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Abstract

We extend the construction of Calabi-Yau manifolds to hypersurfaces in non-Fano toric
varieties, requiring the use of certain Laurent defining polynomials, and explore the
phases of the corresponding gauged linear sigma models. The associated non-reflexive
and non-convex polytopes provide a generalization of Batyrev’s original work, allowing
us to construct novel pairs of mirror models. We showcase our proposal for this general-
ization by examining Calabi-Yau hypersurfaces in Hirzebruch n-folds, focusing on n=3,4
sequences, and outline the more general class of so-defined geometries.
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1 Incentives, results and summary

A recent study [1] generalized the well-known Calabi-Yau complete intersections of hypersur-
faces in products of projective spaces [2–4] so as to allow some of the defining equations to
have negative degrees over some of the factor projective spaces, and so necessarily use Laurent
(rational) monomials in the defining equations [1,5].1 Given the novelty of such models and
the physics phenomena they exhibit already within the (m¾ 0) infinite sequence of hypersur-
faces in Hirzebruch n-folds F (n)

m ,2 in Section 2 we analyze the gauged linear σ-model (GLSM)
world-sheet field-theory [9, 10] corresponding to these sequences, focusing on n = 3,4. We
also map out the associated enlarged (complete) Kähler moduli space, i.e., “phases,” by con-
sidering all possible triangulations of the spanning polytope (and its convex hull) associated
to the embedding non-Fano toric variety.

In order to analyze the GLSM ground states, which form a toric variety, the secondary
fan [9, 11–14], in Section 3 we generalize the toric methods [15–20] to cases where Laurent
superpotentials naturally appear in the defining equations of the (Calabi-Yau) sub-varieties. In
particular, our extension includes a large class of non-convex and possibly self-crossing (VEX)
polytopes and corresponding fans, which contain flipped, i.e., reversely oriented cones (faces).
We then show that such generalizations: (a) produce Laurent monomials in the defining equa-
tions of transversal3 Calabi-Yau hypersurfaces, and (b) automatically realize natural pairs of
mirror Calabi-Yau n-folds generalizing earlier results [21–23], associated to “trans-polar” pairs
of VEX polytopes.

In Section 4 we explicitly compute the Euler and Hodge numbers of the Calabi-Yau hyper-
surfaces in F (n)

m to demonstrate that these key numerical invariants of the trans-polar pairs of
oriented VEX polytopes (a) evaluate exactly as they do for convex polytopes, and (b) exhibit
all requisite aspects of the mirror relations. Section 5 summarizes our results and concluding
comments, while computational details are collected in the appendices. While this proof-
of-concept paper illustrates the various toric geometry techniques by focusing on Hirzebruch
n-folds [5] and their Calabi-Yau hypersurfaces, more general examples and further details may
be found in the companion paper [24].

1By now, these constructions have a rigorous formulation within the Čech cohomology framework [6].
2Using methods of classical algebraic geometry [7,8], we have found that the classical topological data of certain

sequences of such constructions exhibit a periodicity [5], which is broken by quantum effects. Since classical
physics models on the Calabi-Yau hypersurfaces in the Hirzebruch n-fold F (n)

m are equivalent to those in F (n)
m+n,

respectively, the transformation F (n)
m → F

(n)
m+n is a classical (discrete) symmetry. Its breaking by quantum effects

such as instanton numbers [5] then represents a novel (stringy) quantum anomaly.
3A function f (x) over the toric variety X is transversal, i.e., ∆X -regular [21] if the “base-locus”

{ f (x) = 0 = d f (x)} is absent from X , such as x = 0 from Pn = (Cn+1 r {0})/C∗; see Appendix A for more
details. The zero-locus f −1(0) := {x : f (x) = 0} is then also called transversal. Throughout this paper, we focus
on this distinctly algebraic quality, and defer its relation to the subtler complex-analytic property of smoothness
(related to Cauchy-Riemann and similar conditions) for later.
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2 The gauged linear sigma model

Recent work [1, 5] has shown that there are significant merits to constructing Calabi-Yau al-
gebraic varieties at least some of the defining equations of which contain Laurent monomials,
and that standard methods of algebraic geometry and cohomological algebra can be adapted
to compute the requisite classical data. For applications in string theory and its M- and F-theory
extensions, it is desirable to find a world-sheet field theory model with such target spaces.

For well over two decades now, the standard vehicle to this end is Witten’s gauged linear
sigma model (GLSM) [9,25,26], where fermionic integration leaves a potential for the scalar
fields of the general form:

U(x i ,σa) =
∑

i

�

�Fi

�

�

2
+

1
2e2

∑

a

Da
2 +

1
2

∑

a,b

σ̄aσb

∑

i

Qa
i Qb

i |x i|2, (1a)

Da = −e2
�

∑

i

Qa
i |x i|2 − ra

�

. (1b)

Here σa is the scalar field from the ath gauge twisted-chiral superfield, x i and Fi are respec-
tively the scalar and auxiliary component fields from the ith “matter” chiral superfield X i , Qa

i
is the charge of the ith chiral superfield with respect to the ath U(1) gauge interaction, and
the ra are the contributions from the Fayet-Iliopoulos terms. In supersymmetric theories and
especially when acting on chiral superfields, gauge groups are typically complexified and the
GLSM naturally has U(1,C)' C∗ actions — which are the “torus actions” in the toric geometry
of the space of ground-states in the GLSM.

2.1 Laurent superpotentials

For illustration, consider the GLSM models with the superpotential4

W (X ) := X0 · f (X ), (2a)

f (X ) :=
2
∑

j=1

� n
∑

i=2

�

ai j X n
i

�

X 2−m
n+ j + a j X n

1 X (n−1)m+2
n+ j

�

, (2b)

where m, n > 1 are integers and X0 is the chiral superfield that in some ways serves as a
Lagrange multiplier; we focus on n = 2, 3,4, but generalizations are straightforward. Such
superpotentials are strictly invariant with respect to the U1(1)×U2(1) gauge symmetry with
the charges

Q1(X0; X1, X2 · · · , Xn, Xn+1, Xn+2) =
�

−n; 1, 1, · · · , 1, 0, 0
�

, (3a)

Q2(X0; X1, X2 · · · , Xn, Xn+1, Xn+2) =
�

m−2;−m, 0, · · · , 0, 1, 1
�

. (3b)

Manifestly, for m > 2, the ai j-terms become Laurent monomials; as we will see below in
more detail, this turns out to be closely related to the by now very well understood models
of Ref. [1, 5, 6], generic examples of which are known to be smooth. For now, we discuss the
GLSM with the potential (1)–(2) in its own right, being especially interested in the novelty of
the m> 2 cases.

The standard requirement for the superpotential to be chiral is straightforwardly satisfied:

D̄α̇W (X ) = f (X )
�

D̄α̇ X0
︸ ︷︷ ︸

=0

�

+
n+2
∑

i=1

X0
∂ f (X )
∂ X i

�

D̄α̇ X i
︸︷︷︸

=0

�

= 0, (4)

4This is not the most generic superpotential but the natural generalization of Fermat-like potentials for the
current class of models we are considering; see below.

3

https://scipost.org
https://scipost.org/SciPostPhys.4.2.009


SciPost Phys. 4, 009 (2018)

owing to the fact that X0 and all X i ’s are chiral superfields, and regardless of the fact that the
chiral superfields Xn+1 and Xn+2 appear with negative powers for m > 2: As we will show
below, the background values (vev’s) of the lowest component fields in X0, X i are always re-
stricted so that the vev’s of f (X ) and X0

∂ f (X )
∂ X i

remain finite, even in the cases when



Xn+ j

�

→ 0;
see Appendix A. Eq. (4) then insures that the superpotential (2) is itself a chiral superfield and
all manifest supersymmetry methods apply; we therefore proceed as usual. Expanding about
these vev’s makes this superpotential regular in all component fields, and so insures that (2)
specifies at least the low-energy regime of these models, with a search for a suitable UV com-
pletion beyond our present scope.5

2.2 The ground state

The potential (1) is a sum of positive-definite terms, each of which has to vanish separately in
the ground state. The first four groups of constraints stem from the vanishing of the F -terms,
for which the equations of motion give Fi =

∂W
∂ x i

:

�

�

�

∂W (x)
∂ x0

�

�

�

2
=

�

�

�

�

2
∑

j=1

�

�

n
∑

i=2

ai j x n
i

x m−2
n+ j

�

+ a j xn
1 x (n−1)m+2

n+ j

�

︸ ︷︷ ︸

= f (x)

�

�

�

�

2
!
=0. (5a)

�

�

�

∂W (x)
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�

�

�

2
=|x0|2

�

�

�

�
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1

�

2
∑

j=1

a j x (n−1)m+2
n+ j

�

︸ ︷︷ ︸

=∂ f (x)/∂ x1

�

�

�

�

2
!
=0, (5b)

�

�

�

∂W (x)
∂ x i

�

�

�

2
=|x0|2

�

�

�

�

nx n−1
i

� 2
∑

j=1

ai j

x m−2
n+ j

�

︸ ︷︷ ︸

=∂ f (x)/∂ x i

�

�

�

�

2
!
=0, i = 2, . . . , n; (5c)

�

�

�

∂W (x)
∂ xn+ j

�

�

�

2
=|x0|2

�

�

�

�

(2−m)
n
∑

i=2

ai j x n
i

x m−1
n+ j

+
�

(n−1)m+2
�

a j xn
1 x (n−1)m+1

n+ j

︸ ︷︷ ︸

=∂ f (x)/∂ xn+ j

�

�

�

�

2
!
=0, j = 1, 2; (5d)

For m¾3, the defining constraints (5a), (5c) and (5d) include rational monomials, which are
discussed in Appendix A. The vanishing of the last term in (1) imposes:

�

�(−n)σ1+(m−2)σ2

�

�

2|x0|2+
�

�σ1+(−m)σ2

�

�

2|x1|2+|σ1|2
n
∑

i=2

|x i|2+|σ2|2
2
∑

j=1

|xn+ j|2
!
=0. (5e)

This identifies the “normal mode” linear combinations: U3(1) generated by mQ1+Q2 with
respect to which x1 is neutral, and U4(1) generated by (m−2)Q1+nQ2 with respect to which
x0 is neutral.

Finally, the vanishing of the D-terms (1) impose:

e2

2

�

−n|x0|2+
n
∑

i=1

|x i|2 − r1

�

!
=0, (6a)

e2

2

�

(m−2)|x0|2−m|x1|2 +
2
∑

j=1

|xn+ j|2 − r2

�

!
=0. (6b)

5While completing this article, we have learned from Lara Anderson and James Gray of their as yet unpublished
exploration of similar superpotentials, in the context of adapting the GLSM to the gCICYs [1] as well as of recent
work on (0,2) GLSMs [27]; it is our understanding that these analyses are mutually consistent, complementary
and corroborating.
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r1

r2

I

IIIII

IV

(1,0)

(0, 1)
(−n, m−2)

(1,−m)

(i )

(ii )

(iii )
���)

(iv )

|x0| |x1| |x2| · · · |xn| |xn+1| |xn+2|

i 0 0 0 · · · 0 ∗ ∗
I 0 ∗ ∗ · · · ∗ ∗ ∗
ii 0 0 ∗ · · · ∗ 0 0
II 0 see (9) ∗ · · · ∗ ∗ ∗
iii 0

p
r1 0 · · · 0 0 0

III
Ç

mr1+r2
(n−1)m+2

r

(m−2)r1+nr2
(n−1)m+2 0 · · · 0 0 0

iv
p

−r1/n 0 0 · · · 0 0 0

IV
p

−r1/n 0 0 · · · 0 ∗ ∗

Figure 1: The phase diagram of the GLSM with the Calabi-Yau n-fold⊂F (n)
m “geometric” phase;

the “∗” entries are generally nonzero and are outside the Stanley-Reisner ideal.

