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Abstract

The efficient representation of quantum many-body states with classical resources is
a key challenge in quantum many-body theory. In this work we analytically construct
classical networks for the description of the quantum dynamics in transverse-field Ising
models that can be solved efficiently using Monte Carlo techniques. Our perturbative
construction encodes time-evolved quantum states of spin-1/2 systems in a network of
classical spins with local couplings and can be directly generalized to other spin systems
and higher spins. Using this construction we compute the transient dynamics in one,
two, and three dimensions including local observables, entanglement production, and
Loschmidt amplitudes using Monte Carlo algorithms and demonstrate the accuracy of
this approach by comparisons to exact results. We include a mapping to equivalent arti-
ficial neural networks, which were recently introduced to provide a universal structure
for classical network wave functions.
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1 Introduction

A key challenge in quantum many-body theory is the efficient representation of quantum many-
body states using classical compute resources. The full information contained in such a many-
body state in principle requires resources that grow exponentially with the number of degrees
of freedom. Therefore, reliable schemes for the compression and efficient encoding of the
essential information are vital for the numerical treatment of correlated systems with many
degrees of freedom. This is of particular relevance for dynamics far from equilibrium, where
large parts of the spectrum of the Hamiltonian play an important role.

For low-dimensional systems matrix product states [1,2] and more general tensor network
states [3] constitute a powerful ansatz for the compressed representation of physically relevant
many-body wave functions. These allow for the efficient computation of ground states and real
time evolution. In high dimensions properties of quantum many-body systems in and out of
equilibrium can be obtained by dynamical mean field theory [4–7], which yields exact results
in infinite dimensions. This leaves a gap at intermediate dimensions, where exciting physics
far from equilibrium has recently been observed experimentally [8–13].

An alternative approach, which received increased attention lately, is the representation of
the wave function based on networks of classical degrees of freedom. Given the basis vectors
|~s〉= |s1〉⊗ |s2〉⊗ . . .⊗|sN 〉 of a many-body Hilbert space, where the sl label the local basis, the
coefficients of the wave function |ψ〉 are expressed as

ψ(~s) = 〈~s|ψ〉= eH (~s), (1)

where H (~s) is an effective Hamilton function defining the classical network. Wave functions
of this form were used in combination with Monte Carlo algorithms for variational ground
state searches [14–16] and time evolution [17–23]. Recently, it was suggested that the wave
function (1) can generally be encoded in an artificial neural network (ANN) trained to resem-
ble the desired state [23]. This idea was seized in a series of subsequent works exploring the
capabilities of this and related representations [24–31]. Importantly, there are no principled
restrictions on dimensionality.

In this work we present a scheme to perturbatively derive analytical expressions for per-
turbative classical networks (pCNs) as representation of time-evolved wave functions for
transverse-field Ising models (TFIMs) which can be extended directly also to other models. The
resulting networks consist of the same number of classical spins as the corresponding quan-
tum system and exhibit only local couplings making the encoding particularly efficient. We
compute the transient dynamics of the TFIM in one, two, and three dimensions (d = 1,2, 3)
including local observables, correlation functions, entanglement production, and Loschmidt
amplitudes. By comparing to exact solutions we demonstrate the accuracy of our results going
well beyond standard perturbative approaches. This work provides a way to derive classical
network structures within a constructive prescription, where other approaches rely on heuris-
tics. As a specific application, we derive the structure and the time-dependent weights of
equivalent ANNs in the sense of Ref. [23].
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Figure 1: (a) Structure of the perturbative classical network for the TFIM in d = 2 and (b)
dynamics of the couplings (color coded as in (a)). The black dots in the network structure
represent a classical spin sl and its four neighbors in a translationally invariant square lattice.
Each square with number n stands for a coupling of the connected classical spins with cou-
pling constant Cn(t). The green and blue lines, respectively, correspond nearest-neighbor and
next-nearest-neighbor coupling of two spins, while the orange and red lines indicate coupling
terms involving four spins each. The resulting time-dependent classical Hamiltonian function
H (~s, t) encodes quantum dynamics via Eq. (1).

2 Results

In the following we compute dynamics of TFIMs of N spins with Hamiltonian

H = −
J
4

∑

〈i, j〉

σz
iσ

z
j −

h
2

N
∑

i=1

σx
i , (2)

where σx/z
i denote Pauli operators acting on site i and the first sum runs over neighboring

lattice sites i and j. As the computational basis we choose the spin basis states |~s〉= |s1 . . . sN 〉
with si =↑,↓. The dynamics of Ising models is accessible experimentally with quantum simu-
lators, which was demonstrated recently in various setups [32–34]. In d = 1 the dynamics of
the TFIM can be computed analytically by means of a Jordan-Wigner transform [35–44].

In this work we are interested in the dynamics that comprise a dynamical quantum phase
transition (DQPT) [45, 46]. The signature of a DQPT is a non-analyticity in the many-body
dynamics analogous to equilibrium phase transitions where thermodynamic quantities behave
non-analytically as function of a control parameter. DQPTs were recently observed in experi-
ment [11,34] and there is a series of results on TFIMs in this context [47–57].

Typically, DQPTs occur when the model is quenched across an underlying equilibrium quan-
tum phase transition. A particularly insightful limit with this respect is a quench from h0 =∞
to h/J � 1, where, e.g., universal behavior was proven in d = 1 [51]. When quenching from
h0 =∞ to h = 0 the TFIM in d = 1,2 exhibits DQPTs at odd multiples of tc = π/J , which
we choose as the unit of time throughout the paper. The ground state at h0 =∞ is a partic-
ularly simple initial state, since 〈~s|ψ0〉 = 2−N/2. One could, however, go away from that limit
perturbatively, e.g., by constructing a Schrieffer-Wolff transformation for an initial state with
weak spin couplings.

Quench dynamics of the two-dimensional TFIM have already been studied in Refs. [20,21],
but there quenches within the same phase have been considered in contrast to the extreme
quench across the phase boundary, which we will address in the following.

