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Abstract

We study the two-body momentum correlation signal in a quasi one dimensional Bose-
Einstein condensate in the presence of a sonic horizon. We identify the relevant corre-
lation lines in momentum space and compute the intensity of the corresponding signal.
We consider a set of different experimental procedures and identify the specific issues
of each measuring process. We show that some inter-channel correlations, in partic-
ular the Hawking quantum-partner one, are particularly well adapted for witnessing
quantum non-separability, being resilient to the effects of temperature and/or quantum
quenches.
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1 Introduction

While the possibility of quantizing gravitation remains elusive, some noticeable progresses
have been made in the description of the interaction between the space-time metric and a
quantum field. In particular, the dynamical Casimir effect [1, 2] and Hawking radiation from
black holes [3] both correspond to a quantum creation of entangled pairs of particles induced
by (strong) space-time inhomogeneities, and have both been predicted in the framework of
quantum field theory in curved spacetime. In the case of Hawking radiation, the prospect
of an experimental study in the genuine astrophysical context seems hopeless, because the
radiation has a thermal spectrum at a temperature TH = ħhκ/2πc`, where c` is the speed of
light and κ the black hole horizon’s surface gravity (we use units such that kB = 1) and in
the standard situation of a black hole formed after a gravitational collapse, TH is much lower
than the temperature of the microwave background radiation.1 However, the phenomenon of
Hawking radiation has a robust kinematic origin, and elaborating on the close analogy of a
transonic flow structure with the gravitational metric near a black hole event horizon, Unruh
proposed to observe Hawking radiation in a condensed matter context [4]: this idea is often
considered as the birth of the field of analogue gravity [5,6].

Many physical realizations have been proposed for observing analog Hawking radiation
(see, e.g., [6–11]), among which the implementation of a sonic horizon in the flow of a Bose-
Einstein condensate (BEC) rapidly appeared as quite promising [12]: the low temperature of
the system and its paradigmatic quantum nature makes it an ideal playground for studying this
phenomenon. However, a direct observation of the analogous sonic radiation in this system is
still hindered by thermal effects and difficult to identify unambiguously. The recognition of this
difficulty motivated the authors of Refs. [13,14] to propose the detection of density correlation
as an evidence for Hawking emission of correlated pairs of particles from the horizon: Indeed,

1From the surface gravity formula, one obtains TH ' 10−7M−1 K, where M is the mass of the black hole expressed
in units of the mass of the sun.
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in an analogous system, contrarily to the gravitational case, the experimentalist is a super-
observer who can make measurements from both sides of the horizon. The correlation between
the Hawking particle and its partner were shown in Refs. [13, 14] to induce a characteristic
peak in the correlator of density fluctuations which could be used to demonstrate the existence
of analogous Hawking radiation in a BEC system. The physical interpretation of this correlated
signal is similar to the one initially given by Hawking [3,15]: Just at the event horizon, vacuum
fluctuations produce pairs of virtual quasi-particles, one with negative norm and one with
positive norm. The negative norm quasi-particle propagates in the region inside the black hole
where it can exist as a real quasi-particle (and is often denoted as the “partner”). The other
quasi-particle of the pair is denoted as the “Hawking quantum”; it can escape to infinity, where
it constitutes a part of the Hawking radiation. In a BEC the quasi-particles are Bogoliubov
excitations which correspond to density fluctuations: hence the emission of the correlated
pairs of particles induces density correlations. An interesting aspect of these correlations is
that they are resilient to finite temperature effects [16,17].

In the same line of idea, we proposed in Ref. [18] to study correlations in momentum space
as evidence of Hawking radiation. The physical idea is the same as the one behind the study of
density correlations in real space, but the specifics are different, with a number of advantages:
first, the practical implementation of this type of experiment is well documented [19–22]. Also,
it was shown in Ref. [18] that the momentum correlation signal is particularly well adapted
to the study of Hawking radiation, being even less affected by the background temperature
than the real-space correlation signal, and offers a clear and robust signature of the entangled
nature of the Hawking pairs. In the present paper we develop and explicit the results presented
in Ref. [18]. We detail the theoretical description of the quantum fluctuation of the system
and precise how a local Fourier analysis can be performed. This leads us to underline some
characteristics of the experimental detection scheme which are crucial for the detection of
entanglement (cf. the discussions in Appendix A and at the end of Sec. 3.1). We also extend
the treatment of Ref. [18] in order to include what we denote as “non adiabatic effects” and
“in situ measurements” (Sec. 3.3). We show that the results presented in Ref. [18] are robust
with respect to this more general treatment, and that new correlation lines appear which, at
variance with the previous ones, show no signature of non-separability.

Another important motivation of our work is the recent experimental study of Steinhauer
[23] who studied an acoustic BEC black hole in one of the models discussed below (the so
called “waterfall model” [24]) and presented results on entanglement similar to the ones dis-
cussed below.

The paper is organized as follows: Sec. 2 presents several black hole configurations in a
quasi one dimensional BEC system. In Sec. 3 we compute the corresponding theoretical mo-
mentum correlation functions and the non-separability signals in the different configurations
in a variety of situations: In particular we present the adiabatic and non-adiabatic regimes
and also address in both cases the effects of temperature. These results are compared in Sec.
4 with the ones obtained in the absence of sonic horizon. In section 5 we discuss the limi-
tations of our theoretical approach and finally we present our conclusion in section 6. Some
technical points are presented in the Appendices: in Appendix A we discuss a rigorous win-
dowed Fourier analysis which induces important restrictions to the measurement process; in
Appendix B we give the form of the most general correlation functions and in Appendix C we
discuss the specific case of a subsonic flow in the presence of a localized external potential.
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2 Black hole configurations and their theoretical description

2.1 Quasi one-dimensional sonic black holes

In this work we consider a system where bosons are confined in one dimension by a harmonic
transverse potential of angular frequency ω⊥. We denote by x the longitudinal degree of
freedom and assume no trapping along x . In this configuration the theoretical description of
the system is conveniently worked out in the quasi one-dimensional limit where the particles
are described by a one dimensional (1D) quantum field Ψ̂(x). According to the Bogoliubov
prescription one writes the field operator as the sum of a main contribution (a classical field
Ψ0) and a small quantum remnant

Ψ̂(x) = Ψ0(x) + ψ̂(x) . (1)

Ψ0(x) describes the condensate order parameter and verifies the stationary 1D Gross-Pitaevskii
equation

µΨ0 = −
ħh2

2 m
∂ 2

x Ψ0 +
�

U(x) + g1d|Ψ0|2
�

Ψ0 , (2)

with g1d = 2ħhω⊥a [25], where a is the 3D s-wave scattering length. In (2) µ is the chemical
potential and U(x) a possible longitudinal external potential. In the absence of external poten-
tial, for a static homogeneous system of constant linear density |Ψ0|2 = n one gets µ = g1dn.
Useful quantities are the sound velocity in the uniform system c =

p

µ/m and the healing
length ξ= ħh/mc.

In 1D a description based on Equations (1) and (2) is not quite legitimate, both in the high
and in the low density limit: at large density, transverse excitations of the condensate cannot
be discarded and the quasi 1D description (2) fails; at low density, phase fluctuations destroy
the long range order and the possibility of a true Bose-Einstein condensation which is at the
heart of the Bogoliubov description (1). In the remaining of this section we stick to the simple
approach embodied by Equations (1) and (2) and we postpone the discussion of its limitations
to Sec. 5.