2.3 Phases

We now turn to analyze the D-term constraints (6), following [14]. The U(1) charges Qa
i

of the chiral superfields, (X0, X i), determine the two-dimensional secondary fan (phase di-
agram) given in Figure 1.6 In particular, we can find the phase-boundaries by determining
the conditions for the U(1)2 → U(1) gauge symmetry breaking. When7 (i ): x0 = 0 = x i for
i = 1, . . . , n but xn+ j 6= 0 for j = 1,2, the U1(1) gauge group is preserved but U2(1) is broken
completely. In this case (6a) and (6b) imply that r1 = 0 and r2 ≥ 0, respectively; this hap-
pens along the (0, 1)-direction in the (r1, r2)-plane. Similarly, (ii ): U2(1) is preserved when
x0 = 0= x1 = xn+1 = xn+2 but x i 6= 0 for i = 2, · · · , n, while U1(1) is broken completely. Then,
r2 = 0 and r1 ≥ 0 from (6b) and (6a), respectively; this happens along the (1, 0)-direction.
Next, (iii ): if only x1 6=0, the combined U3(1) gauge symmetry generated by the charges
mQ1+Q2 is preserved, so (6a) constrains r1 ≥ 0 and the D-term from this U3(1) implies that
m r1+ r2 = 0; this happens along the (1,−m)-direction. Finally, (iv ): if only x0 6= 0, the com-
bination U4(1) gauge symmetry generated by the charges (m−2)Q1+nQ2 is preserved. The
corresponding D-term constraint, in terms of the corresponding combination of (6a) and (6b),
implies that (m−2)r1+n r2 = 0. Also, (6a) then implies that r1 ≤ 0; this happens along the
�

−n, (m−2)
�

-direction.
Thus, there are four different phases, as depicted in Figure 1. We now analyze them in

turn, using that a ground state solution must also satisfy the F -term constraints (5), as detailed
in Appendix A.

Phase I: r1, r2 > 0. The F -term constraints are solved by having x0 = 0 and f (x) = 0. From
the D-term analysis above, the excluded region in the field-space

II = {x1 = . . .= xn = 0} ∪ {xn+1 = xn+2 = 0} (7)

is exactly the Stanley-Reisner (or irrelevant [19]) ideal for the Hirzebruch n-fold F (n)
m (m-

twisted Pn−1-bundle over P1). Since the xn+ j cannot both vanish (5e) implies that σ2 = 0.
Eq. (5e) then simplifies and implies that σ1 = 0 since the x i , i = 1, . . . , n cannot all be zero.
Thus, f (x) = 0 defines a Calabi-Yau (n−1)-fold hypersurface in F (n)

m .

6The analysis of the secondary fan, referred to as the enlarged Kähler moduli space can also be done by first
considering the toric variety, X , which is the ambient space for the Calabi-Yau hypersurface, for more details,
see section 3. There are four different triangulations of the associated spanning polytope ∆?X , not necessarily
containing all of the points in ∆?X , which allows us to to obtain the large radius Calabi-Yau phase as well as the
Landau-Ginzburg orbifold [13].

7For the remainder of this section, we omit writing the vacuum expectation bra-kets for brevity, so “x i = 0” will
denote the vanishing of the vev 〈x i〉, not the field.
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Direct computation shows that the polynomial f (x) is transversal for generic choices of
ai j , a j , so that its n+2 gradient components ∂ f

∂ x i
, ∂ f
∂ xn+ j

vanish simultaneously with f (x) itself
only within the excluded region (7), see Appendix A for more details.

Phase II: −mr1 < r2 < 0. The F -term constraints are still solved by having x0 = 0 and
f (x) = 0. From the D-term analysis above, the excluded region in the field-space

III = {x1 = 0} ∪ {x2 = . . .= xn+2 = 0} (8)

is the Stanley-Reisner ideal for the weighted projective space Pn
(m:···:m:1:1) in terms of the co-

ordinates (x2, . . . , xn+2). With x1 6= 0, (5e) implies that σ1 = mσ2, and since the remaining
x i cannot all vanish simultaneously, it follows that σ1 = σ2 = 0. Thus, f (x) = 0 defines (the
MPCP-desingularization of) the Calabi-Yau (n−1)-fold hypersurface Pn

(m:···:m:1:1)[(n−1)m+2].
Indeed, Eqs. (6a) and (6b) imply that (recall that r2 < 0)

|x1|=

√

√

√

∑

j |xn+ j|2 − r2

m
=

√

√

√

r1 −
n
∑

i=2

|x i|2 > 0 (9)

throughout this phase, and x1 parametrizes the exceptional set of the MPCP-desingularization
of Pn

(m:···:m:1:1). Clearly, |x1| → 0 at the boundary (ii ) where xn+1, xn+2 and r2 vanish, while
|x1| →

p
r1 > 0 on the boundary (iii ) where x i = 0 but r1 > 0. It then follows that

at the boundary (ii ) the MPCP-desingularization is “blown-down,” leaving the hypersurface
Pn
(m:···:m:1:1)[(n−1)m+2] with the unresolved orbifold singularity — which gives rise to the

partially restored U2(1) gauge symmetry indicated above.
Within the phase II region and away from its boundaries, both U(1)-symmetries are com-

pletely broken over most of the f (x) = 0 surface when x1, · · · , xn 6= 0. However, at special
points where some but not all of x1, · · · , xn vanish, a discrete subgroup of the gauge symmetry
may be restored, such as at (x1, 0, · · · , 0, xn+1,ω xn+1) with ω(n−1)m+2 = − a1

a2
to satisfy (5)–

(6); here xn+1 6= 0 completely breaks U2(1), whereupon x1 6= 0 breaks U1(1)→ Zn; these are
then “local” Zn orbifold points of the hypersurface f (x) = 0 — which however is not a global
Zn-quotient. Phase II is thus identified as the “orbifold phase” [13,14].

Phase III: m−2
n r1 < r2 < −mr1. The D-term constraints imply that now both x0 = 0 and

x1 = 0 must be excluded:
IIII = {x0 = 0} ∪ {x1 = 0}. (10)

Thus, all the F -term constraints, (5b)-(5a) are solved by setting x i = 0 for i = 2, · · · , n+2,
and (5e) simplifies to

�

�(−n)σ1+(m−2)σ2

�

�

2|x0|2 +
�

�σ1+(−m)σ2

�

�

2|x1|2
!
=0. (11)

The vevs x0 6= 0 6= x1 break U1(1)×U2(1)→ Zm(n−1)+2; e.g., x1 6= 0 sets σ1 = mσ2, producing
�

�

�

m(1−n)−2
�

σ1

�

�

2|x0|2 = 0. Thus, the vacuum solution in phase III is that of a Zm(n−1)+2
Landau-Ginzburg orbifold of f (x) = 0, acting with charges (mQ1 +Q2).

Phase IV: 0 < r2 <
m−2

n r1. The D-term analysis implies that x0 = 0 must now be excluded,
whereupon the first two F -term constraints, (5b) and (5c), imply that x1 = . . . = xn = 0. The
remaining F -term constraints, (5a) and (5d) turn out to be satisfied, leaving xn+1, xn+2 uncon-
strained. Since x1 = 0, the 2nd D-term constraint (6b) produces

∑2
j=1 |xn+ j|2 = r2 +

m−2
n r1,

which is positive in this phase, so that xn+1 = xn+2 = 0 must also be excluded, and we obtain:

IIV = {x0 = 0} ∪ {xn+1 = 0= xn+2}. (12)
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Fiber Base Gauge Phase
x0 x1 x2 · · · xn xn+1 xn+2 Group Region

Q1 −n 1 1 · · · 1 0 0 U1(1) (r1, r2)-plane
Q2 m−2 −m 0 · · · 0 1 1 U2(1)

i 0 0 0 · · · 0 ∗ ∗ U1(1) — r1 = 0, r2 > 0

I 0 6∈
�

{x i = 0} ∪ {xn+ j = 0}
	

— — r1 > 0, r2 > 0

ii 0 0 6∈ {x i = 0} 0 0 — U2(1) r1 > 0, r2 = 0

II 0 see (9) 6∈
�

{x i = 0} ∪ {xn+ j = 0}
	

—? —? r1 > 0> r2 > −mr1

iii 0
q

− r2
m =
p

r1 0 · · · 0 0 0 U†
3(1)×Z

‡
M r1 > 0> r2 = −mr1

III
Ç

mr1+r2
(n−1)m+2

r

(m−2)r1+nr2
(n−1)m+2 0 · · · 0 0 0 Z‡

M −mr1 > r2 >
m−2

n r1

iv
q

− r1
n 0 0 · · · 0 0 0 Z‡

M × U†
4(1) r2 =

m−2
n r1 > 0

IV
q

− r1
n 0 0 · · · 0 ∗ ∗ Zn — m−2

n r1 > r2 > 0
? Generically, the U(1)2 is completely broken, but is “restored” to a discrete subgroup at special points.
† The combination U3(1) is generated by mQ1+Q2, whereas U4(1) is generated by (m−2)Q1+nQ2
‡ M = (n−1)m+ 2: in iii, x1 6= 0 breaks U4(1)→ Z(n−1)m+2; in iv, x0 6= 0 breaks U3(1)→ Z(n−1)m+2

Table 1: The cyclic listing of the phases (I–IV) and boundaries (i–iv) of the GLSM (2)

Since xn+1, xn+2 cannot both vanish, their vevs break U2(1) completely, while x0 6= 0 breaks
U1(1)→ Zn since Q1(x0) = −n; correspondingly, (5e) reduces to |(−n)σ1||x0| = 0. This then
is a hybrid phase in which a Landau-GinzburgZn orbifold of {(x1, · · · , xn) : f (x) = 0} is fibered
over the base-P1 = P(xn+1, xn+2).

At this point let us make the following comment on the vanishing of the x i = 0, i > 0 in
the Landau-Ginzburg phase above and the existence of a superpotential with Laurent mono-
mials (2). By going through phase IV, where x i = 0 for i = 1, . . . , n correspond to the fiber
having collapsed to a Landau-Ginzburg orbifold, the Laurent monomials are absent — in fact,
f (x) vanishes identically in phase IV. By transitioning to phase III, we then have x1 6= 0 while
x2 = · · · = xn+2 = 0, which is the true Landau-Ginzburg orbifold. On the other hand, when
transitioning from phase II, through the boundary (iii), into phase III, we have to specify the
intrinsic limit x i , xn+ j → 0 so that f (x) = 0 remains well-defined; see Appendix A. To this end,

lim
x1→0

f (x) =
n
∑

i=2

� ai1

x m−2
n+1

+
ai2

x m−2
n+2

�

x n
i (13)

shows that x2, · · · , xn should vanish sufficiently faster than xn+ j , except perhaps one of the x i
for which then we must insure that xn+2 =ω xn+1→ 0 with ωm−2 = − ai2

ai1
.

The phases and their boundaries are summarized in Table 1.
The vevs of x0 and x1 change continuously as (r1, r2) are varied through the cycle of phases

I–II–III–IV–I, so that the secondary fan depicted to the left in Figure 1 is complete as given.

