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Abstract

At thermal equilibrium, the concept of effective central charge for massive deformations
of two-dimensional conformal field theories (CFT) is well understood, and can be de-
fined by comparing the partition function of the massive model to that of a CFT. This
temperature-dependent effective charge interpolates monotonically between the central
charge values corresponding to the IR and UV fixed points at low and high tempera-
tures, respectively. We propose a non-equilibrium, time-dependent generalization of the
effective central charge for integrable models after a quantum quench, ceff(t), obtained
by comparing the return amplitude to that of a CFT quench. We study this proposal for
a large mass quench of a free boson, where the effective charge is seen to interpolate
between ceff = 0 at t = 0, and ceff ∼ 1 at t →∞, as is expected. We use our effective
charge to define an “Ising to Tricritical Ising" quench protocol, where the charge evolves
from ceff = 1/2 at t = 0, to ceff = 7/10 at t →∞, the corresponding values of the first
two unitary minimal CFT models. We then argue that the inverse “Tricritical Ising to
Ising" quench is impossible with our methods. These conclusions can be generalized
for quenches between any two adjacent unitary minimal CFT models. We finally study
a large mass quench into the “staircase model" (sinh-Gordon with a particular complex
coupling). At short times after the quench, the effective central charge increases in a
discrete “staircase" structure, where the values of the charge at the steps can be com-
puted in terms of the central charges of unitary minimal CFT models. When the initial
state is a pure state, one always finds that ceff(t →∞)≥ ceff(t = 0), though ceff(t), gener-
ally oscillates at finite times. We explore how this constraint may be related to RG flow
irreversibility.
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1 Introduction

Renormalization group (RG) transformations in quantum field theory are irreversible, as in-
formation about high-energy degrees of freedom is lost. This statement was formalized in
(1+1)-dimensional field theories by A. B. Zamolodchikov [1], by showing that there always
exists some function, c({g},µ), which decreases monotonically under RG flow (as the energy
scale, µ, is reduced), where {g} are the coupling constants of the model. This function be-
comes stationary in a conformal field theory (CFT), where it can be shown to reduce to the
corresponding central charge. For non-conformal theories, the function c({g},µ) can therefore
be thought of as an effective central charge.

Such a c-function can be defined and is analytically tractable in the context of the thermo-
dynamics of massive integrable deformations of CFT’s [2], where it can be computed exactly
through the tools of the thermodynamic Bethe ansatz (TBA) [3]. The TBA provides a formalism
to compute exactly the partition function of an integrable field theory at a finite temperature,
in the thermodynamic limit. The temperature-dependent effective central charge can be de-
fined by comparing this exact partition function with the analogous partition function of a
CFT at the same temperature, as will be reviewed in the following section. It is then easy to
see that this function monotonically decreases as the temperature (energy scale) is reduced.
Furthermore, this function smoothly interpolates between the values of the central charge of
the CFT’s describing the UV and IR dynamics, at high and low temperatures, respectively.

Our main objective is to define a non-equilibrium generalization of the effective central
charge, which can be time-dependent. If such a function can be defined, we are interested in
finding if there are any constraints on it which may be connected to the irreversibility of RG
flow, which would be analogous to the constraints on the thermal c-function.

One particular non-equilibrium protocol that has been extensively studied in recent years
is the so-called quantum quench. A quantum quench consists on initially preparing a system
in an eigenstate of some Hamiltonian, H0, (typically the ground state), and then suddenly
changing some parameter in the Hamiltonian, time-evolving the system unitarily with a new
Hamiltonian,H , with respect to which the system is no longer in an eigenstate. Such scenarios
have been realized experimentally in cold atomic systems [4].
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Quantum quenches generally introduce an extensive amount of energy into the system. If
there is some type of equilibration at late times, this final state will therefore be described by
some effective finite temperature (or a set of “effective temperatures"), whereas the initial state
as we have described is a single pure eigenstate, which can be described as a zero-temperature
state. The final state is in fact described by a generalized Gibbs ensemble (GGE) [5], which
takes into account nontrivial conserved quantities besides the total energy, as we will mention
in more detail in a later section. For integrable field theories, the GGE description amounts
to performing thermal-like averages of observables, but with a different effective temperature
for each momentum mode. For certain scenarios we will consider, in the limit of very large
quenches (which introduce a very large amount of energy), it can be seen that the field theories
thermalize, i.e. the effective temperature becomes a constant value for all momenta.

A sensible definition of effective central charge after a quantum quench should then inter-
polate between the central charge value which describes the zero-temperature dynamics of the
initial state, and the finite temperature(s) effective central charge of the post-quench theory,
as it evolves from t = 0, to t →∞. In particular, for large quantum quenches which lead to a
thermal state at late times, one expects the effective central charge at late times to reproduce
the known thermal value. Naturally, it is interesting to ask how exactly would such an effective
charge evolve at finite times, as it interpolates between the two values. In particular, is the
interpolation monotonically increasing, or does this non-equilibrium c-function oscillate?

In this paper, we propose a definition for effective central charge after a quantum quench,
based on the so-called return amplitude, defined by the overlap between the state of the system
at t = 0 and the time-evolved state.

The return amplitude can be computed exactly for quenches into a CFT (starting from the
ground state of a massive theory), and can be expressed in terms of the effective temperature
of the final state, and the corresponding central charge. This type of massive theory-to-CFT
quenches can be thought of as a very large quench limit, and are thus known to thermalize at
late times; only the overall effective temperature is included in the resulting GGE at late times.
The time-dependent effective central charge in a non-conformal field theory is then defined
by comparing the return-amplitude with that of a CFT quench, as we show in detail in Section
4. This definition is analogous to how the effective central charge at thermal equilibrium is
defined, by comparing the partition function of the model to that of a CFT.

The return amplitude can be computed analytically in a class of quantum quenches of
integrable field theories, where the initial state corresponds to integrable boundary conditions,
as we discuss in Section 5. From such exact solutions, we can verify that our proposal for
effective central charge seems to satisfy the expected properties, of interpolating between the
central charges describing the initial and final states, particularly for large quenches, where
the final central charge is the known thermal value. For smaller quantum quenches, where the
late-time dynamics is not thermal, but described by a GGE, our proposal provides a possible
definition of the concept of effective central charge corresponding to a GGE steady state.

As a simple example, we first consider the case of a mass quench of a free massive boson
(where at t = 0, the boson mass is suddenly changed form m0, to m. For large mass difference,
m0 � m, the quench introduces a large amount of energy, so at late times, we expect the
system to be described by the UV central charge value c = 1, while the initial state is described
by the IR value of c = 0. We find that our proposal for time-dependent effective central
charge, indeed interpolates between these two values. Furthermore, we find that this function
generally oscillates at finite times.

With our definition of effective central charge, we are able to define the notion of an “Ising
to tricritical Ising" quantum quench, where at t = 0, the system is described by Ising field
theory dynamics, corresponding to c = 1/2, and at late times, t →∞, the system is described
by the tricritical Ising model with c = 7/10. As we show in Section 7, such a quench is obtained
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by considering a specific deformation of the tricritical Ising CFT, which describes the massless
RG flow between the two CFT’s [6]. The Ising to tricritical Ising quench protocol consists on
suddenly changing the coupling constant for this deformation. Interestingly, we find that this
quench protocol can only be performed in one direction, i.e., the reverse, “tricritical Ising to
Ising" quench is impossible. This is simply because the tricritical Ising point describes the UV
dynamics, and a quantum quench cannot remove enough energy from the system, for the final
state to be described by the IR, Ising dynamics.

Similar quench protocols can be defined, which interpolate between any two adjacent
unitary minimal CFT models at t = 0 and t → ∞. It is interesting to notice the fact that
these quenches can only be performed in one direction, going from a lower to a higher central
charge. We propose that this strict direction in which quenches can be performed, is in some
way connected to the irreversibility of RG flow, since this arises from the known properties of
the equilibrium c-function, known to be related to RG flow.

We finally study quantum quenches into the so-called “staircase model" in Section 8. This
model is defined as a specific analytic continuation of the sinh-Gordon model. At high tem-
peratures, the effective central charge has been shown to reach a series of plateaus, which
resemble a staircase [7], and the values of the central charge at these plateaus correspond to
the central charges of all the unitary minimal CFT models. We find that the non-equilibrium
effective central charge also evolves at very short times with a “staircase" structure, where it
increases in discrete steps, whose values are determined in terms of the central charges of
minimal models.

We will observe that in all our examples, the effective central charge at late times has
always to be larger or equal than the effective central charge at t = 0, when the initial state is
a pure state. We propose that this seems to be a consequence of the irreversibility of the RG
flow in the non-equilibrium time evolution. This proposal is natural given that after a quantum
quench starting from a pure state, one will end up probing higher energy scales than those
probed for t < 0. Nevertheless, the effective central charge generally oscillates at finite times,
so the increase is not monotonic, this makes it difficult to find a direct RG flow interpretation
for the meaning of the effective charge at finite times.