We denote as a black hole configuration a 1D configuration in which the asymptotic up-
stream flow is subsonic (with constant density nu) and the asymptotic downstream one is
supersonic (with constant density nd). Typically nu 6= nd and when a region of the flow is
denoted for instance as subsonic, this means that in this region the density of the condensate
is constant, and its velocity Vu is smaller than the asymptotic sound velocity cu =

p

g1dnu/m.
Several black hole configurations have been proposed in Refs. [13, 14, 16]. The specific

form of the order parameter is always of the type:

Ψ0(x) =

¨ p
nu exp(iKu x)φu(x) for x < 0,
p

nd exp(iKd x)φd(x) for x > 0,
(3)

where Ku,d = mVu,d/ħh, Vu being the asymptotic upstream flow velocity and Vd the downstream
one (Vu and Vd are both positive). We also introduce the healing lengths ξα = ħh/(mcα) and
the Mach numbers Mα = Vα/cα (α = u or d depending if one considers upstream or down-
stream quantities). The functions φu and φd verify |φd(x)| = 1 and limx→−∞ |φu(x)| = 1.
The asymptotic upstream and downstream flows are respectively subsonic and supersonic,
meaning that Mu < 1< Md . A remark on the location of the acoustic horizon is in order here.
First, as in any analogous system, its actual position is energy-dependent: we will even see
below that the horizon disappears at large energy. This effect being taken into account, the
customary procedure is to do a semi-classical analysis and to define as the true horizon the
large wavelength one. In this case the horizon is the point where the flow velocity is equal to
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0
x

0
U(x) =−U0 Θ(x)

n(x)

nu →

←nd

Figure 1: Waterfall configuration. The flow is incident from the left with an asymptotic density
nu and a (subsonic) velocity Vu. The downstream (x > 0) velocity Vd is supersonic. The
downstream density nd is constant and lower than nu. The region x > 0 is shaded in order to
recall that it corresponds to the interior of the black hole.

the local speed of sound. However, the flow varies rapidly around x = 0 in the configurations
we study below, and a quantity such as the local speed of sound is ill defined in this region. As
a result, the position of the acoustic horizon cannot be unambiguously defined. This is not a
drawback of the model: what really matters is that the asymptotic upstream and downstream
flows are truly respectively sub- and super-sonic.

2.1.1 The “waterfall” configuration

We first consider one of the realistic configurations introduced in Ref. [24] and realized exper-
imentally in Ref. [23]. In this configuration, which we denote as “waterfall”, the 1D flow of a
BEC is subject to an external potential which is a step function of the form U(x) = −U0Θ(x),
where Θ is the Heaviside function (and U0 > 0). In this case, a stationary profile with a
flow which is subsonic upstream and supersonic downstream, i.e., a black hole configura-
tion, has been identified in Refs. [23, 26] and is schematically represented in Fig. 1. The
upstream profile is exactly one half of a dark soliton and the downstream one corresponds
to a flow with constant density and velocity (cf. Fig. 1). In the waterfall configuration one
has φd(x) = −i and φu(x) = cosθ tanh(x cosθ/ξu)− i sinθ , where sinθ = Mu. One has also
U0/g1dnu =

1
2(M

2
u +M−2

u )−1 and Vu = cd < cu < Vd which indeed corresponds to a black hole
type of horizon (Mu < 1< Md).

2.1.2 The “δ peak” configuration

In this configuration the 1D flow of a BEC is subject to an external potential which is a Dirac
distribution of the form U(x) = κδ(x), where κ > 0. In this case, a stationary profile with
a flow which is subsonic upstream and supersonic downstream, i.e., a black hole configu-
ration, has been identified in Refs. [27, 28], and it has been shown in Ref. [29] how this
configuration can be reached dynamically. The downstream one corresponds to a flow with
constant density and velocity and the upstream profile is a fraction of a dark soliton, with
φu(x) = cosθ tanh[(x − x0) cosθ/ξu]− i sinθ , where sinθ = Mu and x0 depends on Mu and
κ (see details in [24]).
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2.1.3 The “flat profile” configuration

We finally present a model configuration first introduced in Ref. [14], which has been denoted
as “flat profile” in Ref. [24]. Although this configuration is not likely to be realized experimen-
tally, it has been demonstrated in Ref. [24] that it yields a density correlation signal which is
quite similar to the one obtained in the more realistic waterfall and δ−peak configurations.
We will use the flat profile configuration to present our results below (in Sec. 3) for pedagogi-
cal reasons, because it leads to a simpler phenomenology for the momentum correlation than
the other configurations.

In the flat profile configuration one has nu = nd ≡ n0 and Ku = Kd ≡ K0 and the φα
functions of Eq. (3) assume a very simple value: φu(x) = φd(x) = 1. This means that Ψ0(x)
is a plane wave for all x . A horizon can still be realized in this case by tuning the values of the
external potential U(x) and of the non-linear constant g1d(x) such that

U(x) =

�

Uu for x < 0,
Ud for x > 0,

and g1d(x) =

�

gu for x < 0,
gd for x > 0.

(4)

These values are chosen so that a flow with Ψ0(x) =
p

n0 exp(iK0 x) is solution of Eq. (2) for
all x . This imposes

cd

cu
=

Mu

Md
=
ξu

ξd
, and gun0 + Uu = gd n0 + Ud . (5)

We finally note that in the flat profile configuration one has cd < Vd = Vu < cu. This corre-
sponds to a sonic black hole horizon since the upstream and downstream Mach numbers verify
Mu < 1< Md .

It is important to notice that, at variance with the cases of the waterfall and of the δ
peak configurations, where, once an asymptotic flow is fixed (say, the upstream one) all the
characteristics of the flow are uniquely determined, in the case of the flat profile configuration
the values of Mu and Md can be chosen independently one from the other. As a result, one
cannot directly compare the results of, say the measure of non separability, of a waterfall and
a δ peak configuration, but each of them can be compared with a flat profile configuration.
This will be done in Figs. 4, 5, 6 and 7.

2.2 The excitation spectrum of a homogeneous condensate

In the case of a static homogeneous condensate, the dispersion relation of longitudinal excita-
tions is the standard Bogoliubov one:

ω=ωB(q) = c |q|
�

1+ 1
4ξ

2q2
�1/2

. (6)

In a region where the condensate flows with a velocity V this is modified to

(ω− Vq)2 =ω2
B
(q) . (7)

In this case ω is the energy of the elementary excitation in the frame where the obstacle is
at rest, while ωB is the frequency measured in the frame of the fluid. The momentum of
the excitation relative to the background flow is ħhq, and its momentum in the frame of the
obstacle is ħhq+mV . In a black hole configuration, the upstream and the downstream channels
are characterized by dispersion relations of the type (7) (with the appropriate values of V , ξ
and c), they are illustrated in Fig. 2. In this figure the upper left (upper right) plot represents
the asymptotic upstream subsonic (downstream supersonic) case. The part of the dispersion
relation represented by a dashed line correspond to negative norm modes, as explained in the
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0
k [a.u]

0

←d1|in
d1|out→ d2|out→

←d2|in

(q ∗ , Ω)

(−q ∗ , −Ω)

0
k [a.u]

0

ω
 [a

.u
]

u|in→←u|out

out inoutin

Figure 2: Dispersion relations. The left plot corresponds to a subsonic flow. The right plot
corresponds to a supersonic flow; it is shaded in order to recall that it describes the situation
inside the black hole. In each plot the horizontal dashed line is fixed by the chosen value
of ω. The q`(ω)’s are the corresponding abscissas, with ` ∈ {u|in, u|out} in the left plot and
` ∈ {d1|in, d1|out, d2|in, d2|out} in the right plot. The direction of propagation (left or right)
of the eigen-modes is represented by an arrow. The lower diagram illustrates schematically
the “ingoing” and “outgoing” terminology used in the text and in the two upper plots.

following section. In all this work we only consider the ω> 0 part of the dispersion relations,
this is made possible by the ω↔−ω symmetry of the spectrum [30].