3 The toric geometry of the ground state

We now turn to examine the toric geometry of GLSM ground states defined by Laurent super-
potentials such as (2), and exhibit a justification for the inclusion of Laurent monomials in
superpotential such as (1) and its generalizations. In particular, Laurent superpotentials such
as (2) motivate a refinement of the standard methods of toric geometry [15–20], and we first
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sketch a few basic facts to establish notation and conventions, adapting from [17–19].
Every compact toric variety may be specified by a complete rational polyhedral fanΣwithin

a lattice N , which in turn has a lattice spanning polytope8 ∆?, the N -integral points νρ of
which being the minimal generators of Σ, and ∆? is (coarsely) star triangulated by Σ about
(0 ∈ Σ) ∈ relint∆?. Every toric variety also has a Newton polytope∆ (in a lattice M dual to N),
the M -integral points of which correspond to anticanonical sections, specified as monomials

in the so-called Cox variables [28] xρ
1–1
←→ νρ ∈∆?:

⊕

µ∈∆∩M

� ∏

νρ∈∆?∩N

x〈νρ ,µ〉+1
ρ

�

7→ H0(K ∗), νρ (14)

where 〈 , 〉 denotes the Euclidean scalar product, and the “+1” in the exponent indicates sec-
tions of the anticanonical (K ∗)+1. For convex and reflexive Newton polytopes, the spanning
polytope ∆? turns out to be the so-called polar of the Newton polytope ∆:

∆◦ :=
�

u : 〈v, u〉¾ −1, v ∈∆
	

, (15)

and the polar operation is involutive: ∆= (∆?=∆◦)◦. The global nature of the definition (15)
also implies that

(∆?)◦ =
�

Conv(∆?)
�◦

so
�

(∆?)◦
�◦
= Conv(∆?), (16)

where Conv(∆?) is the convex hull (envelope) of ∆?. For convex polytopes, Conv(∆?) = ∆?,
but this is not so for non-convex polytopes: the global nature of (15) obscures every non-convex
detail in non-convex polyhedra such as depicted in Figure 2. Also, for every reflexive convex
polyhedron∆?, the xρ-monomials given by (∆?)◦ always turn out to be regular, and so cannot
provide for the Laurent monomials appearing in (2b) for m> 2.

This “non-convexity hiding” nature (16) of the standard polar operation (15) turns out to
be closely correlated with the systematic omission of Laurent xρ-monomials in (14), which is
inadequate for constructing Calabi-Yau hypersurfaces in non-Fano n-folds such as considered
recently [1, 5, 6]. We thus seek a twin generalization of both the polar operation (15) and of
(convex) reflexive polytopes.

3.1 The generalization

We propose a twin definition of a class of “VEX polytopes” (to include all convex reflexive
polytopes but also certain non-convex ones,9) and a “trans-polar” operation amongst them
such that:

A. For every convex polytope ∆, the trans-polar equals the polar: ∆Ï =∆◦.
B. The trans-polar of every VEX polytope is also a VEX polytope.
C. For every VEX polytope ∆, (∆Ï)Ï =∆.

To avoid confusion, ∆Ï will denote the trans-polar of ∆, while ∆◦ continues to denote its
standard polar (15) [15–20]. Extending (15), we propose to define the trans-polar operation
by the following (iterative-recursive) face-by-face procedure:

8We use Definition V.4.3 and rely on the subsequent Theorem V.4.5 [18, p. 159]. We denote the spanning
polytope by ∆?, the “?” reminding that the polytope has a star triangulation defined by the fan that it spans.

9The generalization includes novel star triangulations of reflexive polytopes, in which non-star simplices are
excluded from the triangulation; see below.
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Construction 3.1 (trans-polar). Given an integral polytope ∆, with an integral star-triangula-
tion consisting of only unit-degree, d(θ ) = 1, star-simplices, θ : .10

1. Recursively decompose ∆ into a disjoint union of convex faces θα, obtained by subdividing
any non-convex face in the process; in practice, a subset of this hierarchy suffices.

2. Construct the polar θ ◦α to each face θα ⊂ ∆ using the boundary version of (15), with “=”
in place of “¾”;

3. Dually to the hierarchy {θα} ⊂ ∆, assemble the {θ ◦α} into ∆Ï, the trans-polar of ∆, using
the dual/polar relations:

ϑ = θ1 ∩ · · · ∩ θk ⇒ ϑ◦ = [θ ◦1 , · · · ,θ ◦k ],
ϑ = [θ1, · · · ,θk] ⇒ ϑ◦ = θ ◦1 ∩ · · · ∩ θ

◦
k ,

(17)

where [θ1, · · · ,θN ] is the face delimited by θ1, · · · ,θN .

The degree d(θ ) of a face θ effectively counts the number of unit-degree star-simplices over
θ , see also Appendix B for more details. Each subdivision needed in Step 1 introduces not-
uniqueness, but consists of co-planar convex sub-faces; their polars in Step 2 coincide, ren-
dering the different subdivisions equivalent. Finally, we use that through Step 3 of Construc-
tion 3.1 (see Section 3.2), a choice of an orientation of ∆ induces an orientation of its trans-
polar, ∆Ï; this is consistent with the “winding number” of multi-fans [29–32], and provides
additional information, such as (24) and (34), that corroborates Construction 3.1.

While we have no formal proof that the specifications in Construction 3.1 always suffice,
this does turn out to be true in several dozens of 2- and 3-dimensional examples (including
several infinite sequences) purposefully constructed to test it; Section 3.2 presents an illus-
trative sequence, many more to be presented in Ref. [24]. Suffice it here to note that each
of the several dozens of example trans-polar polytopes produced in testing Construction 3.1
span the (1) (multi-)fan of internal normal cones [19, p. 76], i.e., (2) the reflection through
0 of the fan of external normal cones [18, § I.4], and (3) coincides with a complementary
construction based on the matrix-representation of star-simplices [8, p. 115–117]. For convex
reflexive polytopes, these are indeed alternative constructions of the polar (15) polytope, but
turn out to also apply to non-convex VEX polytopes—where they coincide with the results of
Construction 3.1 to the extent of our testing; for more details and examples, see Ref. [24].

Requirement A is satisfied by design for all convex polytopes: Step 1 may stop with∆ itself
since it is convex, Step 2 produces ∆Ï = ∆◦, and there is nothing left for Step 3. Relaxing
convexity, requirements B and C define the class of VEX polytopes as the maximal closure
under the trans-polar operation. By defining the deficit of (15):

dfc(◦,∆) :=
�

(∆)◦
�◦r∆, (18)

requirement C above is equivalent to requiring the trans-polar operation of Construction 3.1
to have no deficit on VEX polytopes. For any toric variety X and its spanning polytope ∆?X , we
define the extension part of the (complete) Newton polytope:11

xtn(∆X ) :=
�

∆X := (∆?X )
Ï

︸ ︷︷ ︸

complete

�

r
�

(∆?X )
◦ =

�

Conv(∆?X )
�◦

︸ ︷︷ ︸

(in)complete

�

. (19)

10The degree of a k-face is the k!-multiple of the k-volume, d(θ (k)) := k!·Volk(θ (k)) [21] Faces θ with d(θ ) > 1
correspond to singular regions in the toric variety, and Construction 3.1 can be extended to include a suitable
desingularization; for more detail, see Ref. [24]. Also, more general fan-like structures called “multi-fans” that
include overlapping cones have been discussed in Refs. [29–32]. Herein we focus on n-dimensional fans which,
while possibly flip-folded as in Figure 4, are oriented and effectively cover Rn exactly once, so we omit the “multi-”
prefix; for generalizations, see [24].

11We show below that xtn(∆X ) encodes the Laurent monomials for non-convex VEX polytopes ∆X .
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∆?Fm
ν0 ν1 ν2 ν3 ν4 ν5

fiber
0 −1 1 0 0 −m
0 −1 0 1 0 −m

base 0 0 0 0 1 −1

`1 −3 1 1 1 0 0M (∆?Fm
)
§

`2 m−2 −m 0 0 1 1
x0 x1 x2 x3 x4 x5

∆?F3

ν2
ν3

ν4

ν5

ν1

Φ1 = [ν2,ν3,ν4]
(behind)

Φ2 = [ν3,ν2,ν5]
(underneath)

Φ4 -

Φ3 -

Φ6

Φ5

Figure 2: The spanning polytope of the Hirzebruch 3-fold Fm: specified by a chart of its
vertices, νρ, and Mori vectors, `a, (left), and depicted for m= 3 (right). Here (x1, x2, x3) and
(x4, x5) are the homogeneous coordinates of the fiber P2 and base P1, respectively.

We now proceed to give a more explicit form of the conditions on the VEX polytopes and
the construction of mirror manifolds in terms of the associated toric varieties.
É Although we have no conclusive explicit definition of VEX polytopes, they are necessarily

defined within a lattice L ' Zn and must have:

1. a single L-integral point, 0, in the interior of the polytope ∆ ⊂ (L⊗R);
2. only L-integral vertices, each at minimal Euclidean distance from 0;
3. no k-face (k > 0) in a k-plane containing 0;
4. a star-triangulation in which L-integral points are only at the apex 0 and the base of

each star-simplex;
5. the interval [p, 0]⊂∆ for each p∈∆, i.e., each VEX polytope is a star-domain in Rn,

understood so as to allow for flip-folded facets such as shown in Figure 4, and even
multi-fans [29–32] more generally; see Ref. [24] for more examples.

These requirements may be redundant: for 2-dimensional polytopes condition 2 implies con-
dition 3, but not so in higher dimensions; for non-convex polytopes, condition 1 does not imply
condition 4; etc.
É This generalizes mirror symmetry as applied to Calabi-Yau hypersurfaces constructed

from reflexive pairs (∆?X ,∆X ), in which the mirror manifold of a generic Calabi-Yau hypersur-
face Ẑ f ⊂ X , specified by f (x) = 0 in a toric variety X with a reflexive (and convex) Newton
polytope ∆X is an MPCP desingularization of a suitable finite quotient of the Calabi-Yau hy-
persurface Ẑg ⊂ X , specified by g(y) = 0 in the toric variety Y the Newton polytope of which
is ∆Y =∆◦X [21,33]. We hereby extend this to define a class of VEX polytopes wherein every
pair of trans-polar polytopes defines a pair of trans-polar toric varieties,

(X , Y ) : (∆?X ,∆X ) =
�

(∆X )
Ï , (∆?X )

Ï �=
�

(∆?Y )
Ï , (∆Y )

Ï �= (∆Y ,∆?Y ) (20)

so that an MPCP desingularization of a suitable finite quotient of the Calabi-Yau hypersurface
Ẑg ⊂ Y is a natural mirror of a Calabi-Yau hypersurface Ẑ f ⊂ X . The point of this proof-of-
concept note is to show that this includes a large collection of non-convex polytopes such as
those of Hirzebruch n-folds.

3.2 A 3-dimensional example: elliptically fibered K3 manifolds

As an illustration, consider the Hirzebruch 3-folds (m-twisted P2-bundles over P1), specified
in Figure 2. The Mori vectors `a give the U(1)2 charges Qi

a of the GLSM, the analysis of which
gives a geometric phase (I), in terms of a K3 hypersurface f (x) = 0 ⊂Fm. Furthermore, there
is the orbifold phase (II) where the combination of Mori vectors `= m`1+ `2 = (0, m, m, 1, 1)
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specifies the weights of the weighted projective space P3
(m:m:1:1) to which Fm may be blown

down by eliminating the vertex ν1, augmenting ∆?Fm
→ Conv(∆?Fm

) =∆?
P3
(m:m:1:1)

and formally

setting x1 → 1, which is akin to restricting to a (partial) chart where x1 6= 0. These weights
precisely correspond to the charges (3b) for n = 3, in which case (5a) defines a K3 surface
as the Calabi-Yau hypersurface P3

(m:m:1:1)[2(m+1)]. The quasi-projective space P3
(m:m:1:1) is

singular at (1, 1,0, 0), and the vector ν1 corresponds to its MPCP desingularization [21].