2.1 Classical network via cumulant expansion

Consider a Hamiltonian of the form H = H0 +λV , where H0 is diagonal in the
spin basis, H0|~s〉= E~s|~s〉, V an off-diagonal operator, and λ� 1. In the interaction
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picture the time evolution operator can be expressed as e−iHt = e−iH0 tWλ(t), where
Wλ(t) = Tt exp

�

−iλ
∫ t

0 d t ′V (t ′)
�

. In this setting time-evolved coefficients of the wave func-
tion (1) can be obtained perturbatively by a cumulant expansion [58]. Denoting the initial
state with |ψ0〉=

∑

~sψ0(~s)|~s〉 the cumulant expansion to lowest order yields the time-evolved
state |ψ(t)〉=

∑

~sψ(~s, t)|~s〉 with

ψ(~s, t)
ψ0(~s)

= e−iE~s t exp

�

−iλ

∫ t

0

d t ′
〈~s|V (t ′)|ψ0〉
〈~s|ψ0〉

+O (λ2)

�

. (3)

By identifying H (~s, t) = −iE~s t − iλ
∫ t

0 d t ′ 〈~s|V (t
′)|ψ0〉

〈~s|ψ0〉
the expression above takes the desired

form given in Eq. (1). Importantly, also the effective Hamilton function becomes local, when-
ever H0 and V are local. It will be demonstrated below that the construction via cumulant
expansion yields much more accurate results than conventional perturbation theory. The ap-
proximation can be systematically improved by taking into account higher order terms. To
which extent it is possible to also capture long-time dynamics using such a construction, re-
mains an open question and, since beyond the scope of the present work, will be left for future
research.

For our purposes, we identify H0 = −
J
4

∑

〈i, j〉σ
z
iσ

z
j and λV =̂ − h

2

∑

i σ
x
i . Note that, e.g.,

a strongly anisotropic XXZ model could be treated analogously. The time-dependent V (t) is
obtained by solving the Heisenberg equation of motion. The general form of the Hamilton
function from the first-order cumulant expansion obtained under these assumptions is

H (1)(~s, t) =
z
∑

n=0

Cn(t)
N
∑

l=1

∑

(a1,...,an)∈V l
n

sn
l

n
∏

r=1

sar
, (4)

where V l
n denotes the set of possible combinations of n neighboring sites of lattice site l, z is the

coordination number of the lattice, and Cn(t) are time-dependent complex couplings. Classical
Hamilton functions H (1)(~s, t) for cubic lattices in d = 1,2, 3 including explicit expressions for
the couplings Cn(t) are given in Appendix A. Fig. 1 displays the structure of the pCN in 2D and
the time evolution of the couplings Cn(t). For d = 2, 3 H (1)(~s, t) already contains couplings
with products of four or six spin variables, respectively. Thereby, the derived structure of
the pCN markedly differs from heuristically motivated Jastrow-type wave functions, which
constitute a common variational ansatz [17,20]. From our perturbative construction we find
that it is already at lowest order important to take into account plaquette interactions of more
than two spins in order to obtain accurate results.

The data we present in the following were obtained with h/J = 0.05. Results for larger
h/J are presented in Appendix A. There we find that comparable accuracy is obtained for
times ht � 1. As we will show in the following the accuracy can be enhanced by including
higher order contributions from the cumulant expansion. However, the resulting coupling
parameters Cn(t) comprise secular terms, which grow with increasing time. We anticipate
that these secular terms restrict the time-window in which the couplings obtained from the
cumulant expansions yield precise results to t < h−1. Nevertheless, we expect that an effective
resummation of secular contributions can be achieved by combining the perturbatively derived
network structures with a time-dependent variational principle [17,59–61].

2.2 Observables

Plugging Eq. (1) into the time-dependent expectation value of an observable Ô with matrix
elements 〈~s|Ô|~s′〉= O~sδ~s,~s′ results in

〈ψ0|eiHtÔe−iHt |ψ0〉=
∑

{~s}

eH̃ (~s,t)Õ~s . (5)
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Figure 2: Time evolution of transverse magnetization (top panels) and nearest-neighbor
correlation function (bottom panels) in the TFIM. (a, b) Results for d = 1 obtained from the
pCN with first order (pCN-1) and second order (pCN-2) expansion in comparison with the
exact dynamics and time-dependent perturbation theory (tdPT). (c, d) Dynamics in d = 2
(blue), and d = 3 (orange) obtained from the first order pCN compared to exact results in
d = 2. Data obtained with h/J = 0.05; tc = π/J .

with

Õ~s =
∑

{~s′}

Re
�

O~s~s′e
H (~s′,t)−H (~s,t)

�

(6)

and H̃ (~s, t) = 2Re[H (~s, t)]. In this form the quantum expectation value resembles a thermal
expectation value in the pCN defined by H (~s, t). For an observable Ô that is diagonal in the
spin basis, 〈~s|Ô|~s′〉= O~sδ~s,~s′ , the expression above simplifies to

〈ψ0|eiHtÔe−iHt |ψ0〉=
∑

{~s}

eH̃ (~s,t)O~s . (7)

These expressions can be evaluated efficiently by the Metropolis algorithm [62]. Although
we find empirically that the off-diagonal observables under consideration can still be sampled
efficiently by Monte Carlo, it is not clear whether a sign problem can appear in other cases. Fig.
2 shows results for different local observables obtained in this way. In these and the following
figures the Monte Carlo error is less than the resolution of the plot.