One sees in the figure that, upstream, the waves of one of the channels are directed towards
the horizon (ingoing waves, denoted as u|in) whereas the waves in the other channel propagate
away from the horizon (outgoing waves: u|out). The definition of which mode is ingoing and
which is outgoing depends on the side of the horizon that is considered, this is illustrated by
the lower diagram of Fig. 2. Downstream, there are two ingoing waves (d1|in and d2|in) and
two outgoing waves (d1|out and d2|out). Note that the two d2 channels disappear at large
energy, when ω > Ω, see Fig. 2. Ω is the energy of an elementary excitation whose group
velocity in the frame where the condensate is at rest (∂ωB/∂ q) is equal to the flow velocity
Vd (such an equality is only possible for supersonic flows). Excitations with momentum larger
than the one of this excitation (which is denoted as q∗ in Fig. 2) move faster than the flow
and are able to escape the “black hole”.

2.3 The wave function in real space

The field operator ψ̂(x) associated in the Schrödinger representation to the particles which
are out of the condensate [as defined by Eq. (1)] is expanded over the scattering modes:

ψ̂(x) = eiKαx

∫ ∞

0

dω
p

2π

∑

L∈{U ,D1}

�

ūL(x ,ω)b̂L(ω) + w̄∗
L
(x ,ω)b̂†

L
(ω)

�

+ eiKαx

∫ Ω

0

dω
p

2π

�

ūD2(x ,ω)b̂†
D2
(ω) + w̄∗

D2
(x ,ω)b̂D2(ω)

�

. (8)

Kα in (8) is equal to Ku if x < 0 and to Kd if x > 0. The b̂†
L
(ω)’s create an excitation of

energy ħhω in one of the three scattering modes (L = U , D1 or D2), they obey the following
commutation relation:

[b̂L(ω), b̂†
L′
(ω′)] = δL,L′δ(ω−ω′). (9)
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Each of the three scattering modes (U , D1 or D2) is initiated by one of the three entrance
channels (u|in, d1|in or d2|in). Far from the horizon, the density and the velocity of the flow
are position-independent and the corresponding wave functions are mere plane waves of the
following form:
• Deep in the upstream subsonic region, i.e., for x < 0, x �−ξu :

�

ūU(x)
w̄U(x)

�

= Su,u

�

Uu|out
Wu|out

�

eiqu|out x +

�

Uu|in
Wu|in

�

eiqu|in x ,

�

ūD1(x)
w̄D1(x)

�

= Su,d1

�

Uu|out
Wu|out

�

eiqu|out x , (10)

�

ūD2(x)
w̄D2(x)

�

= Su,d2

�

Uu|out
Wu|out

�

eiqu|out x .

• Deep in the downstream supersonic region, i.e., when x > 0, x � ξd :
�

ūU(x)
w̄U(x)

�

= Sd1,u

�

Ud1|out
Wd1|out

�

eiqd1|out x + Sd2,u

�

Ud2|out
Wd2|out

�

eiqd2|out x , (11)

�

ūD1(x)
w̄D1(x)

�

= Sd1,d1

�

Ud1|out
Wd1|out

�

eiqd1|out x + Sd2,d1

�

Ud2|out
Wd2|out

�

eiqd2|out x +

�

Ud1|in
Wd1|in

�

eiqd1|in x ,

�

ūD2(x)
w̄D2(x)

�

= Sd1,d2

�

Ud1|out
Wd1|out

�

eiqd1|out x + Sd2,d2

�

Ud2|out
Wd2|out

�

eiqd2|out x +

�

Ud2|in
Wd2|in

�

eiqd2|in x .

Note that the ūL ’s, w̄L ’s, q`’s, Si, j ’s, U`’s and the W`’s in Eqs. (10) and (11) all depend onω. For
instance q`(ω) is defined on Fig. 2 for ` ∈ {u|out, u|in, d1|out, d1|in, d2|out, d2|in}. We chose
a normalization of the the coefficients U` and W` – the so called “Bogoliubov amplitudes” –
such that

|U`(ω)|2 − |W`(ω)|2 =
±1

|∂ω/∂ q`|
. (12)

The sign + (−) in (12) refers to positive (negative) norm modes. All the upstream modes (u|in
and u|out) have a positive norm. In the downstream region, the d1|in and d1|out modes have a
positive norm while the d2|in and d2|out ones have a negative norm. The normalization (12)
ensures that a positive (negative) mode carries a current +1 (−1). The explicit expression
of the the coefficients U`(ω) and W`(ω) corresponding to the normalization (12) is given
in Ref. [24]. Expressions (10) are not valid close to the horizon due to (i) the modification
of the density profile which is position-dependent in vicinity of the horizon2 and (ii) to the
occurrence of evanescent modes (with complex momenta solutions of Eq. (7)) which are of
importance near the horizon.

Let us for instance discuss the physical content of the last of Eqs. (11). It describes a d2|in
wave incoming from +∞ (last term of the r.h.s., the corresponding group velocity is negative,
cf. Fig. 2) which is back scattered into a d1|out and a d2|out wave, with respective reflection
amplitudes Sd1,d2 and Sd2,d2. Part of this wave is also transmitted in the x < 0 region as a u|out
wave with transmission amplitude Su,d2 : the corresponding expression far from the horizon is
displayed in the last of Eqs. (10). The scattering amplitudes form the S matrix which is 3× 3
for energies ω lower than the threshold Ω defined on Fig. 2:

S =





Su,u Su,d1 Su,d2
Sd1,u Sd1,d1 Sd1,d2
Sd2,u Sd2,d1 Sd2,d2



 . (13)

2Note however that the density is not affected by the horizon in the flat profile configuration. In the waterfall and
delta peak configurations, the corresponding explicit form, correct even close to the horizon, is given in Ref. [24].
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Current conservation reads

S†ηS = η= SηS†, where η= diag(1,1,−1). (14)

For ω > Ω, the last row and the last column of (13) vanish because the d2 mode disappears.
In this case the S matrix is 2× 2 and satisfies SS† = 1.

In Eqs. (10) and (11) we did not write the contribution of the evanescent modes since they
decay exponentially and are negligible far from the horizon (when |x | � ξ(u,d)), but we fully
take these modes into account in the expression of the ū’s and the w̄’s near the horizon (around
x = 0); this is needed for an accurate computation of the S matrix. In a given configuration
(say “waterfall”), the elements of the S matrix are determined for each value ofω by enforcing
continuity of the wave functions (and of their spatial derivatives) of the elementary excitations
at x = 0. This represents an easy numerical task which consists in solving a linear 4×4 system
for each value of ω.

2.4 The wave function in momentum space

Because of the presence of the negative norm/negative energy d2|in mode, stationary black
hole configurations such as the ones presented in section 2.1 are meta-stable.3 Indeed, vac-
uum fluctuations of d2|in in waves give rise, at the horizon, to a radiation of u|out quanta in
the upstream region, which constitutes the spontaneous Hawking radiation. In BEC systems
however, this radiation is not easily detected. The reason is that the occupation of the Hawking
radiating modes is approximately of thermal type, with an effective temperature much lower
than the true temperature of the system (typically by a factor 10), and the Hawking signal is
thus drowned in the thermal noise. This circumstance led the authors of Refs. [13,14] to look
for density correlations as alternative evidence of the Hawking effect.

The idea, checked in Refs. [13, 14] is that outgoing waves generated by the same d2|in
mode are all correlated. Moreover, since the corresponding amplitudes are governed by the
S matrix which describes how ingoing waves hitting the horizon generate outgoing ones, the
knowledge of the S matrix makes a detailed description of the correlation signal possible. This
point has been checked thoroughly in Refs. [16,17,24]. In particular, the characteristic peaks
of the density correlations correspond to the Hawking quantum (u|out) - partner (d2|out)
correlations (for points situated on both sides of the horizon), and also to correlations along
the u|out−d1|out (again, for points situated on both sides of the horizon) and d2|out−d1|out
(for both points inside the horizon) channels.

In a BEC, momentum correlations could be more precisely detected than density corre-
lations, by following a procedure used in Ref. [21] in a similar context, in the case of the
dynamical Casimir effect. This is the reason why we proposed in Ref. [18] to demonstrate the
existence of sonic Hawking radiation by the means of correlations in momentum space.

