j=2

∑

part(s̄2,...,s̄ j−1)

C(
�

s̄1
	

;
�

s̄k
II

	 j−1
2 ;

�

s̄k
	N

j )
T j,1(z)

λ2(z)

×

∏ j−1
ν=2αν(s̄

ν
I
) g(r)(s̄ν

I
, s̄ν−1

I
) f (s̄ν

II
, s̄ν

I
)

∏ j−1
ν=1 f (s̄ν+1, s̄ν

I
)

, (4.4)

and

C(
�

s̄k
	N−1

1 ;
�

z, s̄N
	

) =
N
∑

j=1

∑

part(s̄ j ,...,s̄N−1)

C(
�

s̄k
	 j−1

1 ;
�

s̄k
II

	N−1
j ; s̄N )

TN+1, j(z)

λN+1(z)

×

∏N−1
ν= j g(l)(s̄ν+1

I
, s̄ν

I
) f (s̄ν

I
, s̄ν

II
)

∏N
ν= j f (s̄ν

I
, s̄ν−1)

. (4.5)
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Here the summation over the partitions occurs as in the formulas (4.1) and (4.3). The subsets s̄ν
I

consist of one element: #s̄ν
I
= 1. If C(s̄) contains empty sets of Bethe parameters, then the sum

cuts similarly to the case of the Bethe vectors B( t̄). By definition s̄1
I
≡ z in (4.4), s̄N

I
≡ z in (4.5),

and s̄0 = s̄N+1 = ;.

Applying successively the recursion (4.1), we eventually express a Bethe vector with
# t̄1 = r1 as a linear combination of Bethe vectors with # t̄1 = 0. The latter effectively corre-
spond to the quantum algebraA q

m−1:

B(m)(;; { t̄k}N2 ) = B
(m−1)( t̄)

�

�

�

t̄k→ t̄k+1
, (4.6)

where we put a superscript to distinguish the Bethe vectors inA q
m from those ofA q

m−1. Thus,
continuing this process we formally can reduce Bethe vectors ofA q

m to the known ones ofA q
2 .

Similarly, one can build dual Bethe vectors via (4.4), (4.5). Unfortunately, these procedures
are too cumbersome for explicit calculations. However, they can be used to prove various
assertions by induction.

4.2 Sum formula for the scalar product

In this section we collect some results concerning scalar products of generic Bethe vectors. The
proofs of propositions 4.4 and 4.5 literally coincide with the ones given in [58] for the Yangian
case. Nevertheless, to illustrate this similarity we present one of these proofs (proposition 4.5)
in section 6.

Let B( t̄) be a generic Bethe vector and C(s̄) be a generic dual Bethe vector. Then their
scalar product is defined by

S(s̄| t̄) = C(s̄)B( t̄). (4.7)

Note that if # t̄k 6= #s̄k for some k ∈ {1, . . . , N}, then the scalar product vanishes. Indeed, in
this case the numbers of creation and annihilation operators of the color k in B( t̄) and C(s̄)
respectively do not coincide. Thus, in the following we will assume that # t̄k = #s̄k = rk,
k = 1, . . . , N .

Due to the normalizations (3.8) and (3.17), the scalar product of Bethe vectors depends
on the functions λi only through the ratios αi . The following proposition specifies this depen-
dence.

Proposition 4.4. Let B( t̄) be a generic Bethe vector and C(s̄) be a generic dual Bethe vector such
that # t̄k = #s̄k = rk, k = 1, . . . , N. Then their scalar product is given by

S(s̄| t̄) =
∑

Wpart(s̄I, s̄II| t̄I, t̄II)
N
∏

k=1

αk(s̄
k
I
)αk( t̄

k
II
). (4.8)

Here all the sets of the Bethe parameters t̄k and s̄k are divided into two subsets t̄k⇒ { t̄k
I
, t̄k

II
} and

s̄k⇒ {s̄k
I
, s̄k

II
}, such that # t̄k

I
= #s̄k

I
. The sum is taken over all possible partitions of this type. The

rational coefficients Wpart depend on the partition of t̄ and s̄, but not on the vacuum eigenvalues
λk. They are completely determined by the R-matrix of the model.

Proposition 4.4 states that in the scalar product (4.7), the Bethe parameters of the type
k (tk

j or sk
j ) are arguments of the functions αk only. This property has been proven for the

case of Bethe vectors associated to the Yangian Y (gl(m|n)) in [58], and the proof for A q
m

follows exactly the same lines. The only difference lies in the relation (7.7) which now relates
scalar products in different quantum algebras. However, this does not affect the functional

12

https://scipost.org
https://scipost.org/SciPostPhys.4.1.006


SciPost Phys. 4, 006 (2018)

dependence stated in proposition 4.4. Simply, one has to work the proof simultaneously in

A q
m and inA q−1

m . We refer the interested reader to [58] for more details.
We would like to stress that the rational functions Wpart are model independent. Thus, if

two different models share the same R-matrix (2.1), then the scalar products of Bethe vectors
in these models are given by (4.8) with the same coefficients Wpart. In other words, the model
dependent part of the scalar product entirely lies in the αk functions.

The Highest Coefficient (HC) of the scalar product is defined as the rational coefficient
corresponding to the partition s̄I = s̄, t̄I = t̄, and s̄II = t̄II = ;. We denote the HC by Z(s̄| t̄):

Wpart(s̄,;| t̄,;) = Z(s̄| t̄). (4.9)

It corresponds to the coefficient of
∏N

k=1αk(s̄k) in the formula (4.8).
Similarly one can define a conjugated HC Z(s̄| t̄) as the coefficient corresponding to the

partition s̄II = s̄, t̄II = t̄, and s̄I = t̄I = ;.

Wpart(;, s̄|;, t̄) = Z(s̄| t̄). (4.10)

In the following, when speaking of both HC and conjugated HC, we will loosely call them the
HCs.

The following proposition determines the general coefficient Wpart in terms of the HCs.