In Fig. 2(a,b) we compare the results from the classical network construction to exact
results obtained by fermionization for the infinite system in d = 1 [35–44]. Focusing for
the moment on the transverse magnetization σx

i in Fig. 2(a) we find that on short times the
pCN gives an accurate description of the dynamics. Upon improving our pCN construction
by including the second-order contributions in the cumulant expansion, the time scale up
to which the pCN captures quantitatively the real-time evolution of σx

i increases suggesting
that the expansion can be systematically improved by including higher order terms. For a
further benchmarking of our results we also compare the pCN results to conventional first-
order time-dependent perturbation theory. Clearly, the first-order pCN provides a much more
accurate approximation to the exact dynamics, which originates in an effective resummation of
an infinite subseries of terms appearing in conventional time-dependent perturbation theory.
In Fig. 2(b) we consider the nearest-neighbor longitudinal correlation function σz

iσ
z
i+1 which

is an observable diagonal in the spin basis. Compared to the offdiagonal observable studied in
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Figure 3: (a) Time evolution of the entanglement entropy for subsystems of n = 2 spins
obtained from the classical network by MC in comparison with exact results; h/J = 0.05.
(b) Time evolution of the entanglement entropy for different subsystem shapes with n spins
obtained from full wave functions |ψ(t)〉 determined from the pCN in comparison with exact
results (dashed lines). In d = 1 the system size is N = 20, in d = 2 it is N = 6×3; h/J = 0.05.

Fig. 2a we find much stronger deviations from the exact result which also cannot be improved
upon including higher orders in the cumulant expansion. However, for correlation functions
at longer distances the corrections to the first-order cumulant expansion become important;
see Appendix A. The observation that the diagonal observables don’t improve with the order
of the pCN expansion we attribute to secular terms from resonant processes which are not
appropriately captured by perturbative approaches such as the pCN. One possible strategy to
incorporate such resonant processes is to impose a time-dependent variational principle [17,
59–61] on our networks in order to obtain suitably optimized coupling coefficients. Having
demonstrated under which circumstances the pCN can be improved by including higher order
contributions, for the remainder of the article we focus on the capabilities of the first-order
pCN leaving further optimization strategies of the network open for the future.

In Fig. 2(c,d) we show our results for the same observables but now in d = 2 and d = 3.
Compared to d = 1 we find much broader maxima and minima, respectively, close to the
times where DQPTs occur at odd multiples of tc = π/J . In the limit h/J → 0 the shape is
given by the power law |t − tc|z with z = 2d. This behavior was already observed for one
and two dimensional systems in Ref. [51]. For the d = 2 case we have included also exact
diagonalization data for a 4×4 lattice. Overall, we observe a similar accuracy in the dynamics
of these observables as compared to the d = 1 results.

2.3 Entanglement

Having discussed the capabilities of the pCN to encode the necessary information for the dy-
namics of local observables and correlations, we would like to show now that it can also re-
produce entanglement dynamics and thus the propagation of quantum information.

By sampling all correlation functions it is in principle possible to construct the re-
duced density matrix of a subsystem A, ρA(t) = trB

�

|ψ(t)〉〈ψ(t)|
�

, where trB denotes
the trace over the complement of A, and the entanglement entropy of subsystem A given
by S(t) = −tr

�

ρA(t) lnρA(t)
�

. For subsystems with two spins at sites i and j we have
ρA =

1
4

∑

α,α′∈{0,x ,y,z}
〈σαi σ

α′

j 〉 σ
α ⊗σα

′
, where σ0

i denotes the identity. This approach is in prin-

ciple applicable to arbitrary subsystem sizes; however, it quickly becomes unfeasible, because
the number of correlation functions that has to be sampled grows exponentially with subsys-
tem size. In order to obtain insights into the entanglement properties of larger subsystems
it might be possible to use the algorithm introduced in Ref. [63] for quantum Monte Carlo,
which, however, is beyond the scope of this work. For small system sizes entanglement entropy
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for any block size can be extracted directly from the full wave function as described below.
Figure 3(a) shows the entanglement entropy S2(t) of two neighboring spins. We find very

good agreement of the Monte Carlo data based on the first-order cumulant expansion with the
exact results. In particular, for the entanglement entropy the classical network captures both
the decay of the maxima close to the critical times (2n+ 1)tc and the increase of the minima.
As for the observables the shape in the vicinity of the maxima depends on d and is for h/J → 0
given by the same power laws. Note, that the pCN correctly captures the maximal possible
entanglement Smax

2 = 2 ln2. By contrast, the result from tdPT completely misses the decay of
the oscillations.

In order to assess the capability of the pCN to capture the entanglement dynamics of larger
subsystems we compute the whole wave function |ψ(t)〉 =

∑

~sψ(~s)|~s〉 with the coefficients
ψ(~s) as given in Eq. (3) for feasible system sizes. The entanglement entropy of arbitrary
bipartitions is then obtained by a Schmidt decomposition. Fig. 3(b) shows entanglement
entropies obtained in this way for subsystems of different sizes n in d = 1, 2. The results imply
that at these short times only spins at the surface of the subsystem become entangled with
the rest of the system. The maxima for a subsystem of n = 8 spins in a ring of N = 20 spins
in d = 1 lie close to 2 ln 2, the theoretical maximum for the entanglement entropy of the two
spins, which sit at the surface. This interpretation is supported by the results for a torus of
N = 6×3 spins with subsystems of size n= 3×2 and n= 3×3. In that case the entanglement
entropy reaches maxima of 6 ln2, corresponding to 6 spins at the boundary. In both cases the
results agree well with the exact results for times t < 4tc . This again reflects the fact that
the pCN from first-order cumulant expansion yields a good approximation of the dynamics of
neighboring spins.

