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Abstract

We use the coordinate Bethe ansatz to study the Lieb–Liniger model of a one-dimensional
gas of bosons on a finite-sized ring interacting via an attractive delta-function potential.
We calculate zero-temperature correlation functions for seven particles in the vicinity of
the crossover to a localized solitonic state and study the dynamics of a system of four
particles quenched to attractive interactions from the ideal-gas ground state. We deter-
mine the time evolution of correlation functions, as well as their temporal averages, and
discuss the role of bound states in shaping the postquench correlations and relaxation
dynamics.
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1 Introduction

The near-perfect isolation and exquisite control possible for many experimental parameters in
ultra-cold atomic gases has enabled the study of nonequilibrium dynamics of closed many-body
quantum systems [1]. A number of different trapping geometries have led to the realization
of quasi-one-dimensional systems [2–17] that are well described by the paradigmatic exactly
solvable Lieb–Liniger model of pointlike interacting bosons [18–20]. As this model is inte-
grable, the various forms of the Bethe ansatz provide powerful methodologies with which to
investigate the physics it describes [18, 19, 21–24].

One of the simplest methods of taking a quantum system out of equilibrium is to effect an
instantaneous change of a parameter in its Hamiltonian — a so-called quantum quench. Sev-
eral authors have considered the nonequilibrium dynamics of repulsively interacting systems,
where one particularly well-studied scenario is an interaction quench starting from the zero-
temperature ideal gas [25–34]. Here we study quantum quenches in which a one-dimensional
Bose gas, initially prepared in its noninteracting ground state, is subjected to the abrupt intro-
duction of attractive interparticle interactions [35, 36].

The ground-state wave function for the attractive one-dimensional (1D) Bose gas on the
infinite line with finite particle number N was constructed by McGuire [37] and consists of a
single bound state of all the particles. For systems with finite spatial extent, the coordinate
Bethe ansatz provides solutions in terms of quasi-momenta (or rapidities), which for attractive
interactions are in general complex-valued. Ground-state solutions on a finite ring were found
numerically in Refs. [38, 39].

Since the energy of the ground state is proportional to−N3, where N is the particle number,
a proper thermodynamic limit with N , L→∞ and fixed density n = N/L does not exist [18,
23, 40]. However, the limit N , L →∞ with N3/L = const is well defined, and was recently
analysed in Ref. [41]. The zero-density limit L → ∞, N = const is also well defined and
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nontrivial for attractive interactions. In this limit, some correlation functions are accessible
with the algebraic Bethe ansatz [42, 43].

An alternative large-system limit is given by N → ∞ in a finite ring of circumference
L. In particular, in the Bogoliubov limit c → 0, N →∞, cN = const, where c is the inter-
action strength, a mean-field Gross–Pitaevskii description of the finite-circumference system
predicts the appearance of a localized bright-soliton state beyond some threshold interaction
strength [44, 45]. This has been interpreted as evidence for spontaneous breaking of trans-
lational symmetry in the infinite-N , finite-L limit [44, 46, 47]. However, Bogoliubov theory
predicts a diverging quantum depletion in the vicinity of the threshold interaction strength,
invalidating the mean-field description in this regime [44].

A many-body analysis for finite N reveals a smooth crossover between a uniform conden-
sate and a state with solitonic correlations, as expected in a finite system [44, 46, 48, 49].
Such an analysis also indicates that the gap at the crossover point vanishes as N−1/3 [44]. The
Bogoliubov-theory prediction of a vanishing gap at the crossover point in the semiclassical
limit N →∞ is thus regained. The crossover to the correlated state has therefore been inter-
preted [44] as a kind of effective quantum phase transition in the finite-L system, though it
should be stressed that the crossover in a system of finite particle number N cannot be consid-
ered a finite-size precursor of a true quantum phase transition, as no proper thermodynamic
limit exists.

In a full many-body quantum-mechanical treatment, energy eigenstates on the localized
side of the crossover respect the symmetry of the Hamiltonian, but may contain solitonic struc-
ture in (pair) correlations. Localized bright solitons can thus be constructed from superpo-
sitions of certain exact many-body wave functions [50–52], which are given by the Bethe
ansatz [18, 19, 37]. An integral equation for the density of Bethe rapidities of the ground
state for particle number N →∞, valid across the crossover, has recently been derived and
signatures of the crossover were observed in this density [47]. Bright-soliton-like structures
have also been observed experimentally in elongated quantum-gas samples [53–59].

A particular nonequilibrium scenario for the attractive 1D Bose gas was proposed in
Refs. [60, 61] and subsequently realized experimentally in Ref. [7]. In the latter work the sys-
tem was prepared near the ground state at strong repulsive interactions, before the interactions
were suddenly switched to strongly attractive using a confinement-induced resonance [20]. In
doing so a metastable state was created: the so-called super-Tonks gas [60–64]. This highly
excited state of the attractive gas has a “fermionized” character [62] that both stabilizes it
against decay via recombination losses and implies a large overlap with the Tonks–Girardeau-
like prequench state, leading to efficient state preparation via the interaction quench [63, 64].
This comparatively tractable regime also allows for a Luttinger-liquid description [65], as well
as numerical studies with algebraic Bethe-ansatz [65] and tensor-network methods [66]. Local
correlations in the super-Tonks regime can be obtained via an identification of the Lieb–Liniger
gas with a particular nonrelativistic limit of the sinh-Gordon model [67], as well as by combin-
ing the equation of state of the super-Tonks gas with the Hellmann–Feynman theorem [63].

There are fewer results available for more general quench scenarios of the one-dimensional
Bose gas involving attractive interparticle interactions. References [68, 69] introduced a Bethe-
ansatz method, based on the Yudson contour-integral representation [70], for calculations of
nonequilibrium correlation functions in systems of a few repulsively or attractively interact-
ing particles in the infinite-volume limit. Recently, the local second-order correlation func-
tion in the relaxed state following a quench from the ideal-gas ground state to attractive
interactions was determined in the thermodynamic limit1 [35, 36] using the quench-action
method [71, 72].

1The quench from the ideal gas to attractive interactions leaves the system with a finite energy per unit length
and the thermodynamic limit is therefore well defined in this case [35, 36].
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In Refs. [32, 33] we developed a methodology for the calculation of equilibrium and
nonequilibrium correlation functions of the repulsively interacting Lieb–Liniger gas based on
the semi-analytical evaluation of matrix elements between the eigenstates of the Lieb–Liniger
Hamiltonian given by the coordinate Bethe ansatz. Here we extend this approach to the at-
tractively interacting gas, for which the Bethe rapidities that characterize the eigenstates are in
general complex-valued, indicating the presence of multiparticle bound states. We apply our
method to calculate results for the time evolution of correlation functions following a quench
to attractive interactions from the ideal-gas ground state, for a system of four particles. As
in our previous studies of quenches to repulsive interactions [32, 33], we find that finite-size
effects are significant for quenches to weak final interaction strengths. For strong final inter-
action strengths our results for the time-averaged local second-order correlation function are
consistent with the stationary values in the thermodynamic limit calculated in Refs. [35, 36].
In contrast to that work, however, our approach allows us to also calculate the time-averaged
value of the postquench third-order correlation function, which we find to be dramatically
enhanced over the ideal-gas value, implying that three-body recombination losses would be
significant in experimental realizations of the quench. Our approach also allows us to calcu-
late the dynamical evolution of correlation functions following the quench, and for a quench
to strong attractive interactions we observe behaviour similar to that following a quench to
repulsive interactions of the same magnitude, superposed with characteristic contributions of
bound states at small interparticle separations.

This paper is organised as follows. We provide a brief summary of the Lieb–Liniger model in
Sec. 2. We also discuss the complications that arise in numerically solving the Bethe equations
due to the appearance of complex Bethe rapidities, and explain how we manage these. In
Sec. 3, we calculate ground-state correlation functions for up to seven particles in the vicinity
of the mean-field crossover point where solitonic correlations emerge. We also present results
for the ground state of four particles subject to strongly attractive interactions. In Sec. 4,
we compute representative nonequilibrium correlation functions following quenches of the
interaction strength from zero to attractive values for up to four particles. We discuss quenches
to the weakly interacting regime in the vicinity of the mean-field crossover, as well as those to
the more strongly interacting regime. We also compare the nonequilibrium dynamics to that
following an interaction quench to repulsive interactions of the same magnitude. In Sec. 5 we
present results for time-averaged correlation functions, before concluding in Sec. 6.