Proposition 4.5. For a fixed partition t̄k ⇒ { t̄k
I
, t̄k

II
} and s̄k ⇒ {s̄k

I
, s̄k

II
} in (4.8) the rational

coefficient Wpart has the following presentation in terms of the HCs:

Wpart(s̄I, s̄II| t̄I, t̄II) = Z(s̄I| t̄I) Z(s̄II| t̄II)

∏N
k=1 f (s̄k

II
, s̄k

I
) f ( t̄k

I
, t̄k

II
)

∏N−1
j=1 f (s̄ j+1

II , s̄ j
I ) f ( t̄

j+1
I , t̄ j

II )
. (4.11)

Note that this proposition was already proven in the case of A q
2 in [13] and A q

3 in [48].
A comparison with the previous results obtained for m = 3 is given in appendix B. The proof
forA q

m is given in section 6.

4.3 Properties of the highest coefficient

In this section we list several useful properties of the HCs. Most of them are quite analogous
to the properties of the HC in the Yangian case (see [58, 59]). The exception is the symmetry
properties given in the following proposition.

Proposition 4.6. The HC and conjugated HC in the quantum algebras Uq(Òglm) and Uq−1(Òglm)
are connected through the relations:

Zq(
−→s |−→t ) = Zq−1(←−s |←−t ), (4.12)

Zq(s̄| t̄) = Zq−1( t̄ −1|s̄ −1), (4.13)

where again we put a subscript to indicate to which algebra the HC corresponds to.
The HC possesses also the symmetry

Zq(
−→s |−→t ) = Zq

�←−t −1|←−s −1
�

. (4.14)

The proof of this proposition is given in section 7.
Explicit expressions for the HC are known for m = 2, 3 [49, 60], but they become very

ponderous when m is generic. Fortunately, one can use relatively simple recursions described
in the subsequent propositions.
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Proposition 4.7. The HC Z(s̄| t̄) possesses the following recursion over the set s̄1:

Z(s̄| t̄) =
N+1
∑

p=2

∑

part(s̄2,...,s̄p−1)
part( t̄1,..., t̄p−1)

g(l)( t̄1
I
, s̄1

I
) f ( t̄1

I
, t̄1

II
) f ( t̄1

II
, s̄1

I
)

f (s̄p, s̄p−1
I )

×
p−1
∏

ν=2

g(r)(s̄ν
I
, s̄ν−1

I
) g(l)( t̄ν

I
, t̄ν−1

I
) f (s̄ν

II
, s̄ν

I
) f ( t̄ν

I
, t̄ν

II
)

f (s̄ν, s̄ν−1
I
) f ( t̄ν

I
, t̄ν−1)

× Z(
�

s̄k
II

	p−1
1 ,

�

s̄k
	N

p |
�

t̄k
II

	p−1
1 ;

�

t̄k
	N

p ). (4.15)

In (4.15), for every fixed p ∈ {2, . . . , N + 1} the sums are taken over partitions t̄k⇒ { t̄k
I
, t̄k

II
}

with k = 1, . . . , p − 1 and s̄k ⇒ {s̄k
I
, s̄k

II
} with k = 2, . . . , p − 1, such that # t̄k

I
= #s̄k

I
= 1 for

k = 2, ..., p − 1. The subset s̄1
I

is a fixed Bethe parameter from the set s̄1. There is no sum over
partitions of the set s̄1 in (4.15).

The proof of this proposition coincides with the corresponding proof in [58].

Corollary 4.8. The HC Z(s̄| t̄) satisfies the following recursion over the set t̄N :

Z(s̄| t̄) =
N
∑

p=1

∑

part(s̄p ,...,s̄N )
part( t̄p ,..., t̄N−1)

g(l)( t̄N
I

, s̄N
I
) f (s̄N

II
, s̄N

I
) f ( t̄N

I
, s̄N

II
)

f ( t̄ p
I , t̄ p−1)

×
N−1
∏

ν=p

g(l)(s̄ν+1
I

, s̄ν
I
)g(r)( t̄ν+1

I
, t̄ν

I
) f (s̄ν

II
, s̄ν

I
) f ( t̄ν

I
, t̄ν

II
)

f (s̄ν+1, s̄ν
I
) f ( t̄ν+1

I , t̄ν)

× Z(
�

s̄k
	p−1

1 ,
�

s̄k
II

	N
p |
�

t̄k
	p−1

1 ;
�

t̄k
II

	N
p ). (4.16)

In (4.16), for every fixed p ∈ {1, . . . , N} the sums are taken over partitions t̄k ⇒ { t̄k
I
, t̄k

II
}

with k = p, . . . , N and s̄k ⇒ {s̄k
I
, s̄k

II
} with k = p, . . . , N − 1, such that # t̄k

I
= #s̄k

I
= 1 for

k = p, . . . , N − 1. The subset t̄N
I

is a fixed Bethe parameter from the set t̄N . There is no sum over
partitions for the set t̄N in (4.16).

This recursion follows from (4.15) and equation (4.14).
Remark. Similarly to the recursions for the Bethe vectors the sums over p in (4.15), (4.16)

break off, if HC Z(s̄| t̄) contains empty sets of the Bethe parameters with the colors {k1, . . . , k`},
such that k1 < · · · < k`. Namely, the sum over p in (4.15) ends at p = k1, while in (4.16) it
begins at p = k` + 1 . These restrictions follow from the corresponding restrictions in the
recursions for the Bethe vectors.

Using proposition 4.7 one can built the HC with #s̄1 = # t̄1 = r1 in terms of the HC with
#s̄1 = # t̄1 = r1 − 1. Iterating the process, Z(s̄| t̄) with #s̄1 = # t̄1 = r1 can be expressed in
terms of Z(s̄| t̄) with #s̄1 = # t̄1 = 0. Moreover it is obvious, due to (4.6), that

Z (m)(;, {s̄k}N2 |;, { t̄
k}N2 ) = Z (m−1)({s̄k}N2 |{ t̄

k}N2 ), (4.17)

where the superscript indicates for which algebra, A q
m or A q

m−1, the HC is computed. Thus,
equation (4.15) allows one to perform recursion over m as well.

Similarly, corollary 4.8 allows one to find the HC with #s̄N = # t̄N = rN in terms of the
HC with #s̄N = # t̄N = rN − 1 and to perform another recursion over m. In both cases, the
initial condition corresponds to theA q

2 case, where the HC is nothing but the Izergin–Korepin
determinant [13, 60].