2.4 Loschmidt amplitude

Next, we aim to show that not only local but also global properties are well-captured by the
classical networks. For that purpose we study the Loschmidt amplitude 〈ψ0|ψ(t)〉, which
constitutes the central quantity for the anticipated DQPTs and which has been measured re-
cently experimentally in different contexts [34, 64]. For a quench from h0 =∞ to h = 0 the
Loschmidt amplitude

Z(t) =
1

2N

∑

~s∈{±1}N
ei J

4 t
∑

〈i, j〉 sis j (8)

resembles the partition sum of a classical network with imaginary temperature β = −it [51].
This expression is not suited for MC sampling because all weights lie on the unit circle in
the complex plane rendering importance sampling impractical and indicating a severe sign
problem. These issues can be diminished by constructing an equivalent network with real
weights. After integrating out every second spin on the sublattice Λ, equivalent to one deci-
mation step [65], the partition sum takes the form

Z(t) =
1

2N

∑

~s∈{±1}N/2

∏

i∈Λ
2 cos

�

J
4

t
∑

〈i, j〉

s j

�

. (9)

Choosing a suited ansatz the partition sum can be rewritten as Z(t) =
∑

~s eH (~s,t) with real
Boltzmann weights given by an effective Hamilton function H (~s, t) that defines the classical
network [51,65,66]. Generally, the effective Hamilton function takes the form

H (~s, t) =
z/2
∑

n=0

Cn(t)
∑

l∈Λ

∑

(a1,...,a2n)∈V l
2n

2n
∏

r=1

sar
. (10)
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Figure 4: Time evolution of the rate function of the Loschmidt amplitude λN (t) (top panels)
and corresponding couplings in the classical network (bottom panels); (a) d=1, (b) d=3.

The explicit expressions for d = 1, 2,3 are given in Appendix B.
It is evident from Eq. (9) that, although real, the Boltzmann weights of the classical net-

work are not necessarily positive. Note that the absence of imaginary parts in the weights is due
to the particular form of the Hamiltonian. For example, a nonvanishing transverse field would
introduce imaginary parts and thereby complicate efficient Monte Carlo sampling. The bottom
panels in Fig. 4 show the real parts of the coupling constants of the effective Hamiltonians for
d = 1, 3. The couplings in d = 3 acquire non-vanishing imaginary parts for tc/3 ≤ t ≤ 5tc/3
leading to negative weights for some configurations. The partition sum is then split into a
positive and a negative part Z(t) = Z+(t) + Z−(t) with Z+ > 0 and Z− < 0. It was pointed
out in Ref. [67] that the partition sum of such a factorized configuration space can be sampled
despite the occurence of negative weights if the partial sums Z± can be sampled separately. In
practice we perform separate Monte Carlo sampling on the respective configuration subspaces
by prohibiting updates that change the sign of the weight. We combine this approach with
parallel tempering [68] and multi-histogram reweighting [69] in order to render the sampling
efficient and, moreover, to achieve the correct normalization. The proper normalization is cru-
cial because Z(t) is a quantum mechanical overlap. A more detailed description of the Monte
Carlo scheme is given in Appendix B.

As the Loschmidt amplitude is exponentially suppressed with increasing system size we
study the rate function [45] λN (t) = −

1
N ln |Z(t)|, which is well defined in the thermodynamic

limit N →∞. The top panel in Fig. 4(a) displays λN (t) obtained by a Monte Carlo sampling
for a ring of N = 100 spins together with the exact result [70], confirming the precision of
the pCN approach and demonstrating the principled possibility to detect DQPTs. For the rate
function in d = 3 shown in Fig. 4(b) we obtained converged results in the whole interval
for N = 4 × 4 × 4 and N = 4 × 4 × 6 physical spins. Note that there are no indications of
non-analytic behavior in the Monte Carlo results at t = tc/3, tc/2 despite the divergences of
the couplings at those points. While we can reach fairly large systems in d = 3, these are still
not large enough to see convergence and non-analytic behavior at t = tc as opposed to the
case of d = 1. It can be shown, see Appendix B, that for any dimension λ∞(tc) = ln(2)/2
demonstrating that our data in d = 3 is still far from the thermodynamic limit.
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Figure 5: Structure of the ANN for the TFIM in d = 1,2 (a, c) and time evolution of the weights
obtained by first-order cumulant expansion for h/J = 0.05 (b, d). In the networks black dots
stand for physical spins and gray circles indicate hidden spins. The couplings in (b, d) are
color coded with the corresponding lines in (a, c).

2.5 Construction of equivalent ANNs

Finally, we present an exact mapping of the pCN obtained by a cumulant expansion to an
equivalent ANN as introduced in Ref. [23]. This outlines the general potential of the pCN to
guide the choice of network structures, for which otherwise no generic principle exists. Since
the mapping is exact, observables sampled from the resulting network will be identical with
the ones obtained from the pCN.

Generally, for Ising systems with translational invariance and local interactions, the cumu-
lant expansion will yield a Hamilton function of the form

H (~s, t) =
N
∑

l=1

Pl(~s, t), (11)

where the functions Pl(~s, t) only involve a couple of spins in the neighborhood of spin l. We
call the spins involved in Pl(~s, t) a patch. The Pl(~s, t) are invariant under Z2 and a number
of permutations of the spins in a patch due to the lattice symmetries. In terms of the Pl(~s, t)
the coefficients of the wave function are given by

ψ(~s, t) = eH (~s,t) =
N
∏

l=1

ePl (~s,t) . (12)

To find the corresponding ANN we choose a general Z2 symmetric ansatz [23]

ψANN (~s, t) =
� Ω

2α

�N ∑

~u(1)l ...~u(Nu)
l

e
∑

l,m

∑

n W (n)
lm (t)smu(n)l (13)

incorporating lattice symmetries in the connectivity of physical spins sl and hidden spins u(n)l

defined by the weights W (n)
lm . α denotes the number of hidden spins per physical spin and Ω

constitues an overall normalization. Upon integrating out the hidden spins we obtain

ψ(~s, t) =
N
∏

l=1

α
∏

n=1

cosh
�∑

m

W (n)
lm sm

�

. (14)

In order to determine the ANN weights we factor-wise equate the r.h.s. of Eq. (12) and Eq.
(14),

∏

n

cosh
�∑

m

W (n)
lm sm

�

= ePl (~s,t) , (15)
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and plug in each of the distinct spin configurations of a patch. This yields a set of equations
for the unknown weigths W (n)

lm , which can be solved numerically. In Appendix C procedure is
outlined in detail for d = 1 and d = 2.