2.4.1 A local Fourier transform

By appropriately introducing a local Fourier transform in both the subsonic (exterior of the
black hole) and supersonic (black hole interior) regions, we shall explicitly construct the mo-
mentum correlator and analyze, in Sec. 3, its nontrivial qualitative features, which are in
correspondence with those present in the density correlation signal. This signal concerns the
occupation number in the momentum representation: N̂(K) = ψ̂†(K)ψ̂(K), where ψ̂(K) is the

3In the gravitational context the d2|in mode is absent, and this metastability arises when the black hole is
dynamically created.
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Xu −σu Xu Xu +σu 0
x

Xu −σu Xu Xu +σu 0
x

� ξu

increasing
|Xu| and σu

Figure 3: Schematic representation of the behavior of the parameters Xu andσu of the window
function Πu(x) defined in Eq. (16). The shaded zone is the region where the window function
notably differs from zero. The spacing between Xu+σu and the origin is large compared to ξu,
and this ensures that the Fourier analysis, which is made local thanks to the window function,
is performed in the deep subsonic region.

Fourier transform of ψ̂(x):4

ψ̂(K) =
1
p

2π

∫

R
dx exp{−iK x}ψ̂(x) . (15)

From expression (8) and the mode analysis presented in Secs. 2.2 and 2.3, it is clear that the
momentum distribution has a different form in the far-upstream and far-downstream regions.
Hence, instead of (15), it is more appropriate to perform a specific mode analysis in each of
these regions [31–33]. This can be done by using a window function selecting the desired
region of space. The precise form of this window function is irrelevant, but for concreteness
we will consider a Gaussian. In the upstream region for instance, one takes a window

Πu(x) = Λu exp

�

−
(x − Xu)2

σ2
u

�

, (16)

and the corresponding windowed Fourier transform is

ψ̂u(K) =
1
p

2π

∫

R
dx exp{−iK x}Πu(x)ψ̂(x) . (17)

This procedure is meant to select the momentum components which can be identified from
(10). For this purpose, the parameters of the window function have to be chosen in order to
work in the appropriate region of space. This is done by taking Xu < 0, σu > 0 and letting Xu
and σu respectively tend to −∞ and +∞, imposing for the ratio Xu/σu→−1 which allows
that Xu +σu = C st � −ξu. This procedure is illustrated in Fig. 3. It is important to take the
limit of largeσu and |Xu| for obtaining a sharp (δ-like) distribution in momentum space. In Eq.
(16) the normalization parameter Λu is introduced to effectively describe the finite efficiency
of the experimental detection apparatus. More precisely, it is argued in Sec. 4 that the quantity
λu = σuΛ

2
u/
p

2π describes the rate of detection of particles in the window [Xu−σu, Xu+σu]:
if λu = 0 none of the particles are detected, if instead λu = 1, they are all detected. It is
interesting to stress that the explicit results given in Sec. 3 for the normalized momentum
correlation function (29) do not depend on the efficiencies λu and λd of the detectors.

Of course, a local Fourier transform similar to (17) is performed downstream, using a
different window Πd(x) with parameters Λd , Xd (> 0) and σd , leading to the downstream

4We only consider here the momentum distribution of particles which are outside of the condensate and discard
the contribution of the condensate.
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Fourier transform ψ̂d(K). We will see in Appendix A that the parameters of the upstream
and of the downstream window function have to be chosen in a specific manner when one
wants to consider a specific correlation signal. However, these precise conditions – which
are of importance for the theoretical analysis of the experimental detection scheme – can be
replaced, once met, by the following schematic, but natural rules:

R1 : A contribution to (8), which, for x < 0, reads eiKu x
∫

dωC st e±iq`(ω)x yields a contribu-
tion
p

2π
∫

dωC stδ(K − (Ku ± q`(ω))) to the upstream Fourier transform ψ̂u(K).

R2 : A contribution to (8), which, for x > 0, reads eiKd x
∫

dωC st e±iq`(ω)x yields a contribu-
tion
p

2π
∫

dωC stδ(K − (Kd ± q`(ω))) to the downstream Fourier transform ψ̂d(K).

These rules are less rigorous than the correct mathematical procedure (17) which uses
window functions for defining the local Fourier transforms, but it is shown in Appendix A that,
provided some simple and natural redefinitions (in particular of the singular Dirac distribu-
tions) are considered, they yield the correct result. Hence, we shift discussion of the more
rigorous results to Appendix A and present our results in the main text using these simplified
rules. Performing the schematic Fourier transform in the x < 0 region we get (note that in the
integrals below the terms involving the D2 mode disappear for ω> Ω)

ψ̂u(K) =

∫ ∞

0

dω
¦

δ(K − Ku − qu|out)Uu|out(Su,u b̂U + Su,d1 b̂D1 + Su,d2 b̂†
D2
)

+ δ(K − Ku + qu|out)W∗
u|out(S

∗
u,u b̂†

U
+ S∗u,d1 b̂†

D1
+ S∗u,d2 b̂D2)

+ δ(K − Ku + qu|in)W∗
u|in b̂†

U

+ δ(K − Ku − qu|in)Uu|in b̂U

©

, (18)

whereas in the x > 0 one gets

ψ̂d(K) =

∫ ∞

0

dω
¦

δ(K − Kd − qd1|out)Ud1|out(Sd1,u b̂U + Sd1,d1 b̂D1 + Sd1,d2 b̂†
D2
)

+ δ(K − Kd + qd1|out)W∗
d1|out(S

∗
d1,u b̂†

U
+ S∗d1,d1 b̂†

D1
+ S∗d1,d2 b̂D2)

+ δ(K − Kd − qd2|out)Ud2|out(Sd2,u b̂U + Sd2,d1 b̂D1 + Sd2,d2 b̂†
D2
)

+ δ(K − Kd + qd2|out)W∗
d2|out(S

∗
d2,u b̂†

U
+ S∗d2,d1 b̂†

D1
+ S∗d2,d2 b̂D2)

+ δ(K − Kd + qd1|in)W∗
d1|in b̂†

D1

+ δ(K − Kd − qd1|in)Ud1|in b̂D1

+ δ(K − Kd − qd2|in)Ud2|in b̂†
D2

+ δ(K − Kd + qd2|in)W∗
d2|in b̂D2

©

. (19)

In the two above integrals the q`’s are functions of ω computed as schematically represented
in Fig. 2. The ω integration yields factors |∂ q`/∂ω| which can be absorbed in a re-definition
of the U ’s and of the W ’s:

eU`(q) = U`(ω`(q))
�

�

�

�

∂ω`
∂ q

�

�

�

�

and fW`(q) =W`(ω`(−q))

�

�

�

�

∂ω`
∂ q

�

�

�

�

, (20)

whereω`(q) is the reciprocal function of q`(ω). The “tilde Bogoliubov coefficients” satisfy the
following normalization:

| eU`(q)|2 − |fW`(q)|2 = ±
�

�

�

�

∂ω`
∂ q

�

�

�

�

. (21)
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Note that in the integrals defining the expressions (18) and (19) of ψ̂u(K) and ψ̂d(K), all
the terms (Bogoliubov coefficients and coefficients of the S-matrix) involving a d2-subscript
cancel when ω> Ω.