To conclude this section we describe the properties of HC in the poles.
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Proposition 4.9. The HC has poles at sµj = tµj , µ= 1, . . . , N, j = 1, . . . , rµ. The residues in these

poles are proportional to Z(s̄ \ {sµj }| t̄ \ {t
µ
j }):

Z(s̄| t̄)
�

�

�

sµj→tµj
= g(l)(tµj , sµj )

f ( t̄µj , tµj ) f (s
µ
j , s̄µj ) Z(s̄ \ {sµj }| t̄ \ {t

µ
j })

f ( t̄µ+1, tµj ) f (s
µ
j , s̄µ−1)

+ reg, (4.18)

where reg means regular terms.

This property is in complete analogy with the Yangian case [59] and can be proved via
induction and recursions (4.15), (4.16). In its turn, the residues of the HC play a crucial role
in the proof of the Gaudin formula for the norm of on-shell Bethe vectors.

4.4 Norm of on-shell Bethe vectors and Gaudin matrix

The Gaudin matrix G for Uq(Òglm) based models is an N×N block-matrix. The sizes of the blocks

G(µ,ν) are rµ × rν, where rµ = # t̄µ. To describe the entries G(µ,ν)
jk we introduce a function

Φ
(µ)
j = αµ(t

µ
j )

f ( t̄µj , tµj )

f (tµj , t̄µj )

f (tµj , t̄µ−1)

f ( t̄µ+1, tµj )
. (4.19)

It is easy to see that Bethe equations (3.19) can be written in terms of Φ(µ)j as

Φ
(ν)
j = 1, j = 1, . . . , rν, ν= 1, . . . , N . (4.20)

The entries of the Gaudin matrix are defined as

G(µ,ν)
jk = −(q− q−1) tνk

∂ logΦ(µ)j

∂ tνk
. (4.21)

Explicitly, the diagonal blocks G(µ,µ) read

G(µ,µ)
jk = δ jk

�

Xµj −
rµ
∑

p=1

K (tµj , tµp ) +
rµ−1
∑

q=1

J (tµj , tµ−1
q ) +

rµ+1
∑

r=1

J (tµ+1
r , tµj )

�

+K (tµj , tµk ), (4.22)

while the off-diagonal blocks are given by

G(µ,µ−1)
jk = −J (tµj , tµ−1

k ), G(µ,µ+1)
jk = −J (tµ+1

k , tµj ),

G(µ,ν)
jk = 0 if |µ− ν|> 1.

(4.23)

In (4.22) and (4.23), we have introduced the functions

Xµj = −(q− q−1) z
d
dz

logαµ(z)
�

�

�

z=tµj
, (4.24)

K (x , y) =
(q+ q−1)(q− q−1)2 x y
(qx − q−1 y)(q−1 x − q y)

, and J (x , y) =
(q− q−1)2 x y

(qx − q−1 y)(x − y)
. (4.25)

Theorem 4.10. The square of the norm of the on-shell Bethe vector reads

C( t̄)B( t̄) =
N
∏

k=1

�

f ( t̄k+1, t̄k)−1
rk
∏

p,q=1
p 6=q

f (tk
p, tk

q)
�

det G, (4.26)

where the matrix G is given by (4.21), or explicitly in (4.22) and (4.23).

15

https://scipost.org
https://scipost.org/SciPostPhys.4.1.006


SciPost Phys. 4, 006 (2018)

The proof of the similar theorem for the models described by the Y (glm) and Y (gl(m|n))
R-matrices can be found in [59]. Despite the fact that in the case of Uq(Òglm) algebra the proof
is completely identical, we will briefly outline the main steps.

The main idea is to prove that the norm of on-shell Bethe vector satisfies several properties
called Korepin criteria. Namely, let F(r)(X̄ ; t̄) be a function depending on r variables Xµj and

r variables tµj . It is assumed that this function satisfies Korepin criteria, if it possesses the
following properties.

(i) The function F(r)(X̄ ; t̄) is symmetric over the replacement of the pairs (Xµj , tµj )↔ (Xµk , tµk ).

(ii) It is a linear function of each Xµj .

(iii) F(1)(X 1
1 ; t1

1) = X 1
1 for r= 1.

(iv) The coefficient of Xµj is given by a function F(r−1) with modified parameters X νk

∂ F(r)(X̄ ; t̄)
∂ Xµj

= F(r−1)({X̄ mod \ X mod;µ
j }; { t̄ \ tµj }), (4.27)

where the original variables X νk should be replaced by X mod;ν
k :

X mod;µ
k = Xµk −K (t

µ
j , tµk ),

X mod;µ+1
k = Xµ+1

k +J (tµ+1
k , tµj ),

X mod;µ−1
k = Xµ−1

k +J (tµj , tµ−1
k ),

X mod;ν
k = X νk , |ν−µ|> 1.

(4.28)

Here K (x , y) and J (x , y) are some two-variables functions. Their explicit forms are
not essential.

(v) F(r)(X̄ ; t̄) = 0, if all X νj = 0.

The properties (i)–(v) fix function F(r)(X̄ ; t̄) uniquely (see [13, 59]). On the other hand,
one can easily show that these properties are enjoyed by the determinant of the matrix G given
by equations (4.22), (4.23). Thus, F(r)(X̄ ; t̄) = det G.

The proof that the norm of the on-shell vector satisfies Korepin criteria is realized within
the framework of the generalized model. In this model, Bethe parameters and logarithmic
derivatives Xµj (4.24) are independent variables. Then properties (i)–(iii) are fairly obvious.

Property (v) follows from the analysis of a special scalar product in which all Xµj = 0. Finally,
property (iv) is a consequence of the recursions of the highest coefficients with coinciding
arguments (4.18). These recursions allow us to establish a recursion for the scalar product,
which in turn implies property (iv) for the norm.