Fig. 5 shows the structure of the ANNs and the time-dependence of the weights obtained
in this way for d = 1 and d = 2. In d = 1 the ANN structure (Fig. 5(a)) comprises the minimal
number of hidden spins that is possible subject to the lattice symmetries. Although unproven
the same is expected to hold for the structure for d = 2 in Fig. 5(c). Note the complex
dynamics and the rapid initial change exhibited by some of the couplings. In comparison to a
general all-to-all ansatz this construction provides a way to drastically reduce the number of
ANN couplings in a controlled way, thereby restricting the variational subspace and lessening
the computational cost for the optimization in variational algorithms.

3 Conclusions

In this work we introduced a perturbative approach based on a cumulant expansion that consti-
tutes a constructive prescription to derive classical networks encoding the time-evolved wave
function. The resulting pCNs are equivalent to corresponding ANNs, which were recently pro-
posed as efficient representation of many-body states in Ref. [23]. For the quench parameters
under consideration the pCNs give a good approximation of the initial dynamics and thereby
provide a controlled benchmark for new algorithms targeting the dynamics in higher dimen-
sions. In future work it is worth to explore whether the structure of the networks derived in
this way constitutes a good ansatz for numerical time evolution based on a variational prin-
ciple also in the absence of a small parameter [17, 59–61]. We expect that a variational time
evolution based on the derived network structures could effectively perform the resummation
of higher orders that would be necessary to overcome the problem of secular terms in the
perturbative results. Moreover, the presented approach can be straightforwardly generalized
to other systems and higher spin degrees of freedom. This might be particularly interesting in
many-body-localized systems [9,71–74], where the so-called local integrals of motion provide
a natural basis for constructing a classical network.
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A Perturbative classical networks

A.1 Explicit expressions for the perturbative classical networks

For the cumulant expansion the time-evolved operator V (t) = eiH0 t Ve−iH0 t is required.
This can be obtained by solving the corresponding Heisenberg equation of motion
−i d

d t V (t) = [H0, V (t)].
In 1D the Heisenberg EOM for σx

l (t) yields

σx
l (t) = cos2(J t/2)σx

l −σ
z
l−1σ

z
l+1 sin2(J t/2)σx

l − i
1
2

sin(J t)
�

σz
l−1 +σ

z
l+1

�

σz
lσ

x
l . (16)

The cumulant expansion to first-order results in classical Hamilton functions of the general
form

H (1)(~s, t) = −iE~s t − iλ
∑

l

∫ t

0

d t ′
〈~s|V (t ′)|ψ0〉
〈~s|ψ0〉

=
z
∑

n=0

Cn(t)
N
∑

l=1

∑

(a1,...,an)∈V l
n

sn
l

n
∏

r=1

sar
, (17)

where V l
n denotes the set of possible combinations of n neighboring sites of lattice site l, z is

the coordination number of the lattice, and Cn(t) are time-dependent complex couplings.
In d = 1 the explicit form is

H (1)
1D = NC0(t) + C1(t)

∑

l

�

sz
l−1sz

l + sz
l sz

l+1

�

+ C2(t)
∑

l

sz
l−1sz

l+1, (18)

with

C0(t) = i
h

4J
(J t + sin(J t)) ,

C1(t) = i
J t
8
+

h
4J
(1− cos(J t)) ,

C2(t) = −i
h

4J
(J t − sin(J t)) . (19)

Analogously for d = 2,

H (1)
2D =

∑

l

�

C (1)0 (t) + C (1)1 (t)
∑

a∈V l
1

sz
asz

l + C (1)2 (t)
∑

(a,b)∈V l
2

sz
asz

b

+ C (1)3 (t)
∑

(a,b,c)∈V l
4

sz
asz

bsz
c sz

l + C (1)4 (t)
∑

(a,b,c,d)∈V l
3

sz
asz

bsz
c sz

d

�

, (20)

where

C (1)0 (t) = i
h

2J
6J t + 8 sin(J t) + sin(2J t)

16
,

C (1)1 (t) = i
J t
8
+

h
2J

1− cos4(J t/2)
2J

,

C (1)2 (t) = −i
h

2J
2J t − sin(2J t)

16
,

C (1)3 (t) = −
h

2J
sin4(J t/2)

2J
,

C (1)4 (t) = i
h

2J
6J t − 8 sin(J t) + sin(2J t)

16
. (21)
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The classical network from first-order cumulant expansion in d = 3 is given by

H (1)
3D =

∑

l

�

C (1)0 (t) + C (1)1 (t)
∑

a∈V l
1

sz
asz

l + C (1)2 (t)
∑

(a,b)∈V l
2

sz
asz

b

+ C (1)3 (t)
∑

(a,b,c)∈V l
3

sz
asz

bsz
c sz

l + C (1)4 (t)
∑

(a,b,c,d)∈V l
4

sz
asz

bsz
c sz

d

+ C (1)5 (t)
∑

(a,b,c,d,e)∈V l
5

sz
asz

bsz
c sz

dsz
esz

l + C (1)6 (t)
∑

(a,b,c,d,e, f )∈V l
6

sz
asz

bsz
c sz

dsz
esz

f

�

, (22)

with

C (1)0 (t) = i
h

2J
30J t + 45 sin(J t) + 9sin(2J t) + sin(3J t)

96
,

C (1)1 (t) = i
J t
8
+

h
2J

1− cos6(J t/2)
3

,

C (1)2 (t) = −i
h

2J
6J t + 3sin(J t)− 3 sin(2J t)− sin(3J t)

96
,

C (1)3 (t) = −
h

2J
sin4(J t/2)(cos(J t) + 2)

6
,

C (1)4 (t) = i
h

2J
6J t − 3 sin(J t)− 3sin(2J t) + sin(3J t)

96
,

C (1)5 (t) =
h

2J
sin6(J t/2)

3
,

C (1)6 (t) = −i
h

2J
30J t − 45sin(J t) + 9 sin(2J t)− sin(3J t)

96
. (23)

A.2 Range of applicability and effect of higher order terms

Fig. 6 shows the time evolution of transverse magnetization and nearest-neighbor spin-spin
correlation obtained from the first-order cumulant expansion for different h/J . We find that
for ht < 1 the results from the cumulant expansion agree with the exact results to a similar
extent independent of the value of h/J . For ht > 1 the cumulant expansion deviates strongly
from the exact results.