Defining ku = K − Ku and kd = K − Kd this yields for the upstream Fourier transform
[instead of (18)],

ψ̂u(ku < 0) = eUu|out(ku)
�

Su,u b̂U + Su,d1 b̂D1 + Su,d2 b̂†
D2

�

ω=ωu|out(ku)

+ fW∗
u|in(ku) b̂†

U
(ωu|in(−ku)) , (22)

ψ̂u(ku > 0) = fW∗
u|out(ku)

�

S∗u,u b̂†
U
+ S∗u,d1 b̂†

D1
+ S∗u,d2 b̂D2

�

ω=ωu|out(−ku)

+ eUu|in(ku) b̂U(ωu|in(ku)) , (23)

and for the downstream Fourier transform [instead of (19)],

ψ̂d(kd > 0) = eUd1|out(kd)
�

Sd1,u b̂U + Sd1,d1 b̂D1 + Sd1,d2 b̂†
D2

�

ω=ωd1|out(kd )

+ eUd2|out(kd)
�

Sd2,u b̂U + Sd2,d1 b̂D1 + Sd2,d2 b̂†
D2

�

ω=ωd2|out(kd )

+ fW∗
d1|in(kd) b̂†

D1
(ωd1|in(−kd))

+ eUd2|in(kd) b̂†
D2
(ωd2|in(kd)) , (24)

ψ̂d(kd < 0) = fW∗
d1|out(kd)

�

S∗d1,u b̂†
U
+ S∗d1,d1 b̂†

D1
+ S∗d1,d2 b̂D2

�

ω=ωd1|out(−kd )

+ fW∗
d2|out(kd)

�

S∗d2,u b̂†
U
+ S∗d2,d1 b̂†

D1
+ S∗d2,d2 b̂D2

�

ω=ωd2|out(−kd )

+ eUd1|in(kd) b̂D1(ωd1|in(kd))

+ fW∗
d2|in(kd) b̂D2(ωd2|in(−kd)) . (25)

All the terms in the expressions (22), (23), (24) and (25) depend on ku (kd) either directly,
either via ω`(±ku) (ωm(±kd)) where ` ∈ {u|in, u|out} (m ∈ {d1|in, d1|out, d2|in, d2|out}).

2.4.2 The case of the flat profile configuration

In this configuration – presented in Sec. 2.1.3 – the fact that Ku = Kd ≡ K0 makes it possible to
express (22), (23), (24) and (25) in terms of k (= ku = kd = K − K0) only. It is then possible
– and useful, see sec. 3 below – to regroup the momentum operators in Eqs. (22), (23), (24)
and (25) in terms of k < 0 and k > 0 contributions, and to write

ψ̂(k < 0) = eUu|out(k)
�

Su,u b̂U + Su,d1 b̂D1 + Su,d2 b̂†
D2

�

ω=ωu|out(k)

+ fW∗
u|in(k) b̂†

U
(ωu|in(−k))

+ fW∗
d1|out(k)

�

S∗d1,u b̂†
U
+ S∗d1,d1 b̂†

D1
+ S∗d1,d2 b̂D2

�

ω=ωd1|out(−k)

+ fW∗
d2|out(k)

�

S∗d2,u b̂†
U
+ S∗d2,d1 b̂†

D1
+ S∗d2,d2 b̂D2

�

ω=ωd2|out(−k)

+ eUd1|in(k) b̂D1(ωd1|in(k))

+ fW∗
d2|in(k) b̂D2(ωd2|in(−k)) , (26)
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ψ̂(k > 0) = fW∗
u|out(k)

�

S∗u,u b̂†
U
+ S∗u,d1 b̂†

D1
+ S∗u,d2 b̂D2

�

ω=ωu|out(−k)

+ eUu|in(k) b̂U(ωu|in(k))

+ eUd1|out(k)
�

Sd1,u b̂U + Sd1,d1 b̂D1 + Sd1,d2 b̂†
D2

�

ω=ωd1|out(k)

+ eUd2|out(k)
�

Sd2,u b̂U + Sd2,d1 b̂D1 + Sd2,d2 b̂†
D2

�

ω=ωd2|out(k)

+ fW∗
d1|in(k) b̂†

D1
(ωd1|in(−k))

+ eUd2|in(k) b̂†
D2
(ωd2|in(k)) . (27)

Each of the above expressions (k < 0 and k > 0) contains terms coming from both the sub-
sonic and the supersonic regions. This procedure can induce a problem of normalization. As
discussed in Sec. 4 after Eq. (92) this problem is easily solved by using an appropriate overall
multiplicative factor which we do not include for readability. Furthermore, the problem dis-
appears when one considers normalized quantity such as g2(K ,Q) defined below [Eq. (29)].

3 Momentum correlations in the presence of a sonic horizon

The momentum-momentum correlation signal is embodied in the function

G2(K ,Q) = 〈: N̂(K)N̂(Q):〉 − 〈N̂(K)〉〈N̂(Q)〉 , (28)

where N̂(K) = ψ̂†(K)ψ̂(K). We also consider in some details the normalized quantity

g2(K ,Q) =
〈: N̂(K)N̂(Q):〉
〈N̂(K)〉〈N̂(Q)〉

. (29)

In the definitions (28) and (29) the normally ordered product eliminates the diagonal shot
noise contribution.

The computation of the two-body momentum correlation (28) in the generic case is quite
tedious because the upstream and downstream Fourier transform are different, as explained
in Sec. 2.4.1. Besides the formulas assume different forms depending of the values of K and
Q relative to Ku and Kd , cf. Eqs. (22), (23), (24) and (25). As a result, one has to consider
nine different cases. Although we will treat all the black-hole configurations presented in
Sec. 2.1 (plots encompassing all the different cases for the waterfall, δ peak and flat profile
configurations are given in Figs. 4 and 5), to simplify the presentation we give here the explicit
results in the “flat profile” configuration where the background density is a uniform plane wave
(cf. Sec. 2.1.3). In this case one has to consider only 4 cases: the four quadrants in the (k, q)
plane (where k = K − K0 and q =Q− K0) and one can rewrite G2 in terms of k and q

G2(k, q) = 〈ψ̂†(k)ψ̂†(q)ψ̂(k)ψ̂(q)〉 − 〈ψ̂†(k)ψ̂(k)〉〈ψ̂†(q)ψ̂(q)〉 , (30)

and then perform explicit computations using the expressions (26) and (27).
The theoretical evaluation of the momentum correlation function is performed in order to

match with an experimental detection scheme which consists of opening the trap and letting
the elementary excitations be converted into particles expelled from both ends of the conden-
sate, according to a process known as “phonon evaporation” [34]. If this process is assumed
to be gentle and adiabatic, each elementary excitation is converted into a single particle. More
precisely, one has, in this case, for the positive norm u and d1 modes:

U`(ω)→ |∂ω/∂ q`|−1/2 and W`(ω)→ 0 , for ` ∈ {u|in, u|out, d1|in, d1|out} ; (31)
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while for the negative norm d2 modes:

U`(ω)→ 0 and W`(ω)→ |∂ω/∂ q`|−1/2 , for ` ∈ {d2|in, d2|out} . (32)

With the normalization (12), this corresponds, for instance for a positive norm mode, to a
perfect transmutation of an elementary excitation into a particle state which carries a unit
current. For the “tilde Bogoliubov coefficients” (20), the prescription (31) yields

eU`(q)→ |∂ω`/∂ q|1/2 and fW`(q)→ 0 , (33)

for the positive norm states (` ∈ {u|in, u|out, d1|in, d1|out}) whereas one gets

eU`(q)→ 0 and fW`(q)→ |∂ω`/∂ q|1/2 , (34)

for the negative norm modes (` ∈ {d2|in, d2|out}).
As demonstrated in Ref. [21], after an adiabatic opening of the trapping potential, a mea-

sure of the velocity distribution of the emitted particles gives access to the momentum dis-
tribution within the condensate and to the correlators defined in Eqs. (28) and (29). The
process can be sudden, in which case the adiabatic hypothesis breaks down. More precisely, if
topen is the characteristic time during which the trap is opened and an elementary excitation
is converted into a real particle, the adiabatic approximation fails for excitations of energy ω
verifying: ω−1� topen: for low lying excitations (those for which ω→ 0) the opening of the
trap always seems abrupt [34]. A quantitative study of this phenomenon will be presented in
a future publication [35].