The Newton polytope: As seen clearly in Figure 2, the polytope with vertices {ν1, · · · ,ν5}
fails to be convex at ν1 for m> 2. The standard definition of its polar, owing to (16), produces
the Newton polytope of P3

(m:m:1:1) rather than that ofFm. Furthermore, the Newton polytope of

P3
(m:m:1:1) is depicted by the yellow (shaded) portion of the right-hand side diagram in Figure 3

and has two fractional vertices, �µ1 = (
5
3 ,−1,−1) and �µ2 = (−1, 5

3 ,−1).12 Its M -integral points
correspond through (14) to the monomials

8
⊕

k=0

x 8−k
4 x k

5 ⊕
5
⊕

k=0

(x2⊕ x3) x 5−k
4 x k

5 ⊕
2
⊕

k=0

(x 2
2 ⊕ x2 x3⊕ x 2

3 ) x 2−k
4 x k

5 , (21)

all generic linear combinations of which fail to be transversal.
To construct the trans-polar of ∆?F3

, we start by noting that the facets Φ1, · · · ,Φ6 ⊂∆? are
all convex. Following Construction 3.1, we find

ΦÏ1 = µ1 = (−1,−1,−1), ΦÏ2 = µ2 = (−1,−1, 7), (22a)

ΦÏ3 = µ3 = (2,−1,−2), ΦÏ4 = µ4 = (2,−1,−1), (22b)

ΦÏ5 = µ5 = (−1, 2,−2), ΦÏ6 = µ6 = (−1,2,−1). (22c)

The vertices µ1,µ2 indeed belong to (∆?F3
)◦, but µ3, · · · ,µ6 lie beyond the fractional vertices

of (∆?F3
)◦: they delimit the extension (19), with the quadrangular facet Θ1 that lies in the

ν◦1 = (x , 1−x , z) plane. Since ν1 = [ν1,ν2] ∩ [ν1,ν3] ∩ [ν1,ν4] ∩ [ν1,ν5], Θ1 ⊂ ν◦1 is more
precisely delimited by the trans-polar images of the edges adjacent to ν1:

[ν1,ν2]
Ï = (−1,2, z), [ν1,ν3]

Ï = (2,−1, z), (23a)

[ν1,ν4]
Ï = (x , 1−x ,−1), [ν1,ν5]

Ï = (x , 1−x ,−2). (23b)

Following through in this fashion, we obtain the Newton polytope depicted on the right-hand
side of Figure 3.

This result can be further corroborated as follows: With the (15)-standard “¾ −1” con-
ditions, the computations (23) would have produced an empty set, since the standard polar
operation (15) obscures the non-convexity of ν1. We may remedy this by “flipping” the defin-
ing inequalities in correlation with (non-)convexity: The extending facet Θ1 may be defined
by first rewriting the 〈ν, u〉 ¾ −1 condition in (15) as (〈ν, u〉+1) ¾ 0, and then flipping the
sign of the left-hand side according to the (non-)convexity of v:

u ∈ M ⊗R : 〈ν1, u〉= −1 &















(−1)F
�

〈ν2, u〉+ 1
�

¾ 0, F = 2;
(−1)F

�

〈ν3, u〉+ 1
�

¾ 0, F = 2;
(−1)F

� 


ν4, u
�

+ 1
�

¾ 0, F = 1;
(−1)F

�

〈ν5, u〉+ 1
�

¾ 0, F = 1.

(24)

Here F = 1 indicates that the usual condition for the polar (“¾ −1”) is reversed—owing to
the non-convexity of ν1 itself; the first two conditions (F = 2) are however flipped a second

12The “halo” on �µi identifies them as fractional vertices of (∆?)◦.
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µi := ΦÏi := {m :



m,νρ
�

= −1, νρ ∈ Φi}

Θρ := νÏρ := {m :



m,νρ
�

= −1}

If [νρ,ν%] =
−−−−→
Φi ∩Φ j ,

then Θρ ∩Θ% = [
−−−→µ j ,µi]

If νρ =
−−−−−−−−→
Φi ∩ · · · ∩Φk,

then Θρ = [
−−−−−−→µk, · · ·,µi]

∆?F3

ν2
ν3

ν4

ν5

ν1

Φ1 = [
−−−−−−→ν2,ν3,ν4]

(behind)

Φ2 = [
−−−−−−→ν3,ν2,ν5]

(underneath)

Φ4 -

Φ3 -

Φ6

Φ5

∆F3
:= (∆?F3

)Ï

µ1

µ2

µ4
��*

µ3

µ6�

µ5

Θ2 = [
−−−−−−−−−→µ1,µ2,µ5,µ6]

(behind)

Θ3

[−−−−−−→µ1,µ6,µ4] = Θ4
(underneath)

Θ5

Θ1

Θ3 = [
−−−−−−−−−→µ4,µ3,µ2,µ1]

Θ5 = [
−−−−−−→µ2,µ3,µ5]

Θ1 = [
−−−−−−−−−→µ3,µ4,µ6,µ5]

�µ1 =
�5

3 ,−1,−1
���

��*

�µ2 =
�

− 1, 5
3 ,−1

�

��	
th

e
st

an
da

rd
,i

nc
om

pl
et

e
pa

rt
of
∆
F

3

the “ex
ten

sio
n,”

inclu
ded

in
∆F

3

Figure 3: The spanning polytope∆?F3
and the Newton polytope∆F3

with several polar pairs of
elements indicated. The outward orientation of ∆?F3

at a vertex νρ orders the adjacent facets
Φi∩· · ·∩Φk, and so induces the (reverse) ordering of ΦÏi , and the compatible orientation forΘρ.

time (and so back to the original inequality) owing to the fact that the edges [ν1,ν2] and
[ν1,ν3] adjacent to ν1 are also non-convex. In passing, [ν1,ν2,ν3] is the sub-polytope of the
P2-fiber in Fm. Proceeding in this way (corroborating Step 3 of Construction 3.1) produces
the complete Newton polytope∆F3

shown to the right-hand side of Figure 3. In particular, the
facets Θ2,Θ3 are self-crossing, owing to the fact that ν2,ν3 ∈ ∆?F3

are each adjacent to three
convex and one non-convex edge.

The spanning polytope∆?F3
admits a uniform outward orientation, which then induces an

orientation of the Newton polytope ∆F3
. At each vertex νρ ∈ ∆?F3

, this orders the adjacent

facets; for example, ν5 =
−−−−−−−−−→
Φ5 ∩Φ3 ∩Φ2 implies13 Θ5 = [

←−−−−−−µ5,µ3,µ2]— which gives the outward

orientation to the “standard part” [
−−−−−−→
µ2,�µ1,�µ2] of Θ5, but the inward orientation [

−−−−−−−−−→
�µ2,�µ1,µ3,µ5]

within the extension. Similarly, ν3 =
−−−−−−−−−−−−−→
Φ1 ∩Φ2 ∩Φ3 ∩Φ4 implies Θ3 = [

←−−−−−−−−−µ1,µ2,µ3,µ4], giv-

ing the outward orientation to “standard part” [
−−−−−−→
µ1,�µ1,µ2] of Θ3, but the inward orientation

[
−−−−−−→
µ4,µ3,�µ1] within the extension. In a similar fashion, this gives the facets Θ4,Θ5 and Θ1 the

outward and opposite inward orientations, respectively. This orientation will be essential in
the combinatorial formulae for the Euler and Hodge numbers, see section 4 and Appendix B.

13Duality relations preserve (reverse) orientations in even (odd) dimensions.
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Finally, the standard formula (14) associates the Laurent monomials

[µ4,µ6] :
3
⊕

k=0

x 3−k
2 x k

3

x4
, [µ3,µ5] :

3
⊕

k=0

x 3−k
2 x k

3

x3
. (25)

Straightforward computation shows that generic Laurent polynomials formed with both (21)
and (25) are transversal (as discussed in Appendix A): following the GLSM analysis in Sec-
tion 2, the polynomial f (x) and its gradient ∂ f (x)/∂ x i vanish simultaneously only in the
Landau-Ginzburg orbifold phase, where x2, x3, x4, x5→ 0.

4 Combinatorial calculations

Let us first consider Batyrev’s Euler characteristic formula [21,34]

χ(Ẑ f ) =
dim X−2
∑

k=1

(−1)k−1
∑

dim(θ )=k
θ⊂∆X

d(θ ) d(θ ∗) (26)

where Ẑ f is the MPCP desingularization of the anticanonical ∆X -regular (transversal) hy-
persurface f (x) = 0 in a toric variety X and ∆X is its Newton polytope. For every face
θ ⊂ ∆X in the Newton polytope, θ ∗ ⊂ ∆?X is the dual face14 in the spanning polytope such
that dim(θ ) + dim(θ ∗) = dim(Ẑ f ). In fact, there is a natural generalization of (26) in which
we sum over all the codimension k faces,

χ(Ẑ f ) =
dim X
∑

k=−1

(−1)k−1
∑

dim(θ )=k
θ⊂∆X

d(θ ) d(θ ∗), (27)

where for dim(θ ) = −1, θ is the unique interior point in ∆X and θ ∗ = ∆?X , and similarly for
dim(θ ) = dim X , where θ = ∆X and so θ ∗ is the unique interior point in ∆?X . Furthermore,
because we restrict to star-triangulations, it follows that

d(∆?X ) =
∑

dim(θ )=0

d(θ ) d(θ ∗) , d(∆X ) =
∑

dim(θ )=dim X−1

d(θ ) d(θ ∗) , (28)

since dim(θ ∗) = dim X −1 and dim(θ ∗) = 0 and hence the two sums range over codimension-
one faces in ∆ and ∆?, respectively. Thus, the contribution from k = −1 and k = 0 cancel, as
do the k = dim X−1 and k = dim X terms, as expected for consistency.

We now will demonstrate that the trans-polar pair of polytopes
�

∆?X ,∆X := (∆?X )
Ï
�

pro-
vides for computing the basic topological characteristics — and that the orientations discussed
between (21) and (25) turn out to be crucial. In light of this, we propose the following con-
jecture generalizing Batyrev’s construction [21,34]:15

Conjecture 4.1. The Euler number, χ(Ẑ f ), and Hodge numbers, h1,1(Ẑ f ) and hn−2,1(Ẑ f ) for a
Calabi-Yau (n−1)-fold Ẑ f , which is the MPCP desingularization of the anticanonical ∆X -regular

14For faces of all nonzero codimension, the dual of a face (as used here) is the trans-polar of that face and
dim(θ )+dim(θ ∗) = n−1. On the other hand, the dual of the entire polytope (codim =0) is not the trans-polar
polytope (which has the same rather than the complementary dimension) but the unique integral point (the origin)
that is internal to the entire trans-polar polytope.

15The toric construction of mirror pairs of Calabi-Yau manifolds restricted to Fermat hypersurfaces in weighted
projective space was first observed by Roan [35].
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(transversal) hypersurface f (x) = 0 in a toric variety X with ∆X its VEX Newton polytope, are
given by (26),

hn−2,1(Ẑ f ) = l(∆X )− 5−
∑

codimθ=1
Θ⊂∆X

l∗(θ ) +
∑

codimθ=2
θ⊂∆X

l∗(θ ) · l∗(θ ∗), (29)

and

h1,1(Ẑ f ) = l(∆?X )− 5−
∑

codimθ∗=1
Φ⊂∆?X

l∗(θ ∗) +
∑

codimθ∗=2
φ⊂∆?X

l∗(θ ∗) · l∗(θ ), (30)

respectively, where l(θ ) (l(θ ∗)) is the number of internal points in the face θ ⊂ ∆X (θ ∗ ⊂ ∆?X ),
which may be negative if θ (θ ∗) has opposite orientation. The similarly constructed Calabi-Yau
(n−1)-fold Ẑg , which is the MPCP desingularization of the anticanonical∆Y -regular (transversal)
hypersurface g(y) = 0 in a toric variety Y with ∆Y =∆?X its VEX Newton polytope, is the mirror
manifold to Ẑ f , with the roles of ∆X and ∆?X interchanged, such that h1,1(Ẑg) = hn−2,1(Ẑ f ) and
hn−2,1(Ẑg) = h1,1(Ẑg), and thus χ(Ẑg) = (−1)n−1χ(Ẑ f ).

We first focus on the example K3 ⊂ F3 from Section 3.2, followed by the corresponding
Calabi-Yau threefolds, where we also calculate h1,1 and h2,1; additional examples may be found
in the companion paper [24].