2 Methodology

2.1 Lieb–Liniger model

The Lieb–Liniger model [18, 19] describes a system of N indistinguishable bosons subject to
a delta-function interaction potential in a one-dimensional geometry. The Hamiltonian is

Ĥ = −
N
∑

i=1

∂ 2

∂ x2
i

+ 2c
N
∑

i< j

δ(x i − x j), (1)

where c is the interaction strength, and we have set ħh= 1 and the particle mass m= 1/2. The
interactions are attractive for c < 0, and repulsive for c > 0. The eigenstates of Hamiltonian (1)
in the ordered spatial permutation sector Rp (x1 ≤ x2 ≤ · · · ≤ xN ) are given by the coordinate
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Bethe ansatz in the form [22]

ζ{λ j}({x i})≡ 〈{x i}|{λ j}〉

= A{λ j}

∑

σ

(−1)[σ] a(σ) exp
�

i
N
∑

m=1

xmλσ(m)

�

, (2)

where the sum runs over all permutationsσ = {σ(1),σ(2), · · · ,σ(N)} of {1, 2, · · · , N}, (−1)[σ]

denotes the sign of the permutation, and the scattering factors are

a(σ) =
∏

k>l

�

λσ(k) −λσ(l) − ic
�

. (3)

The quantities λ j are termed the rapidities, or quasimomenta of the Bethe-ansatz wave func-
tion. The normalization constant A{λ j} is given by [22]

A{λ j} =
�

N ! det{M{λ j}}
∏

k>l

[(λk −λl)
2 + c2]

�−1/2
, (4)

where M{λ j} is the N × N matrix with elements

[M{λ j}]kl = δkl

�

L +
N
∑

m=1

2c
c2 + (λk −λm)2

�

−
2c

c2 + (λk −λl)2
. (5)

Imposing periodic boundary conditions leads to a set of N equations for the N rapidities,
the so-called Bethe equations

ei Lλ j =
∏

l 6= j

(λ j −λl) + ic

(λ j −λl)− ic
, (6)

where L is the length of the periodic geometry. The rapidities determine the total momentum
P =

∑N
j=1λ j and energy E =

∑N
j=1λ

2
j of the system in each eigenstate. The ground state of

the system for attractive interactions is an N -body bound state (the finite-system analogue of
the McGuire cluster state [37]) and has purely imaginary rapidities [38, 39]. All eigenstates
corresponding to bound states have some Bethe rapidities with imaginary components. This
is in contrast to the repulsively interacting system (c > 0), for which the solutions {λ j} to the
Bethe equations (6) are purely real. These are usually parameterized by a set of quantum num-
bers {m j}, which for c→ +∞ are proportional to {λ j}, see e.g. Ref. [22]. For the attractively
interacting gas, it is more convenient to enumerate the solutions of the Bethe equations (6) by
their corresponding N ideal-gas (i.e., c = 0) quantum numbers {n j}, where k j = 2πn j/L are
the quantized free single-particle momenta in the finite ring and n j is an integer [39].2 In this
paper, in which we consider ground-state correlations and quenches from the ideal-gas ground
state, we only need to consider eigenstates that are parity invariant, i.e., those for which we
can order the n j such that n j = −nN+1− j for j ∈ [1, N]. Thus, we can label all eigenstates
by bN/2c quantum numbers {n j}, where b. . . c is the floor function. By convention we choose
these numbers to be the nonnegative values {n j}, which we regard as sorted in descending
order (for odd N , n(N+1)/2 = 0).

Our results depend explicitly on the number of particles N in our system, though the extent
L of our periodic geometry, and consequently the density n ≡ N/L of the gas, is arbitrary.

2The energy of an eigenstate with {n j} for c→ 0− connects to the energy of the eigenstate with {m(0)j + n j} for

c→ 0+. Here, {m(0)j } are the quantum numbers of the “Fermi-sea” ground state for c > 0. In the remainder of this

article, we will label states of the repulsive gas by their reduced quantum numbers {n j} ≡ {m j −m(0)j }.
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We follow Refs. [18, 19] in absorbing the density into the dimensionless interaction-strength
parameter γ= c/n. Our finite-sized system is then identified by the specification of both γ and
N . The Fermi momentum kF = (2π/L)(N−1)/2, which is the magnitude of the largest rapidity
in the ground state in the Tonks–Girardeau limit of infinitely strong repulsive interactions [22],
is a convenient unit of inverse length and so we specify lengths in units of k−1

F , energies in units
of k2

F , and times in units of k−2
F .

2.2 Correlation functions

The static and dynamic behaviour of the Lieb–Liniger gas can be characterized by the normal-
ized mth-order correlation functions

g(m)(x1, . . . , xm, x ′1, . . . , x ′m; t)≡




Ψ̂†(x1) · · · Ψ̂†(xm)Ψ̂(x ′1) · · · Ψ̂(x
′
m)
�

�

〈n̂(x1)〉 · · · 〈n̂(xm)〉〈n̂(x ′1)〉 · · · 〈n̂(x ′m)〉
�1/2

, (7)

where Ψ̂(†)(x) is the annihilation (creation) operator for the Bose field, n̂(x) ≡ Ψ̂†(x)Ψ̂(x)
is the particle-density operator, and 〈· · · 〉 ≡ Tr{ρ̂(t) · · · } denotes an expectation value with
respect to a Schrödinger-picture density matrix ρ̂(t). Due to the translational invariance of
the system the density is constant [i.e., 〈n̂(x)〉 ≡ n] and the correlation functions are invariant
under global coordinate shifts x → x+d. Without loss of generality, we therefore set one of the
spatial coordinates to zero and focus on the first-order correlation function g(1)(x)≡ g(1)(0, x),
the second-order correlation function g(2)(x) ≡ g(2)(0, x , x , 0), and the local third-order cor-
relation g(3)(0)≡ 〈[Ψ̂†(0)]3[Ψ̂(0)]3〉/n3. We also consider the momentum distribution

en(k) = n

∫ L

0

d x e−ikx g(1)(x), (8)

which we evaluate at the discrete momenta k j .
For a system in a pure state |ψ(t)〉, Eq. (7) reads

g(m)(x1, . . . , xm, x ′1, . . . , x ′m; t) =
1

nm
〈ψ(t)|Ψ̂†(x1) · · · Ψ̂†(xm)Ψ̂(x

′
1) · · · Ψ̂(x

′
m)|ψ(t)〉,

= N !

∫ L

0

d xm+1 · · · d xN

nm(N −m)!
ψ∗(x1, . . . , xm, xm+1, . . . , xN , t)ψ(x ′1, . . . , x ′m, xm+1, . . . , xN , t) . (9)

By expressing the wave function ψ({x j}, t) in terms of Lieb–Liniger eigenstates ζ{λ j}({x i})
[Eq. (2)], we can calculate the integrals in Eq. (9) semi-analytically with the methodology of
Ref. [33]. This approach also allows for the evaluation of the overlaps of the initial state with
Lieb–Liniger eigenstates necessary for our nonequilibrium calculations in Sec. 4.3 In Sec. 5, we
consider the relaxed state of the system, as described by the diagonal-ensemble [73] density
matrix ρ̂DE ≡

∑

{λ j}ρ
DE
{λ j}
|{λ j}〉〈{λ j}|, for which Eq. (7) reads

g(m)DE (x1, . . . , xm, x ′1, . . . , x ′m) =
1

nm
Tr{ρ̂DEΨ̂

†(x1) · · · Ψ̂†(xm)Ψ̂(x
′
1) · · · Ψ̂(x

′
m)},

=
1

nm

∑

{λ j}

ρDE
{λ j}
〈{λ j}|Ψ̂†(x1) · · · Ψ̂†(xm)Ψ̂(x

′
1) · · · Ψ̂(x

′
m)|{λ j}〉,

= N !
∑

{λ j}

ρDE
{λ j}

∫ L

0

d xm+1 · · · d xN

nm(N −m)!
ζ∗{λ j}

(x1, . . . , xm, xm+1, . . . , xN )

× ζ{λ j}(x
′
1, . . . , x ′m, xm+1, . . . , xN ) . (10)

3We note that direct evaluation of the normalization constant A{λ j} via Eq. (4) is susceptible to catastrophic
cancellations similar to those discussed in Appendix B. In practice, we therefore obtain the constants A{λ j} by
evaluating the self-overlaps of unnormalized Bethe eigenfunctions using the methodology of Ref. [33].
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2.3 Numerical considerations

For repulsive interactions the solutions to the Bethe equations (6) are characterized by purely
real rapidities {λ j}, and finding these numerically is relatively straightforward — see, e.g.,
Ref. [32]. However, for attractive interactions solutions with complex rapidities are possible,
and the associated Yang-Yang action [21] of the problem is nonconvex (see, e.g., Ref. [43]),
which significantly complicates the root-finding procedure.

To find the rapidities for attractive interactions, we start our root-finding routine close to
γ = 0. Here the rapidities {λ j} are close to the free-particle momenta corresponding to {n j},
and these can be used as an initial guess for a Newton-method root finder. We then decrease γ
in small steps, using linear extrapolation of the previous solutions to form initial guesses for the
rapidities at each new value of γ. We have found that this procedure gives good convergence
of the rapidities to machine precision.

Eigenstates with complex rapidities arrange themselves in so-called string patterns in the
complex plane for large values of |c|L ≡ N |γ|, with deviations from these strings exponentially
small in the system length L [23, 39, 42, 43, 74]. For these states, some of the scattering
factors a(σ) in Eq. (3) become increasingly smaller with increasing |γ|, cancelling the ex-
tremely large exponential factor to give a finite result. Naïve evaluation of the wave function
would therefore lead to numerical inaccuracies due to catastrophic cancellations as soon as
the string deviations shrink to the order of machine precision. This problem can be overcome
by using the Bethe equations (6) to rewrite the problematic factors in a(σ) in terms of ex-
ponentials, thereby rendering the expressions more amenable to numerical calculation, as we
discuss in Appendix B. For N = 4, this enables us to calculate correlation functions for attractive
interaction-strength values γ≥ −40 using standard double-precision floating-point arithmetic,
with the exception of a single eigenstate that we treat with high-precision arithmetic, as we
discuss in Appendix B.3. For larger values of |γ|, the bound states become increasingly local-
ized, leading to factors in Eq. (2) that are too large to be represented with double-precision
floating-point arithmetic. We could in principle treat systems with γ < −40 through extensive
use of high-precision arithmetic, but find that the regime γ ≥ −40 to which we restrict our
analysis reveals many important features of the physics of the attractively interacting system.

3 Ground-state correlation functions

The ground-state correlation functions of the one-dimensional Bose gas with attractive interac-
tions have so far been investigated both using mean-field [44, 45, 75] and beyond-mean-field
methodologies [44, 46, 48, 49, 76]. The corresponding Bose-Hubbard lattice approximation
was considered in Ref. [77]. Systems in the limit L →∞ were studied in Refs. [40, 51, 78–
80], while in Ref. [81] correlation functions for up to N = 4 particles under hard-wall bound-
ary conditions were obtained via the coordinate Bethe ansatz. References [42, 43] used the
algebraic Bethe ansatz to calculate the dynamic structure factor to first order in the string de-
viations under periodic boundary conditions. Piroli and Calabrese recently computed the local
two- and three-body correlations in the limit where the interaction strength goes to zero as
the system size increases at fixed particle density [41].