To second order in the cumulant expansion the wave function coefficients are approxi-
mated by

ψ(~s, t)
ψ0(~s)

=
〈~s|e−iHt |ψ0〉
〈~s|ψ0〉

≈ e−iE~s t exp

�

− iλ

∫ t

0

d t ′
〈~s|V (t ′)|ψ0〉
〈~s|ψ0〉

−λ2

∫ t

0

d t ′
∫ t ′

0

d t ′′
�

〈~s|V (t ′)V (t ′′)|ψ0〉
〈~s|ψ0〉

−
〈~s|V (t ′)|ψ0〉〈~s|V (t ′′)|ψ0〉

〈~s|ψ0〉2

��

. (24)

In one dimension this yields the effective Hamilton function of the general form

H (2)(~s, t) =
z
∑

n1=0

z
∑

n2=0

Cn1n2
(t)

N
∑

l=1

∑

(a1,...,an1
)∈V 1l

n1

∑

(b1,...,bn2
)∈V 2l

n2

sn1+n2
l

n1
∏

r1=1

sar1

n2
∏

r2=1

sbr2
, (25)
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z
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Figure 6: MC data from pCN in comparison with exact results for different h/J in d = 1.
The left column shows magnetization 〈σx

i 〉 and the right column shows spin-spin correlation
〈σz

iσ
z
i+1〉.
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Figure 7: Next-nearest-neighbor correlation function in d = 1 obtained with first-order and
second-order cumulant expansion in comparison with the exact result; h/J = 0.05.

where V dl
n denotes the set of all groups of n spins at distance d from spin l. The coupling

constants are

C00(t) = i
h

4J
(J t + sin(J t))−

h2

J2
sin(J t/2) ,

C10(t) = i
J t
8
+

h
4J
(1− cos(J t)) + i

h2

8J2

�

2J t − 4sin(J t) + sin(2J t)
�

,

C20(t) = −i
h

4J
(J t − sin(J t))−

h2

J2
sin(J t/2) ,
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C01(t) =
h2

32J2

�

9− 2J2 t2 − 8cos(J t)− cos(2J t)− 4J t sin(J t)
�

,

C11(t) = i
h2

32J2

�

6J t − 8J t cos(J t) + sin(2J t)
�

,

C21(t) =
h2

16J2

�

sin(J t)− J t
�2

,

C02(t) = 0 , C12(t) = 0 , C22(t) = 0 . (26)

We observe that taking into account the second order contribution of the cumulant expansion
significantly enhances the result for the next-nearest-neighbor correlation function as shown
in Fig. A. In particular it yields corrections that are much larger than what one would expect
from a naive perturbative expansion.

A.3 Comparison: Complexity of the equivalent iMPS

In order to give an estimate of the complexity of the time-evolved state in terms of Ma-
trix Product States we show the time evolution of local observables, entanglement, and bond
dimension after the quench h0 = ∞ → h = J/20 computed using iTEBD [77] in Fig. 8.
The bond dimension χ (i.e. the number of singular values kept after singular value decom-
positions) was restricted to different maximal values χmax and during the simulation Schmidt
values smaller than 10−10 were discarded. In all quantities a converged result on the time
interval of interest is obtained with a maximal bond dimension of χmax ≥ 4.

For the implementation of the iTEBD algorithm the iTensor library [76] was used.
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χmax = 3
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Figure 8: Dynamics for the quench from h0 =∞ to h/J = 0.05 computed with iTEBD with
different maximal bond dimensions χmax.
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B Loschmidt amplitude as classical partition function

B.1 Real weights from decimation RG

As outlined in the results section the Loschmidt amplitude (8) after integrating out every sec-
ond spin, residing on sublattice Λ, can be integrated out, yielding

Z(t) =
1

2N

∑

~s∈{±1}N/2

∏

i∈Λ
2 cos

�

J
4

t
∑

〈i, j〉

s j

�

. (27)

A Hamilton function H (~s, t) defining a classical network can be obtained by choosing a gen-
eral ansatz including all possible Z2-symmetric couplings of spins with a common neighbor
on the sublattice Λ, which takes the form given in Eq. (10). The Boltzmann weight of a
configuration is then given by

eH (~s,t) =
∏

l∈Λ
exp

� z/2
∑

n=0

Cn(t)
∑

(a1,...,a2n)∈V l
2n

2n
∏

r=1

sar

�

. (28)

Equating each factor in the expression above with the corresponding factor in Eq. (27) for
every configuration of the involved spins yields a system of equations that determines the
couplings Cn(t) [65].

In d = 1 the couplings are

C0(t) = ln2+
ln
�

cos(J t/2)
�

2
, C1(t) =

ln
�

cos(J t/2)
�

2
. (29)

The couplings in d = 2 are

C0(t) = ln 2+
ln
�

cos(J t)
�

+ 4 ln
�

cos(J t/2)
�

8
,

C1(t) =
ln
�

cos(J t)
�

8
,

C2(t) =
ln
�

cos(J t)
�

− 4 ln
�

cos(J t/2)
�

8
. (30)

In d = 3 the resulting couplings are

C0(t) = ln 2+
ln
�

cos(3J t/2)
�

+ 6 ln
�

cos(J t)
�

+ 15 ln
�

cos(J t/2)
�

32
,

C1(t) =
ln
�

cos(3J t/2)
�

+ 2 ln
�

cos(J t)
�

− ln
�

cos(J t/2)
�

32
,

C2(t) =
ln
�

cos(3J t/2)
�

− 2 ln
�

cos(J t)
�

− ln
�

cos(J t/2)
�

32
,

C3(t) =
ln
�

cos(3J t/2)
�

− 6 ln
�

cos(J t)
�

+ 15 ln
�

cos(J t/2)
�

32
. (31)

The time evolution of these couplings is displayed in Fig. 9.
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Figure 9: Time evolution of the couplings of the effective Hamilton function H (~s, t) for the
Loschmidt amplitude in one, two, and three dimensions.