2 Effective central charge for integrable models at thermal equi-
librium

We consider the thermodynamics of a CFT with central charge c. This is done by placing
the theory on a Euclidean toroidal geometry, with periodic boundary in both directions, and
denoting the lengths of the two dimensions as L and R. Eventually, in the thermodynamic
limit, we will take L →∞, keeping R finite, which yields a cylindrical geometry, as pictured
in Figure 1.a.

There are two ways of quantizing the theory on a cylinder, which correspond to considering
the compact dimension of length R to be either the temporal or the spatial dimension. These
are called R-channel and L-channel quantization, respectively. In the R-channel quantization,
the length R can be interpreted as the inverse temperature, R= 1/T . Therefore the cylindrical
geometry yields the thermodynamics of the CFT. In the L-channel quantization, one consid-
ers instead the zero-temperature dynamics of the theory in a finite volume, R. By modular
invariance of the CFT, both quantization procedures should yield equivalent results.

The partition function of the CFT in the L- and R-channels can be written as

Z(R, L) = Tr e−LHR , (1)

Z(R, L) = Tr e−RHL , (2)
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Figure 1: a) The thermal partition function corresponds to cylindrical geometry, with the
circumference given by the inverse temperatue R= 1/T , and the system size, L, goes to infinity
in the thermodynamic limit. b) The return amplitude for a quantum quench at imaginary times
corresponds to computing the partition function on the strip geometry, with τ= it, where the
boundaries are given by the initial state.

respectively, whereHR,L are the Hamiltonians of the system quantized along the R, L axis, and
the trace is defined as a sum over the eigenstates of the corresponding Hamiltonian.

In the L-channel (1), taking the limit L → ∞, implies that one only needs to consider
the contribution from the ground state energy, E0(R) of the finite-volume Hamiltonian HR,
therefore

Z(R, L)≈ e−LE0(R). (3)

The limit L→∞ in the R-channel (2) amounts to considering the thermodynamic limit of
the theory at finite temperature T = 1/R. This means the partition function can be expressed
as

Z(R, L)≈ e−LRf (R), (4)

where f (R) is the free energy per unit length. By comparing the two expressions for the
partition function, we have E0(R) = Rf (R).

A CFT has no dimensionful parameters, so by dimensional analysis, the ground state energy
needs to be of the form E0(R) = const/R. The exact expression for the ground state energy is
well known [8], and we only cite the result here:

E0(R) =
2π
R

�

∆min + ∆̄min −
c

12

�

≡ −
πceff

6R
, (5)

where ∆min, ∆̄min are the minimum conformal weights of primary operators of the CFT.
For a unitary CFT (which for simplicity, is the only kind we will consider in this paper),
∆min = ∆̄min = 0, such that ceff = c.

We can now consider the thermodynamics of a non-conformal integrable field theory (IFT)
with some intrinsic mass scale M . In particular, one can consider a field theory which is an
integrable deformation of a CFT, whose action is given by

SI F T = SC F T +λ

∫

Φ(x)d2 x , (6)

where Φ(x) is a relevant field of the CFT, and λ is some dimensionful constant, which will be
related to the mass scale M . At high energies, the dynamics of the model (6) are expected to
be described effectively by the underlying CFT, SC F T . Particularly, if one considers the ther-
mal partition function of the integrable theory, at high temperatures one expects the partition
function to be described by (5) with the appropiate cUV corresponding to SC F T .
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One can define a temperature-dependent effective central charge for an IFT at thermal
equilibrium, simply by comparing the partition function to that of a CFT at the same temper-
ature. In the IFT, the combination MR is dimensionless, which means that the corresponding
ground state energy E0(R) can be in general much more complicated function of R than the
expression (5), nevertheless, it is expected to approach (5) for R → 0. An effective thermal
central charge can be defined as

cthermal(R) =
6R
πL

log Z(R, L). (7)

If the IFT (6) can be described at low energies by an infrared fixed point with central charge
cIR, it can be shown that cthermal(R) is a function that interpolates between cIR at R→∞ and
cUV at R→ 0. We point out that for an integrable theory of massive particles, cIR = 0.

The function cthermal(R) can be computed for an IFT through the thermodynamic Bethe
ansatz formalism. The TBA program allows one to compute the partition function of an IFT
given as an input the theory’s two-particle S-matrix. We will not show the details of the deriva-
tion of the partition function, which can be found in [3], but only cite the necessary results.
For now we will consider only IFT’s with one species of particle, for simplicity.

The energy and momentum of a particle of mass, m, in an IFT can be parametrized as

E = m coshθ , p = m sinhθ ,

respectively, where θ is the particle’s rapidity. One can define particle creation and annihilation
operators A†(θ ), and A(θ ). The zero-temperature ground state is defined by

A(θ )|0〉= 0,

and multiparticle states can be defined as

|θ1, . . . ,θn〉= A†(θ1) . . . A†(θn)|0〉.

We denote the two-particle S-matrix as S(θ ), such that

A†(θ1)A
†(θ2) = S(θ1 − θ2)A

†(θ2)A
†(θ1).

The main result of the TBA formalism is that, given an S-matrix, S(θ ), one can compute
the partition function of an IFT in the thermodynamic limit, which is given by [3]

Z(L, R) = exp

�

±L

∫

dθ
2π

m coshθ log
�

1± e−ε(θ )
�

�

,

where ε(θ ) is the solution of the integral equation

ε(θ ) = mR coshθ ∓
∫

dθ
2π
ϕ(θ − θ ′) log

�

1± e−ε(θ
′)
�

, (8)

where

ϕ(θ ) = −i
d

dθ
ln S(θ ),

and the ± signs are chosen to agree with the sign of −S(0). The function ε(θ ) is typically
called the “pseudo energy". The effective central charge of an IFT at finite temperature is then
given by

cthermal(R) = ±
3
π2

mR

∫

dθ coshθ log
�

1± e−ε(θ )
�

. (9)
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One simple example one can consider is the theory of a free massive boson, with S(θ ) = 1.
In this case one expects the UV fixed point to be given by the CFT with cUV = 1, and at low
energies, cIR = 0. Therefore cthermal(R) should interpolate between the values of 0 and 1. In
this case, ϕ(θ ) = 0, such that

cthermal(R) = −
3
π2

mR

∫

dθ coshθ log
�

1− e−mR coshθ
�

=
6
π2

mR
∞
∑

n=1

1
n

K1(nmR), (10)

where Kα(z) are modified Bessel functions. One can easily see, in the limit mR→ 0,

cthermal(0) =
6
π2

∞
∑

n=1

1
n2
= 1.

In the R→∞ limit, we can use the asymptotic expression for the Bessel function

Kα(z)∼
s

π

2z
e−z + . . . , (11)

for |argz|< 3π
2 , and |z| →∞, to see that

cthermal(∞) = 0,

which confirms the expectations of the cthermal(R) function.

3 Quantum quenches and the return amplitude

In the quantum quench protocol, we consider a system that is initially prepared to be in a
state |Ψ0〉 that is an eigenstate (typically the ground state) of the pre-quench Hamiltonian,
H0. At time t = 0, the Hamiltonian is suddenly changed to H, for which |Ψ0〉 is no longer an
eigenstate. This state is then evolved unitarily as

|Ψt〉= e−iHt |Ψ0〉.

Some interesting quantities to compute are equal-time correlation functions of local oper-
ators Φi(x), defined as

〈Ψ0|eiHtΦ1(x1)Φ2(x2) . . .Φn(xn)e−iHt |Ψ0〉
〈Ψ0|Ψ0〉

.

At long times, such quantities typically relax and it is expected that they can be described by
a generalized Gibbs ensemble (GGE) [5], such that

lim
t→∞

〈Ψ0|eiHtΦ1(x1)Φ2(x2) . . .Φn(xn)e−iHt |Ψ0〉
〈Ψ0|Ψ0〉

= Tr [Φ1(x1)Φ2(x2) . . .Φn(xn)ρGGE] ,

where

ρGGE =
e−

∑

i βiQ i

Z
, Z = Tre−

∑

i βiQ i ,
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and Q i are local1 conserved charges of the theory. We note that if we include only the Hamilto-
nian, and no other conserved charges in the GGE, we recover the standard thermal ensemble.

The main quantity we will be interested in is the so-called return amplitude, defined as

F (t) =
�

�

�

�

〈Ψ0|e−iHt |Ψ0〉
〈Ψ0|Ψ0〉

�

�

�

�

. (12)

This quantity gives a measure of how different is the time-evolved state, |Ψt〉 to the initial state
|Ψ0〉.