Here we compute exact correlation functions for a finite system of length L with periodic
boundary conditions and compare them with the predictions of mean-field theory, first for
N = 7 particles in the vicinity of the uniform-density to bright-soliton crossover −0.7≤ γ≤ 0,
before considering more strongly attractive systems of N = 4 particles with −40≤ γ≤ −2.
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Figure 1: Ground-state correlation functions for N = 7 particles and interaction strengths of
γ = −0.1, −0.21, −0.3, −0.5, and −0.7. For comparison, we also plot the mean-field correla-
tion functions for γ = −0.21 (green crosses), γ = −0.3 (blue diamonds), and γ = −0.7 (open
pink triangles). The mean-field critical interaction strength is γcrit ' 0.201. (a) First-order cor-
relation g(1)(x) in the spatial domain. (b) Second-order correlation g(2)(x). The horizontal
line indicates the result for the noninteracting (γ = 0) gas. (c) Momentum distribution en(k).
The black dot-dashed line indicates∝ k−4 scaling. (d) Momentum distribution en(k) for small
momenta on a linear scale. Inset: Single-particle entanglement entropy S for Bethe-ansatz
calculations (black line) and mean-field calculations (grey line).

3.1 Correlations near the crossover

In Fig. 1 we plot the first- and second-order correlation functions of the ground state for N = 7
particles for a range of γ. Figure 1(a) shows the first-order correlation g(1)(x) in the spatial
domain. For γ = −0.1 (red dashed line), the proximity to the noninteracting gas results in a
nearly constant g(1)(x). For more attractive values of γ, g(1)(x) begins to decay towards zero
at larger separations x . For γ = −0.7 (pink dot-dashed line), g(1)(x) comes close to zero for
x = 3πk−1

F , which corresponds to x = L/2 for N = 7. [Due to the periodic nature of our
geometry, g(1)(x) is symmetric around x = L/2, and we therefore only show g(1)(x) up to this
point.]

Mean-field theory predicts a crossover from a uniform mean-field wave function to a lo-
calized bright-soliton state at an interaction strength γcrit = −π2/N2 ' −0.201 [44–47]. In
our exact quantum-mechanical treatment of the translationally invariant (and particle-number
conserving) system, the density is necessarily constant. However, a signature of the bright-
soliton-like state can be found in the first-order correlation function. In the finite-sized system
the crossover is broad, but there is clearly a significant change in g(1)(x) between γ= −0.1 [red
dashed line in Fig. 1(a)] and γ = −0.3 (blue dot-dashed line). In the mean-field description,
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the many-body wave function is approximated by a translationally symmetrized Hartree-Fock
product of single-particle wave functions [79, 80]. In this approximation correlation functions
are comparatively straightforward to compute numerically, see Appendix A for details.

Whereas the mean-field analysis predicts a sharp transition to the localized regime at
the threshold interaction strength, the inclusion of quantum fluctuations leads to a smooth
crossover between the delocalized and localized regimes in a system of finite N [39, 44].
To characterize the breadth of the crossover in our system, we calculate the single-particle
entanglement entropy; i.e., the von Neumann entropy S = −Tr{ρ(1) log(ρ(1))} of the single-
particle density matrix ρ(1)(x , x ′) = ng(1)(x , x ′) [82]. In translationally invariant systems
S = −

∑

j[en(k j)/N] log[en(k j)/N], where the en(k j) are the momentum-mode populations.
In the (symmetrized) mean-field description, the ground state for γ > γcrit is a pure product

state, and hence S = 0. For γ < γcrit, the ground state is a superposition of bright solitons,
and S > 0 [46]. This can indeed be seen in the inset of Fig. 1(d), where we plot the single-
particle entanglement entropy of the exact solution (black line) and of the mean-field solution
(grey line) for N = 7 particles. The mean-field entropy S(γ) exhibits a slope discontinuity at
the crossover point, whereas the von Neumann entropy of the exact ground state (black line)
varies smoothly.

For γ > γcrit the mean-field wave function is uniform, leading to a constant g(1)(x). In
Fig. 1(a) we compare our exact results to the mean-field solution just on the localized side
of the crossover at γ = −0.21 (green crosses), and find that the exact many-body solution
(green dotted line) is slightly more localized. By contrast, for γ = −0.3, i.e., further from
the crossover point, the mean-field solution (blue diamonds) is more localized than the exact
solution (blue dot-dashed line). For γ= −0.7 the mean-field solution (pink triangles) and the
exact g(1)(x) (pink dot-dot-dashed line) are reasonably similar, though the mean-field solution
is again somewhat more localized than the exact solution. We note that this behaviour is
consistent with that of the entanglement entropy [inset to Fig. 1(d)], which is smaller for the
exact solution than for the mean-field approximation for |γ| ¦ 0.23. By contrast, at weaker
interaction strengths finite-size rounding of the crossover yields an entropy for the exact system
larger than the mean-field value.

In Fig. 1(c), we plot the momentum distribution en(k) corresponding to the first-order cor-
relations shown in Fig. 1(a). [For our system en(k j , t) ≡ en(−k j , t) and hence we only plot
positive momenta.] We note that for all interaction strengths we consider here, the exact mo-
mentum distributions exhibit a power-law decay en(k)∝ k−4 at high momenta — the universal
large-momentum behaviour for systems with short-range interactions [83–85]. For the case of
γ= −0.1 (red empty circles), interactions are sufficiently weak that no visible deviation from
this scaling is visible at the smallest nonzero momenta k j resolvable in our finite geometry. By
contrast, for γ= −0.21 (green triangles), less trivial behaviour of the momentum distribution
can be seen, with the lowest nonzero momentum modes deviating visibly from the ∝ k−4

scaling. As |γ| increases, the deviations from this scaling extend to higher momenta, and a
broad hump in the momentum distribution develops. This broadening can be more clearly
seen in Fig. 1(d), where we plot the momentum distribution for low momenta k ≤ 1kF on
a linear scale. For γ = −0.1 (red empty circles), the zero-momentum occupancy is close to
its ideal-gas value of en(k = 0) = N . The zero-momentum mode occupation decreases with
increasing |γ| and much of this population is redistributed to the first few nonzero momentum
modes, resulting in, e.g., a broad distribution en(k) for γ= −0.7 (pink empty squares).

The ground-state mean-field momentum distributions in Fig. 1(c) do not show the∝ k−4

scaling for large k — this feature appears with a first-order Bogoliubov analysis [86]. For an
interaction strength γ= −0.21, i.e., close to the crossover point, the exact en(k) (green dotted
line) and the mean-field solution (green crosses) are clearly different away from k = 0. For
larger attractive values of γ, however, the two momentum distributions start to agree more
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closely. For example, from Figs. 1(c) and 1(d) we observe reasonable agreement between the
exact and mean-field results for the lowest three modes at γ= −0.3 (blue diamonds for mean-
field solution, blue dot-dashed line for exact solution). Even closer agreement is observed
for γ = −0.7, where the lowest six modes of the exact solution (pink dot-dot-dashed line)
agree well with the mean-field solution (pink triangles), before the ∝ k−4 tail of the exact
momentum distribution takes over.

In Fig. 1(b), we plot the second-order correlation g(2)(x) for the same values of γ as before.
For γ= −0.1 (red dashed line), g(2)(x) is close to the ideal-gas value g(2)γ=0(x) = 1−1/N (hor-

izontal grey line). For γ = −0.21 (green dotted line), g(2)(x) is increased over the ideal-gas
value at distances x ® 1.3πk−1

F and correspondingly decreased at larger distances. This be-
haviour is even more pronounced for γ= −0.3 (blue dot-dashed line), and the trend continues
for larger attractive values of γ, for which there is significant bunching of particles. Comparing
the exact results to the mean-field solutions, we again observe a clear difference at γ= −0.21,
where the exact solution (green dotted line) is more localized than the mean-field solution
(green crosses). For γ = −0.3, the exact solution (blue dot-dashed line) has a slightly in-
creased value at zero separation compared to the mean-field solution (blue diamonds), but at
intermediate separations the latter is marginally broader. For γ= −0.7, the local value g(2)(0)
of the exact solution (pink dot-dot-dashed line) is again somewhat larger than the mean-field
value (pink triangles). At separations x ¦ π/4 k−1

F , the mean-field and exact distributions
show good agreement.

3.2 Correlations for strongly interacting systems

In Fig. 2, we plot the first- and second-order correlation functions of the ground state for N = 4
particles and for a larger range of values of the interaction strength −40≤ γ≤ −2. For N = 4,
the mean-field critical interaction strength is γcrit ' −0.617, and all ground states we consider
here are therefore well in the localized regime. Figure 2(a) indicates the first-order corre-
lation function g(1)(x), which shows that the soliton-like state becomes increasingly tightly
localized with increasing |γ|. This can also be observed in momentum space, Fig. 2(c), where
the corresponding momentum distributions en(k) become broader with increasing |γ|. We note
that the momentum distributions for the most strongly interacting systems considered here are
much broader than the “hump” that forms in the ground-state momentum distribution of the
repulsive gas in the strongly interacting Tonks limit, which extends to ' 2kF [33, 87, 88]. For
comparison, we also plot the mean-field correlation functions for γ= −40 in Figs. 2(a) and (c)
(grey diamonds). The mean-field first-order correlation function is similar to that of the ex-
act solution but slightly more localized, and the momentum distribution is correspondingly
somewhat broader than the exact distribution for small values of k. Nevertheless, the two
momentum distributions agree well over a wide range of momenta up to k ' 30kF , where the
universal∝ k−4 scaling of the exact momentum distribution begins.