5 Proof of recursion for Bethe vectors

5.1 Proofs of proposition 4.1

One can prove proposition 4.1 via direct application of the nested algebraic Bethe ansatz. Let
us briefly recall the basic notions of this method and introduce the necessary notation.
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The nested algebraic Bethe ansatz relates Bethe vectors ofA q
m andA q

m−1 invariant systems.
To distinguish objects associated to the A q

m−1 algebra from those from the A q
m one, we use a

special font for the former, keeping the usual style for the later. For example, we denote the
basis vectors in Cm by ek, where

�

ek

�

j = δ jk, and j, k = 1, . . . , m, while the basis vectors in

Cm−1 are denoted by ek, where
�

ek

�

j = δ jk, and j, k = 2, . . . , m. Note that the enumeration of
the basis vectors ek starts at 2, not 1. We will use the same prescription for the other objects
related to theA q

m−1 algebra and the Cm−1 space.
We present the original monodromy matrix in the block form

T (u) =

�

A(u) B(u)
C(u) D(u)

�

, (5.1)

where D(u) is a (m− 1)× (m− 1) matrix with elements Di, j(u), i, j = 2, . . . , m.
Obviously, the elements Di, j(u) enjoy the commutation relations (2.4). Hence, the matrix

D(u) satisfies the RT T -relation

r(u, v) · (D(u)⊗ 1) · (1⊗ D(v)) = (1⊗ D(v)) · (D(u)⊗ 1) · r(u, v), (5.2)

where r(u, v) is the R-matrix corresponding to the vector representation of the algebra
Uq(Òglm−1)

r(u, v) = f (u, v)
∑

2≤i≤m

Eii ⊗Eii +
∑

2≤i< j≤m

�

Eii ⊗E j j +E j j ⊗Eii

�

+
∑

2≤i< j≤m

g(u, v)
�

uEi j ⊗E ji + vE ji ⊗Ei j

�

.
(5.3)

In (5.3), Ei j , i, j = 2, . . . , m, are elementary units acting in Cm−1, in accordance with the style
convention described above.

Now we are in position to describe the main procedure of the nested algebraic Bethe ansatz.
Let B( t̄|T ) = B( t̄1, . . . , t̄m−1|T ) be a Bethe vector of the Uq(Òglm) based monodromy matrix T (u)
such that # t̄ν = rν. Let us introduce a Hilbert space

H (r1) = Cm−1 ⊗ · · · ⊗Cm−1
︸ ︷︷ ︸

r1

, (5.4)

and an inhomogeneous monodromy matrix

T[r1](u, t̄1) = r0,r1
(u, t1

r1
) . . . r0,1(u, t1

1). (5.5)

Remark that T[r1](u, t̄1) corresponds to a Uq(Òglm−1) model. Indeed, in (5.5), r0,k(u, t1
k) are

the R-matrices (5.3) and they act in Cm−1 ⊗H (r1). The first subscript refers to an auxiliary
space Cm−1, while the second subscript refers to the k-th copy of Cm−1 in the definition (5.4)
ofH (r1). It is clear that T[r1](u, t̄1) satisfies the RT T -relation (5.2).

Consider a monodromy matrix

eT[r1](u, t̄1) = D(u)T[r1](u, t̄1). (5.6)

The entries of this matrix act in the space H ⊗H (r1), where H is the space where the ele-
ments of the original monodromy matrix (5.1) act. It is clear that eT[r1](u, t̄1) satisfies the RT T
relation, because both D(u) and T[r1](u, t̄1) satisfy this relation and their matrix elements act
in the different quantum spaces (respectively in H and H (r1)). The space of states of eT[r1]
has a pseudovacuum vector |0〉 ⊗Ωr1

, where

Ωr1
= e2 ⊗ · · · ⊗ e2
︸ ︷︷ ︸

r1

∈
�

Cm−1
�⊗r1 . (5.7)
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The subscript r1 on Ωr1
shows the number of copies of Cm−1 in the spaceH (r1).

Let B( t̄|eT[r1]) = B( t̄
2, . . . , t̄m−1|eT[r1]) be Bethe vectors of the monodromy matrix (5.6), and

let eα(r1−1)
ν (u) be the ratios of the vacuum eigenvalues of eT[r1−1](u). Then the Bethe vector

B( t̄|T ) has the following presentation [29, 65]

B( t̄|T ) =
m
∑

k1,...,kr1=2

T1,k1
(t1

1) . . . T1,kr1
(t1

r1
)

λ2( t̄1) f ( t̄2, t̄1)

�

B( t̄|eT[r1])
�

k1,...,kr1
, (5.8)

where
�

B( t̄|eT[r1])
�

k1,...,kr1
are components of the vector B( t̄|eT[r1]) in the spaceH (r1).

Representation (5.8) allows us to obtain a recursion for the Bethe vector. This can be done
in the framework of a composite model. Indeed, we have

eT[r1](u) = eT[r1−1](u) r0,1(u, t1
1), (5.9)

where
eT[r1−1](u) = D(u)T[r1−1](u) = D(u) r0,r1

(u, t1
r1
) . . . r0,2(u, t1

2). (5.10)

We can associate the monodromy matrices eT[r1−1](u) and r0,1(u, t1
1) respectively with T (2)(u)

and T (1)(u) in (3.20). Then the partial Bethe vectors respectively are B( t̄|eT[r1−1]) and B( t̄|r0,1).
Using the coproduct formula (3.24) we obtain

B( t̄|T ) =
m
∑

k1,...,kr1=2

T1,k1
(t1

1) . . . T1,kr1
(t1

r1
)

λ2( t̄1) f ( t̄2, t̄1)

×
∑

part( t̄2,..., t̄m−1)

∏m−1
ν=2 eα

(r1−1)
ν ( t̄ν

I
) f ( t̄ν

II
, t̄ν

I
)

∏m−2
ν=2 f ( t̄ν+1

II , t̄ν
I
)

�

B( t̄II|eT[r1−1])
�

k2,...,kr1

�

B( t̄I|r0,1)
�

k1
. (5.11)

The sum is taken over partitions of the sets { t̄2, . . . , t̄m−1} as it is described in (3.24). The
functions eα(r1−1)

ν (u) are the ratios of the vacuum eigenvalues of eT[r1−1](u)

eα(r1−1)
ν (u) =

eλ
(r1−1)
ν (u)
eλ
(r1−1)
ν+1 (u)

, (5.12)

where
�

eT[r1−1](u)
�

ν,ν
|0〉 ⊗Ωr1−1 = eλ

(r1−1)
ν (u)|0〉 ⊗Ωr1−1, (5.13)

and Ωr1−1 is defined similarly to (5.7). It is convenient to divide the set t̄1 into two subsets
t̄1 = t̄1

I
∪ t̄1

II
, where t̄1

I
consists of one element t1

1, and t̄1
II
= {t1

2, . . . , t1
r1
} is the complementary

subset. Then it is easy to see from the definition (5.6) that

eλ
(r1−1)
2 (u) = λ2(u) f (u, t̄1

II
),

eλ(r1−1)
ν (u) = λν(u), ν > 2,

(5.14)

and hence,
eα
(r1−1)
2 (u) = α2(u) f (u, t̄1

II
),

eα(r1−1)
ν (u) = αν(u), ν > 2.