It is interesting to note that the return amplitude at imaginary values of time, τ= it,

Z(τ) =F (−iτ),

is the partition function of the theory on a strip geometry, in the crossed channel, where the
roles of space and time are reversed. The inital state, |Ψ0〉 now corresponds to the boundary
conditions at the edge of the strip, as pictured in Figure 1.b. The system size, L, plays the role of
the inverse temperature, and the the imaginary time, τ plays the role of the system size in the
crossed channel. The identification between the return amplitude and the partition function in
the crossed channel has some practical applications. For instance, the return amplitude may
be computed in the crossed channel using the tools of the boundary thermodynamic Bethe
ansatz [17]. One practical application of the computation of return amplitudes is the study of
dynamical phase transitions [12], where phase transitions are identified at critical values of
time, t, by searching for non analyticities in log [F (t)], in analogy to how phase transitions
at equilibrium can be found by studying non analyticities in the thermal partition function.

The partition function on the strip in the crossed channel, in the large-L, limit can generally
be expressed as

Z(τ) = exp (−L f (τ)) , (13)

where f (τ) is the free energy in the boundary problem. This free energy can be split into three
contributions, according to their behavior at large τ:

f (τ) = fbτ+ 2 fs + fC(τ), (14)

where fb and fs are bulk and surface energy contributions, and fC(τ) decays at large τ. The
bulk term fb does not contribute to the return amplitude for real times, so we will not discuss it
further. The surface term, 2 fs is related to the normalization of the initial state. For simplicity,
we will choose fs such that the initial state is normalized as 〈Ψ0|Ψ0〉 = 1, which means we
will not need the normalization in the denominator in (12). This normalization implies the
relation 2 fs = − fC(0).

In this paper, the analogies between the return amplitude and the thermal partition func-
tion will be further exploited to define the concept of a time-dependent effective central charge,
ceff(t) for quantum quench problems, based on the return amplitude for CFT quenches.

4 Return amplitude and central charge in CFT quenches

Quantum quenches where the post-quench Hamiltonian, H, describes a CFT have been exten-
sively studied in a series of papers by Calabrese and Cardy [11]. In their approach, correlation

1It has recently been shown that to properly describe correlation functions after a quantum quench, sometimes
it is necessary to relax the notion of locality, and that one must also consider certain quasilocal conserved charges,
defined for quantum spin chains in [9], and for integrable field theories in [10]
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functions of local fields are computed by considering CFT thermodynamics in a Euclidean strip
geometry, and analytically continuing the results to real time. The simplest boundaries for the
strip are those which preserve conformal invariance. If the pre-quench Hamiltonian H0 de-
scribes a theory of particles with mass m0, it was argued the initial state can be approximated
by

|Ψ0〉= e−τ0H |Ψ∗0〉, (15)

where τ0 ∼ m−1
0 , is called the extrapolation length, and |Ψ∗0〉 is a state that corresponds to

conformally-invariant Dirichlet boundary conditions. The reason an extrapolation length is
needed is that the state |Ψ∗0〉 is not normalizable, and τ0 acts as a UV regulator.

The initial states (15) are in the majority of cases an oversimplification of the real initial
states corresponding to a physical quantum quench. Nevertheless, considering such states can
be a practical starting point for studying CFT quenches, since they allow for simple analytic
computations. As we will discuss later, there are some regions of the parameter space where for
some quenches, the simple initial states (15) can be physically justified. Restricting ourselves
to the initial states (15) will mean that for now, our computations of effective central charge
will only be valid for some specific and simple types of quantum quenches, and generalizations
to other scenarios are left for future projects.

It can be observed in [11], that given an initial state (15), one can compute correlation
functions of primary fields, and at long times these relax to their thermal expected values, with
an effective temperature Teff = 1/4τ0. The relation between the extrapolation length and the
effective temperature can be easily seen from computing the energy of the initial state, as

〈Ψt |H|Ψt〉
〈Ψ0|Ψ0〉

=
πcL

24(2τ0)2
,

and comparing it the thermal ground state energy.
It is evident that for this CFT quench set up, the system thermalizes at late times, and the

GGE reduces to the thermal ensemble. This is a consequence of choosing the initial state to be
of the form (15). It was shown in [13,14] that more general states lead to a nontrivial GGE and
richer dynamics at late times. The state (15), despite its simplicity, is particularly interesting
since it was argued in [11] that it correctly describes a massive theory-to-CFT quench, when
the pre-quench mass is very large, so there are some physical limits where it is relevant. This
limit can be recovered explicitly in exactly solvable quantum quenches, such as the free bosonic
field theory [11], and the scaling limit of the transverse field quantum Ising chain [15], where
a Calabrese-Cardy type quench arises naturally in the limit m/m0 → 0, where m is the post-
quench mass.

Given the physical relevance and simplicity of the initial state (15), this is the only type of
CFT quench we will consider in this paper. This will limit the range of quenches of massive
theories we will be able to study later in this paper. We will later define an effective central
charge for quenches of massive theories by comparing to this CFT result. This means that
our definition of effective central charge of a massive theory will only be justified for quenches
which reduce to the set up (15) in the appropiate CFT limit (when the post-quench massive pa-
rameter is very small). We will argue that this is indeed the case for some simple but physically
relevant quench set ups of massive theories, such that our proposal has reasonable applicabil-
ity. The study of more general and richer initial states is beyond the scope of this introductory
paper, but it would be a very interesting problem to examine in the future.

The return amplitude can be computed for a CFT quench from initial state (15) by evalu-
ating the partition function of the theory on the Euclidean strip. Such a partition function has
been found in [16]. In the thermodynamic limit, L →∞, for some finite lengths τ0, τ, the

9

https://scipost.org
https://scipost.org/SciPostPhys.4.3.016


SciPost Phys. 4, 016 (2018)

strip partition function is given by

〈Ψ∗0|e
−τH |Ψ∗0〉

〈Ψ∗0|e−2τ0H |Ψ∗0〉
= exp

�

−
πcL
48τ0

+
πcL
24τ

�

. (16)

The return amplitude at real times is obtained from (16) by analytically continuing
τ→ 2τ0 + it,

F (t) = exp
�

Re
�

−
πcL
48τ0

+
πcL

24(2τ0 + it)

��

. (17)

The terms on the right hand side of (17) can be identified with the terms of the free energy
(14), as

fs =
πc

24(4τ0)
, fC(τ− 2τ0) = −

πc
24τ

, (18)

and fb = 0.
The equations, (18) can be easily inverted to get two expressions for the central charge,

continuing τ→ 2τ0 + it,

c =
24
πTeff

fs = Re
�

−
12(2it + 1/Teff)

π
fC(it)

�

, (19)

which will be the basis of our definition of effective central charge for general quenches into
field theories that are not conformal.

In general models, the effective central charge will be time dependent, and the two ex-
pressions in (19) will not be equivalent at all times. The guiding principles we need to follow
to define an appropiate effective central charge from the generalized version of the expression
(19) are:

1. The effective central charge must reduce to a constant value described by (19) when we
take the CFT limit (vanishing post-quench mass).

2. The effective central charge should interpolate between the known equilibrium values
at t = 0 and t →∞.

One natural definition of time-dependent effective central charge in an integrable field
theory one might consider, consists on interpreting the difference between the two expressions
in (19) to yield ∆c′eff(t) = ceff(t)− ceff(0), such that we define

∆c′eff(t)≡ Re
�

24
πTeff

fs +
12 (2it + 1/Teff)

π
fC(it)

�

. (20)

We will see, however, that this expression (20) is problematic, when we evaluate it for a
mass quench of a free boson, in that at late times it permanently oscillates, instead of converg-
ing to the expected equilibrium value. Despite this, it is easy to see that while the value c′eff(t)
keeps permanently oscillating, its time-averaged value, around which it oscillates, converges
to the expected equilibrium value. Therefore, it seems that an appropiate definition for effec-
tive central charge in a non-conformal theory after a quench is instead given by time-averaged
expression

∆ceff(t) = 〈∆c′eff(t)〉t ≡
1
t

∫ t

0

d t ′∆c′eff(t
′). (21)
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We remind the reader that the proposed effective central charge (21) was derived using
the fact that the CFT at late times thermalizes, and there is only one parameter, Teff, which
describes the late-time dynamics. It is then expected to be applicable in general for quenches
of massive theories, only if these quenches have some “CFT limit", (typically considering the
pre-quench mass to be much larger than the post-quench mass), where the late time dynamics
become approximately thermal. We will see in the next sections such a limit exists for the
quench set ups we will consider, which are “mass quenches" where one changes the value of
the mass scale at t = 0.