4.1 K3

Adapting (26) to the case of the K3, Ẑ f hypersurface f (x) = 0 ⊂Fm, the indicated summation
should extend only over 1-dimensional faces (edges) θ ⊂ ∆Fm

in the Newton polytope (the
dual of which, θ ∗ ⊂∆?Fm

, are edges in the spanning polytope):

χ(Ẑ f ) =
∑

dim(θ )=1
θ⊂∆Fm

d(θ ) d(θ ∗). (31)

All edges θ ∗ ⊂∆?Fm
have unit degree for m 6= 2, in which case the sum reduces to the degrees

of the edges in the Newton polytope ∆Fm
= (∆?Fm

)Ï. The m ¶ 2 cases are well understood
and convex so that the trans-polar operation reduces to the familiar polar (15). We then focus
on m¾ 3.

As is evident from Figure 3 and 6 below, ∆Fm
has a total of nine edges:

• the one tallest vertical edge [ν2,ν3]Ï = Θ2 ∩Θ3 = [µ1,µ2] has degree 2+2m;

• two horizontal edges: [ν2,ν4]Ï = Θ2∩Θ4 = [µ1,µ6] and [ν3,ν4]Ï = Θ3∩Θ4 = [µ1,µ4],
both of which have degree 3;

• two slanted edges: [ν2,ν5]Ï = Θ2 ∩Θ5 = [µ2,µ5] and [ν3,ν5]Ï = Θ3 ∩Θ5 = [µ2,µ3],
both of which have degree 3;

• two horizontal edges in the extension: [ν1,ν4]Ï = Θ1 ∩Θ4 = [µ4,µ6] and
[ν1,ν5]Ï = Θ1 ∩Θ5 = [µ3,µ5], both of which have degree 3;

• two vertical edges in the extension: [ν1,ν2]Ï = Θ1 ∩Θ2 = [µ5,µ6] and
[ν1,ν3]Ï = Θ1∩Θ3 = [µ3,µ4], both of which have degree −(m−2): a quick comparison
with the m ¶ 2 cases (see Figure 6) shows that for m ¾ 3 these two edges manifestly
extend in the direction opposite from the m¶ 2 cases.

Tallying these contributions produces in (31):

χ(Ẑ f ) = (2+2m) + 2(3) + 2(3) + 2(3) + 2[−(m−2)] = 24, m¾ 3. (32)
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In fact, the computation is also true for m=2; not only is the end result independent of m, but
the method itself extends.

Finally, note that since (31) is completely symmetric in exchanging θ and θ ∗, it is clear that
the mirror K3, Ẑg , to the hypersurface f (x) = 0 ⊂ Fm, is defined as a hypersurface g(y) = 0
in the toric variety Y constructed by exchanging the roles of ∆? and ∆.

4.2 Calabi-Yau three-folds

For illustration, consider the Calabi-Yau 3-fold Ẑ f hypersurfaces f (x) = 0 in the Hirzebruch 4-
folds Fm (m-twisted P3-bundles over P1),16 where in analogy with K3, (x1, . . . , x4) and (x5, x6)
are the homogeneous fiber and base coordinates for the P3 and P1, respectively.

∆?Fm
ν0 ν1 ν2 ν3 ν4 ν5 ν6

fiber
0 −1 1 0 0 0 −m
0 −1 0 1 0 0 −m
0 −1 0 0 1 0 −m

base 0 0 0 0 0 1 −1

`1 −4 1 1 1 1 0 0M (∆?Fm
)
§

`2 m−2 −m 0 0 0 1 1
x0 x1 x2 x3 x4 x5 x6

(33)

For n = 4, the extension in the Newton polytope, (ν1)Ï, is delimited by [ν1,ν2]Ï, [ν1,ν3]Ï,
[ν1,ν4]Ï, [ν1,ν5]Ï and [ν1,ν6]Ï, and so is the region defined by:

u ∈ MR : 〈ν1, u〉= −1 &























(−1)F
�

〈ν2, u〉+ 1
�

¾ 0, F = 2;
(−1)F

�

〈ν3, u〉+ 1
�

¾ 0, F = 2;
(−1)F

� 


ν4, u
�

+ 1
�

¾ 0, F = 2;
(−1)F

�

〈ν5, u〉+ 1
�

¾ 0, F = 1;
(−1)F

�

〈ν6, u〉+ 1
�

¾ 0, F = 1.

(34)

Here F = 1 indicates that the usual condition for the polar (“¾ −1”) is reversed—again owing
to the non-convexity of ν1; the first three conditions (F = 2) are however flipped a second
time (and so equal the original inequality) as the vertices [ν1,ν2,ν3,ν4] form the sub-polytope
of the P3-fiber in Fm; the 2-faces [ν1,νi ,ν j] of this sub-polytope are non-convex in ∆?Fm

for

m¾ 3. In turn, ν4 and ν5 span the sub-polytope of the base P1.
The extension in the Newton polytope thus takes the form of a 3-sided prism,

�

(x , y, 1−x−y, z), − 1¶ x ¶ 3, − 1¶ y ¶ (2−x), (1−m)¶ z ¶ −1
	

, (35)

generalizing the rectangle for n= 3 and vertical edge for n= 2. The vertical edge remains the
same for general n while the base of the extension is an (n−2)-dimensional simplex.

The Euler characteristic: We first calculate the Euler number along the lines of the K3 in
the previous subsection, evaluating the two terms in Batyrev’s expression (26) for an (n=4)-
dimensional ambient toric variety (see also [21, Theorem 4.5.3]):

χ(Ẑ f ) =
∑

dimθ=1

d(θ ) d(θ ∗)−
∑

dimθ=2

d(θ ) d(θ ∗), (36)

16The Hirzebruch 4-fold Fm may also be described as a generic degree-(1, m) hypersurface in P4×P1, in which
the Calabi-Yau hypersurfaces have h1,1 = 2, h2,1 = 86, triple intersection numbers κ1,1,1 = 2+3m κ1,1,2 = 4 and
κ1,2,2 = 0 = κ2,2,2 and the second Chern class evaluations c2[J1] = 44+6m and c2[J2] = 24 [5]. Then, the

integral basis change (J1, J2)→ (J1+cJ2, J2) identifies Fm
≈
→ Fm+4c as diffeomorphic [36]. We verify that the toric

specification (33) reproduces this (classical) topological data completely.
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Here θ ⊂∆Fm
are faces in the (extended) Newton polyhedron for Fm; θ ∗ ⊂∆?Fm

are their trans-

polar faces in the spanning polytope. Since now dim(θ ) + dim(θ ∗) = dim(Ẑ f ) = 3, edges in
the Newton polytope are paired with 2-faces in the spanning polytope and vice versa.

We refer the reader to the Appendix B for the details of the calculation. It suffices to say
that in analogy with the n = 3 case of K3, there are in the extension of ∆Fm

three 1-faces
θ , i.e., edges in ∆Fm

, for which d(θ ) = −1 and also three 2-faces θ , i.e., edges in ∆Fm
, for

which d(θ ) = −8. In the latter, two of the four boundary 1-faces have d(θ ) = −1, while the
other two have d(θ ) = 4. The result: χ = 56 − 224 = −168, in agreement with the gCICY
result [1,5].

The Hodge numbers: We next turn to calculating the Hodge numbers h2,1 and h1,1 following
Batyrev’s formulae [21, Theorem 4.3.7]:

h2,1(Ym) = l(∆Fm
)− 5−

∑

codimθ=1
Θ⊂∆Fm

l∗(θ ) +
∑

codimθ=2
θ⊂∆Fm

l∗(θ ) · l∗(θ ∗), (37)

and [21, Theorem 4.4.2]:

h1,1(Ym) = l(∆?Fm
)− 5−

∑

codimθ∗=1
Φ⊂∆?Fm

l∗(θ ∗) +
∑

codimθ∗=2
φ⊂∆?Fm

l∗(θ ∗) · l∗(θ ). (38)

Here, θ ∗ ⊂ ∆?Fm
is the facet dual to θ ⊂ ∆Fm

, and vice versa. To avoid the ambiguity of
counting internal points in negative-degree faces, we rewrite l∗(θ ) and l∗(θ ∗) using the general
formulae (53) and (51) to re-express the summands in terms of various k-face degrees. Thus,
Batyrev’s formulae (38) and (37) take the following form:

h2,1 =
∑

dimθ=1

d(θ ) +
∑

dimθ ∗=1

d(θ ∗)− 4+ N0 − N1 +
1
2

∑

dimθ=2

�

d(θ )− c(θ )
�

d(θ ∗), (39)

h1,1 =
∑

dimθ ∗=1

d(θ ∗) +
∑

dimθ=1

d(θ )− 4+ N ∗0 − N ∗1 +
1
2

∑

dimθ ∗=2

�

d(θ ∗)− c(θ ∗)
�

d(θ ), (40)

where Nk (N ∗k ) refers to the number of k-faces in∆Fm
(∆?Fm

) and c(θ (2)) is the effective circum-

ference of θ (2), see (53). The reader can consult Appendix B.2 for the details of the calculation
the result of which is that h2,1 = 86 and h1,1 = 2, independent of m and as with the Euler num-
ber in agreement with the gCICY result [1,5].

4.3 Mirror models

As mentioned above (20), the trans-polar pair of polytopes (∆Fm
,∆?Fm

) defines a pair of toric
varieties, (Fm,FÏm ), in which the (MPCP-desingularized) Calabi-Yau hypersurfaces are natu-
ral mirrors [21, 33]. In particular, the above explicit computations of the Euler and Hodge
numbers verifies that swapping ∆Fm

↔∆?Fm
indeed has the expected mirror effect. We now

explore this relationship further and provide additional corroboration to this relationship.
For concreteness, consider the trans-polar pair of polytopes (∆F3

,∆?F3
), see Figure 3. Ex-

pressed in terms of the homogeneous coordinates associated with the vertices of ∆?F3
, we

choose a minimal set of vertices of∆F3
that will generate the M -lattice17 [23]. That is, for the

17Restricting the standard part of the Newton polytope to M -integral points results in a drastic example of non-
transversality: the origin is no longer internal but “surfaces” into the “cut-off” facet outlined in Figure 3. Since our
inclusion of the “extension” (i.e., Laurent polynomials) restores transversality (as discussed in Appendix A) even
in this drastic case, there most certainly exist much milder cases, where analogous “extensions” in the Newton
polytope (and Laurent monomials) restore transversality.
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example of F3, we select µ1,µ2,µ3,µ5 and obtain:

fmin(F3) = a1 x8
5 + a2 x8

4 + a3
x3

2

x4
+ a5

x3
3

x4
∈ P3

(3:3:1:1)[8], (41a)

gmin(FÏ3 ) = b2 y3
3 + b3 y3

5 + b4
y8

2

y3 y5
+ b5 y8

1 ∈ P3
(3:5:8:8)[24], (41b)

where the monomials in (41b) correspond to the vertices νρ of the complex hull of ∆?F3
,

which analogously generate the N lattice.18 Straightforward computation along the lines of
Appendix A shows that the generic polynomials (41) are transversal, due to the Laurent mono-
mials, and the polynomials in each pair are each other’s transpose:

(41a) & (41b)⇒ M f (F3) =







0 0 0 8
0 0 8 0
3 0 −1 0
0 3 −1 0






=MT

g (F
Ï
3 ). (42)

Following the prescription of Ref. [22], the maximal phase symmetry of (41a) is Z3×Z8×Z24,
generated by γ1 := (Z3: 1

3 , 2
3 , 0, 0), γ2 := (Z8: 0, 0, 0, 1

8) and γ3 := (Z24: 1
24 , 1

24 , 1
8 , 0). Then,

9(γ2 + γ3) = (Z8 : 3
8 , 3

8 , 1
8 , 1

8) generates the “quantum symmetry,” the discrete subgroup of the
P3
(3:3:1:1) projectivization, leaving a Z3 ×Z24 geometric symmetry generated for example as:

a1 x8
5 + a2 x8

4 + a3
x3

2

x4
+ a5

x3
3

x4
: exp











2iπ







1
3

2
3 0 0

1
24

1
24

1
8 0

3
8

3
8

1
8

1
8





















x2
x3
x4
x5



 :
§ G=Z3×Z24,

Q=Z8.