Figure 2(b) shows the second-order correlation g(2)(x) for separations up to x = π/4 k−1
F

(which corresponds to x = L/12 for N = 4). We again observe that the system becomes more
tightly bound with increasingly attractive interactions. In order to ensure that the form of
the correlation function at moderate separations x is visible in this figure, we have limited the
extent of the y-axis. The maximum value of the second-order correlation function for γ= −40
(solid black line), g(2)(x = 0) = 100, is therefore not shown. The mean-field correlation
function for γ= −40 (grey diamonds) shows good agreement with the exact solution, though
its value at zero separation g(2)MF(x = 0) = 80 (not shown) is reduced compared to that of the
exact solution.

Figure 2(d) shows the local second- and third-order correlations for a wide range of interac-
tion strengths. For small values of |γ|, these correlations are close to their respective ideal-gas
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Figure 2: Ground-state correlation functions for N = 4 particles and interaction strengths
γ = −2, −4, −10, and −40. (a) First-order correlation g(1)(x). (b) Second-order correlation
g(2)(x). The local values for γ = −40, g(2)(0) = 100 and g(2)MF(0) = 80, exceed the shown
range. (c) Momentum distribution en(k j). Grey diamonds in (a)–(c) correspond to the mean-
field solution for γ = −40. (d) Local second- and third-order correlation g(2)(0) and g(3)(0),
respectively, for a range of interaction strengths γ. Black dot-dashed lines indicate power-law
scaling, proportional to −γ (lower line) and γ2 (upper line).

values, g(2)(0) = 1 − 1/N = 0.75 and g(3)(0) = N(N − 1)(N − 2)N−3 = 0.375 [89]. In the
vicinity of the mean-field crossover point (indicated by the vertical grey line), both g(2)(0) and
g(3)(0) begin to increase significantly with increasing |γ|. For larger values of |γ|, we observe
a linear scaling of the second-order correlation g(2)(0)∝ −γ and a quadratic scaling of the
third-order correlation g(3)(0)∝ γ2, both of which we indicate by black dot-dashed lines in
Fig. 2(d). The former scaling can be understood by noting that the McGuire cluster energy
scales as EG ∝−n2γ2 [37], and that g(2)γ (0) = n−2N−1dEG(γ)/dγ [90].

In summary, the exact finite-system correlation functions show behaviour consistent with a
broad crossover around the mean-field critical value. At stronger interactions, our exact results
for small atom numbers are in close agreement with the predictions of mean-field theory.

4 Dynamics following an interaction quench

In this section we investigate the nonequilibrium evolution of the attractively interacting Lieb–
Liniger gas following an interaction quench for N = 4 particles at time t = 0. Initially the
system is prepared in the ideal-gas ground state, for which the wave function is constant in
space, ψ0({x i}) = 〈{x i}|ψ0〉 = L−N/2. Formally, the state of the system at time t > 0 is given

11

https://scipost.org
https://scipost.org/SciPostPhys.4.2.011


SciPost Phys. 4, 011 (2018)

by

|ψ(t)〉=
∑

{λ j}

C{λ j} e−iE{λ j } t |{λ j}〉 , (11)

where the C{λ j} ≡ 〈{λ j}|ψ0〉 are the overlaps of the initial state with the Lieb–Liniger eigen-
states |{λ j}〉 at the postquench interaction strength γ, and the E{λ j} are the corresponding en-
ergies. The evolution of equal-time correlation functions (Sec. 2.2) is calculated by noting that
the time evolution of the expectation value of an arbitrary operator Ô in the time-dependent
state |ψ(t)〉 is given by

〈Ô(t)〉 ≡ 〈ψ(t)|Ô|ψ(t)〉

=
∑

{λ j}

∑

{λ′j}

C∗{λ′j}
C{λ j}

e
i(E{λ′j }

−E{λ j}
)t
〈{λ′j}|Ô|{λ j}〉. (12)

The matrix elements 〈{λ′j}|Ô|{λ j}〉 and overlaps C{λ j} are calculated with the method de-
scribed in Ref. [33].

Numerically it is necessary to truncate the infinite sum in Eq. (12), and our truncation
procedure is analogous to that described in Appendix A of Ref. [32]: we include all eigenstates
for which the populations |C{λ j}|

2 are larger than some threshold value, thereby minimizing

the normalization sum-rule violation ∆N = 1−
∑

{λ j} |C{λ j}|
2 for the corresponding basis size.

For calculations of en(k j , t) and g(2)(x , t) for interaction-strength quenches to γ = −40 we
use a cutoff |C{λ j}|

2 ≥ 10−8, leading to a sum-rule violation of ∆N = 9 × 10−6. All other

correlation functions are calculated with a more stringent cutoff |C{λ j}|
2 ≥ 10−10, and the

sum-rule violations are correspondingly smaller. We have checked that increasing the cutoff
does not visibly alter any of our results.

4.1 Influence of bound states following a quench

Before investigating the detailed nonequilibrium dynamics of the Lieb–Liniger gas following a
quench to attractive interactions, we first consider the populations |C{λ j}|

2 of the eigenstates of
the postquench Hamiltonian, which are constant at all times t > 0 [cf. Eq. (11)]. Comparing
these populations to those resulting from quenches to repulsive interactions helps provide
an understanding of the contribution of bound states to the nonequilibrium dynamics in the
attractive case.

In Fig. 3 we plot the populations |C{λ j}|
2 of several representative Lieb–Liniger eigenstates

following quenches of the interaction strength from zero to a wide range of final interaction
strengths γ. [Recall from Sec. 2.1 that for N = 4 there are two independent n j to be specified,
which we indicate by the legend in Fig. 3(b).4] For attractive interactions [Fig. 3(a)] several
eigenstates containing bound states have significant populations for small values of |γ| ® 5.
(Note that the number of particles in the bound state can be inferred from the distribution of
the rapidities in the complex plane.) The populations of the ground state {n j} = {0, 0} (red
solid line), which is a four-particle bound state, and the three-particle bound state {n j}= {1,0}
(green dotted line) are dominant for quenches to γ¦ −4. However, their populations decrease
rapidly with increasing absolute interaction strength beyond |γ|= 4.

At intermediate interaction strengths γ' −5, two-body bound states start to dominate the
populations [e.g., the states with {n j}= {2,0} (blue dot-dashed line) and {n j}= {1,1} (pink
dot-dot-dashed line)]. For increasingly attractive values of γ, the populations of gas-like states

4Note that for repulsive interactions the quantum-number pairs {n j} quoted here refer to the “reduced” quantum
numbers, i.e., the excitation numbers relative to the Fermi-sea ground state (cf. Sec. 2.1).
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Figure 3: Populations |C{λ j}|
2 of the lowest-energy Lieb–Liniger eigenstates for quenches of

the interaction strength from zero to γ and N = 4 particles. (a) Populations for attractive
postquench interaction strengths. All states except those with {n j} = {3, 1}, {4,1}, and {5, 1}
contain bound states (i.e., have some complex rapidities). See the detailed discussion of
bound states in Sec. 4.1, as well as Fig. 4. (b) Populations for repulsive postquench inter-
action strengths for comparison with (a).

with no bound-state component grow [e.g., {n j} = {3,1} (black solid line) and {n j} = {4, 1}
(pink dotted line)]. Indeed, at γ ' −24, the population of the super-Tonks state {n j} = {3, 1}
— the lowest-energy gas-like state at strong interactions — begins to dominate. However, the
two-body bound state with {n j} = {2, 0} (blue dot-dashed line) still has a significant popula-
tion in the strongly interacting regime.5 Consequently, we expect bound states to influence
the dynamical evolution of correlation functions following a quench from the ideal gas to all
attractive interaction strengths that we consider. Comparing the populations of eigenstates for
attractive postquench interactions to those for repulsive interactions, Fig. 3(b), we can see that
there is significantly less structure in the populations of the latter states, which are all gas-like.
We observe that the populations of excited gas-like eigenstates increase monotonically with
increasing |γ| for both repulsive and attractive interactions, whereas the results of Fig. 3(a)
suggest that the populations of the eigenstates containing bound states all eventually decrease
as γ→−∞. We note that although scattering states of the attractive gas connect adiabatically
to states of the repulsive gas in the limit γ → ±∞ [66], the quantum-number labels of the
states differ on either side of the infinite-interaction-strength limit. For example, for N = 4
particles, the super-Tonks state with {n j} = {3,1} connects to the ground state for repulsive

5We note that at γ = −40 this state has an energy of E = −143.9k2
F , which is close to the energy of the two-

particle McGuire cluster state with E = −144.1k2
F [37].
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Figure 4: Comparison of populations of eigenstates in the postquench basis for quenches from
the ideal-gas ground state to γ = −40 (blue crosses) and γ = 40 (red circles) for N = 4 par-
ticles. To display negative energies on a logarithmic scale, we mirror the energy axis around
E{λ j} = 1k2

F , plotting the populations of eigenstates with negative energy on the left and those

with positive energy on the right. (Note that there are no occupied states with |E{λ j}|< 1k2
F .)

Four characteristic bound states with negative energy are labelled with their (ideal-gas) quan-
tum numbers {n j}, and are described further in the main text.

interactions, {n j}= {0,0}.
To better understand the eigenstate contributions to the nonequilibrium dynamics follow-

ing a quench to attractive interactions, we focus on quenches of N = 4 particles from the
ideal-gas ground state to attractive and repulsive interactions with γ= ±40, and plot in Fig. 4
the populations |C{λ j}|

2 of the contributing eigenstates against their energies E{λ j}. We see
that there are additional families of populated states for the attractive gas (sequences of blue
crosses that extend to negative energies) that are not present for the repulsive gas (red circles).
These are due to four different types of contributing bound states, which we now describe.