When the post-quench mass is not zero, and the pre-quench mass is finite, the system
does not generally thermalize. The late time limit, ceff(t → ∞) of our proposal (21) can
then be taken as a definition of the effective central charge that corresponds to a given GGE
state. As we increase the value of the pre-quench mass, we will observe that the final state
goes to a thermal ensemble, and that ceff(t →∞) should then reproduce the thermal value,
cthermal(1/Teff), as defined in Section 2.

The rest of this paper is devoted to examining the implications of the formula (21) for
quenches in different integrable field theories. We will see that this proposal satisfies the
several properties that are expected from a sensible definition of effective central charge. We
will point out, however, that there is some ambiguity in this definition for IFT’s, since for
general quenches into a massive theory, the system does not thermalize, so the concept of an
effective temperature, Teff has to be carefully defined.

5 Return amplitude in IFT quenches

We now consider quantum quenches where the post-quench Hamiltonian, H describes an IFT
with mass m. We can still compute the return amplitude in this case by considering the par-
tition function of the theory on a strip, and analytically continuing to real times. The com-
putation of the partition function can be done analytically for initial states that correspond to
integrable boundary conditions [17] (for brevity, from now on we will use the term “integrable
boundary states" to refer to such initial states).

Integrable boundary states have been shown to be of the form [19],

|Ψ0〉= exp

�∫ ∞

0

dθ
2π

K(θ )A†(−θ )A†(θ )

�

|0〉, (22)

where |0〉 is the ground state of H, and A†(θ ) are the corresponding particle creation operators,
and K(θ ) is a function which satisfies the so-called “cross-unitarity condition":

K(θ ) = S(2θ )K(−θ ).

The excitations in the initial state (22) consist of pairs of particles with equal energies, and
opposite momenta. When one rotates the theory to the Euclidean strip, one can exchange the
role of the (imaginary) time and spatial dimensions, which implies that the function K(θ ) is
related to the boundary reflection matrix, R(θ ) by K(θ ) = R(iπ/2− θ ).

The partition function in the Euclidean strip can be computed by employing a version of
the thermodynamic Bethe ansatz with open, instead of periodic boundary conditions [17]. We
refer to this formalism as the Boundary TBA (BTBA). We will not derive the results of the BTBA,
but simply cite the needed formulas, which can be found in [17,18]. The free energy function,
fC(τ), can be computed in the BTBA formalism by solving the set of integral equations [18]

fC(τ) = ∓
m
4π

∫ ∞

−∞
dθ coshθH(θ ,τ),
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where

H(θ ,τ) = log
�

1± |K(θ )|2e−ε(θ ,τ)
�

,

and ε(θ ,τ) is the solution of

ε(θ ,τ) = 2mτ coshθ ∓
∫ ∞

−∞
dθϕ(θ − θ ′)H(θ ′,τ).

The ± signs are chosen to match the sign of −S(0). We can normalize the initial state such
that 2 fs = − fC(0).

We can now write down the formula for the effective central charge for a quench in an IFT
from an integrable boundary state by analytically continuing to real time and using (21),

ceff(t) =
1
t

∫ t

0

d t ′c′eff(t
′),

with

c′eff(t) = ceff(0) +Re

�

24 fs
πTeff

∓
3m (2it + 1/Teff)

π2

∫ ∞

−∞
dθ coshθH(θ , it)

�

. (23)

In the following section we will analyze the formula (23) for a mass quench of a free bosonic
theory, where as expected, we see that the effective central charge interpolates between
ceff(t = 0) = 0, and ceff(t → ∞) ≈ 1 for very energetic quenches. We will also address
the issue of defining an effective temperature Teff in quenches into a massive theory.

6 Mass quench of a free boson

We now consider a quantum quench of a free massive boson, where for t < 0, the particle mass
is m0, and at t = 0 we suddenly switch the mass to m. In this simple quench, it is possible
to find an exact expression for the initial state, which is of the form (22), by performing a
simple Bogoliubov transformation between the pre-quench and post-quench particle creation
operators.

We denote by A†
0(p), A0(p), and A†(p), A(p) the pre- and post-quench creation and an-

nihilation operators, respectively, which create or destroy a particle with momentum p. We
consider the initial state, |Ψ0〉 to be the ground state of the pre-quench Hamiltonian, defined
as

A0(p)|Ψ0〉= 0. (24)

The relation between pre-and post-quench operators is obtained by demanding that the
bosonic field and its canonical momentum conjugate field be continuous at the t = 0 boundary,
from which it can be found,

A0(p) = cpA(p)− dpA†(−p), A†
0(p) = cpA†(p)− dpA(−p),

where

cp =
1
2

 √

√

√

Ep

E0 p
+

√

√

√

E0 p

Ep

!

, dp =
1
2

 √

√

√

Ep

E0 p
−

√

√

√

E0 p

Ep

!

,
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with Ep =
p

m2 + p2 and E0 p =
q

m2
0 + p2. Solving (24) in the basis of post-quench operators,

yields an initial state given by (22) with

K(θ ) =
sinh(θ − ξ)
sinh(θ + ξ)

, (25)

where ξ is the pre-quench rapidity defined by m0 sinhξ= m sinhθ .
It is easy to see that the concept of effective temperature, Teff is generally not as simple as in

the CFT case. In a CFT quench, the effecive temperature is related to the extrapolation length,
which regularizes the idealized Dirichlet boundary state (an approach which was explored for
massive IFT’s in [20]). As was shown in [21], we can attempt to read-off an extrapolation
length from the solution (25), by trying to rewrite the initial state (22) in the form (15). The
only way one can write the initial state as (15), however, is using a momentum-dependent
extrapolation length, τ0(θ ), which solves

K(θ ) = e−2m coshθ τ0(θ )KDirichlet(θ ), (26)

where for a free boson, the Dirichlet boundary conditions are simply KDirichlet(θ ) = 1. Using
(25), we find

τ0(θ ) = −
1

2m coshθ
log

�

sinh(θ − ξ)
sinh(θ + ξ)

�

. (27)

As was explained in [22], long times after the quench, the system behaves as if every momen-
tum mode thermalizes with a different temperature, given by Teff(θ ) = 1/4τ0(θ ).

Since the effective temperature depends on the momentum modes, there is some ambiguity
regarding what single number one should use as Teff in the definition of effective central charge
(23). We will discuss here several definitions that were proposed in [22] that could be used in
(23). For most of this paper, however, we will focus only on very energetic quenches, where
m0/m→∞, where the momentum-dependence of τ0 dissappears.

As is expected from the analysis of CFT quenches, in the limit m/m0→∞, the expression
(27) becomes the constant

τ0(θ )→
1

m0
, (28)

such that we can use simply Teff = m0/4 in (23).
For general values of m0, m, two different proposals for effective temperature were given

in [22]. The first reasonable alternative is to use the value Teff = 1/4τ0(0), since the effec-
tive temperature of the zero momentum mode gives a good description of the long distance
behaviour of any correlation function. Coincidentally, from (27), one finds τ0(0) = 1/m0,
which agrees with (28). It is easy to see that in general, the effective temperature for the
zero-momentum mode, τ0(0), serves as a bound for the other momentum modes, such that
τ0(θ )≤ τ0(0), for all θ .

A second definition of effective temperature proposed in [22] is chosen such that the ther-
mal expectation value of a given local operator, O , agrees with the long time expectation value
of the same operator after the quench. Explicitly, one defines the temperature TOeff such that

lim
t→∞

〈Ψt |O |Ψt〉
〈Ψ0|Ψ0〉

= 〈O 〉TOeff
,

where the right hand side denotes the thermal expectation value, computed with temperature
TOeff. Such a computation involves an average over all the momentum modes, so the effective
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temperature obtained this way is called “average effective temperature" in [22]. One disad-
vantage of this definition of effective temperature is that it is operator-dependent. For the
operator O = φ2 evaluated in [21] (where φ is the free bosonic field), it was shown that

Tφ
2

eff → m0/4 for m0/m→∞, so all of these reasonable definitions of effective temperature
converge.

It is beyond the scope of this paper to determine which is the best definition of Teff to
include in our definition of effective central charge for general quenches. From now on, we will
only be concerned with highly energetic quenches, where we will consider simply Teff = m0/4.

Let us now briefly discuss what is the behavior we expect from a reasonable definition of
time-dependent effective central charge in the mass quench of a free boson. Since the initial
state is the ground state of a massive theory, we expect ceff(t = 0) = 0. At infinite times, the
system locally equilibrates, and is described by the effective temperature Teff, so we expect
ceff(t →∞) = cthermal(1/Teff)≈ 1 (this equivalence is only valid for m0/m→∞).