B.2 Monte-Carlo scheme for the Loschmidt amplitude

In order to evaluate the Loschmidt amplitude given in terms of the renormalized Boltz-
mann weights (28) a combination of different Monte Carlo techniques is employed. Since
the Loschmidt amplitude is the normalization of the Boltzmann weights a simple Metropolis
Monte Carlo sampling is not sufficient. Moreover, the Monte Carlo sampling is hindered by
critical slowing down close to the critical times and the presence of negative weights leads to
a sign problem.

The idea to deal with these issues is to sample for a given Hamilton function H (~s, t) the
energy histograms P±(E) = Ω±(E)eE where the density of statesΩ±(E) is the number of config-
urations ~s with energy E = ReH (~s, t). The sign index indicates the sign of the corresponding
Boltzmann weight. Given a good estimate of these histograms the partition sum is simply

Z(t) =
∑

E,σ=±1

σ Pσ(E) . (32)

Note, however, that the histograms P±(E) must be properly normalized in order to get the
correct result for Z(t). In order to obtain a good estimate of the normalized histogram we
combine the following techniques:

1. Separate sampling of factor graphs. In order to overcome the sign problem the configura-
tion spaceX = {±1}N

′
is separated intoX+ = {~s|eH (~s,t) > 0} andX− = {~s|eH (~s,t) < 0};

N ′ is the number renormalized spins. Then the partition sum is split as

Z(t) = Z+(t) + Z−(t),

Z± =
∑

~s∈X±

eH (~s,t) = ±
∑

E

P±(E) . (33)

The partition sums Z± can be sampled separately as described in Ref. [67].

2. Importance sampling. When sampling the energy E in an importance sampling scheme
with weights eE the relative frequency of samples with energy E is proportional to
P±(E) = Ω±(E)eE . Therefore, a histogram of the energies sampled with Metropolis
Monte Carlo updates yields the desired histograms up to normalization. Moreover, the
importance sampling allows to choose the region in the energy spectrum that is sampled
by introducing an artificial temperature as described next.
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3. Parallel tempering. Parallel tempering [68] is a method to improve the sampling effi-
ciency in strongly peaked multi-modal distributions, which occurs in our case close to
the critical times. The idea of parallel tempering is to perform a Markov Chain Monte-
Carlo (MCMC) sampling on several copies of a system at different temperatures. During
the sampling the system configurations are not only updated as usual but also config-
uration swaps between adjacent temperatures are possible. Thereby a MCMC on the
temperatures is performed allowing the system to jump between different peaks of the
distribution.

In the present case a distribution with weights w(~s, t) = eH (~s,t) shall be sampled. Intro-
ducing an artificial temperature β yields weights

wβ(~s, t) = eβH (~s,t) . (34)

At β = 1 the sampling is inefficient due to the diverging renormalized weights of the
Hamilton function (see bottom panels in Fig. 4). This problem is attenuated if we sample
with a parallel tempering scheme with temperatures 1= β1 > β2 > . . .> βN . Moreover,
parallel tempering is beneficial, because histograms Pβ± (E) = Ω±(E)e

βE are obtained as
a byproduct, which capture different regions of the spectrum with high precision. This
can be used to obtain decent precision over the whole range of energies and thereby a
properly normalized histogram as described next.

4. Multiple histogram reweighting. In order to get a good histogram for P±(E) in the whole
energy range the fact that

Pβ1
± (E) = e(β1−β0)E Pβ0

± (E) (35)

can be expoited. In the multiple histogram reweighting procedure [69] the histograms
obtained at the different temperatures are combined to yield a histogram covering the
whole energy range. This allows us to normalize the histogram at β = 0, where

∑

E,σ=±1

|Pβ=0
σ (E)|= 2N ′ . (36)

B.3 Simplification of effective systems close to tc

For times t close to the critical time tc the effective classical networks can be simplified,
because some of the couplings become very small, as evident from Fig. 4 and also Fig. 9, and
the Hamilton function is dominated by the divergent contributions. This simplification can
be exploited for additional insights into the behavior of the Loschmidt amplitude close to the
critical time. In the following we will discuss the case d = 2, but the arguments hold similarly
for d = 3.

Dropping contributions to the couplings that vanish at tc the partition sum close to tc can
be approximated by

Z(t)≈
1

2N ′

∑

~s∈{±1}N ′
σ~s e−β(t)H̄ (~s), (37)

with an effective temperature β(t) = − ln
�

cos(J t/2)
�

/2, the number of remaining spins
N ′ = N/2, σ~s = ±1 the sign of the weight of the configuration ~s, and

H̄ (~s) =
∑

i, j

�

1− si, jsi+1, jsi, j+1si+1, j+1

�

. (38)
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The minimal energy of the network defined by H̄ (~s) is obviously reached when the condition

si, jsi+1, jsi, j+1si+1, j+1 = 1 (39)

is fulfilled on each plaquette. This is possible in systems where the edge lengths of the system,
N ′x and N ′y , are both even, to which we restrict the following discussion. To obtain a “ground
state" it is sufficient to fix the spin configuration in one row and in one column. The state
of the remaining spins is then determined by the condition (39). Hence, the ground state is
2N ′x+N ′y−1-fold degenerate.

From Eq. (27) we know that the sign of the corresponding Boltzmann weight is determined
by the number of plaquettes with |si, j+si+1, j+si, j+1+si+1, j+1|= 4. If there is an even number of
plaquettes with this property, the configuration has a positive Boltzmann weight, otherwise it is
negative. We find that for even edge lengths the ground states always have positive Boltzmann
weights.