The first two types of bound states are four-body and three-body bound states, and each
of these types contains only a single populated state. These are, respectively, the ground state
{n j} = {0,0} at E ' −1441k2

F with |C0,0|2 ' 10−5 and the first parity-invariant excited state
{n j} = {1, 0} at E ' −576k2

F with |C1,0|2 ' 3.7× 10−3. We note that the parity invariance of
populated eigenstates for quenches from the initial ideal gas [28] restricts the appearance of
bound states with more than two bound particles to only these two states.

The third type is represented by the eigenstate with {n j} = {2,0}, which has two bound
particles and two free particles, and is the first in a family of similar states {2+l, 0} (l a nonneg-
ative integer) whose populations decrease monotonically with increasing l. The fourth type
is represented by the eigenstate with {n j} = {1,1}, which contains two two-particle bound
states, and is the first in a family with decreasing populations for higher excitations which
alternate between the quantum numbers {1+ l, 1+ l} and {1+ l, l}, with l a positive integer.
For larger l, the two two-body bound states have higher “centre-of-mass” momenta with oppo-
site sign (recall that only eigenstates with total momentum P = 0 have nonzero occupations
following the quench), and for l > 12 the corresponding positive centre-of-mass energy of the
pairs exceeds the sum of their binding energies.

We can see from Fig. 4 that the distributions of populations over gas-like eigenstates are
similar for quenches to γ = ±40, aside from a shift in energy and a small decrease in pop-
ulations for the attractive gas due to the appearance of the additional bound states. In par-

14

https://scipost.org
https://scipost.org/SciPostPhys.4.2.011


SciPost Phys. 4, 011 (2018)

0.5

1

2

3
4
5

10−5 10−4 10−3 10−2 10−1 100 101

(a)

t (units of k−2
F )

g
(2

)
(x

=
0
,t
)

0.3

1

10

20

10−5 10−4 10−3 10−2 10−1 100 101

(b)

t (units of k−2
F )

g
(3

)
(x

=
0
,t
)

γ = −40
γ = −10
γ = −2
γ = −0.5

Figure 5: Time evolution of local correlation functions following quenches of the interaction
strength from zero to γ= −0.5, −2, −10 and −40 for N = 4 particles. (a) Local second-order
correlation g(2)(x = 0, t). (b) Local third-order correlation g(3)(x = 0, t).

ticular, the number of eigenstates with populations |C{λ j}|
2 ≥ 10−10 is 7815 (7462) for the

attractive (repulsive) gas. The shift in energy can be explained by noting that for γ = ±40,
the system is in the strongly interacting regime and the Bethe rapidities of scattering states
(i.e. states with no bound particles) can be obtained by a strong-coupling expansion around
the Tonks–Girardeau limit of infinitely strong interactions (see, e.g., Ref. [91]). This yields
λ j ' (1 − 2/γ)k j , where the k j are the Tonks–Girardeau values, implying opposite energy
shifts in the attractive and repulsive cases.

4.2 Dynamics of local correlations

We now consider the nonequilibrium dynamics following the quench. In Fig. 5(a) we plot the
local second-order correlation g(2)(x = 0, t) for N = 4 particles following a quench from γ= 0
to four representative final interaction strengths. Initially, g(2)(0, t = 0) = 1 − 1/N = 0.75
(cf. Sec. 3.1). For a quench to γ = −0.5 (pink dot-dashed line), g(2)(0, t) shows nearly
monochromatic oscillatory behaviour. This is similar to the behaviour following quenches to
small repulsive interaction strengths analysed in Ref. [32]. Because the difference between the
postquench energy E ≡ 〈ψ(0+)|Ĥ|ψ(0+)〉= (N − 1)n2γ [32, 92] and the ground-state energy
of the system is small compared to the finite-size energy gap to the first (parity-invariant) ex-
cited state, the ensuing dynamics are dominated by these two states, and the energy difference
between them determines the dominant frequency of the oscillations.
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Figure 6: Populations |C{λ j}|
2 of the super-Tonks state {n j} = {3,1} and the dominant two-

body bound state {n j} = {2, 0} (see text) for quenches from the interacting ground state at
γ0 > 0 to γ = −40 for N = 4 particles. The black arrows indicate the populations for the
quench from the ideal-gas ground state.

Quenches to more attractive values of γ show the generic behaviour of an initially ris-
ing g(2)(0, t) that eventually fluctuates about a seemingly well-defined average value. The
frequencies of the oscillations are determined by the energy differences between the Lieb–
Liniger eigenstates with the largest populations. For example, for γ = −40 (solid red line),
the postquench wave function is dominated by the super-Tonks state and the first two-body
bound state, cf. Fig. 3, and the dominant frequency in the oscillations at early times matches
the energy difference between these two eigenstates. At later times, the shape of g(2)(0, t) is
more irregular, but the large oscillations due to the two dominant eigenstates persist.

In Fig. 5(b) we plot the local third-order correlation g(3)(x = 0, t) for N = 4 parti-
cles following a quench from γ = 0 to the same four final interaction strengths. Initially,
g(3)(0, t = 0) = N(N − 1)(N − 2)N−3 = 0.375 (see Sec. 3.2). For small postquench in-
teraction strengths, γ = −0.5 (pink dot-dashed line) and γ = −2 (blue dashed line), the
evolution is qualitatively similar to that of g(2)(x = 0, t) for the same interaction strengths.
For larger attractive values of the postquench interaction strength, on the other hand, the
shape of g(3)(x = 0, t) is more regular compared to g(2)(x = 0, t), reflecting the fact that
only one three-body bound state contributes to the postquench wave function, whereas mul-
tiple states containing bound pairs are present. Indeed for γ = −10 (green dotted line) and
γ = −40 (solid red line), g(3)(0, t) is dominated by a single frequency, given by the energy
difference between the three-body bound state {n j} = {1, 0} and the predominant two-body
bound state {n j} = {2,0}. The initial rise of both g(2)(0, t) and g(3)(0, t) terminates on an
increasingly shorter time scale with increasingly attractive postquench interaction strength.
This time scale corresponds to about half the period of the ensuing oscillations and is propor-
tional to γ−2, corresponding to the scaling of the energy E{λ j}∝−γ

2 of eigenstates containing
bound states [37].

For quenches from the ideal-gas initial state, we find that the population of the bound states
leads to significantly increased values of both g(2)(0, t) and g(3)(0, t) — in stark contrast to
the decay of the same quantities following quenches to repulsive interactions [32] due to the
“fermionization” of the system. Such large values of these local correlation functions would
lead to strong particle losses in experiments [7, 93, 94]. This is in contrast to the observations
in the quench experiments performed in Ref. [7], where the quasi-one-dimensional gas was
quenched from strongly repulsive interactions to strongly attractive interactions, and no sig-
nificant losses were observed. In such a scenario the overlap of the initial strongly repulsive
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ground state with the super-Tonks state is dominant, and the bound states thus acquire only
small populations in the course of the quench [7, 63, 64, 66].

To investigate the influence of the initial state on the populations of the two most dominant
postquench eigenstates (cf. Fig. 3), we find the (correlated) ground state |ψ0〉 of the system at
γ0 > 0 and then compute the populations of the eigenstates following a quench to γ = −40.
In Fig. 6, we plot the populations |C2,0|2 and |C3,1|2 of the aforementioned two-body bound
state and the super-Tonks state, respectively, for a wide range of initial values γ0. Starting in
the strongly interacting regime γ0 = 103, the overlap between the initial (Tonks–Girardeau)
state and the super-Tonks state is close to unity. As γ0 is decreased, the population of the
super-Tonks gas decreases, while the population of the bound state increases. At γ0 ' 1, the
two populations are already near their respective values following a quench from the ideal-gas
initial state (indicated by black arrows on the left-hand side). The results of Fig. 6 suggest that
the postquench values of g(2)(0, t) and g(3)(0, t) would be much smaller for quenches from
initial values of γ0 ¦ 10 compared to those from the noninteracting initial state.

4.3 Dynamics of the momentum distribution

We now turn our attention to the postquench dynamics of the momentum distribution.
Quenches from the ideal-gas ground state with N = 4 particles to three different values of γ
are compared in Fig. 7. In each case we plot the time evolution of the momentum-mode occu-
pations en(k j , t) [cf. Eq. (8)] for the first six nonnegative momentum modes k j ( j = 0,1, . . . , 5).
Initially, all particles occupy the zero-momentum single-particle orbital, en(k j , t = 0) = Nδ j0.
At times t > 0, the interaction quench leads to a redistribution of this population over other
single-particle modes. At early times, all nonzero modes rise with the same rate, independent
of k, due to the local nature of the interaction potential, which corresponds to a momentum-
independent coupling [95]. This applies to all postquench interaction strengths γ, but the time
at which deviations from this behaviour first appear depends on γ.

All quenches show the same generic behaviour — the momentum-mode populations even-
tually level off and fluctuate about a well-defined value. These populations undergo oscil-
lations with frequencies determined by the energy differences between the dominant Lieb–
Liniger eigenstates. For example, for the γ = −40 case of Fig. 7(c) each mode exhibits fast
oscillations at a single frequency given by the energy difference between the super-Tonks state
{n j} = {3, 1} and the two-body bound state {n j} = {2, 0}, superposed with some irregular
envelope function.