For m0� m we can write

K(θ )≈ e−2 m
m0

coshθ ,

such that from the BTBA we have

fC(τ) =
m
4π

∫ ∞

−∞
dθ coshθ log

h

1− e−
�

4 m
m0
+2mτ

�

coshθ
i

. (29)

We can then compute the function

c′eff(t) = −
48
πm0

fC(0) +
12
π

Re [(2it + 4/m0) fC(it)]

= cthermal

�

4
m0

�

−
6
π2

Re

¨

m (2it + 4/m0)
∞
∑

n=1

1
n

K1

�

nm
�

4
m0
+ i2t

��

«

, (30)

where we have set ceff(t = 0) = 0. We can now show that while the function c′eff(t) contin-
ues oscillating permanently at long times, the time-averaged function ceff(t) converges to the
thermal value, cthermal(4/m0).

The function c′eff(t) can be studied at late times by using the asymptotic expressions for
the Bessel functions (11), so we write

c′eff(t)≈ cthermal

�

4
m0

�

−
6
π2

m
p

t
∞
∑

n=1

1
n3/2

e−n4m/m0 [cos(n2mt)− sin(n2mt)] . (31)

The expression (31) at late times consists of a sum of permanently oscillating terms, which
grow with an overall factor of

p
t. If we consider instead the time-averaged function, ceff(t),

one can simply see that the time average of the late-time cosine and sine terms is zero, such
that

ceff(t →∞) = cthermal

�

4
m0

�

,

as is expected.
We plot both functions, c′eff(t) and ceff(t) in Figure 2, where we can explicitly observe

the behavior we describe; c′eff(t) oscillates and grows as
p

t, and ceff(t) seems to converge to
cthermal(4/m0) at late times.

In the case where the pre- and post-quench mass difference is not very large, the system
is not expected to thermalize at long times, but to be described by some GGE state. It is easy
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(a)

(b)

Figure 2: (a) Plot of c′eff(t) as a function of t. (b) Plot of the effective central charge, ceff(t),
as a function of t. In both plots we have chosen the constants 4m/m0 = 0.1, and 2m= 1.

to see by similar arguments to those above that in these cases the effective central charge also
approaches some steady value at late times, given by ceff(t →∞) = −

48Teff
π fC(0), for some

chosen quantity Teff (which as we argued could be, for example, the effective temperature
of the zero-momentum mode, τ0(0)). We propose this expression can be considered as a
definition of the effective central charge corresponding to some GGE state, cGGE[K(θ )], which
is a function of all the effective temperatures of all the momentum modes. The effective
central charge corresponding to a given GGE with some effective temperature τ0(0) is always
smaller or equal to the analogous thermal value of central charge corresponding to the same
temperature, cthermal(1/τ0(0)). This is because of the bound τ0(θ ) ≤ τ0(0), which means all
the non-zero momentum modes have a smaller or equal effective temperature in the GGE.
When one considers the large quench limit, the GGE and thermal central charges converge, or
cGGE[K(θ )]→ cthermal(1/τ0(0)), for m0/m→∞.

It is interesting to notice that as ceff(t) approaches its late-times asymptotic value, it os-
cillates and can reach values greater than cUV = 1 during its finite time evolution. This phe-
nomenon cannot be seen in equilibrium thermodynamics, since there is no real value of tem-
perature for which cthermal(1/T )> 1.

7 Effective quench from Ising to tricritical Ising CFT

In this section we study a quantum quench where the effective central charge flows from
ceff(0) = 1/2 to ceff(∞)≈ 7/10. These asymptotic values of central charge correspond to the
first two unitary minimal CFT models, namely the Ising model (IM) and the tricritical Ising
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model (TIM).

7.1 Massless flow from Tricritical Ising to Ising model at thermal equilibrium

The unitary minimal models, Mp, labeled by an integer, p ≥ 3, have a central charge given
by [24]

cp = 1−
6

p(p+ 1)
, (32)

with IM and TIM corresponding to the modelsM3 andM4, respectively. The primary operators
of these models, Φr,s, labeled by integers, r, s have conformal weight

∆r,s =
((p+ 1)r − ps)2 − 1

4p(p+ 1)
.

It is known that if one perturbs the action of the unitary minimal model,Mp with the oper-
ator Φ1,3 (with a positive coupling constant) this will result in an integrable theory of massless
particles describing the RG flow between Mp and Mp−1 [6]. We are therefore interested in
the integrable model with Hamiltonian

H = HM4
+λ

∫

d xΦ1,3. (33)

This deformation introduces a mass scale M ∼ λ2∆1,3−2.
The spectrum of the Hamiltonian (33) consists of massless fermionic particles, and bosons

with mass M . The massive bosonic particles are highly unstable, so the thermodynamics of
this model is dominated by the stable massless particles.

In the IR regime (for energies smaller than M), the theory (33) can be described as a free
massless fermion deformed by an irrelevant operator, with action

S =
1

2π

∫

�

ψ∂z̄ψ+ ψ̄∂zψ̄
�

dzdz̄

−
1

π2M2

∫

(ψ∂zψ)(ψ̄∂z̄ψ̄)dzdz̄ + (higher dimensionaloperators), (34)

where the massless fermions have been divided into left- and right- chirality components, ψ
and ψ̄, respectively.

The S-matrix for the massless fermions of the model (33) has been determined in [6]. The
massless particles can be divided into right movers and left movers, which all move at the
speed of light. The energy and momentum of left and right movers can be parametrized using
a rapidity variable, as

E(θ ) = −p(θ ) =
1
2

Me−θ , for left movers,

E(θ ) = p(θ ) =
1
2

Meθ , for right movers.

Left and right movers can be created with the operators A†
L(θ ) and A†

R(θ ), respectively, which
satisfy the algebra

A†
L(θ1)A

†
L(θ2) = −A†

L(θ2)A
†
L(θ1),

A†
R(θ1)A

†
R(θ2) = −A†

R(θ2)A
†
R(θ1),

A†
R(θ1)A

†
L(θ2) = S(θ1 − θ2)A

†
L(θ2)A

†
R(θ1), (35)
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with the S-matrix

S(θ ) = − tanh
�

θ

2
−

iπ
4

�

. (36)

Thermodynamical quantities at equilibrium in the model (33) can be computed by fixing
two pseudo-energy functions, ε1(θ ) and ε2(θ ), corresponding to the right and left moving
fermions, respectively. These can be computed by solving the massless version of the TBA
integral equation, which yields [6]

ε1(θ ) =
1
2

MReθ −
∫

dθ ′

2π
ϕ(θ − θ ′) log

�

1+ e−ε2(θ ′)
�

,

ε2(θ ) =
1
2

MRe−θ −
∫

dθ ′

2π
ϕ(θ − θ ′) log

�

1+ e−ε1(θ ′)
�

, (37)

where we use

ϕ(θ ) = −i
d log S(θ )

dθ
=

1
cosh(θ )

.

The system of equations (37) is simplified by noticing the symmetry ε1(θ ) = ε2(−θ ), which
allows one to write these as a single integral equation in terms of ε = ε1,

ε(θ ) =
1
2

MReθ −
∫

dθ ′

2π
ϕ(θ + θ ′) log

�

1+ e−ε(θ
′)
�

. (38)

The thermal effective central charge is given by

cthermal(R) =
3MR
2π2

∫ ∞

−∞
dθ eθ log

�

1+ e−ε(θ )
�

. (39)

It is expected that the high-energy dynamics of the theory (33) is dominated by the TIM,
with c = 7/10, and at low energies, the dynamics should be effectively that of the IM with
c = 1/2. This desired behavior is indeed observed from (39), where it can be seen that
cthermal(0) = 7/10 and cthermal(∞) = 1/2 [6].

The high temperature limit of (39) can be extracted by observing that for small MR, the
function L(θ ) = log

�

1+ e−ε(θ )
�

has the shape of a plateau with

L(θ ) =



























0, forθ � log
� 2

MR

�

,

log
�

1+ e−ε0
�

, for − log
� 2

MR

�

� θ � log
� 2

MR

�

,

log(2), forθ �− log
� 2

MR

�

,

(40)

where ε0 is the solution of the transcendental equation

ε0 = −
1
2

log
�

1+ e−ε0
�

.

The integral in (39) can be shown to localize and receive contributions only from the edges
of the plateau (40), θ ≈ ± log

� 2
MR

�

, which yields the desired result cthermal(0) = 7/10. The
details of this computation can be found in [6].

In the MR→∞ limit, we can use the approximation ε(θ ) = 1
2 MReθ , such that

lim
R→∞

cthermal(R) =
3MR
2π2

∫ ∞

−∞
dθ eθ log

�

1+ e−
1
2 MReθ

�

=
1
2

.
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7.2 Massless flow out of equilibrium

We now consider a quantum quench of the model (33) where at t = 0 we suddenly switch
the mass parameter from M0 to M . We consider the initial state to be the ground state of the
pre-quench Hamiltonian. The initial effective central charge, ceff(0) therefore corresponds to
the zero-temperature value of (39), i.e. ceff(0) = 1/2.