An outline of the complications introduced by non adiabatic effects is postponed to Section
3.3, but until then we give the results after an adiabatic expansion, in which case, owing to
(33) and (34), the expression of ψ̂ given in (26), (27) reduces to

ψ̂(k < 0) = eUu|out

�

Su,u b̂U + Su,d1 b̂D1 + Su,d2 b̂†
D2

�

ω=ωu|out(k)

+ fW∗
d2|out

�

S∗d2,u b̂†
U
+ S∗d2,d1 b̂†

D1
+ S∗d2,d2 b̂D2

�

ω=ωd2|out(−k)

+ eUd1|in b̂D1(ωd1|in(k)) + fW∗
d2|in b̂D2(ωd2|in(−k)) , (35)

and

ψ̂(k > 0) = eUd1|out

�

Sd1,u b̂U + Sd1,d1 b̂D1 + Sd1,d2 b̂†
D2

�

ω=ωd1|out(k)

+ eUu|in b̂U(ωu|in(k)) . (36)

In expressions (35) and (36) the “tilde Bogoliubov coefficients” which are non zero assume
the limiting values (33) and (34).

3.1 Zero temperature

Let us first consider the case where the system is initially in its vacuum state, i.e., the vac-
uum of excitations. This is the zero temperature case. We find for the one-body momentum
distribution:

〈N̂(k < 0)〉=
�

| eUu|out|2|Su,d2|2
�

ωu|out(k)
×δ

�

ωu|out(k)−ωu|out(k)
�

+|fWd2|out|2
�

|Sd2,u|2 + |Sd2,d1|2
�

ωd2|out(−k) ×δ
�

ωd2|out(−k)−ωd2|out(−k)
� (37)

and

〈N̂(k > 0)〉=
�

| eUd1|out|2|Sd1,d2|2
�

ωd1|out(k)
×δ

�

ωd1|out(k)−ωd1|out(k)
�

. (38)
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These relations can be cast under the form

〈N̂(k)〉=N (k)×δ(k− k) , (39)

where

N (k) =

(

|Su,d2|2ωu|out(k)
+
�

|Sd2,u|2 + |Sd2,d1|2
�

ωd2|out(−k) for k < 0 ,

|Sd1,d2|2ωd1|out(k)
for k > 0 .

(40)

Note that within the adiabatic approximation, the T = 0 momentum signal (40) would cancel
in the absence of horizon, since the d2 mode and all the corresponding elements of the S-
matrix would disappear in this case. This is confirmed by the study of Sec. 4.

In expression (39), the δ-peak contribution is singular: one has a δ(0) [as in (37) and
(38)]. This is due to the schematic nature of the rules R1 and R2 defined in section 2.4.1
for the Fourier transform. The more rigorous local Fourier transform in terms of a window
function –explained in the first part of Sec. 2.4.1– yields a finite contribution, as shown in
Appendix A: see, e.g., Eqs. (108) and (109) which are the rigorous versions of Eqs. (37) and
(38).

Our main interest in this work is the study of the correlation signal in momentum space,
that is of the two-points correlation functions G2 and g2 defined in Eqs. (28) and (29). The
most robust signals are those present even at T = 0. These are

G2(k < 0, q < 0) =
h

|Su,d2|2ωu|out(k)
+
�

|Sd2,u|2 + |Sd2,d1|2
��

�

ωd2|out(−k)

i2
δ2(k− q)

+
�

| eUu|out|2|fWd2|out|2
�

�S∗u,d2Sd2,d2

�

�

2
δ2(ωu|out(k)−ωd2|out(−q)) + (k↔ q)

�

,
(41)

G2(k > 0, q > 0) = |Sd1,d2|2ωd1|out(k)
δ2(k− q) , (42)

G2(k < 0, q > 0) =| eUu|out|2| eUd1|out|2
�

�

�S∗u,d2Sd1,d2

�

�

�

2
δ2(ωu|out(k)−ωd1|out(q))

+|fWd2|out|2| eUd1|out|2
�

�

�S∗d2,d2Sd1,d2

�

�

�

2
δ2(ωd2|out(−k)−ωd1|out(q)).

(43)

As already noted for the one-body signal, a first obvious outcome of this computation is that
the T = 0 correlations in momentum space disappear in the absence of sonic horizon, since in
this case the d2 mode does not exist and all the corresponding elements of the S matrix cancel
in (41), (42) and (43).

Looking more in detail into the results, one sees that in the (k < 0, q < 0) and in the
(k > 0, q > 0) sectors one has terms with a δ2(k− q) correlation which we henceforth denote
as diagonal. These terms are simply of the form N 2(k)δ2(k − q). Again, the occurrence of
the highly singular squared δ distribution in the expressions (41), (42) and (43) is an artifact
of our schematic Fourier transform rules R1 and R2 which disappears when one considers
windowed Fourier transforms, see Appendix A.

Besides the diagonal term, one has correlation lines along the u|out − d2|out (Hawking
quanta-partner), d2|out− d1|out and u|out− d1|out channels. All these correlations are also
present mutatis mutandis in the density fluctuation sector [13, 14, 17, 24]. As in the interpre-
tation of black-hole radiation first given by Hawking [3], the existence of these correlations is
an indication of the fact that the vacuum of the ingoing modes is not the same as the vacuum
of outgoing ones, and this results in spontaneous emission of pairs of outgoing quasi-particles
even in the absence of incoming ones [36, 37]. This is possible even in our stationary setting
because the number of created quasiparticles of positive energy equals the number negative
energy ones, i.e. energy is conserved [24,38].
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Figure 4: Zero temperature momentum space correlation lines from Eqs. (41), (42) and (43).
These curves correspond to the loci of points with finite value of the two body momentum
correlation function G2(K ,Q). They are labeled with the names of the modes of correlated
momenta, for instance the “u− d1” curve corresponds to the line of correlation between the
u|out and the d1|out modes. The left plot displays the results for a waterfall configuration
with Mu = 0.5 and Md = 4. The right plot displays the results for a flat profile configuration
with the same values of Mu and Md . The momenta are expressed in units of ξ−1

u .
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Figure 5: Same as Fig. 4 for a δ peak configuration (left plot) and flat profile (right plot)
having both the same asymptotic Mach numbers Mu = 0.5 and Md = 1.827.

The results corresponding to the zero temperature correlation signals (41), (42) and (43)
are displayed in Figs. 4 and 5. In figure 4, the left plot presents the results for a waterfall
configuration with Mu = 0.5; this imposes Md = 4. The results for the flat profile configuration
with the same values of Mu and Md are displayed in the right plot. As noted at the end of Sec.
2.1.3, it is not possible to realize a waterfall and a δ peak profile having the same values of
Mu and Md . Hence we compare in figure 5 the results for a δ peak configuration (left plot)
with Mu = 0.5 (this imposes Md = 1.827) with the ones for a flat profile configuration having
the same asymptotic Mach numbers (right plot).

The graphical rule for drawing the correlation lines in these figures is simple. Let’s con-
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sider the u|out − d2|out correlation line for instance. From Eq. (41) one sees that the rel-
ative wave vectors k and q are correlated when ωu|out(k) = ωd2|out(−q), and also along
the curve obtained by exchanging the roles of k and q. This corresponds to the two curves
q = −qd2|out(ωu|out(k)) and q = qu|out(ωd2|out(−k)). Going to the absolute wave vectors K
and Q, these correlation lines correspond to the curves Q− Kd = −qd2|out(ωu|out(K − Ku)) and
Q − Ku = qu|out(ωd2|out(−K + Kd)). These two curves are symmetrical with respect to the di-
agonal. In the case of the flat profile configuration they meet on the diagonal at the point of
coordinate (Ku, Kd = Ku).

Figures 4 and 5 indicate the location of the relevant correlation signal, but not its am-
plitude. The theoretical evaluation of this amplitude can be done either using the schematic
rules R1 and R2 [but then yields to singular expressions as in (41), (42) and (43)] either us-
ing windowed Fourier transforms (but then depends on the specific choice of the windows,
cf. Appendix A). One can circumvent these difficulties and obtain a non-ambiguous result by
working with the rescaled g2 function (29), as explained now.