In Fig. 8, we compare en(k = 0, t) for quenches from the ideal gas to repulsive and attractive
interaction strengths of the same magnitude. In Fig. 8(a), we plot the time evolution of the
zero-momentum mode occupation en(0, t) for quenches from γ= 0 to γ= −10 (solid red line)
and γ = 10 (blue dashed line). The envelope of en(0, t) for attractive interactions is similar to
the shape of en(0, t) for repulsive interactions. For the quench to attractive interactions, ñ(0, t)
shows large regular oscillations on top of this envelope. This also applies for quenches to
γ= ±40, Fig. 8(b), but the oscillations for quenches to γ= −40 (solid red line) are faster than
for quenches to γ = −10. The correspondence between en(0, t) following a quench to strong
attractive interactions and that following a quench to equally strong repulsive interactions
reflects the fact that the two postquench wave functions are similar in their composition, aside
from the additional presence of two-body bound states for attractive interactions, as illustrated
in Fig. 4.

We also observe a partial revival in en(0, t) for quenches to γ = ±40. This revival is due
to the proximity of the system at γ = 40 to the Tonks–Girardeau limit of infinitely strong in-
teractions, where the spectrum of the repulsive Lieb–Liniger model is identical to that of free
fermions [96]. This also applies to the scattering states of the attractive system. For γ= ±∞,
this would lead to recurrences at integer multiples of trev = 3.5k−2

F [32] due to the commen-
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Figure 7: Time evolution of the momentum occupations en(k j , t) of the first six nonnegative
momentum modes k j ( j = 0,1, . . . , 5) for N = 4 particles and for a quench of the interaction
strength from zero to (a) γ = −2, (b) γ = −10, and (c) γ = −40. Note the different range of
the time axis of (a) compared to that of (b) and (c).

surability of eigenstate energies [97]. However, for the finite interaction strengths considered
here, the revival time is shifted to a later time trev ' 3.9k−2

F for repulsive interactions [32] and
to an earlier time trev ' 3.2k−2

F for attractive interactions, due to the finite-coupling corrections
to the Bethe rapidities discussed in Sec. 4.1.

18

https://scipost.org
https://scipost.org/SciPostPhys.4.2.011


SciPost Phys. 4, 011 (2018)

1

2

3

4

10−2 10−1 100
t (units of k−2

F )

ñ
(0
,t
)

(a)

1

2

3

4

10−2 10−1 100
t (units of k−2

F )

ñ
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Figure 8: Time evolution of the zero-momentum mode occupation en(0, t) for N = 4 particles
and quenches of the interaction strength from zero to attractive and repulsive values of the
same magnitude. (a) Post-quench interaction strengths of γ= −10 (red solid line) and γ= 10
(blue dashed line). (b) Post-quench interaction strengths of γ = −40 (red solid line) and
γ= 40 (blue dashed line).

4.4 Dynamics of nonlocal pair correlations

We now consider the evolution of the full nonlocal second-order correlation g(2)(x , t). In
Fig. 9 we plot the behaviour of this quantity for an interaction quench from zero to γ = −40
for N = 4 particles. Figure 9(a) shows g(2)(x , t) at four representative times t. Initially,
g(2)(x , 0) = 1 − 1/N (horizontal line). At t = 0.01k−2

F (red dashed line), the local value
is already greatly enhanced, g(2)(0, t = 0.01k−2

F ) ' 3.5, cf. Fig. 5(a). [The scale of the
y-axis is chosen so that the long-range features of g(2)(x) are visible, and the large values
for x ® 0.02× (2πk−1

F ) are therefore cut off.] In addition to the central peak, at separations
x ' 0.1× (2πk−1

F ) a secondary peak emerges, while at larger distances g(2)(x) exhibits a de-
caying oscillatory structure. As time progresses, this secondary peak propagates away from
the origin and broadens as can be seen at, e.g. t = 0.1k−2

F (green dotted line) and t = 0.25k−2
F

(blue dot-dashed line).
The build-up of this secondary correlation peak and its propagation through the system

can be more clearly seen in Fig. 9(b), where we plot the time-evolution of g(2)(x , t) up to
t = 0.25k−2

F . The propagation of this peak is consistent with x(t) ∝ t1/2, which was also
observed for quenches from the same initial state to strongly repulsive interactions [29, 32].
(Note that the colour scale is chosen so that the long-range behaviour is visible, and the local
second-order correlation is again not resolved.) Figure 9(c) shows g(2)(x , t) for longer times
up to t = 4 k−2

F . The overall structure on this longer time scale is more complicated, with
several soliton-like correlation dips propagating through the system [32] and a partial revival
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Figure 9: Time evolution of the nonlocal second-order correlation function g(2)(x , t) following
a quench from the ideal-gas ground state to γ= −40 for N = 4 particles. (a) Correlation func-
tion g(2)(x) at four representative times. (b) Evolution of g(2)(x , t) for short times t ≤ 0.25 k−2

F
and (c) longer times t ≤ 4 k−2

F . Note that the colour scale has been chosen so as to preserve
the visibility of long-range features, and thus g(2)(x , t) for x ® 0.02× (2πk−1

F ) is not resolved.
The local value oscillates between g(2)(0, t)' 2 and ' 4, cf. Sec. 4.2.

of g(2)(x , t = 0) at t ' 3.2k−2
F [cf. Figs. 7(c) and 8(b)]. Besides the significantly increased

value at small distances, the behaviour of g(2)(x , t) is strikingly similar to the results obtained
in Ref. [32] for quenches from the same noninteracting ground state to repulsive final inter-
action strengths.

In summary, quenches from the ideal-gas ground state to attractive values of γ result in the
occupation of energy eigenstates containing bound states in addition to the gas-like scatter-
ing states of the attractively interacting model, which are analogous to the eigenstates of the
repulsively interacting Lieb–Liniger gas. As the magnitude |γ| of the final interaction strength
is increased, the postquench occupations of the gas-like excited states approach those of their
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counterparts following a quench to the corresponding repulsive interaction strength, and the
occupations of bound states eventually decrease. However, these bound states significantly
influence the dynamics of postquench correlation functions for all final interaction strengths
we have considered, causing large oscillations in local correlations and in the occupation of
the zero-momentum mode. For large attractive values of γ, bound states are highly localized
and thus influence the second-order correlation function only at small separations, whereas
at larger separations this function exhibits postquench dynamics similar to those observed
following quenches to repulsive interactions [32].

5 Time-averaged correlations

A closed quantum-mechanical system prepared in a pure state will remain in a pure state
for all time. However, for a nondegenerate postquench energy spectrum, as is the case here
(cf. Refs. [32, 33]), the energy eigenstates will dephase, and the time-averaged expectation
value of any operator Ô can be expressed in terms of its diagonal matrix elements between
energy eigenstates,

〈Ô〉DE = lim
τ→∞

1
τ

∫ τ

0

d t 〈ψ(t)|Ô|ψ(t)〉

=
∑

{λ j}

|C{λ j}|
2〈{λ j}|Ô|{λ j}〉. (13)

This quantity can be viewed as the expectation value of Ô in the diagonal-ensemble density
matrix [73]

ρ̂DE =
∑

{λ j}

|C{λ j}|
2|{λ j}〉〈{λ j}| . (14)

We note that in practice the sum in Eq. (14) runs over a finite set of energy eigenstates with
populations |C{λ j}|

2 exceeding some threshold value. If the expectation value of an operator
relaxes at all, it must relax to the corresponding diagonal-ensemble value [98]. Although
expectation values may exhibit rather large fluctuations around their time-averaged values
for system sizes as small as those considered here, in general the relative magnitude of these
fluctuations should decrease with increasing system size and vanish in the thermodynamic
limit. However, establishing this behaviour is beyond the scope of the current work and we
will simply regard the diagonal ensemble defined by Eq. (14) as the ensemble appropriate to
describe the relaxed state of the finite-sized system. In the following we consider the time-
averaged properties of the quenched system.

5.1 Local correlations

In Fig. 10(a), we plot the enhancement of the diagonal-ensemble value g(2)DE (0) of the local

second-order correlation over the initial noninteracting value g(2)γ=0(0) of this function following
an interaction quench from zero to γ for particle numbers N = 2, 3, and 4. For all particle
numbers N considered, as |γ| is increased from the ideal-gas limit, g(2)DE (0) initially increases
rapidly before reaching a local maximum, which occurs at smaller values of |γ| for larger
particle numbers N . For N = 4 particles (solid blue line) this local maximum in g(2)DE (0) occurs
at γ = −1 and coincides with the crossing of the population of the three-particle bound state
{n j} = {1, 0} and that of the ground state [see Fig. 3(a)]. The local minimum of g(2)DE (0) at
γ = −1.5 coincides with the maximum population of this three-particle bound state, and as
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Figure 10: Diagonal-ensemble values of local correlation functions following quenches of the
interaction strength from zero to γ. (a) Enhancement g(2)DE (0)/g(2)γ=0(0) of the local second-
order correlation over the initial ideal-gas value, for quenches to γ for particle numbers
N = 2, 3, and 4. The light grey solid line indicates the quench-action strong-coupling (order-
1/γ3) thermodynamic-limit prediction for the stationary value of g(2)(0) [35, 36]. (b) En-
hancement g(3)DE (0)/g(3)γ=0(0) of the local third-order correlation over the ideal-gas value, for
quenches to γ and particle numbers N = 3 and 4.

soon as the population of this state starts to decrease, g(2)DE (0) begins to increase monotonically
with increasing |γ|.

For large attractive values of γ, the local second-order correlation appears to tend to a
constant value g(2)DE (0)/g(2)γ=0(0) ' 4, which is much larger than the ideal gas and super-Tonks

values [67]. The decrease of g(2)DE (0) with increasing particle number at fixed large |γ| appears
consistent with an approach towards the quench-action thermodynamic-limit strong-coupling
value obtained to third order in 1/γ in Refs. [35, 36], indicated by the solid grey line, as
N →∞.