(43)
Analogously, the maximal phase symmetry of (41b) is also Z3 ×Z8 ×Z24, generated by
γÏ1 := (Z3: 0, 0, 1

3 , 2
3), γ

Ï
2 := (Z8: 1

8 , 0, 0, 0) and γÏ3 := (Z24: 0, 1
24 , 2

3 , 2
3).

Then, γÏ2 +5γÏ3 = (Z24 : 1
8 , 5

24 , 1
3 , 1

3) generates the “quantum symmetry,” the discrete subgroup
of the P3

(3:5:8:8) projectivization, leaving a Z3×Z8 geometric symmetry generated for example
as:

b2 y3
3 + b3 y3

5 + b4
y8

2

y3 y5
+ b5 y8

1 : exp











2iπ







0 0 1
3

2
3

1
8 0 0 0
3

24
5
24

1
3

1
3





















y1
y2
y3
y5



 :
§ GÏ=Z3 ×Z8,

QÏ=Z24.

(44)
To swap the geometric and quantum symmetry, we should consider

�

(43) , (44)/Z3

�

for a
mirror pair of Landau-Ginzburg orbifold models, using the indicated Z3-action. In particular,
upon this Z3-quotient, ÝGÏ = Z8 =Q and ÝQÏ = Z3×Z24 = G.

We note that the ratio of the sizes of the geometric and the quantum symmetry groups
equals the ratio of the degrees of the polytopes:19

|ÝQÏ|
|ÝGÏ|

=
|G|
|Q|
=

3·24
8
= 9=

d(∆F3
)

d(∆?F3
)
=

54
6
=

d(∆?FÏ3
)

d(∆FÏ3 )
. (45)

18We note that there are two triangulations of the above minimal set of νρ giving rise to two phases in the
enlarged Kähler moduli space corresponding to i) the orbifold phase of the hypersurface in the unresolved weighted
projective space, and ii) the Landau-Ginzburg orbifold, and similarly for the mirror geometry in terms of the µi .

19Here the orders of the geometric and quantum symmetries are also computed by considering mirror interpre-
tation of the µi , as edges µ̄i = (µi , 1) spanning a cone in M̄ = M⊕Z describing the mirror geometry (and similarly
for the νρ, with ν̄ρ = (νρ, 1) of a cone in N̄ = N⊕Z). The linearly independent µ̄i form a 4 × 4 matrix with
determinant 72, describing the mirror toric ambient space as a discrete quotient of C4 of order |G|= 72. Similarly,
the original toric variety is a Q = Z8 quotient of C4 since ν̄ρ form a 4× 4 matrix with determinant 8 [37].
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The analogous relationship persists also for any n ≥ 2, and for m ¾ 0. Given our choice
of vertices and monomials (41), this chain of equalities is in complete agreement with the
detailed analysis in Section 3 of Ref. [23]. The fact that these relationships continue to hold
also for the n = 2, 3,4 and m ¾ 0 sequences of Laurent polynomials such as (41) we find
to provide additional corroboration of our extension of toric methods in Section 3 and their
application in Section 4, and of Construction 3.1 and Conjecture 4.1 in particular.

We close by noting that even without a detailed analysis of the Landau-Ginzburg orbifolds
or the more complete mirror pair of GLSM’s, the discrete symmetries are essential both in
constructing the Hilbert spaces of the Landau-Ginzburg models and in significantly restricting
the Yukawa couplings via the Wigner-Eckart theorem. In fact, the symmetries of the defining
(Laurent) polynomials f (x) and g(y) will play such an important role in all phases of the
corresponding GLSM’s. We find it therefore significant that the phase symmetries fully conform
to the transposition prescription [22,23].

5 Conclusions and outlook

In this paper we have found that there is a natural generalization of the GLSM to Laurent
superpotentials in which the phase-diagram of the enlarged Kähler moduli space, i.e., the sec-
ondary fan is constructed from the triangulations of the spanning polytope∆?X (and its convex
hull) of non-Fano toric varieties. Our construction 3.1 specifies the “trans-polar” operation,
which extends the standard “polar” operation so as to apply to all VEX polytopes, including
the above∆?X and the Newton polyhedron∆X := (∆?X )

Ï, as well as the original class of reflex-
ive polytopes considered by Batyrev [21].

In particular, for polytopes corresponding to the Hirzebruch n-folds [5] F (n)
m for m ¾ 0

(collectively denoted in the subsequent listing as X ), we have also shown that the spanning
polytope∆?X and the Newton polytope∆X := (∆?X )

Ï admit a mutually compatible orientation.
The orientation provides a sign for every face in each polytope and each cone in the fan that it
spans. Furthermore, ∆?X and∆X both admit oriented star-triangulations (compatible with the
orientation of the polytopes), which provides a sign to the degree of every star-simplex. Allow-
ing the degree of a star-simplex to be negative is crucial for correctly calculating the Euler and
Hodge numbers from the combinatorial data in the pair of oriented polytopes (∆?X ,∆X ) and
their oriented star-triangulations by adapting and generalizing Batyrev’s formula (26). Note
that the extension, xtn(∆X ), (19) within the (complete) Newton polytope ∆X is essential not
only for the computation of the above topological data, but also in that the Laurent monomials
corresponding to the integral points of xtn(∆X ) render the generic anticanonical polynomial
transversal. Finally, just as∆?X spans the fan of X ,∆?XÏ :=∆X defines a trans-polar toric n-fold
XÏ, the fan of which is spanned by ∆X . Hence, swapping ∆?X ↔ ∆?XÏ evidently induces the
expected mirror effect on the Euler and Hodge numbers. This indicates the pair of (MPCP
desingularized) anticanonical hypersurfaces in the toric varieties specified by the trans-polar
pair of polytopes (∆?X ,∆X :=∆?XÏ) as prime candidates for mirror manifolds. Further evi-
dence of mirror symmetry also follows from the exchange of “geometric” and “quantum” phase
symmetries [22] for the Landau-Ginzburg orbifold phases obtained from a minimal choice of
superpotentials, fmin(X ) and gmin(Y ), related by transposition of the matrix of exponents of
anti-canonical monomials.

The present work has two natural extensions. First, it would be desirable to put the results
presented herein on a rigorous mathematical footing, and in particular to prove Construc-
tion 3.1 and our main Conjecture 4.1, including to what extent they are valid. In their support,
we have verified wherever possible, that the results reported herein are both self-consistent,
and also consistent with the by now well established “generalized complete intersection” re-
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sults [1, 5, 6]. Second, and the main motivation of the program at hand, is to understand
the enlarged Kähler moduli space in order to calculate the non-perturbative corrections, i.e.,
Gromow-Witten invariants. This would allow us to determine whether the observed (mod n)
periodicity within the class of Calabi-Yau hypersurfaces in the Hirzebruch n-folds is indeed
broken by quantum corrections. This appears to be borne out by the cumulative effects deter-
mining the Kähler and complex structure discriminant loci [38], the self-consistency of which
lends us hope that the present models have also a reasonable UV completion.
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A Transversality of f (x)

The F -terms in the GLSM potential (1a) consists of the modulus-squares of the derivatives of
the superpotential,

∑

i |∂iW (x)|2, which must vanish in the ground state (5a)–(5d). By quasi-
homogeneity, these equations imply W (x) = 0, so that the ground state of the GLSM is by
definition located within the base-locus of the superpotential, {∂iW (x) = 0 =W (x)}, further
restricted by the mixed (5e) and D-term conditions (6). Since W (x) = x0· f (x), the “geo-
metric” component {x0=0= f (x)} is enforced if f (x) is transversal, i.e., when the base-locus
{ f (x)=0=∂i f (x)} of f (x) is within the Stanley-Reisner ideal, excised from this component.
Complementarily, the “non-geometric” component (with x0 6=0) is then forced precisely to the
base-locus of f (x). Although GLSMs with non-transversal defining functions have long since
also been considered [23, 39] and have some fascinating characteristics [40], we defer such
generalizations for now.

Herein, we adapt these standard notions of base-locus, transversality (and related ∆-
regularity [21]) to Laurent polynomials — and expressly so as to agree with the analogous
(and variously confirmed) “generalized complete intersections” results [1,5], for which Ref. [6]
provides a rigorous, scheme-theoretic formulation within the Čech cohomology framework.
We expect a similarly rigorous formulation of the toric hypersurfaces discussed herein to be
just as viable, but for this “proof-of-concept” note rely on the “working definition” motivated
and discussed below. Wherever possible, we verify that the so-obtained results are fully self-
consistent, as well as consistent with the by now well established “generalized complete inter-
section” results [1,5,6].

We start with the observation that an algebraic sub-variety X ⊂ A is defined as the zero-
locus, X = f −1(0), of a section of a bundle (or sheaf) over A, which does not have to have a
globally well-defined (regular, holomorphic) representative in any particular coordinate ring—
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even before passing to their coordinate reparametrization equivalence classes. This is partic-
ularly manifest in Refs. [1, 5], where Calabi-Yau varieties have been constructed by means of
a sequence of embeddings:

�

X = {x ∈ F : f (x) = 0}
�

,→
�

F = {x ∈ A : p(x) = 0}
�

,→ A, (46)

and where f (x) ∈ H0(F,K ∗F ) so c1(X ) = 0. Of interest are cases where F ⊂ A is not Fano, so
that (the pull-back to A by p of)K ∗F is negative over a factor in A, typically a P1. Then, (the pull-
back to A by p of) f (x) must have poles at certain points in A. In all cases of interest [1,5,6]
however, the section f (x) may be “tuned” so that the equivalence class [ f (x)+λ(x) · p(x)]
contains a well-defined (albeit local) representative at every point of A, “dialed” by suitable
choices of λ(x); see also Ref. [24]. These various representatives are all identical as sections
on F , where p(x) = 0 by definition.

We now turn to the the present constructions where F is itself a toric variety (rather than a
hypersurface in some toric variety A), and compare results with Refs. [1,5] whenever possible,
verifying that those results do not depend on the representation and/or embedding.

We recall Batyrev’s “regularity conditions for hypersurfaces” [21, § 3.1]: Given a polytope
∆ ⊂ MR ⊆ Rn and a corresponding polynomial f (ξ) in ξ ∈ Cn, (1) consider the non-compact
zero-locus Z f ,∆= {ξ ∈ (C∗)n| f (ξ)=0}, then (2) define Z̄ f ,∆ to be the closure of Z f ,∆ ⊂ (C∗)n

in P∆; finally, (3) extend this definition to rational polyhedral fans Σ ⊆ Rn.
It is the definition of (toric) closure Z f ,∆ → Z̄ f ,∆, in Batyrev’s second step, that must be

amended for rational monomials (corresponding to extensions in VEX polytopes ∆) — both
for the defining polynomial f (x) but also for its derivatives as they appear in the standard
definition of the base locus, i.e., the GLSM ground state (5). For a concrete example, consider
the (n, m) = (2, 3) case of (2):

f (x) = a21
x 2

2

x3
+ a22

x 2
2

x4
+ a1 x 2

1 x 5
3 + a2 x 2

1 x 5
4 = 0 , (47a)

∂1 f (x) = 2 x1(a1 x 5
3 + a2 x 5

4 ) = 0, ∂2 f (x) = 2 x2

�a21

x3
+

a22

x4

�

= 0, (47b)

∂3 f (x) = 5a1 x 2
1 x 4

3 − a21
x 2

2

x 2
3

= 0, ∂4 f (x) = 5a2 x 2
1 x 4

4 − a22
x 2

2

x 2
4

= 0. (47c)

To define the zero-locus Z̄ f of any Laurent polynomial f (x), we: (1) find the (incomplete)
zero-locus Z f by omitting the (putative) pole-set, then (2) complete the zero-locus to Z̄ f by
including the “intrinsic limits,” where the limiting process is restricted to Z f . Proceeding in this
fashion for each of the polynomials in a system such as (47), we find the common zero-locus,
Z̄ f ∩

⋂4
i=1 Z̄∂i f .