We will only be interested in the limit of a very energetic quench, where M0� M , such that
at infinite times, the system is described by a large effective temperature, Teff = M0/4� M .
We then expect limt→∞ ceff(t)≈ 7/10.

In the limit of the highly energetic quench, similarly to the quenches of CFT’s, we assume
that the initial state can be properly described by applying an extrapolation length to the
Dirichlet boundary state:

|Ψ0〉 ≈ e−Hτ0 |D〉.

This means that physical observables can be computed by approximating the initial state to be
given by (22), with the function K(θ ) dominated only by the extrapolation length,

|K(θ )| ≈ e−
M
M0

eθ , (41)

where we have taken τ0 = 1/M0.
The initial state given by (41) can be used in a massless version of the BTBA, such that the

boundary free energy is given by

fC(τ) = −
M
4π

∫ ∞

−∞
dθ

1
2

eθ log
h

1+ e−ε(θ ,τ)−2 M
M0

eθ
i

,

with

ε(θ ,τ) = Mτeθ −
∫ ∞

−∞
ϕ(θ − θ ′) log

h

1+ e−ε(θ ,τ)−2 M
M0

eθ
i

,

and 2 fs = − fC(0). We can then define the function

c′eff(t) =
1
2
+ cthermal(4/M0)−Re

�

3M(2it + 4/M0)
π2

∫ ∞

−∞
dθ

1
2

eθ log
h

1+ e−ε(θ ,it)−2 M
M0

eθ
i

�

,

(42)

and we define the effective central charge as the time average of (42).
It is easy to show that c′eff(t) as given in (42) flows from 1/2 at t = 0, to 7/10 at t →∞,

for M � M0. At t = 0, the third term in the right-hand side of (42) reduces to the thermal
value −cthermal(4/M0), given in (39), cancelling with the second term in the right hand side of
(42). At very large times, we can approximate

ε(θ , it)→ M i teθ ,

so that

lim
t→∞

c′eff(t) =
1
2
+ cthermal(4/M0)

−Re

�

3M(2it + 4/M0)
π2

∫ ∞

−∞
dθ

1
2

eθ log
�

1+ e−(2it+4/M0)
1
2 Meθ

�

�

=
1
2
+ cthermal(4/M0)−

1
2

.
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Large values of M0 correspond to a large effective temperature, which means, as we discussed
in the previous subsection, that cthermal(4/M0)≈ 7/10, as expected.

Since the function c′eff(t) in this case already approaches a constant value at late times,
The time-averaged effective central charge, ceff(t) will converge to the same constant value at
late times. Therefore we confirm that the function ceff(t) indeed interpolates between 1/2 at
t = 0 and 7/10 at t →∞, as is expected.

It is interesting to notice that while it is relatively straightforward to design a quantum
quench where the central charge flows from the IM value of 1/2, to the TIM value of 7/10, it
seems to be impossible to design a quench where the central charge flows from TIM to IM. An
initial state such that ceff(t = 0) = 7/10, corresponds to considering the theory with Hamilto-
nian (33) at very high temperatures. If we want that at infinite times, ceff(t →∞)≈ 1/2, we
would need the late-time dynamics to resemble the low-temperature regime of (33), that is,
the quantum quench must introduce a large negative amount of energy into the system.

Quantum quenches from a thermal initial state in a free theory have been studied in [22].
While it was shown that a quantum quench can indeed introduce negative energy into the
system (the effective temperature at late times is lower than the temperature of the initial
state, therefore called a “cold quench" in [22]), it was found that the amount of negative
energy a quench can introduce is bounded. In a cold quantum quench of a free boson from a
thermal initial state, the lowest value the effective temperature at late times can be is half of
the initial temperature. If this result can be generalized to interacting theories, it would imply
that if one starts at a very high initial temperature (such that cthermal ≈ 7/10 in our model), a
cold quench cannot reduce the effective temperature down to a value low enough such that
ceff(t →∞) = 1/2.

We can then conclude that it is not difficult to design a quench where the dynamics ef-
fectively flow from IM to TIM. The reversed quench, flowing from TIM to IM, seems to be
impossible with our methods. The results of this section can also be easily generalized to
quenches between any two adjacent unitary minimal models,Mp andMp+1, by considering
a theory with Hamiltonian

H = HMp+1
+λ

∫

d x Φ1,3. (43)

The Hamiltonian (43) describes the massless RG flow between the minimal modelsMp and
Mp+1. The TBA equations for the massless particles of (43) was found in [6], where it can
be shown that at low temperatures, the effective central charge is that of Mp, and at high
temperatures, the effective central charge is that ofMp+1. It is then easy to design a quantum
quench where the time-dependent effective central charge flows from the value corresponding
toMp at t = 0, to a value approaching that ofMp+1 at t →∞. This would be done by starting
from the zero-temperature ground state of (43), and suddenly making a large change in the
λ parameter, inducing a large effective temperature.

8 Quench into the staircase model

In this section we will study quantum quenches into the staircase model, which was introduced
in [7]. The staircase model can be understood as an analytic continuation of the sinh-Gordon
model, with action

S =

∫

d2 x

�

1
2
∂µφ∂

µφ −
m2

g2
cosh gφ

�

,
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log(2/mR)

cthermal(R)

1

0ϑ0/2 −ϑ0/2ϑ03ϑ0/2

Figure 3: Schematic plot (note that this is not an actual numerical evaluation of the TBA
equations) of the thermal central charge in the staircase model as a function of log(2/mR).
For high temperatures, the central charge reaches plateaus given by the central charges of the
unitary minimal models.

where m is a mass scale and g the coupling constant. This is an integrable model with a single
species of massive particles, and the S-matrix is known to be

S(θ ) =
sinhθ − i sinγ
sinhθ + i sinγ

,

where we define the constant γ= πg2/(8π+ g2). This S-matrix can be inserted into the TBA
formalism, to compute the thermal effective central charge cthermal(R). It is not difficult to see
that at low temperatures, cthermal(∞) = 0, while at high temperatures cthermal(0) = 1, as is
expected.

The staircase model is obtained from the sine-Gordon TBA equations by performing the
analytic continuation γ = π

2 ± iϑ0, where ϑ0 is real, and then letting ϑ0 tend to infinity. As
we will see in the following subsection, the thermal effective central charge, cthermal(R) still
interpolates between the values of 0 and 1 at low and high temperatures, however, as we
increase the value of ϑ0, the effective charge develops a series of plateaus (or a “staircase") as
a function of mR, as pictured in Figure 3. The values of the central charge at these plateaus
are given by Eq. (32), corresponding to the central charges of all the unitary minimal models.

In the next subsection, we examine the TBA equations of the staircase model, and review
how the staircase structure in cthermal(R) arises at large ϑ0. We then study the effective central
charge after a quantum quench into the staircase model, for high energy quenches, with very
large effective temperature. We find that at very early times after the quench, the effective
central charge passes through a series of steps, however the values of the central charge at
these steps are shifted away from the values in (32).

8.1 The staircase model at thermal equilibrium

The thermal effective central charge in the staircase model is given by Equations (8) and (9),
using the kernel

ϕ(θ ) = −i
d

dθ
ln S(θ ) =

1
cosh(θ + ϑ0)

+
1

cosh(θ − ϑ0)
. (44)

The steps in the central charge only appear in the ϑ0 → ∞ limit, while simultaneously
reducing the value of mR. In this limit, the kernel (44) acquires the shape of two indi-
vidual localized lumps, centered around the values θ = ±ϑ0. Equation (8) then couples
the pseudoenergy ε(θ ) to ε(θ ′) with θ ′ ≈ θ ± ϑ0. At small values of mR, the function
L(θ ) = log

�

1+ e−ε(θ )
�

acquires the shape of a plateau with non-zero values only in the inter-
val − log(2/mR)� θ � log(2/mR), as pictured in Figure 4. It is then easy to see that as long
as log(2/mR)� ϑ0/2, the second term in equation (8) does not contribute, and the pseudo
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Figure 4: A plot of the function L(θ ) = log[1+exp(−mR coshθ )], vs θ , where we have chosen
the small value mR= .01 .

energy is given by ε(θ ) = m coshθ , that is, the TBA equations are those of a free fermion. We
then reach the first plateau in the staircase model by taking the high temperature limit, with
very small mR, while keeping log(2/mR)� ϑ0/2, where the central charge is given by the free
fermion value, c = 1/2.