Using the quench-action approach [71, 72] in the thermodynamic limit, Refs. [35, 36]
found that g(2)DE (0) = 2 for γ→ 0−. Our calculations do not recover this result for small values
of |γ|, as our small system sizes lead to a finite-size gap for excitations and therefore the energy
added by the quench is small in this case. Additionally, eigenstates with more than four bound
particles are trivially absent in our calculations, whereas for small postquench values of |γ|
they contribute significantly in the analysis of Refs. [35, 36]. For larger values of |γ|, however,
states with more than two bound particles are strongly suppressed and we expect our results
to be less influenced by finite-size effects [33].

In Fig. 10(b), we plot the enhancement of the diagonal-ensemble value of the local third-
order correlation g(3)DE (0) over its noninteracting initial value following an interaction quench
from zero to γ for particle numbers N = 3 and 4. The qualitative behaviour is similar to that
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of g(2)DE (0). For strong interactions, g(3)DE (0) also appears to tend to a constant value that is
much larger than the initial value. Whether this result persists for larger atom numbers is an
important open question, given that large values of g(3)(0) lead to strong recombination losses
in experiments with ultracold gases [93, 94].

5.2 Nonlocal correlations

In Fig. 11(a) we plot the momentum distribution enDE(k) in the diagonal ensemble for N = 4
particles and for several postquench interaction strengths γ. At high momenta and for all
interaction strengths γ, enDE(k) exhibits a scaling of enDE(k) ∝ k−4. This behaviour is due
to the universal character of short-range two-body interactions [83–85]. For γ = −0.5 (pink
squares), the functional form of enDE(k) is nearly perfectly given by this∝ k−4 scaling, and only
the three lowest resolvable nonzero momentum modes in our finite periodic system deviate
slightly from it.

For a quench to γ = −2 (blue filled circles), the low-momentum part of enDE(k) starts to
deviate more strongly from the ∝ k−4 scaling, and the distribution seems to get wider at
low momenta. This low-k “hump” broadens with increasing postquench interaction strength.
This behaviour is qualitatively similar to our earlier results for quenches to repulsive values
of γ, where an infrared scaling of enDE(k)∝ k−2 extends to larger values of k with increasing
γ [32], consistent with the dependence of the populations |C{λ j}|

2 on the rapidities {λ j} and
with analytic results for the postquench momentum distribution in the limit of a quench to
infinitely strong repulsive interactions [29]. From the results presented in Fig. 11(a) it is
unclear if the emerging hump in the present case of quenches to attractive interactions is
consistent with∝ k−2 scaling.

In Fig. 11(b), we plot the second-order correlation function g(2)DE (x) in the diagonal ensem-
ble for the same postquench interaction strengths γ as in Fig. 11(a) and compare these to the
initial-state form g(2)(x , t = 0) = 1− 1/N of this function (horizontal line). The first feature
we notice is that for all values of the postquench interaction strength, g(2)DE (x) is increased at
small separations x compared to its initial value [cf. Fig. 10(a)]. For the quench to γ = −0.5
(pink dot-dashed line), g(2)DE (x) decreases monotonically with increasing x . [Due to the pe-
riodic nature of our geometry, correlation functions are symmetric around x = L/2, and we
therefore only show g(2)DE (x) up to this point.] For γ = −2 (blue dashed line), g(2)DE (x) exhibits
a local minimum at a finite separation x ' 0.3 × (2πk−1

F ), before increasing again at larger
separations. This behaviour can also be observed for γ = −10 (green dotted line), where the
minimum in g(2)DE (x) moves to smaller separations x ' 0.1× (2πk−1

F ) and becomes more pro-
nounced. For γ = −40 (solid red line), the minimum is located at x ' 0.03× (2πk−1

F ) and its
magnitude is again decreased compared to the quench to γ= −10. We note that the increase
of g(2)DE (x) for x ¦ 0.6× (2πk−1

F ) is a finite-size effect (cf. Ref. [32]).
In Fig. 11(c), we compare g(2)DE (x) following a quench to γ = −40 (red solid line) to that

following a quench to γ = 40 (black dot-dashed line). The shape of g(2)DE (x) for interpar-
ticle separations x ¦ 0.05 × (2πk−1

F ) is similar for both quenches. The main difference is
in the short-range behaviour, which is significantly influenced by the highly localized bound
states for the quench to attractive interactions. For the quench considered here, the dominant
bound-states are two-particle clusters (cf. Fig. 3). In Fig. 11(c) we plot the matrix element
〈{λ j}| ĝ(2)(x)|{λ j}〉 of the two-body correlation function in the dominant two-body bound state
{n j}= {2, 0} (blue dashed line). For N = 2 particles, the wave function of such a bound state
Ψ(x1, x2)∝ exp(−|x1 − x2|/a1D) = exp(−|x1 − x2|nγ/2) [64], where a1D is the 1D scatter-
ing length [20, 60]. This implies a two-body correlation g(2)(x)∝ |Ψ(0, x)|2 = exp(−xnγ),
which is indeed consistent with the form of g(2)(x) in the state {n j} = {2, 0} at small sep-
arations, whereas at larger separations g(2)(x) in this state tends to a constant finite value,
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Figure 11: Diagonal-ensemble correlation functions for quenches to γ = −0.5, −2, −10,
and −40 for N = 4 particles. (a) Momentum distribution enDE(k). Black dashed lines in-
dicate scalings ∝ k−2 (upper line) and ∝ k−4 (lower line). (b) Second-order correlation
g(2)DE (x). The grey horizontal line indicates the initial value g(2)(x , t = 0). (c) Matrix ele-
ments 〈{λ j}| ĝ(2)(x)|{λ j}〉 of the second-order correlation in representative eigenstates. The
inset shows these correlations at small separations x , with the result for the super-Tonks state
{n j}= {3, 1} (pink dot-dashed line) scaled by a factor of 10 for visibility.
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due to the unbound particles it contains. Away from small separations, a small proportion
of g(2)DE (x) is due to such contributions of free particles in eigenstates containing bound par-
ticles, but this function is dominated by the contributions of scattering states. For attrac-
tive interactions these scattering states are expected to be identical to states of the one-
dimensional Bose gas with hard-sphere interactions outside the corresponding hard-sphere
radius ahs ' a1D = −2(γn)−1 = 0.01875× (2πk−1

F ) [64]. Indeed from the inset to Fig. 11(c)
we observe that the form of g(2)(x) in the super-Tonks state {n j} = {3, 1} (pink dot-dashed

line, multiplied by a factor of 10 for visibility) and that of g(2)DE following a quench to γ= −40
without the contribution of bound states (green dotted line) are broadly consistent with this
expectation.

In summary, our results for the time-averaged local second-order correlation function
g(2)DE (0) are consistent with an enhancement of this quantity over the initial ideal-gas value
by a factor of ' 4 in the limit of strong final interaction strengths, and thus with the predic-
tions of Refs. [35, 36] in this limit. Our calculations also reveal an enhancement of the local
third-order correlation function g(3)DE (0) over the ideal-gas value by a factor of ' 20 for strong
interactions, suggesting that the postquench state would be susceptible to large three-body
recombination losses in practice. Results for time-averaged correlation functions at interpar-
ticle separations larger than the characteristic extent of bound states are comparable to those
obtained previously [32] for quenches to repulsive interactions.

6 Conclusions

We have studied the nonequilibrium dynamics of the one-dimensional Bose gas following
a quantum quench from the noninteracting ground state to attractive interaction strengths
γ < 0. In particular we calculated equilibrium, nonequilibrium, and time-averaged correlation
functions of the system and investigated their dependence on the final interaction strength.
To achieve this we extended a previously developed coordinate Bethe ansatz method for the
nonequilibrium dynamics of the Lieb–Liniger model [33] to the attractively interacting regime.
Compared with the case of repulsive interactions, the computational evaluation is found to be
significantly more demanding. This is a consequence of near cancellations in the scattering
factors of Bethe ansatz wave functions for strongly negative interaction strengths.

We calculated first-, second-, and third-order correlation functions of the ground state for
up to seven particles and a wide range of negative interaction strengths γ, and observed the
emergence of bright-soliton-like correlations. As the interaction strength γ becomes more
negative, the correlation functions approach a form corresponding to bright-soliton solutions
of the mean-field approximation.

We then calculated the nonequilibrium correlation functions of a system of four particles
following quenches of the interaction strength from γ= 0 to several different values of γ < 0.
For a small postquench interaction strength γ = −0.5, the excitation energy imparted to the
system by the quench is of the order of the finite-size energy gap, and consequently excita-
tions are strongly suppressed. This results in correlation functions exhibiting quasi-two-level
dynamics. For quenches to intermediate attractive values of the interaction strength, the local
correlations are found to increase on short time scales and at later times fluctuate about a well-
defined value, which is greatly enhanced compared to the noninteracting prequench state. For
quenches to large attractive interaction strengths |γ|¦ 10, single-frequency oscillations in the
local second-order correlation function on top of an overall irregular behaviour are observed,
with the oscillations persisting at late times. The oscillatory behaviour also occurs in the mo-
mentum distribution for large postquench interaction strengths, and the frequency of oscilla-
tion is determined by the energy difference between the dominant super-Tonks eigenstate and
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the most highly occupied two-body bound state following the quench. Similar oscillations in
the local third-order correlation function occur at a frequency given by the energy difference
between two- and three-body bound states of the postquench Hamiltonian.