For example, for x3, x4 6= 0, (47a) yields x2=±i
È

x 2
1 x3 x4(a1 x 5

3+a2 x 5
4 )

a22 x3+a21 x4
, defining the

x3, x4 6= 0 incomplete zero-locus, Z f . This solution defines the “intrinsic limit” to the (pu-
tative) pole x3 → 0, where x2 = O(px3)→ 0, preserving f (x) = 0 by definition; the x4 → 0
intrinsic limit is analogous. This adds the “intrinsic limit” points (x1, 0, 0, x4) and (x1, 0, x3, 0),
completing Z f → Z̄ f . As long as the (putative) pole-set Pf and the (intrinsically completed)
zero-locus Z̄ f have normal crossings, each point of Pf ∩ Z̄ f has an open punctured neigh-
borhood that is entirely within Z f , and the above “ f -intrinsic limit” should be well defined
point-by-point. Heuristically, the vanishing of each of the polynomials in a system such as (47)
forces the limits to the (putative) pole-locations such as x3→ 0 to be balanced by a correlated
vanishing of the numerator, effectively keeping the rational monomials from diverging.

In practice, solving an algebraic system such as (47) is equivalent to “clearing the de-
nominators,”20 and is in this respect very similar to the practical computations in the Čech

20We thank S. Katz and D. Morrison for discussions on this point.
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cohomology framework of Ref. [6]; see also Ref. [24]. In particular, the scheme-theoretic
setting should afford a straightforward and systematic separation of the zero-locus from the
pole-locus. This suggests that a similarly rigorous definition of the complete zero-locus of Lau-
rent algebraic systems such as (47) is possible, but such a rigorous (re)definition is clearly
beyond our present scope.

—?—
In this fashion, the base-locus of the system (47) is found to be (0, 0, x3, x4)∪ (x1, 0, 0, 0):

The equations (47) hold simultaneously in the two intrinsic limits identified in Table 1:

1. x1, x2→ 0, and with (x3, x4) free; this is phase IV, including its boundaries i and iv.

2. x2, x3, x4 → 0, provided (47c) are solved by setting x3 = α 3
Ç

x2
x1

and x4 = β 3
Ç

x2
x1

with

α6 = a21
5a1

and β6 = a22
5a2

, whereupon the x2→ 0 may be taken requiring only that x2 < x1
but leaving x1 otherwise free; this is phase III including its boundaries iii and iv.

Including other monomials from the Newton polytope makes the system more generic, and is
on general grounds expected not to worsen the above behavior.

Note that the GLSM analysis in Section 2 is more detailed as it catalogues the branches of
the base-locus of the superpotential x0 · f (x), not just f (x).

B Combinatorial calculations

B.1 K3

Adapting again Batyrev’s n≥ 4 formula [21,34], we write:

h1,1 =
�

l(∆?Fm
)− 4−

∑

codim(θ )=1
θ⊂∆?Fm

l∗(θ )
�

+
�

l(∆Fm
)− 4−

∑

codim(θ )=1
θ⊂∆Fm

l∗(θ )
�

+
� ∑

codim(θ )=2
θ⊂∆Fm

l∗(θ ) l∗(θ ∗)
�

, (48)

where the first part is the contribution from the Picard group, the second counts the “toric”
deformations of the complex structure, and the final term is a correction term which can be
thought of as counting either non-polynomial deformations of the complex structure or non-
toric Kähler deformations.

We now address these terms in turn.

Picard term: It should be manifest from Figure 3 that:21

l(∆?Fm
) = 6 and l∗(Φi) = 0 for all Φi ⊂∆?Fm

(49)

independently of m: the constellation of ν1,ν2,ν3,ν4 remains fixed for all m ¾ 0, and only
ν5 = (−m,−m,−1) is moved further and further into the 7th octant. However, as m grows, nei-
ther the facets Φ2,Φ3,Φ5 nor the edges [ν2,ν5], [ν3,ν5], [ν1,ν5] acquire any internal points.
Therefore,

�

l(∆?Fm
)− 4−

6
∑

i=1

l∗(Φi)
�

= [6− 4− 6·(0)] = 2. (50)

This result perfectly agrees with the homology algebra computation: H2(Fm,Z) is indeed 2-
dimensional, generated by the Kähler forms of P3×P1 when realizing Fm as a degree-(1, m)
hypersurface in P3×P1, and both generators are for all m ¾ 0 inherited by the Calabi-Yau
hypersurface K3 ⊂Fm [5].

21The fact that l(∆?Fm
) = χ(Fm) generalizes Corollary 7.3 in [34] to our class of non-Fano toric varieties con-

structed in terms of the non-reflexive ∆?Fm
, as well as to arbitrary dimension n of the ambient toric variety.
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Toric deformations: In order to calculate the second (and third) term in (48) it is necessary
to understand the contribution of the extension part of the Newton polytope ∆Fm

and how
it varies with m. In particular we need to understand how to count the effective number of
integral points interior to the various codimension one and two faces. Since Θ1 and portions
of Θ2 and Θ3 are negatively oriented (see Section 3.2), this will require some care.

We find it expedient to relate the number of points in the relative interior of a face to the
degree of that face:

0-dim.: d(θ (0)) = 0!·Vol0(θ (0)) = 1 for θ (0) a vertex.

1-dim.: d(θ (1)) = 1!·Vol1(θ (1)) for an edge θ (1) of length Vol1(θ (1)). Since every edge has two
end-points, and is subdivided by its l∗(θ (1)) interior points into l∗(θ (1)) + 1 unit-length
1-simplices, it follows that

l∗(θ (1)) = d(θ (1))− 1. (51)

Note that a negatively oriented edge of (signed) length −` (formally) therefore has
−(` + 1) points in its relative interior; a negatively oriented unit-size edge (formally)
has −2 points in its relative interior.

2-dim.: d(θ (2)) = 2!·Vol2(θ (2)) for a 2-face θ (2) of area Vol2(θ (2)). Let θ (2) denote a 2-face that
has l∗(θ (2)) (integral) points in its relative interior, N vertices θ (0)i (and so also N edges
θ (1)i ), and l∗(θ (1)i ) (integral) points in the relative interior of the ith edge θ (1)i . Thereupon,
the degree of θ (2) is obtained by counting the number of unit-area 2-simplices:22

d(θ (2)) =
∑

i

d(θ (0)i )− 2+
∑

i

l∗(θ (1)i ) + 2l∗(θ (2)). (52)

Solving for l∗(θ (2)), using (51) and that
∑

i d(θ (0)i ) = N1, we have Pick’s theorem [41]:

l∗(θ (2)) = 1
2

�

d(θ (2)) + 2− c(θ (2))
�

, c(θ (2)) =
∑

θ
(1)
i ⊂∂ θ (2)

d(θ (1)i ), (53)

with the sum ranging over the boundary 1-faces of θ (2), some of which may be negatively
oriented and so contribute negatively. Using (53), we rewrite

�

l(∆Fm
)− 4−

5
∑

ρ=1

l∗(Θρ)
�

=
�

l(∆Fm
)− 4−

5
∑

ρ=1

1
2

�

d(Θρ) + 2− c(Θρ)
�

�

. (54)

To this end, we need the degrees of the facets, d(Θρ), as well as the degrees of all the edges
of each facet to calculate c(Θρ). For example, Θ2,Θ3 ⊂∆F3

are self-crossing; see Figure 4 for
a depiction of the (coarse) star-simplex over Θ3, shown from two points of view; the cone
Þ(Θ3) (and Þ(Θ2) similarly) is self-crossing — and certainly unusual. Since Θ3 (and Θ2)
is a quadrangle, it can be subdivided into two (coarse) simplices: one with a positive (CCW)
orientation, the other with a negative (CW) orientation; see the right-hand diagram in Figure 4.
These simplicial bases overlap and partially cancel, so as to reproduce the original, self-crossing
facet. Similarly, the circumference of Θ3 is calculated by summing over the edges of Θ3 taking

22We thank K. Iga for independently verifying this result.
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Θ3

0

µ1

µ2

µ3

µ4

Θ3 Θ3

0

µ1

µ2

µ3

µ4 µ1

µ2

µ3

µ4

CCW

CW

(from y � 0)
µ1

µ2

µ3

µ4

CCW

CW�
��*

Figure 4: The star-simplex over the flip-folded facet Θ3 ⊂∆F3
: in location within ∆F3

(left);
the outward orientated “proper portion” (mid-left); Θ3 viewed from y � 0 and zooming on
the “extension part” (mid-right); Θ3 subdivided into a CCW- and a CW-oriented coarse simplex
(right)

into account that23 d([−−−→µ4,µ3]) = 2−m. Thus,

d(Θ3) = d([−−−−−−→µ1,µ4,µ2]) + d([−−−−−−→µ2,µ4,µ3]) = 3(2+2m) + 3(2−m) = 12+ 3m, (55a)

c(Θ3) = d([−−−→µ1,µ4]) + d([−−−→µ4,µ3]) + d([−−−→µ3,µ2]) + d([−−−→µ2,µ1]),

= 3+ (2−m) + 3+ (2+2m) = 10+m. (55b)

and similarly for the other facets of ∆Fm
.

This now allows us to calculate the number of interior points in the codimension one faces
of ∆Fm

using (53).

Θ2,Θ3: From (55) and (53), l∗(Θ2) = l∗(Θ3) = 2+m.
Θ4,Θ5: From Figure 5 we read off d(Θ4) = 9 = d(Θ5) and c(Θ4) = 9 = c(Θ5), which gives

l∗(Θ4) = l∗(Θ5) = 1.
Θ1: From Figure 5 we read off d(Θ1) = 3(2−m)2 as well as c(Θ1) = 2

�

3+(2−m)
�

= 10−2m,
which gives l∗(Θ1) = 2− 2m.

Putting these together, we find:
∑

codim(θ )=1
θ⊂∆Fm

l∗(θ ) =
�

2 ·(2+m) + 2 ·1+ (2−2m)
�

= 8. (56)

and thus dim(Aut(Fm)) = 4+ 8= 12, independent of m.
It remains to find l(∆Fm

), the effective number of integral points in∆Fm
= (∆?Fm

)Ï, which

23The notation Θ = [θ1, · · · ,θk] is intended as a generalization of an edge: the faces θ1, · · · ,θk delimit Θ and
are in its boundary. For example, Θ = [µ1, · · · ,µρ] states that “the vertices µ1, · · · ,µρ span (and delimit) the face

23

https://scipost.org
https://scipost.org/SciPostPhys.4.2.009


SciPost Phys. 4, 009 (2018)

Θ4

µ1

µ4

µ6

Θ5

µ2

µ3

µ5

Θ1
µ4

µ3

µ6

µ5

Figure 5: The oriented facets Θ4, Θ5 and Θ1

∆F0

∆F1
∆F2

∆F3

∆F4

∆F5

Figure 6: The complete Newton polytopes of the first six Hirzebruch 3-folds; see text

turns out to be m-independent and totals 30 (see Figure 6). To see this, we can proceed in
two ways:

Rewrite l(∆Fm
) by summing over all faces as follows:

l(∆Fm
) = 1+

∑

codim(θ )=1
θ⊂∆Fm

l∗(θ ) +
∑

codim(θ )=2
θ⊂∆Fm

l∗(θ ) + N0, (57)

where N0 = 6 is the number of vertices in ∆Fm
. By analyzing the Newton polytopes

Θ”. The last step of Construction 3.1 relies on the inclusion-reversing nature of all duality relations, so that: (1) if
Θ = θ1∩· · ·∩θk thenΘÏ = [θÏ1 , · · · ,θÏk ], i.e., θÏ1 , · · · ,θÏk delimitΘÏ; (2) ifΘ = [θ1, · · · ,θk] thenΘÏ = θÏ1 ∩· · ·∩θ

Ï
k .