(5.15)

Due to (5.8) we see that

m
∑

k2,...,kr1=2

T1,k2
(t1

2) . . . T1,kr1
(t1

r1
)

λ2( t̄1
II
) f ( t̄2

II
, t̄1

II
)

�

B( t̄II|eT[r1−1])
�

k2,...,kr1
= B( t̄II|T ). (5.16)
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Substituting this into (5.11) we find

B( t̄|T ) =
∑

part( t̄2,..., t̄m−1)

m
∑

k=2

T1,k(t1
I
)

λ2(t1
I
)
B( t̄II|T )

∏m−1
ν=2 αν( t̄

ν
I
) f ( t̄ν

II
, t̄ν

I
)

∏m−2
ν=2 f ( t̄ν+1

II , t̄ν
I
)

�

B( t̄I|r0,1)
�

k

f ( t̄2, t̄1
I
)

. (5.17)

The components of the vector B( t̄I|r0,1) are computed in appendix A (see (A.4)). It follows
from these formulas that the k-th component of this vector corresponds to the partitions for
which the subsets t̄k

I
, . . . , t̄m−1

I
are empty, while the subsets t̄ν

I
with 2 ≤ ν < k consist of one

element. This gives us

B( t̄|T ) =
∑

part( t̄2,..., t̄m−1)

m
∑

k=2

T1,k(t1
I
)

λ2(t1
I
)
B(
�

t̄ν
II

	k−1
1 ;

�

t̄ν
	m−1

k |T )

∏k−1
ν=2αν( t̄

ν
I
)g(l)( t̄ν

I
, t̄ν−1

I
) f ( t̄ν

II
, t̄ν

I
)

∏k−1
ν=1 f ( t̄ν+1, t̄ν

I
)

.

(5.18)
Recall that here by definition the subsets t̄1

I
and t̄1

II
are fixed: t̄1

I
≡ t1

1 and t̄1
II
≡ t̄1

1 = t̄1 \ t1
1.

Then, replacing t̄1→ {z, t̄1} and setting t̄1
I
= z we arrive at (4.1).

5.2 Proofs of proposition 4.2

Let us derive now the recursion (4.3) starting with (4.1) and using the morphism (3.9). The
proof mimics the one done in [58], and we just point out the differences. Since the mapping

(3.9) relates two different quantum algebras A q
m and A q−1

m , we use here an additional sub-
script for the different rational functions, to denote the value of the deformation parameter.
For instance

fq(u, v) =
qu− q−1v

u− v
, and gq(u, v) =

q− q−1

u− v
, (5.19)

while

fq−1(u, v) =
q−1u− qv

u− v
, and gq−1(u, v) =

q−1 − q
u− v

. (5.20)

It is easy to see that

g(r)q−1(u, v) = g(l)q (v, u) and fq−1(u, v) = fq(v, u). (5.21)

We act with ϕ onto (4.1) using (3.9)–(3.11). It implies in particular

ϕ

 

Bq(
�

t̄1
	

;
�

t̄k
II

	 j−1
2 ;

�

t̄k
	N

j )
j−1
∏

ν=2

αν( t̄
ν
I
)

!

=
Bq−1(

�

t̄k
	 j

N ;
�

t̄k
II

	2
j−1; t̄1)

∏N
k=1 eαN+1−k( t̄k)

. (5.22)

Remark that the functions αν play a non-trivial role in the game. Then, the action of the
morphism ϕ onto (4.1) gives

Bq−1(
�

t̄k
	2

N ;
�

z, t̄1
	

) =
N+1
∑

j=2

eTN+2− j,N+1(z)

eλN+1(z)

∑

part( t̄2,..., t̄ j−1)

Bq−1(
�

t̄k
	 j

N ;
�

t̄k
II

	2
j−1; t̄1)

×

∏ j−1
ν=2 g(l)q ( t̄

ν
I
, t̄ν−1

I
) fq( t̄νII , t̄ν

I
)

∏ j−1
ν=1 fq( t̄ν+1, t̄ν

I
)

. (5.23)

Using the relations (5.21), relabeling the sets of the Bethe parameters t̄k→ t̄N+1−k, changing

indices j → N + 2− j, ν→ N + 1− ν and replacing q−1 → q (which means going from A q−1

m
toA q

m) we get (4.3). �
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5.3 Proofs of corollary 4.3

The proof for corollary 4.3 follows the same steps as in section 5.2, but using the antimorphism
Ψ instead of the morphism ϕ. Thus, we just sketch the proof.

One starts with relation (4.1) and applies Ψ, to get inA q−1

m :

Cq−1

�

�1
z

,
1
t̄1

	

;
� 1

t̄k

	N
2

�

=
N+1
∑

j=2

∑

part( t̄2,..., t̄ j−1)

Cq−1

�

� 1
t̄1

	

;
� 1

t̄k
II

	 j−1
2 ;

� 1
t̄k

	N
j

� eT j,1(
1
z )

eλ2(
1
z )

×

∏ j−1
ν=2 eαν(

1
t̄νI
) g(l)q ( t̄

ν
I
, t̄ν−1

I
) fq( t̄νII , t̄ν

I
)

∏ j−1
ν=1 fq( t̄ν+1, t̄ν

I
)

. (5.24)

Now, renaming the parameters tνk →
1
tνk

, z→ 1
z and using the relations

g(r)q

�1
x

,
1
y

�

= g(l)q−1(x , y) and fq
�1

x
,

1
y

�

= fq−1(x , y) (5.25)

we obtain

Cq−1(
�

z, t̄1
	

;
�

t̄k
	N

2 ) =
N+1
∑

j=2

∑

part( t̄2,..., t̄ j−1)

Cq−1(
�

t̄1
	

;
�

t̄k
II

	 j−1
2 ;

�

t̄k
	N

j )
eT j,1(z)

eλ2(z)

×

∏ j−1
ν=2 eαν( t̄

ν
I
) g(r)q−1( t̄

ν
I
, t̄ν−1

I
) fq−1( t̄νII , t̄ν

I
)

∏ j−1
ν=1 fq−1( t̄ν+1, t̄ν

I
)

. (5.26)

It remains to change q−1→ q to get relation (4.4). Similar considerations lead to (4.5). �

6 Proof of proposition 4.5

In this section we provide an explicit representation of the rational coefficients Wpart (4.8) in
terms of the HC. For this we consider the original monodromy matrix T (u) as a monodromy
matrix of a composite model (3.20). Then we should use the representation (3.24) for the
Bethe vector B( t̄) and the representation (3.25) for the dual vector C(s̄). As a consequence,
the scalar product S(s̄| t̄) = C(s̄)B( t̄) takes the form

S(s̄| t̄) =
∑

∏N
ν=1α

(1)
ν (s̄

ν
ii)α

(2)
ν ( t̄

ν
i ) f (s̄

ν
i , s̄νii) f ( t̄

ν
ii , t̄νi )

∏N−1
ν=1 f (s̄ν+1

i , s̄νii) f ( t̄
ν+1
ii , t̄νi )

S(1)(s̄i| t̄i)S
(2)(s̄ii| t̄ii), (6.1)

where

S(1)(s̄i| t̄i) = C(s̄i|T (1))B( t̄i|T (1)), S(2)(s̄ii| t̄ii) = C(s̄ii|T (2))B( t̄ii|T (2)). (6.2)

Note that in this formula #s̄νi = # t̄νi , (and hence, #s̄νii = # t̄νii), otherwise the scalar products
S(1) and S(2) vanish. Let #s̄νi = # t̄νi = k′ν, where k′ν = 0,1, . . . , rν. Then #s̄νii = # t̄νii = rν − k′ν.

Now let us turn to equation (4.8). Our goal is to express the rational coefficients Wpart in
terms of the HC. For this we use the fact that Wpart are model independent. Therefore, we can
find them in some special model whose monodromy matrix satisfies the RT T -relation.

Let us fix some partitions of the Bethe parameters in (4.8): s̄ν⇒ {s̄ν
I
, s̄ν

II
} and t̄ν⇒ { t̄ν

I
, t̄ν

II
}

such that #s̄ν
I
= # t̄ν

I
= kν, for some kν = 0, 1, . . . , rν. Hence, #s̄ν

II
= # t̄ν

II
= rν− kν. Consider a

concrete model, in which
α(1)ν (z) = 0, if z ∈ s̄ν

II
,

α(2)ν (z) = 0, if z ∈ t̄ν
I
.

(6.3)
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Due to (3.23) these conditions imply

αν(z) = 0, if z ∈ s̄ν
II
∪ t̄ν

I
. (6.4)

Then the scalar product is proportional to the coefficient Wpart(s̄I, s̄II| t̄I, t̄II), because all other
terms in the sum over partitions (4.8) vanish due to the condition (6.4). Thus,

S(s̄| t̄) =Wpart(s̄I, s̄II| t̄I, t̄II)
N
∏

k=1

αk(s̄
k
I
)αk( t̄

k
II
). (6.5)

On the other hand, (6.3) implies that a non-zero contribution in (6.1) occurs if and only if
s̄νii ⊂ s̄ν

I
and t̄νi ⊂ t̄ν

II
. Hence, rν − k′ν ≤ kν and k′ν ≤ rν − kν. But this is possible if and only

if k′ν + kν = rν. Thus, s̄νii = s̄ν
I

and t̄νi = t̄ν
II
. Then, for the complementary subsets we obtain

s̄νi = s̄ν
II

and t̄νii = t̄ν
I
. Thus, we arrive at

S(s̄| t̄) =

∏N
ν=1α

(1)
ν (s̄

ν
I
)α(2)ν ( t̄

ν
II
) f (s̄ν

II
, s̄ν

I
) f ( t̄ν

I
, t̄ν

II
)

∏N−1
ν=1 f (s̄ν+1

II , s̄ν
I
) f ( t̄ν+1

I , t̄ν
II
)

S(1)(s̄II| t̄II)S
(2)(s̄I| t̄I). (6.6)

It is easy to see that calculating the scalar product S(1)(s̄II| t̄II) we should take only the term
corresponding to the conjugated HC. Indeed, all other terms are proportional to α(1)ν (z) with
z ∈ s̄ν

II
, therefore, they vanish. Hence

S(1)(s̄II| t̄II) =
N
∏

ν=1

α(1)ν ( t̄
ν
II
) · Z(s̄II| t̄II). (6.7)

Similarly, calculating the scalar product S(2)(s̄I| t̄I) we should take only the term corresponding
to the HC:

S(2)(s̄I| t̄I) =
N
∏

ν=1

α(2)ν (s̄
ν
I
) · Z(s̄I| t̄I). (6.8)

Substituting this into (6.6) and using (3.23), (6.5) we arrive at (4.11).
The reader can easily convince himself that the above proof coincides with the one given

in [58] for the Y (gl(m|n)) based models.
As already mentioned, the proofs for the results presented in section 4.2 and 4.4 are also

similar to those of the Y (gl(m|n)) based models and given in [58, 59], thus we don’t repeat
them here. In the following section we deal with the proof for section 4.3, focusing on the
parts that truly differ from the Yangian case.

7 Symmetry of the highest coefficient

To prove (4.12), we consider the sum formula (4.8)

Sq(
−→s |−→t ) =

∑

W q
part(

−→s I,
−→s II|

−→t I,
−→t II)

N
∏

k=1

αk(s̄
k
I
)αk( t̄

k
II
), (7.1)

where we have stressed the ordering (3.12) of the Bethe parameters and put a label q to

distinguish scalar product for the algebra A q
m from A q−1

m . Let us act with the morphism ϕ

(3.9) on this scalar product. This can be done in two ways. First, using (3.11) and (3.18) we
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obtain

ϕ
�

Sq(
−→s |−→t )

�

= ϕ
�

Cq(
−→s )Bq(

−→t )
�

=
Cq−1(←−s )Bq−1(←−t )

∏N
k=1 eαN+1−k(s̄k)eαN+1−k( t̄k)

=
Sq−1(←−s |←−t )

∏N
k=1 eαN+1−k(s̄k)eαN+1−k( t̄k)

. (7.2)

The scalar product Sq−1(←−s |←−t ) has the standard representation (4.8). Thus, we find

ϕ
�

Sq(
−→s |−→t )

�

=
∑

part

W q−1

part(
←−s I,

←−s II|
←−t I,

←−t II)
∏N

k=1 eαN+1−k(s̄k)eαN+1−k( t̄k)

N
∏

k=1

eαk(s̄
N−k+1
I

)eαk( t̄
N−k+1
II

). (7.3)