Time-averaged values of the postquench local second-order correlation function appear
consistent with a tendency towards a constant value in the limit of infinitely strong attractive
interactions. In particular, our results for this quantity indicate an enhancement by a factor of
'4 over the initial ideal-gas value, consistent with a recently obtained thermodynamic-limit
result [35, 36]. Our calculations similarly suggest that the time-averaged local third-order
correlation function following the quench tends to a constant, greatly enhanced value in the
strongly interacting limit. Outside interparticle separations of the order of the extent of bound
states of the Lieb–Liniger model, the dynamical behaviour and time-averaged form of the
second-order correlation function following a quench to attractive interactions are remarkably
similar to those following a quench to repulsive interactions of the same magnitude.
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A Mean-field correlation functions

In this appendix we describe how we obtained the mean-field results for comparison with the
Lieb–Liniger results plotted in Figs. 1 and 2. The solution of the 1D Gross–Pitaevskii equation
on a ring of finite circumference L is conveniently expressed in terms of the angular coordinate
θ ∈ [0,2π) around the ring circumference (see e.g. Refs. [44, 75]) as

ΨGP(θ ,Θ) =

(
q

1
2π , γ(r) ≥ γ(r)crit,

r

K(m)
2πE(m)dn

�

K(m)
π (θ −Θ)

�

�

�m
�

, γ(r) < γ
(r)
crit,

(15)

where γ(r) = γN2/(2π2) is the interaction strength, Θ is the centre of the soliton, and we have
assumed periodic boundary conditions ΨGP(0) = ΨGP(2π). In these units the critical value of
the interaction strength is γ(r)crit = −0.5. The functions K(m) and E(m) are the complete elliptic
integrals of the first and second kind, respectively, and dn(x |m) is one of the Jacobian elliptic
functions. The parameter m ∈ [0, 1] is fixed by the solution to

K(m)E(m) =
π2γ(r)

2
. (16)

The Gross–Pitaevskii equation arises by approximating the many-body wave function us-
ing a Hartree-Fock ansatz Ψ(θ1, . . . ,θN ) =

∏N
j=1ΨGP(θ j ,Θ), where the single-particle wave

function depends on the centre-of-mass variable Θ (15). Following Ref. [80], we restore the
translational symmetry of the many-body wave function by taking a coherent superposition of
symmetry-broken Gross–Pitaevskii states with different soliton locations

Ψ(θ1, . . . ,θN ) =
1
p

2π

∫ 2π

0

dΘN
N
∏

j=1

ΨGP(θ j ,Θ). (17)
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The normalized correlation functions are then given by

g(1)(θ ,θ ′) =
G(1)(θ ,θ ′)

p

G(1)(θ ,θ )G(1)(θ ′,θ ′)
,

g(2)(θ ,θ ′) =
G(2)(θ ,θ ′)

G(1)(θ ,θ )G(1)(θ ′,θ ′)
, (18)

where

G(1)(θ ,θ ′) =
N
2π

∫ 2π

0

dΘ Ψ∗GP(θ ,Θ)ΨGP(θ
′,Θ), (19)

and similarly

G(2)(θ ,θ ′) =
N(N − 1)

2π

∫ 2π

0

dΘ Ψ∗GP(θ ,Θ)ΨGP(θ ,Θ)Ψ∗GP(θ
′,Θ)ΨGP(θ

′,Θ). (20)

B Details of numerical algorithm for finding eigenstates with
bound states

Eigenstates with complex rapidities arrange themselves in so-called string patterns in the com-
plex plane for large values of |c|L ≡ N |γ|, up to deviations from these strings that are exponen-
tially small in the system size L at fixed |c| [23, 39, 42, 43, 74]. This requires a reformulation
of the algorithm previously described in Ref. [33] so as to avoid a loss of numerical accuracy
due to calculating the difference between two nearly equal values. In this appendix we de-
scribe the the details of this procedure for N = 2,3, and 4 particles. Extending this procedure
to N > 4 particles is possible, but the number of factors that have to be considered increases
rapidly with increasing N .

B.1 N = 2 particles

We begin by considering the N = 2 particle ground state, for which the rapidities are imaginary
for all c < 0. For intermediate and large |c|L the rapidities in this case are

λ j = ∓i
c
2
+ iδ j , (21)

where the minus (plus) sign applies toλ1 (λ2) by convention. The string deviations δ j ∝ e−ηL ,
where η is a positive constant. The (unnormalized) two-particle wave function reads

ζ(x1, x2) = (λ2 −λ1 − ic)ei(λ1 x1+λ2 x2) − (λ1 −λ2 − ic)ei(λ2 x1+λ1 x2),

≡ −i
�

(2λ+ c)eλr + (2λ− c)e−λr
�

, (22)

where we defined the relative coordinate r = x2 − x1 and λ = λ1/i = −λ2/i. In light of
Eq. (21), the first term in the last line of Eq. (22) is a product of a small number (2λ+ c) and
a large number (eλr) away from r = 0. The former is a difference of two numbers that are
nearly equal, leading to catastrophic cancellations in double-precision arithmetic. However,
from Eqs. (6) and (21) we find

2λ+ c ≡ 2δ1 = e−λL(2λ− c), (23)

and substituting this expression into Eq. (22) renders it amenable to numerical evaluation.
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B.2 N = 3 particles

For particle numbers N > 2, in addition to the ground state, which always has imaginary ra-
pidities, excited parity invariant states may possess complex rapidities at interaction strengths
c < ccrit, where ccrit is an N -dependent “phase-crossover” point in the vicinity of the mean-
field transition point [39]. For N = 3, there are two parity-invariant eigenstates with complex
rapidities:
(i) The ground state is a three-body bound state with imaginary rapidities λ1 = −λ3, and
λ2 = 0. By convention λ1/i > 0. For small string deviations, the factor λ2−λ1−ic ≡ −(λ1+ic)
needs to be rewritten. The Bethe equation (6) for λ1 is

eiλ1 L =
λ1 + ic
λ1 − ic

2λ1 + ic
2λ1 − ic

, (24)

which can be rearranged to find an expression

λ1 + ic = eiλ1 L(λ1 − ic)
2λ1 − ic
2λ1 + ic

(25)

for the critical factor in this case.
(ii) First excited parity invariant state. Here, the rapidities λ1 = −λ3 are real for c > ccrit [39]
and are otherwise imaginary, in which case we again follow the convention that λ1/i > 0. The
critical factor to be replaced is 2λ1 + ic. From Eq. (25) we obtain the appropriate expression

2λ1 + ic = eiλ1 L(2λ1 − ic)
λ1 − ic
λ1 + ic

. (26)

B.3 N = 4 particles

For N = 4 particles, an infinite number of parity-invariant bound states contribute to the
postquench dynamics, and they can be grouped into four different categories, cf. Sec. 4.1. In
the following we write λ j ≡ µ j + iν j with µ j ,ν j real numbers, and assume that µ1,µ2 ≥ 0,
ν1,ν2 ≥ 0, λ3 = −λ2, and λ4 = −λ1.

(i) The ground state with {n j} = {0, 0}. The rapidities are purely imaginary, µ j = 0. Substi-
tuting this into Eq. (6) leads to the following two equations.

e−ν1 L =
ν1 − ν2 + c
ν1 − ν2 − c

ν1 + ν2 + c
ν1 + ν2 − c

2ν1 + c
2ν1 − c

, (27)

e−ν2 L =
ν2 − ν1 + c
ν2 − ν1 − c

ν2 + ν1 + c
ν2 + ν1 − c

2ν2 + c
2ν2 − c

. (28)

There are two critical factors: ν1 − ν2 + c and 2ν2 + c. Rewriting Eq. (27) leads to

ν1 − ν2 + c = e−ν1 L(ν1 − ν2 − c)
ν1 + ν2 − c
ν1 + ν2 + c

2ν1 − c
2ν1 + c

≡ α . (29)

Equation (28) can be expressed as

2ν2 + c = −e−ν2 L α
ν2 + ν1 − c
ν2 + ν1 + c

2ν2 − c
ν2 − ν1 + c

, (30)

where α is the first critical factor defined in Eq. (29).
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(ii) The three-body bound state with {n j}= {1,0}. This is the first parity invariant excited state
and has real rapidities λ1 and λ4 that tend to zero for large attractive values of cL. Following
Ref. [28], Appendix B, we can reparameterize the rapidities in this case via their deviations
δ = e−|c|L/2 from the string solution

λ1 = δα ,

λ2 = −ic + iδ2β . (31)

Substituting this into the Bethe equations (6), Ref. [28] obtained in the limit of small string
deviations

α=
p

12 |c| ,

β = 6Lc2 . (32)

We did not find a suitable double-precision strategy for this particular eigenstate, and so re-
sorted to high-precision arithmetic for numerical calculations. To obtain sufficiently precise
Bethe rapidities for large attractive values of γ, we used Eqs. (32) as the starting point for our
root-finding algorithm.

(iii) Eigenstates with {n j}= {n, 0} for all integers n≥ 2. In this case, λ1 is real, λ2 imaginary,
λ1 = µ1, λ2 = iν2. The critical factor is 2ν2+ c. Rewriting the Bethe equation for λ2 leads to

2ν2 + c = e−ν2 L (2ν2 − c)
|µ1 + i(ν2 − c)|2

|µ1 + i(ν2 + c)|2
. (33)

(iv) Eigenstates with {n j}= {n, n} for all integers n≥ 1. The Bethe rapidities are complex and
satisfy λ1 = λ∗2. Rewriting the first Bethe equation with µ ≡ µ1 = µ2 and ν ≡ ν1 = −ν2 and
taking the real part leads to

2ν+ c =
2ν− c

2µ
e−νL ℜ

�

(2µ+ i(2ν− c))
2µ− ic
2µ+ ic

eiµL
�

, (34)

where ℜ[x] denotes the real part of x .

(v) Eigenstates with {n j} = {n, n− 1} for all integers n ≥ 2. For c > ccrit, the Bethe rapidities
are real. For more attractive interactions, they become complex conjugate pairs, λ1 = λ∗2, and
this case becomes equivalent to the preceding one.
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