The second term in the right-hand side of (8) contributes to ε(θ ) once the L(θ ) plateau
becomes wide enough to reach the values θ ≈ ±ϑ0. The new contributions to the pseudo
energy come from the two localized lumps of theϕ(θ ) kernel, which means, the pseudo energy
can be divided in two contributions, ε1(θ ) = ε(θ + ϑ0) and ε2(θ ) = ε(θ − ϑ0). The TBA
equations in this case turn out to be equivalent to the ones discussed in Section (7.1), with
ε1,2(θ ) describing the left and right moving massless particles, which characterize the RG flow
from TIM to IM. At high temperatures, in the region ϑ0/2 � log(2/mR) � ϑ0, the central
charge reaches the plateau at the value c = 7/10 corresponding to the TIM.

One can continue decreasing the value of mR, which has the effect of widening the non-
zero region of the function L(θ ). A change in behavior in the TBA equations occurs every
time that log(2/mR) reaches the value of an integer multiple of ϑ0/2, where as was shown
in [7], the pseudo energy can effectively split into a higher number of relocalized pseudo
energies, which describe the massless flow between adjacent minimal models. In particular,
if one focuses on the region where (p − 3)ϑ0/2 � log(2/mR) � (p − 2)ϑ0/2, the effective
central charge reaches the plateau at the value c = 1−6/[p(p+1)], corresponding to theMp
minimal model.

8.2 The staircase model out of equilibrium

We now examine the staircase model after a quantum quench. In particular, we will consider
the initial state to be the ground state of a free boson, of mass m0. At time t = 0 we suddenly
turn on the interaction term, with the value of coupling constant given by γ= π

2+iϑ0, as well as
simultaneously changing the particle mass to m. The reason we focus on this particular quench
protocol is that the initial state corresponding to such a quench in the sinh-Gordon model has
been studied in Ref. [21, 25], where it has been found that it is very well approximated by
(22), with

K(θ ) = Kfree(θ )KDirichlet(θ ), (45)

where Kfree(θ ) describes the mass quench of a free boson, and is given in Eq. (25); KDirichlet(θ )
corresponds to the (non-normalizable) state given by considering Dirichlet boundary condi-
tions, which can be found to be [26]

KDirichlet(θ ) = i tanh(θ/2)
cosh(θ/2− iγ/4) sinh(θ/2+ i(γ+ 1)/4)
sinh(θ/2+ iγ/4) cosh(θ/2− i(γ+ 1)/4)

.

21

https://scipost.org
https://scipost.org/SciPostPhys.4.3.016


SciPost Phys. 4, 016 (2018)

We will assume that the initial state (45) is still valid when we analytically continue to com-
plex values of the coupling constant. As we have done in previous sections, we will now focus
only on very energetic quantum quenches, for which m� m0. In this limit, the details of the
initial state become less important, and we can approximate it with the simple extrapolation
length,

|K(θ )| ≈ e−2 m
m0

coshθ ,

for large values of θ .
The initial state for the quench is the ground state of the Hamiltonian of a free massive

boson. We therefore set ceff(t = 0) = 0. Using the formula (23), we can write the function

c′eff(t) = Re

�

12m
π2m0

∫ ∞

−∞
dθ coshθH(θ , 0)−

3m(2it + 4/m0)
π2

∫ ∞

−∞
dθ coshθH(θ , it)

�

, (46)

with

H(θ ,τ) = log
�

1+ e−4 m
m0

coshθ−ε(θ ,τ)
�

,

and

ε(θ ,τ) = 2mτ coshθ −
∫ ∞

−∞
dθ ′

�

1
cosh(θ − θ ′ + ϑ0)

+
1

cosh(θ − θ ′ − ϑ0)

�

H(θ ′,τ). (47)

At long times, we have ε(θ , it) ≈ 2mit coshθ . The integrand in the second term in the right-
hand-side of (46) becomes highly oscillatory, and after time-averaging, its contribution to
ceff(t) vanishes. The effective central charge at late times is then given by

lim
t→∞

ceff(t) = Re

�

12m
π2m0

∫ ∞

−∞
dθ coshθH(θ , 0)

�

= cthermal

�

4
m0

�

.

We assume that the effective temperature, Teff = 4/m0 is very high, such that the value
of cthermal(4/m0) lies in one of the plateaus discussed in the previous subsections. To be more
specific, we can select a value of m0, such that (p−3)ϑ0/2� log(m0/2m)� (p−2)ϑ0/2, for
some integer, p, such that cthermal(4/m0) ≈ 1− 6/[p(p + 1)]. This result arises from the fact
that the function H(θ , 0) is the same as the L(θ ) function discussed in the previous subsection.
The function H(θ , 0) at very large m0 acquires the shape of a plateau that is non-zero only in
the region − log(m0/2m) � θ � log(m0/2m). The value of ceff(∞) then depends on the
integer number of times that ϑ0 fits in this interval.

We can now observe that the time evolution of the central charge described by (46) also
exhibits a “staircase" structure at very short times, where the value of the effective central
charge reaches a series of plateaus as a function of time. To see this staircase structure, we
study the function Re [H(θ , it)] at very short times.

We first consider the function Re [H(θ , it)] in the regime
1 � log(1/mt) � ϑ0/2 � log(m0/2m). In this regime, the function Re [H(θ , it)] aqcuires
the shape shown in Figure 5. This function has a nearly constant value in the plateau given
by − log(1/mt) � θ � log(1/mt). In the regions − log(m0/2m) � θ � − log(1/mt) and
log(1/mt) � θ � log(m0/2m), the function of θ is very highly oscillatory. In the regions
θ �− log(m0/2m) and log(m0/2m)� θ , the function vanishes exponentially to zero.

We now argue that when we insert H(θ , it) into (47), and integrate over all θ , the highly
oscillatory, and exponentially vanishing regions in Figure 5 do not contribute to the function
ε(θ , it). The only contributions to ε(θ , it) will come from the constant nonzero values of
Re [H(θ , it)]. As was discussed for the thermal central charge in the previous subsection, the
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Figure 5: A plot of the function 10L(θ ) = 10 ReH(θ , it) = 10 Re log[1 + exp((−4m/m0 −
2mit) coshθ )] (where the overall factor of 10 is only inserted for better visibility), vs θ , where
we have chosen the small values 4m/m0 = 10−12 and 2mt = 10−4.

value of the effective central charge, ceff(t) then simply depends on the integer number of
times that the value of ϑ0 fits in the interval (− log(1/mt), log(1/mt)). The number of times
that ϑ0 can fit in this interval increases as we reduce mt.

We now suppose that the pre-quench mass, m0, is such that
(p − 3)ϑ0/2 � log(m0/2m) � (p − 2)ϑ0/2. At time t = 0, the function Re [H(θ , 0)] is
dominated by the non-zero constant value in the plateau − log(m0/2m)� θ � log(m0/2m),
and has no oscillatory behavior. At this point, the two terms in the right-hand side of (46)
cancel each other, and ceff(t = 0) = 0. The shape of Re [H(θ , it)] remains unchanged until the
time reaches the interval (p−4)ϑ0/2� log(1/mt)� (p−3)ϑ0/2, where now ϑ0 fits one less
integer time in the constant, non-oscillatory region of Re [H(θ , it)], given by |θ | � log(1/mt).
From (46), it is easy to see that within this time interval, the (non-time-averaged function)
c′eff(t) reaches the steady value

c′eff(t)|(p−3)ϑ0/2�log(1/mt)�(p−4)ϑ0/2 = −
6

p(p+ 1)
+

6
(p− 1)p

.

The effective central charge will again remain at this constant value until the time reaches the
next interval, (p−5)ϑ0/2� log(1/mt)� (p−4)ϑ0/2, where the central charge will increase
to the next plateau. The function c′eff(t) will change its value whenever the time enters a
new interval (p − k − 3)ϑ0/2� log(1/mt)� (p − k − 2)ϑ0/2, for some integer k, such that
0≤ k ≤ p− 3. During such an interval, one finds

c′eff(t)|(p−k−3)ϑ0/2�log(1/mt)�(p−k−2)ϑ0/2 = cp − cp−k

= −
6

p(p+ 1)
+

6
(p− k)(p− k+ 1)

. (48)

It is easy to see that when we time-average the function (48) to obtain the effective central
charge, the same staircase structure is maintained for ceff(t). This is because the staircase
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log(1/mt)

ceff(t)

1

0ϑ0/2 −ϑ0/2ϑ03ϑ0/2

. . . 25
28

Figure 6: Schematic plot (note that this is not an actual numerical evaluation of Eq.
(46)) of the time evolution of the effective central charge after a quantum quench
into the staircase model. The plot corresponds to an initial mass m0, such that
(p− 3)ϑ0/2� log(m0/2m)� (p− 2)ϑ0/2, with p = 7. At infinite times, the effective central
charge reaches the stationary value, c = 25/28, corresponding to theM7 minimal model.