Since VEX polytopes need not be convex, neither are their faces to be assumed convex, so that “to be spanned by”
is not synonymous to “a convex linear combination.”
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∆F0
, · · · ,∆F5

in Figure 6 we find that

∑

codim(θ )=2
θ⊂∆Fm

l∗(θ ) = 1+2m+ 6 · 2+ 2(1−m) = 15. (58)

Thus, it follows that the effective number of points in the (complete) Newton polytope is

l(∆Fm
) = 1+8+15+6= 30. (59)

Alternatively, we can simply count the number of points in ∆Fm
:

1. The “standard part of∆Fm
↔ H0(Fm,K ∗) has24 30+ϑm

3 ·4(m−3) integral points. This
is in perfect agreement with the result of standard homological algebra [5, Eq. (A.28)].

2. The m ¾ 3 extensions (Θ1, the red (dark-shaded) quadrangles in Figure 6) consist of
two parts:

(a) The top and bottom edge ofΘ1 areΘ1∩Θ4 andΘ1∩Θ5, respectively. Those integral
points count positively as belonging to Θ4,Θ5, but negatively as belonging to the
negative-degree Θ1, and so cancel out.

(b) The outlined 4(m−3) integral points within the (negative-degree) Θ1, including
the ones on the side that are shared with the flip-oriented edge of the self-crossing
Θ2 and Θ3.

These latter 4(m−3) integral points contribute negatively and precisely cancel the excess
integral points in the rising tip of the standard part of ∆Fm

.

The net result is that the oriented Newton polytope ∆Fm
:= (∆?Fm

)Ï encodes an effective

number of 30 elements of H0(Fm,K ∗). Summarizing the calculation, the contributions from
the growing “tip” of the positively oriented portion of the Newton polytope and the growing
negatively oriented extension cancel in just the same way also for Calabi-Yau hypersurfaces in
Hirzebruch 2- and 4-folds [24]. Thus, the number of toric deformations is

�

l(∆Fm
)− 4−

5
∑

ρ=1

l∗(Θρ)
�

=
�

30− 4− 8
�

= 18. (60)

Correction term: Finally, the “correction term,”
∑

θ l∗(θ ) l∗(θ ∗) ranging over codimension-
2 faces θ ⊂ ∆Fm

, identically vanishes. To see this, note that θ ∗ are edges in the spanning
polytope ∆?Fm

, all of which have positive unit degree, and no internal points by (51); with all
l∗(θ ∗) = 0, the sum vanishes.

Putting (50), (60) and zero for the third, “correction” term in (48), we obtain:

h1,1(K3 ⊂Fm) = 2+ 18+ 0= 20, (61)

as expected for a K3 surface.

B.2 Calabi-Yau three-folds

We now turn to calculating the degrees of the various faces in the pair of polytopes (∆Fm
,∆?Fm

),
for m≥ 3.

24The symbol ϑ y
x := 1 if x ¶ y and ϑ y

x := 0 if x > y is the usual step-function.
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dimθ ,θ ∗ = 1: The edges θ ∗ = θÏ in the spanning polytope ∆?Fm
all have unit length so unit

degree, d(θ ∗) = 1. Turning next to the edges θ in the Newton polytope ∆Fm
we have:

1. one “vertical” edge, [(−1,−1,−1,−1), (−1,−1,−1, 1+3m)], of degree d(θ )=2+3m;
2. three “horizontal” edges of degree d(θ ) = 4 each, from (−1,−1,−1,−1) to one of

extension, top : (3,−1,−1,−1), (−1,3,−1,−1), (−1,−1,3,−1); (62)

3. three “slanted” edges of degree d(θ ) = 4 each, from (−1,−1,−1,1+3m) to one of

extension, bottom : (3,−1,−1, 1−m), (−1,3,−1,1−m), (−1,−1,3, 1−m). (63)

4. In the extension part of the Newton polyhedron we have two sets of three “horizontal”
edges, connecting two of three vertices on the top (62), and two of the three vertices on
the bottom (63), each edge of degree d(θ ) = 4.

5. Finally, there are the three “vertical” negative-degree edges, each of which connects
one of the three top vertices (62) to the corresponding one of the three bottom ver-
tices (63). Each of these “vertical” edges is of length (m−2), but has negative degree
d(θ ) = −(m−2), as they manifestly extend in the direction opposite of the corresponding
edges in the (convex) Newton polytope when m¶ 2.

dimθ ,θ ∗ = 2: The faces θ ∗ = θÏ in the spanning polytope ∆?F3
all have nominal area and

so unit degree, d(θ ∗) = 1. In order to asses θ ⊂∆F3
in the Newton polytope, we proceed in a

manner similar to the analysis of the 2-faces for K3:

1. There are three large “vertical” and flip-folded (self-crossing) quadrangular faces θ ⊂∆F3

(analogous to Θ2,Θ3 ⊂∆F3
in Figure 3):

[(−1,−1,−1,−1), (−1,−1,−1, 1+3m), (3,−1,−1, 1−m), (3,−1,−1,−1)], (64a)

[(−1,−1,−1,−1), (−1,−1,−1, 1+3m), (−1, 3,−1, 1−m), (−1,3,−1,−1)], (64b)

[(−1,−1,−1,−1), (−1,−1,−1, 1+3m), (−1,−1, 3,1−m), (−1,−1,3,−1)]. (64c)

The area of each of these three flip-folded (self-crossing) faces has two contributions
in analogy with the similar calculation for the degree in the n = 3 case (see Figure 4),
and is d(θ ) = (2+3m)·4+(2−m)·4 = 8(2+m). The circumference is similarly given by
c(θ ) = 4+(2−m)+4+(2+3m)=2(6+m), since the degree of the vertical edge is (2−m)
and thus 1

2(d(θ )− c(θ )) = 2+ 3m.
2. Next, we have three “horizontal” faces (analogous to Θ4 in Figure 3):

[(−1,−1,−1,−1), (3,−1,−1,−1), (−1, 3,−1,−1)], (65a)

[(−1,−1,−1,−1), (3,−1,−1,−1), (−1,−1,3,−1)], (65b)

[(−1,−1,−1,−1), (−1,3,−1,−1), (−1,−1,3,−1)], (65c)

and three “slanted” faces (analogous to Θ5 in Figure 3):

[(−1,−1,−1, 1+3m), (3,−1,−1,1−m), (−1,3,−1,1−m)], (66a)

[(−1,−1,−1, 1+3m), (3,−1,−1,1−m), (−1,−1,3, 1−m)], (66b)

[(−1,−1,−1, 1+3m), (−1,3,−1,1−m), (−1,−1,3, 1−m)]. (66c)

They are all simplices with the degree d(θ ) = 4·4 = 16 since they have height four
and base four. Since each of the edges in the above faces have degree 4, it immediately
follows that c(θ ) = 3·4= 12, and so 1

2(d(θ )− c(θ )) = 2.
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3. Finally, the extension of the Newton polytope (analogous to Θ1 in Figure 3) is now a
3-sided prism. This has two triangular faces which contribute with positive degree:

[(3,−1,−1,−1), (−1,3,−1,−1), (−1,−1,3,−1)]top (67a)

and [(3,−1,−1,1−m), (−1,3,−1,1−m), (−1,−1, 3,1−m)]bottom, (67b)

each having degree d(θ ) = 16 and circumference c(θ ) = 12, with 1
2(d(θ )− c(θ )) = 2,

as in the previous case. The three vertical rectangular walls of the 3-sided prism

[(3,−1,−1,−1), (−1, 3,−1,−1), (−1, 3,−1, 1−m), (3,−1,−1,1−m)], (68a)

[(3,−1,−1,−1), (−1,−1,3,−1), (−1,−1, 3,1−m), (3,−1,−1,1−m)], (68b)

[(−1,3,−1,−1), (−1,−1,3,−1), (−1,−1, 3,1−m), (−1,3,−1,1−m)], (68c)

have negative degrees, each equal to d(θ ) = (2·(1−m)·4) = −8(m−2). They generalize
the two vertical edges [µ4,µ3] and [µ6,µ5] in the (n=3)-dimensional case depicted in
Figure 3. Similarly, the circumference is then given by c(θ ) = 2·4+2·(2−m) = 2(6−m).
Thus, we have that 1

2(d(θ )− c(θ )) = 2− 3m

With the degrees for the 1- and 2-faces calculated, we first compute the Euler number. The
contribution from the edges θ ⊂∆F3

and their polar 2-faces θ ∗ ⊂∆?Fm
becomes

∑

dimθ=1

d(θ ) d(θ ∗) = 1·(3m+2) + 3·(4) + 3·(4) + 2·3·(4) + 3·[−(m−2)] = 56, (69)

while that of the 2-faces θ ⊂∆F3
and their polar edge θ ∗ ⊂∆?F3

is similarly given by

∑

dimθ=2

d(θ ) d(θ ∗) = 3·[8·(2+m)] + 3·2·(16) + 2·(16) + 3·[−8·(m−2)] = 224. (70)

Thus, we find that χ = 56−224= −168 in agreement with the gCICY result [1,5].
Next, we turn to the Hodge numbers, h1,1 and h2,1, respectively. For n = 4, there are

N ∗0 = 6 vertices in ∆?Fm
and N0 = 8 vertices in ∆Fm

. Thus, from our calculation of the degrees
above we find

∑

dimθ=1

d(θ ) +
∑

dimθ ∗=1

d(θ ∗) = 1·(3m+2) + 12 · 4+ 3·(2−m) + 14 · 1= 70; (71)

N ∗0−N ∗1+
1
2

∑

dimθ=2

�

d(θ )− c(θ )
�

d(θ ∗) = 6−14+ 1
2

�

(−2)56
�

= −64; (72)

N0−N1+
1
2

∑

dimθ=2

�

d(θ )− c(θ )
�

d(θ ∗) = 8−16+3(2+3m) + 6 · 2+ 2 · 2+3(2−3m) = 20. (73)

Thus, it then follows from (40) and (39) that h1,1 = 70−4−64= 2 and h2,1 = 70−4+20= 86,
again in agreement with the gCICY result [1,5].

As a further check, we can also calculate h2,1 in the following way. Consider the Newton
polytope for Fm, as discussed in Section 4.2. Excluding the z = (1−m) and z = −1 trian-
gles (where the extension intersects with positively oriented ordinary facets), this contains
15(m−3) integral points within the negatively oriented extension. In turn, it is straightfor-
ward to show by explicit counting that the positively oriented portion of the Newton polytope
has 105+ ϑm

3 15(m−3) integral points. These two m-dependent contributions therefore iden-
tically cancel for all m.

In turn, the corner edges of the extension,
�

(3,−1,−1, z), (−1,3,−1, z), (−1,−1,3, z), with (1−m)¶ z ¶ −1
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contain 3(m−1) points where the negatively oriented extension intersects with flip-folded (self-
crossing) facets at the portions where those other facets are themselves negatively oriented.
Owing to this double negative, these points count as deformations of the complex structure of
Fm itself, and are being canceled precisely by the surplus reparametrizations [5]. This renders
the Hirzebruch 4-folds effectively rigid.

We thus remain with the effective number of 105 anticanonical sections, 18 reparametriza-
tions and one overall scaling of the equation defining the hypersurface, producing the expected
result: 105− 18− 1= 86= h2,1(Ym) for the Calabi-Yau 3-fold Ym ⊂ Fm [5].
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