Let us first consider “diagonal correlation terms” which are intra-channel correlations in
the u|out, d1|out and d2|out channels corresponding to the diagonal lines in Figs. 4 and 5.
These diagonal terms are conveniently isolated by studying correlation functions of the type

g2(K , K)u|out =
G2(K , K)u|out

〈N̂(K)〉2u|out

+ 1 , (44)

where 〈N̂(K)〉u|out and G2(K , K)u|out are the u|out contributions to 〈N̂(K)〉 and to the diagonal
part of G2(K , K). One obtains straightforwardly

g2(K , K)u|out = 2 , (45)

a result which follows from Wick’s theorem and which is also valid for the other channels,
even at finite temperature, for non-adiabatic opening of the trap, and also when considering
Fourier transforms less schematic than in Eqs. (18) and (19) (cf. Appendix A).

At zero temperature, in the adiabatic regime we consider in the present subsection, the
only non-diagonal contributions to G2 are of the type u|out–d2|out, u|out–d1|out and d1|out–
d2|out. One considers here for instance correlation functions of the type (with obvious nota-
tions)

g2(K ,Q)u|out−d2|out =
G2(K ,Q)u|out−d2|out

〈N̂(K)〉u|out〈N̂(Q)〉d2|out
+ 1 . (46)

From expressions (37) and (41) one gets

g2(K ,Q)u|out−d2|out =
|Sd2,d2|2

|Sd2,u|2 + |Sd2,d1|2
+ 1=

2|Sd2,d2|2 − 1

|Sd2,d2|2 − 1
. (47)

For obtaining the r.h.s. of Eq. (47) we used the pseudo-unitarity condition (14) and also the
fact that

δ2(ωu|out(k)−ωd2|out(−q))

δ
�

ωu|out(k)−ωu|out(k)
�

δ
�

ωd2|out(−k)−ωd2|out(−k)
� = 1 . (48)

While this relation is easily verified in the schematic framework used in the main text (which
originates from the rules R1 and R2 of Sec. 2.4.1), it appears less straightforward when study-
ing the more rigorously defined local Fourier transform (see Appendix A). In this case, the
equivalent of Eq. (48) is Eq. (124) and is equal to unity only if Eqs. (126) are verified, i.e.,
if the window functions fulfill specific conditions, the physical content of which is discussed
in Appendix A. We will assume that these conditions are met in the following (or equivalently
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we keep on using the schematic rules R1 and R2 of Sec. 2.4.1). For the other inter-channel
correlators the normalized two-body functions read:

g2(K ,Q)u|out−d1|out = 2 , (49)

and

g2(K ,Q)d1|out−d2|out =
2|Sd2,d2|2 − 1

|Sd2,d2|2 − 1
. (50)

The study of g2 is of interest because the occurrence of entanglement and the quantum nature
of the Hawking process can be tested through the violation of the Cauchy-Schwarz inequality,
as recently studied in a similar context in Refs. [31, 32, 39–45]. For instance, the Cauchy-
Schwarz inequality is violated along the characteristic Hawking quanta–partner correlation
lines u|out–d2|out of Figs. 4 or 5 if (see, e.g., [46])

g2(K ,Q)
�

�

�

u|out−d2|out
>

√

√

g2(K , K)
�

�

�

u|out
× g2(Q,Q)

�

�

�

d2|out
= 2 . (51)

As already noticed after Eq. (45), the right-hand side of inequality (51) is equal to 2 for all
temperature. From expression (47) one sees that the Cauchy-Schwarz inequality is violated at
T = 0 along the u|out–d2|out correlation line for those values of K and Q such that, at energy
ω = ωu|out(k) = ωd2|out(−q), one has |Sd2,d2(ω)| > 1. Sd2,d2 is the scattering amplitude
from the d2|in mode towards the d2|out mode; its modulus can be larger than unity without
violating the pseudo-unitarity condition (14). |Sd2,d2(ω)| diverges as ω−1/2 when ω → 0
[24] and the Cauchy-Schwarz inequality is thus always violated for ω > 0. The same holds
true for the violation of the Cauchy-Schwarz inequality along the d1|out–d2|out channels at
T = 0 since the formula (50) yields for g2(K ,Q)d1|out−d2|out the same result than (47) does
for g2(K ,Q)u|out−d2|out. From Eq. (49) it is clear that the Cauchy-Schwarz inequality is not
violated at T = 0 along the u|out–d1|out correlation channel.

A remark should be made here concerning the experimental detection process. Our the-
oretical analysis corresponds to windowed upstream and downstream momentum detection.
It is thus theoretically possible to distinguish an upstream and a downstream component in
the signal in momentum space. This is the reason why it is legitimate to identify, for instance
a u|out− d2|out component in the total G2(K ,Q), or a u|out component in the total 〈N̂(K)〉,
as done in Eq. (46). However, some apparatuses may mix the upstream and downstream sig-
nals in their detection scheme. In this case, the overlap in momentum space of the domain of
existence of the u|out and d2|out signals forbids the use of a definition as precise as (46). In
this case, a clear separation can only be done for the momenta located outside of the overlap
region. In the waterfall configuration represented in the left plot of Fig. 4 for instance, with
such a detection apparatus, one cannot study the u|out− d2|out correlation signal in regions
where the d2|out and u|out momenta overlap, i.e, when K or Q lie in a segment for which the
blue and red diagonal curves of the figure overlap. In this respect, such an apparatus would
not have access to the u|out− d2|out correlation signal at all for the flat profile configuration,
since in this case the region of momenta issued from the u|out channel is completely contained
in the region of momenta issued from the d2|out channel. To recall this possible experimental

issue, when we plot below quantities such as g2(K ,Q)
�

�

�

u|out−d2|out
or g2(K ,Q)

�

�

�

u|out−d1|out
, we

shade the region of momenta where an ambiguity is possible (cf. Figs. 6 and 7). We stress
however that not all experimental detection schemes have to be subject to this drawback.

3.2 Finite temperature

The analog stationary black hole configuration we consider is thermodynamically unstable,
and cannot support a thermal state. However, a thermal-like occupation of the states can be
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defined by considering a time dependent process of formation of the horizon starting from a
uniform thermal subsonic uniform configuration, following the procedure already considered
in Ref. [17] (see also [16]): The condensate has initially a uniform density nu, a flow velocity
Vu and a sound velocity cu and is at thermal equilibrium at temperature T in the moving frame.
The horizon is then adiabatically switched on, either by ramping down the scattering length in
the downstream region – leading to a flat profile configuration –, or by ramping up an external
potential – leading to a waterfall or a delta peak configuration.

Then, one obtains occupation numbers nU(ω), nD1(ω) and nD2(ω) for each of the scattering
modes. For instance nU(ω) = nth[ωB(qu|in(ω))], where nth(Ω) = (exp(Ω/T ) − 1)−1 is the
thermal Bose occupation factor, and ωB(q) is the Bogoliubov dispersion relation (6) in the
moving frame (with here c → cu and ξ → ξu in expression (6)). This procedure leads for
the other occupation numbers nD1(ω) = nth[ωB(qd1|in(ω))] and nD2(ω) = nth[ωB(qd2|in(ω))],
it corresponds to the experimental situation where an external potential is swept at constant
velocity through a condensate initially at rest [23,47].

Note that one could choose other prescriptions for defining the occupation of the scattering
modes. For instance the initial state (uniform density nu with uniform velocity Vu) could be in
thermal equilibrium in the frame of the obstacle (and not in the frame where the condensate
is at rest, as considered above); this would modify the explicit expression of the nL ’s in (52).
Precisely one would have in this case: nU(ω) = nth(ω), nD1(ω) = nth(ωu|out(qd1|in(ω))) and
nD1(ω) = nth(ωu|out(−qd2|in(ω))). In the following we just use the contraction rules

〈b̂L(ω)b̂
†
L′
(ω′)〉 = [1+ nL(ω)]δL,L′ δ(ω−ω′) ,

〈b̂†
L
(ω)b̂L′(ω

′)〉 = nL(ω)δL,L′ δ(ω−ω′) , (52)

without specifying the expressions of the nL ’s, and the formulas written below are thus gener-
ally valid.