structure occurs in a logarithmic time scale. When we time-average in a linear time scale, the
duration of each step of the staircase is much longer than the duration of all the previous steps,
such that each steps dominates the time average. Explicitly, the function c′eff(t) stays in the k-th
step of the staircase for the duration of the time interval e−(p−k−2)ϑ0/2 � mt � e−(p−k−3)ϑ0/2,
while the duration of all the previous steps combined is given by 0� mt � e−(p−k−2)ϑ0/2. The
ratio of the duration of the k-th step compared to the duration of all the previous steps, is then
given by

∆tk−th step

∆tprevious steps
=

e−(p−k−3)ϑ0/2 − e−(p−k−2)ϑ0/2

e−(p−k−2)ϑ0/2
,

which in the limit, ϑ0→∞ becomes

∆tk−th step

∆tprevious steps
→ eϑ0/2,

such that the duration of each step is exponentially larger than the combined duration of all
previous steps. This implies that after time-averaging the function c′eff(t), it will preserve the
same staircase structure, so the effective central charge satisfies

ceff(t)|(p−k−3)ϑ0/2�log(1/mt)�(p−k−2)ϑ0/2 = −
6

p(p+ 1)
+

6
(p− k)(p− k+ 1)

. (49)

The steps in the central charge given by (49) occur only at very short times after the quench.
This behavior is analogous to how at thermal equilibrium, the steps in the central charge can
only be observed at very high temperatures. In Figure 6, we present a schematic plot of the
time evolution of the effective central charge for a given value of p.

9 Conclusions

We have proposed a definition for a time-dependent effective central charge that describes a
massive field theory after a quantum quench. Quantum quenches from a pure initial state
introduce an extensive amount of energy into the system, such that at long times the state
can be described by some finite effective temperature(s). As is expected, the effective central
charge at large times is higher or equal to that at t = 0, corresponding to a higher temperature
state.

This general relation between the value of the effective central charge at t = 0 and t →∞
is tied to the fact that the thermal equilibrium effective central charge itself has constraints
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related to the irreversibility of RG flow. In equilibrium, the effective central charge increases
monotonically as a function of the energy scales that are probed. After a quantum quench
starting from a pure state, one will always end up probing higher energy scales than in the
pre-quench set up. Our definition of time-dependent effective central charge then captures this
irreversibility property between the initial and final state, in a way that is analogous to how
the thermal central charge captures the effects of RG irreversibility at thermal equilibrium.
The function we have defined, however, can show oscillatory behavior at finite intermediate
times, so it is difficult to give an RG interpretation of the meaning of this charge at finite times

The issue of irreversibility in quantum quenches has been previously addressed in terms
of changes in entropy. Following the second law of thermodynamics, entropy in a closed
system is always expected to increase. This can be explicitly confirmed in a quantum quench
by computing the time evolution of different quantities that have been defined to measure
entropy [27, 28]. Irreversibility has also been recently studied in the context of quantum
manybody systems by examining the Loschmidt echo [29], which is a quantity closely related
to the return-amplitude considered in this paper. The Loschmidt echo measures the overlap
between the initial state of the system and a state that has been time-evolved, and then evolved
backwards in time with slightly modified Hamiltonian. The Loschmidt echo is seen to generally
decay exponentially with time in the examples of [29], indicating an irreversible process.

The effective central charge we defined provides a new complimentary characterization of
irreversibility in quantum quenches, which may provide a connection with the concept of ir-
reversibility of RG flow. In the future, it would be interesting to see if any explicit connections
can be found between the effective central charge and quantities like the diagonal entropy, de-
fined in [27]. This could provide a deeper understanding of relation between RG irreversibility
and the second law of thermodynamics in quantum quenches

As a simple application of our proposed effective central charge, we considered a large
mass quench of a free boson. As expected, the central charge interpolates between the IR and
UV values of c = 0 and c ≈ 1 at t = 0 and t →∞, respectively. Despite the irreversibility that
characterizes the t = 0 and t → ∞ values, at finite times, the effective central charge can
oscillate, and does not necessarily increase monotonically.

For smaller mass quenches of a free boson, the system does not thermalize at late times,
but locally relaxes into a GGE, where each momentum mode can have a different effective
temperature. Our proposal at late times can then be used to define the concept of effective
central charge corresponding to a GGE configuration. We argued this definition should be valid
for quench set ups which have some limit where the post-quench dynamics are described by
CFT (taking the post-quench mass to zero in our case), and the system is seen to thermalize at
late times in this limit. This is indeed the case in the quenches we considered, where it is seen
that for m0 � m, the effective temperature approaches a constant value for every momen-
tum mode. It would be interesting in the future to perform more detailed numerical studies,
to understand precisely how the effective central charge depends on the infinite number of
generalized temperature parameters involved in the GGE.

We defined the concept of a quantum quench which interpolates between two different
CFT fixed points at t = 0 and t → ∞. In particular, we examined a quench that interpo-
lates between the Ising model (IM) with c = 1/2, and the tricritical Ising model (TIM) with
c = 7/10. The quantum quench can only be done in the “IM to TIM" direction, and the reverse
quench is impossible. Analogous conclusions can be made for quenches which interpolate
between any two adjacent unitary minimal CFT’s.

This result can be understood from the fact that the central charge can be interpreted as a
measure of the number of local degrees of freedom of a CFT. The Hilbert space of the TIM is
higher-dimensional than that of the IM. In this sense, a quantum quench starting from the IM
ground state, and time-evolved into TIM dynamics is sensible, since the IM ground state “fits"
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within the TIM Hilbert space, and can be readily expressed in terms of the TIM eigenstates.
In the reverse direction, the ground state of the TIM has no interpretation in terms of the
lower-dimensional IM Hilbert space.

We finally studied the evolution of the effective central charge in a quench into the staircase
model. For highly energetic quenches, the effective central charge at t →∞ corresponds to
that of a unitary minimal model, determined by the effective temperature. At very short times,
the central charge evolves in an ascending “staircase" structure, where the values of central
charge at each step can be computed in terms of the charges of minimal models. In this case,
it seems that RG irreversibility may be reflected in the fact that the time evolution along this
staircase can only be ascending in time, and never descending.

As we have stated, the interpretation of the effective central charge in terms of the irre-
versibility of RG flow after a quantum quench seems to be clear in terms the limiting values
ceff(0) and ceff(t →∞). We are able to observe a simple physical principle that in a quench
starting from a pure state, it is always true that ceff(∞) ≥ ceff(0). This can clearly be inter-
preted as the fact that the quench always increases the energy scales at which the field theory
is probed, such that the equilibrium state at late times should be described by a larger value
of the c-function. The RG interpretation of ceff(t) at intermediate times is less obvious to us.
Generally, the expectation is that this function should give us a measure of exactly how the
system transforms, and what are the energy scales probed as the system evolves from a lower
to higher value of effective central charge. At this point we can only speculate about the mean-
ing of ceff(t) at finite times, and about what, if any, interpretation it may have in terms of RG
flow. A more detailed numerical study of the effective central charge would be useful, and
would hopefully provide some insight on configurations visited by the system at intermediate
times, which may be characterized by the behavior of ceff(t).

It would be useful in the future to generalize our definition of effective central charge
for quantum quenches that cannot be described by the Calabrese-Cardy initial states in the
CFT limit (15). One logical extension of these initial states was proposed in [13], where
one considers modifying the ideal conformally invariant initial state not only with with an
extrapolation length, but with an infinite set of scales,

|Ψ0〉= e−
∑

k τ
k
0Qk
|Ψ∗0〉, . (50)

where Qk are conserved quantities, and not only the Hamiltonian. It has been shown that a
quantum quench from the state (50) leads to an effective GGE at late times, and not to a ther-
mal state. To generalize our definition of effective central charge, we would need to compute
the return amplitude of the CFT quench from the initial state (50), and examine how it de-
pends on the central charge, c. We can then invert this function to define an effective central
charge for the generalized quench. Such a generalized formula was not needed so far for this
paper, since for our examples, we can see explicitly that in the CFT limit, m/m0 →∞, the
standard extrapolation length is dominant over all other scales in (50). There are however,
physical quantum quenches beyond the scope of this paper, where the the CFT limit is not de-
scribed simply by the extrapolation length. One simple example is the scaling limit of the Ising
spin chain, [15] where our effective central charge is applicable only in the limit m0 →∞,
but not if m/m0→ 0, with finite m.

Finally, it would be interesting to see if the ideas we have introduced can be applied to
higher dimensional field theories. For even-dimensional space-times, a quantity analogous
to the thermal central charge was proposed in [30]. A proof that this quantity decreases
monotonically along RG flow in four dimensions was acheived in [31]. It would be useful to
see if our conclusions based on the effective central charge of 2d quantum quenches can be
similarly applied for the analogous 4d function.
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