On the other hand, acting with ϕ directly on the sum formula (7.1) we have

ϕ
�

Sq(
−→s |−→t )

�

=
∑

part

W q
part(

−→s I,
−→s II|

−→t I,
−→t II)

N
∏

k=1

�

eαN+1−k(s̄
k
I
)eαN+1−k( t̄

k
II
)
�−1

. (7.4)

Comparing (7.3) and (7.4) we arrive at

∑

part

W q−1

part(
←−s I,

←−s II|
←−t I,

←−t II)
N
∏

k=1

eαN+1−k(s̄
k
I
)eαN+1−k( t̄

k
II
)

=
∑

part

W q
part(

−→s I,
−→s II|

−→t I,
−→t II)

N
∏

k=1

eαN+1−k(s̄
k
II
)eαN+1−k( t̄

k
I
). (7.5)

Since αi are free functional parameters, the coefficients of the same products of eαi must be
equal. Hence,

W q
part(

−→s I,
−→s II|

−→t I,
−→t II) =W q−1

part(
←−s II,

←−s I|
←−t II,

←−t I), (7.6)

for arbitrary partitions of the sets s̄ and t̄. In particular, setting s̄II = t̄II = ; we obtain (4.12).
To prove (4.13), we start again with the sum formula (4.8) and use the antimorphism Ψ:

Ψ(Sq(s̄| t̄)) = Cq−1( t̄ −1)Bq−1(s̄ −1) = Sq−1( t̄ −1|s̄ −1). (7.7)

The lhs of (7.7) can be computed from the relation (4.8):

Ψ(Sq(s̄| t̄)) =
∑

W q
part(s̄I, s̄II| t̄I, t̄II)

N
∏

k=1

eαk

� 1
s̄k

I

�

eαk

� 1
t̄k

II

�

. (7.8)

The rhs of (7.7) is computed directly from (4.8) written forA q−1

m :

Sq−1( t̄ −1|s̄ −1) =
∑

W q−1

part( t̄I
−1, t̄II

−1|s̄I
−1, s̄II

−1)
N
∏

k=1

eαk

� 1
t̄k

I

�

eαk

� 1
s̄k

II

�

. (7.9)

Since αi are free functional parameters, the comparison of these two equalities leads to

W q
part(s̄I, s̄II| t̄I, t̄II) =W q−1

part( t̄II
−1, t̄I

−1|s̄II
−1, s̄I

−1). (7.10)

Setting s̄I = t̄I = ;, we get (4.13).
Combining (4.12) and (4.13), we get (4.14).
Applying the property (4.14) to (4.15), one obtains a new recursion written for the pa-

rameters t̄ −1 and s̄ −1. Using the relations

g(l)
�1

x
,

1
y

�

= g(l)(y, x) and f
�1

x
,

1
y

�

= f (y, x)

together with the replacement t̄ −1 → t̄ and s̄ −1 → s̄, we get the recursion (4.16) for the
highest coefficient.
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Conclusion

In this paper, we have shown how the results obtained for the scalar products and the norm
of Bethe vectors for Y (gl(m)) based models can be generalized to the case of Uq(Òglm) based
models. In this way, we have obtained recursion formulas for the Bethe vectors of these models,
as well as a sum formula for their scalar products. We have obtained different recursions for
the highest coefficients, which characterize the sum formula. When the Bethe vectors are
on-shell, we have also shown that their norm takes the form of a Gaudin determinant.

Comparing these results with the ones obtained for the case of Y (gl(m)), one can see that
for the most of them the generalization is quite straightforward. The only minor difference is
that in the Yangian case the highest coefficient of the scalar product coincides with its conju-
gated, while for the A q

m algebra they are related by the transformations (4.12), (4.13). This
difference was already pointed out in [49] for the particular case of the Uq(Ògl3) based models.

The sum formula itself is rather bulky, however, we recall that it is obtained for the most
general case of the Bethe vectors scalar product. This formula can be used as a starting point
for calculating form factors of the monodromy matrix entries. In this case we deal with scalar
products involving on-shell Bethe vectors. Then, the free functional parameters αk(u) disap-
pear from the sum formula due to Bethe equations, and we obtain a possibility for additional
re-summation. This re-summation might lead to compact determinant representations for
form factors (see e.g. [50] for the A q

3 case), like in the case of the norm of on-shell Bethe
vector.

One more possible simplification of the sum formula is related to consideration of specific
models, in which the free functional parametersαk(u) are fixed. For instance, for the spin chain
based on Uq(Òglm) fundamental representations, α1(u) is a rational function, while αk(u) = 1
for k > 1. Thus, in this case most of these functional parameters also disappear from the sum
formula, which gives a chance for its simplification.

These two possibilities of further development certainly are worthy of attention. Finally,
we wish to note that it seems to us rather obvious that the results presented here can also be
readily generalized to the case of models based on Uq(Ògl(m|n)). We plan to come back on this
generalization in a further publication.
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A The simplest Uq(Òglm) Bethe vectors

In this section we construct Bethe vectors for a very specific case of theA q
m monodromy matrix

T (u) = R(u,ξ), where R(u,ξ) is given by (2.1) and ξ is a complex number. In other words,
we consider spin chain with only one site which carries a fundamental representation ofA q

m.
The Bethe vector construction procedure is still based on the embedding (5.1) of A q

m−1 into
A q

m. In this appendix, to distinguish Bethe vectors corresponding to the R-matrices (2.1) and
(5.3) we respectively equip them with superscripts (m) or (m− 1).

This case has many peculiarities which allow a simple and explicit calculation of Bethe
vectors. First of all, the space of states isH = Cm with the pseudovacuum |0〉= e1. As usual,
the Bethe vectors depend on N = m− 1 sets of variables t̄ν. However, due to the nilpotency
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of the creation operators6 each set consists at most of one element. Furthermore, Di,i|0〉= |0〉
for all i = 2, . . . , m. Therefore, in the framework of the algebraic Bethe ansatz, the matrix D is
equivalent to the identity matrix. Hence, we can omit this matrix in the definition (5.6).

Proposition A.1. The monodromy matrix T (u) = R(u,ξ) has m− 1 Bethe vectors of the form

B(m)({tν}k−1
1 , {;}m−1

k ) =

�k−1
∏

ν=2

g(l)(tν, tν−1)
f (tν, tν−1)

�

g(l)(t1,ξ) ek, k = 2, . . . , m. (A.1)

One additional Bethe vector coincides with the pseudovacuum e1.