Let us now introduce the density of states Ω±(E), i.e. the number of spin configurations ~s
with the same real part of the energy E =H (~s, t) and sgn

�

eH (~s,t)
�

= ±1, in order to rewrite
the sum over configurations in Eq. (37) as a sum over energies,

Z(t) =
1

2N ′

∑

E,σ=±1

σΩσ(E)e
−β(t)E . (40)

From the above analysis of the ground state we know that Ω+(0) = 2N ′x+N ′y−1. In the limit
t → tc , or equivalently β →∞, this is the only contribution that does not vanish in the sum.
Therefore, Z(tc) = 2N ′x+N ′y−1−N ′ and

λN (tc) =

�

1
2
−

N ′x + N ′y − 1

N

�

ln 2
N→∞
−→

ln 2
2

, (41)

which determines the value of the rate function at tc in the thermodynamic limit and the finite
size correction.

We would like to remark that classical spin systems of the form (38) were studied in the
literature and can be solved analytically for real temperatures [78, 79]. We found, however,
that introducing a sign into the partition sum renders the analytical summation impossible.

C Exemplary derivation of ANN couplings from the cumulant ex-
pansion

C.1 d = 1

From the cumulant expansion (18) we have

Pl(~s, t) = C0(t) + C1(t)sl(sl−1 + sl+1) + C2(t)sl−1sl+1 , (42)

i.e.

ψ(~s) =
∏

l

exp
�

C0(t) + C1(t)sl(sl−1 + sl+1) + C2(t)sl−1sl+1

�

. (43)

A patch consists of three consecutive spins and swapping the two spins at the border leaves
the weight unchanged.

A possible ansatz for the ANN with one hidden spin per lattice site (see Fig. 5(a) of the
main text), that respects the symmetries, is

ψ(~s) =
�Ω

2

�N ∑

~u(1),~u(2)
exp

�

∑

l

�

W1(sl−1 + sl+1) +W2sl

�

ul

�

, (44)
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where Ω constitutes a overall normalization and phase that is irrelevant when expectation
values are computed with the Metropolis algorithm. Integrating out the hidden spins yields

ψ(~s) =
∏

l

Ω cosh
�

W1(sl−1 + sl+1) +W2sl

�

(45)

Identifying the single factors yields for the different possible spin configurations (in the fol-
lowing we abbreviate cosh by ch)

↑↑↑: Ω ch(2W1 +W2) = exp(C0 + 2C1 + C2)

↑↑↓: Ω ch(W2) = exp(C0 − C2)

↑↓↑: Ω ch(2W1 −W2) = exp(C0 − 2C1 + C2) (46)

All other spin configurations are connected to these via Z2 symmetry. This is an implicit equa-
tion for the ANN weights that can be solved numerically. One solution for the weights obtained
from the 1st order cumulant expansion is plotted in Fig. 5(b) of the main text. Note that these
equations have different possible solutions.

C.2 d = 2

From the cumulant expansion (20) we have

Pl(~s, t) = C (1)0 (t) + C (1)1 (t)
∑

a∈V l
1

sz
asz

l + C (1)2 (t)
∑

(a,b)∈V l
2

sz
asz

b

+ C (1)3 (t)
∑

(a,b,c)∈V l
3

sz
asz

bsz
c sz

l + C (1)4 (t)
∑

(a,b,c,d)∈V l
4

sz
asz

bsz
c sz

d , (47)

A patch consists of a central spin si, j and four neighboring spins as depicted by the black dots in
Fig. 4a in the main text. Any permutation of the surrounding spins leaves Pl(~s, t) unchanged.

A possible ansatz for the ANN with five hidden spins per lattice site is depicted in Fig. 5(c)
of the main text. After integrating out the hidden spins the wave function is given by

ψ(~s) = Ω
∏

l

ch
�

W (1)si, j

�

ch
�

W (1)
1 si, j +W (1)

2 (si, j+1 + si, j−1 + si+1, j + si−1, j)
�

× ch
�

W (2)
1 si, j +W (2)

2 (si, j+1 + si, j−1 + si+1, j)
�

× ch
�

W (2)
1 si, j +W (2)

2 (si, j+1 + si, j−1 + si−1, j)
�

× ch
�

W (2)
1 si, j +W (2)

2 (si+1, j + si−1, j + si, j+1)
�

× ch
�

W (2)
1 si, j +W (2)

2 (si+1, j + si−1, j + si, j−1)
�

. (48)

Identifying the single factors yields for the different possible spin configurations

↑↑↑↑↑: Ω ch
�

W (1)
1 + 4W (1)

2

�

ch
�

W (2)
1 + 3W (2)

2

�4

= exp
�

4C1 + 4C3 + C0 + 6C2 + C4

�

↑↑↑↑↓: Ω ch
�

W (1)
1 + 2W (1)

2

�

ch
�

W (2)
1 + 3W (2)

2

�

ch
�

W (2)
1 +W (2)

2

�3

= exp
�

2C1 − 2C3 + C0 − C4

�

↑↑↑↓↓: Ω ch
�

W (1)
1

�

ch
�

W (2)
1 +W (2)

2

�2
ch
�

W (2)
1 −W (2)

2

�2

= exp
�

C0 − 2C2 + C4

�

↓↑↑↑↑: Ω ch
�

−W (1)
1 + 4W (1)

2

�

ch
�

−W (2)
1 + 3W (2)

2

�4
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= exp
�

− 4C1 − 4C3 + C0 + 6C2 + C4

�

↓↑↑↑↓: Ω ch
�

−W (1)
1 + 2W (1)

2

�

ch
�

−W (2)
1 + 3W (2)

2

�

ch
�

−W (2)
1 +W (2)

2

�3

= exp
�

− 2C1 + 2C3 + C0 − C4

�

(49)

where the leftmost arrow in the spin configurations corresponds to the central spin of the
patch. One solution for the weights obtained from the 1st order cumulant expansion is plot-
ted in Fig. 5(d) of the main text.
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