Proof. One can easily prove (A.1) via induction over m. Indeed, for m = 2 we have only
two Bethe vectors: the pseudovacuum e1 =

�

1
0

�

∈ C2 and

B(2)(t1) = T12(t
1)e1 = g(l)(t1,ξ)E21 e1 = g(l)(t1,ξ)e2 = g(l)(t1,ξ)

�

0
1

�

. (A.2)

Assume that (A.1) holds for m− 1. One of the Uq(Òglm) Bethe vectors still coincides with
the pseudovacuum vector B(m)(;) = e1. The other Bethe vectors can be constructed via (5.8),
where one should set λ2(u) = 1:

B(m)(t1, . . . , tm−1) =
m
∑

k=2

T1,k(t
1) e1

�

B(m−1)(t2, . . . , tm−1)
�

k

f (t2, t1)
. (A.3)

Here
�

B(m−1)(t2, . . . , tm−1)
�

k is the k-th component of the Bethe vector B(m−1)( t̄) of the mon-
odromy matrix r(u, t1) (5.3). Due to the induction assumption we have

�

B(m−1)({tν} j−1
2 , {;}m−1

j )
�

k
= δ jk

�k−1
∏

ν=3

g(l)(tν, tν−1)
f (tν, tν−1)

�

g(l)(t2, t1). (A.4)

Thus, taking into account that for k > 1, T1,k(u) = g(l)(u,ξ)Ek1 and

T1,k(t
1)e1 = g(l)(t1,ξ)ek, (A.5)

we immediately arrive at (A.1).

B Comparison with known results of Uq(Ògl3) based models

Propositions 4.4 and 4.5 were already obtained for m = 3 in [46, 49], but using different
normalization of Bethe vectors, and a different notation and normalization for the HC. We
present here the connection between the two conventions. To clarify the presentation we will
put a subscript old for the quantities dealt in [46, 49], and a subscript new for the ones used
in the present article.

Normalisation of (dual) Bethe vectors. By comparison of their main terms, we get the
following correspondence for Bethe vectors:

Bnew( t̄) =
λ2( t̄2)
λ3( t̄2)

Bold( t̄
1, t̄2) and Cnew(s̄) =

λ2(s̄2)
λ3(s̄2)

Cold(s̄
1, s̄2), (B.1)

where s̄ = {s̄1, s̄2} and t̄ = { t̄1, t̄2}. Note that in [46, 49], the sets s̄1, s̄2 and t̄1, t̄2 were noted
ūC, v̄C and ūB, v̄B respectively.

6Obviously, Ti, j(u) = g(l)(u,ξ)E ji for i < j.
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Sum formula. Once the normalisation is fixed, one can compare the scalar product of Bethe
vectors and the expressions given in proposition 4.4. In [49], the scalar product is expressed
in term of functionals r1(z) = α1(z) and r3(z) = α2(z)−1. Using the normalisation (B.1), we
get a sum formula identical to (4.8) with

Wold

�

s̄1
I

t̄1
I

s̄2
I

t̄2
I

�

�

�

s̄1
II

t̄1
II

s̄2
II

t̄2
II

�

= f (s̄2, s̄1) f ( t̄2, t̄1)Wnew (s̄I, s̄II| t̄I, t̄II) . (B.2)

Note that in order to make the comparison, one has to exchange the subsets s̄1
I
↔ s̄1

II
in

one of the sum formulas. This change is harmless since one performs a summation over all
partitions s̄1⇒ {s̄1

I
, s̄1

II
}.

Expression in term of HCs. Applying the correspondence (B.2), the relation (4.11) is iden-
tical to the one obtained in [49] with

Z (l)old(s̄
1, t̄1|s̄2, t̄2) = f (s̄2, s̄1) f ( t̄2, t̄1) Znew(s̄

1, s̄2| t̄1, t̄2),

Z (r)old(s̄
1, t̄1|s̄2, t̄2) = f (s̄2, s̄1) f ( t̄2, t̄1) Znew(s̄

1, s̄2| t̄1, t̄2).
(B.3)

C Coproduct formula for the dual Bethe vectors

The presentation (3.24) for the Bethe vector of the composite model can be treated as a co-
product formula for the Bethe vector. Indeed, equation (3.20) formally determines a coproduct
∆ of the monodromy matrix entries

∆(Ti, j(u)) =
m
∑

k=1

Tk, j(u)⊗ Ti,k(u). (C.1)

Then (3.24) is nothing but the action of ∆ onto the Bethe vector.
The action of the coproduct onto the dual Bethe vectors can be obtained via antimorphism

(3.16) thanks to the relation
∆q−1 ◦Ψ = (Ψ ⊗Ψ) ◦∆′q, (C.2)

where
∆′q(Ti, j(u)) =

∑

Ti,k(u)⊗ Tk, j(u). (C.3)

Then applying (C.2) to Bq( t̄), we get

∆q−1(Ψ(Bq( t̄))) =∆q−1(Cq−1( t̄ −1)) = (Ψ ⊗Ψ) ◦∆′q(Bq( t̄))

= (Ψ ⊗Ψ)

�

∑

∏N
ν=1α

(1)
ν ( t̄

ν
I
) fq( t̄νII , t̄ν

I
)

∏N−1
ν=1 fq( t̄ν+1

II , t̄ν
I
)
Bq( t̄I)⊗Bq( t̄II)

�

=
∑

∏N
ν=1 eα

(1)
ν (

1
t̄νI
) fq( t̄νII , t̄ν

I
)

∏N−1
ν=1 fq( t̄ν+1

II , t̄ν
I
)
Cq−1( t̄ −1

I
)⊗Cq−1( t̄ −1

II
).

(C.4)

Relabeling the subsets t̄ν
I
↔ 1

t̄νII
and using (5.25), we arrive at

∆q−1(Cq−1( t̄)) =
∑

∏N
ν=1 eα

(1)
ν ( t̄

ν
II
) fq−1( t̄νI , t̄ν

II
)

∏N−1
ν=1 fq−1( t̄ν+1

I , t̄ν
II
)
Cq−1( t̄II)⊗Cq−1( t̄I). (C.5)

It remains to make the change q−1→ q to obtain (3.25). �
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