In the adiabatic regime where Eqs. (33) and (34) hold, we find, for negative k:

〈N̂(k < 0)〉= | eUu|out|2
�

|Su,u|2nU + |Su,d1|2nD1 + |Su,d2|2(1+ nD2)
�

ωu|out(k)

×δ
�

ωu|out(k)−ωu|out(k)
�

+ |fWd2|out|2
�

|Sd2,u|2(1+ nU) + |Sd2,d1|2(1+ nD1) + |Su,d2|2nD2

�

ωd2|out(−k)

×δ
�

ωd2|out(−k)−ωd2|out(−k)
�

+ | eUd1|in|2nD1(ωd1|in(k))×δ
�

ωd1|in(k)−ωd1|in(k)
�

+ |fWd2|in|2nD2(ωd2|in(−k))×δ
�

ωd2|in(−k)−ωd2|in(−k)
�

,

(53)

and, for positive k:

〈N̂(k > 0)〉= | eUd1|out|2
�

|Sd1,u|2nU + |Sd1,d1|2nD1 + |Sd1,d2|2(1+ nD2)
�

ωd1|out(k)

×δ
�

ωd1|out(k)−ωd1|out(k)
�

+ | eUu|in|2nU(ωu|in(k))×δ
�

ωu|in(k)−ωu|in(k)
�

.

(54)

As in the zero temperature case, formulas (53) and (54) can be cast under the form (39), with
here

N (k < 0) =
�

|Su,u|2nU + |Su,d1|2nD1 + |Su,d2|2(1+ nD2)
�

ωu|out(k)

+
�

|Sd2,u|2(1+ nU) + |Sd2,d1|2(1+ nD1) + |Sd2,d2|2nD2

�

ωd2|out(−k)

+ nD1(ωd1|in(k)) + nD2(ωd2|in(−k)) .

(55)
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and

N (k > 0) =
�

|Sd1,u|2nU + |Sd1,d1|2nD1 + |Sd1,d2|2(1+ nD2)
�

ωd1|out(k)
+ nU(ωu|in(k)) . (56)

Then, one obtains for the momentum correlation:

G2(k < 0, q < 0) =N 2(k < 0)δ2(k− q)

+
�

| eUu|out|2|fWd2|out|2
�

�S∗u,uSd2,unU + S∗u,d1Sd2,d1nD1 + S∗u,d2Sd2,d2(1+ nD2)
�

�

2 ×

δ2(ωu|out(k)−ωd2|out(−q))

+ | eUu|out|2| eUd1|in|2|Su,d1|2n2
D1
δ2(ωu|out(k)−ωd1|in(q))

+ | eUu|out|2|fWd2|in|2|Su,d2|2nD2(1+ nD2)δ
2(ωu|out(k)−ωd2|in(−q))

+ |fWd2|out|2| eUd1|in|2|Sd2,d1|2nD1(1+ nD1)δ
2(ωd2|out(−k)−ωd1|in(q))

+ |fWd2|out|2|fWd2|in|2|Sd2,d2|2n2
D2
δ2(ωd2|out(−k)−ωd2|in(−q))

+ (k↔ q)
�

, (57)

G2(k > 0, q > 0) =N 2(k > 0)δ2(k− q)

+
�

| eUu|in|2| eUd1|out|2|Sd1,u|2n2
U
δ2(ωd1|out(k)−ωu|in(q)) + (k↔ q)

�

. (58)

In the first term of the last line of this formula there is no ambiguity: |Sd1,u|2 and nU have to
be evaluated at ωd1|out(k) =ωu|in(q), | eUu|in|2 has to be evaluated at q and | eUd1|out|2 has to be
evaluated at k.

G2(k < 0, q > 0) =

| eUu|out|2| eUd1|out|2
�

�

�S∗u,uSd1,unU + S∗u,d1Sd1d1nD1 + S∗u,d2Sd1,d2(1+ nD2)
�

�

�

2

δ2(ωu|out(k)−ωd1|out(q))

+ |fWd2|out|2| eUd1|out|2
�

�

�S∗d2,uSd1,unU + S∗d2,d1Sd1,d1nD1 + S∗d2,d2Sd1,d2(1+ nD2)
�

�

�

2

δ2(ωd2|out(−k)−ωd1|out(q))

+ | eUu|out|2| eUu|in|2|Su,u|2n2
U
δ2(ωu|out(k)−ωu|in(q))

+ | eUd1|out|2| eUd1|in|2|Sd1,d1|2n2
D1
δ2(ωd1|in(k)−ωd1|out(q))

+ |fWd2|out|2| eUu|in|2|Sd2,u|2nU(1+ nU)δ
2(ωd2|out(−k)−ωu|in(q))

+ | eUd1|out|2|fWd2|in|2|Sd1,d2|2nD2(1+ nD2)δ
2(ωd2|in(−k)−ωd1|out(q)) . (59)

We remark that at T 6= 0 there appear in-out correlators, which were absent at T = 0. We
shall focus here on the most robust correlators, those already present at T = 0, and evaluate
the intensity of the correlation signal along these lines by using the normalized correlation
function g2 which is window independent. The Hawking quanta-partner correlator (47) gets
modified to

g2(K ,Q)u|out−d2|out =

�

�

�S∗u,uSd2,unU + S∗u,d1Sd2,d1nD1 + S∗u,d2Sd2,d2(1+ nD2)
�

�

�

2

Nu|out(k)Nd2|out(q)
+ 1 , (60)

where [from (55)]

Nu|out(k) =
�

|Su,u|2nU + |Su,d1|2nD1 + |Su,d2|2(1+ nD2)
�

ωu|out(k)
, (61)
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and

Nd2|out(k) =
�

|Sd2,u|2(1+ nU) + |Sd2,d1|2(1+ nD1) + |Sd2,d2|2nD2

�

ωd2|out(−k)

=
�

−1+ |Sd2,u|2nU + |Sd2,d1|2nD1 + |Sd2,d2|2(1+ nD2)
�

ωd2|out(−k) .
(62)

The u|out− d1|out correlator (49) becomes

g2(K ,Q)u|out−d1|out =

�

�

�S∗u,uSd1,unU + S∗u,d1Sd1,d1nD1 + S∗u,d2Sd1,d2(1+ nD2)
�

�

�

2

Nu|out(k)Nd1|out(q)
+ 1 , (63)

and the d1|out− d2|out correlator (50) takes the form

g2(K ,Q)d1|out−d2|out =

�

�

�S∗d1,uSd2,unU + S∗d1,d1Sd2,d1nD1 + S∗d1,d2Sd2,d2(1+ nD2)
�

�

�

2

Nd1|out(k)Nd2|out(q)
+ 1 , (64)

where [from (56)]

Nd1|out(k) =
�

|Sd1,u|2nU + |Sd1,d1|2nD1 + |Sd1,d2|2(1+ nD2)
�

ωd1|out(k)
. (65)

Eqs. (60), (63) and (64) are particularly important because they allow us to study how an
initial nonzero temperature affects the violation of the Cauchy-Schwarz inequality, g2 > 2, see
e.g. Eq. (51). The results in the waterfall, δ-peak and flat profile configurations are presented
in Figs. 6 and 7. We saw in the previous subsection that at T = 0 the Cauchy-Schwarz
inequality is always violated along the u|out − d2|out and d1|out − d2|out channels for all
ω> 0, while it is not violated in the u|out−d1|out one. In a more realistic case in which there
is an initial nonzero temperature, the amount of entanglement is, as expected, reduced with
respect to the T = 0 case. In particular, there is always a region, for small enough and large
enough momenta (when the corresponding frequency is close to 0 or to Ω), where g2 < 2. In
both the u|out−d2|out and d1|out−d2|out channels, however, there is always an intermediate
ω region in which the Cauchy-Schwarz inequality is violated provided the temperature is not
too large.

We clearly see that the most favorable case for demonstrating quantum entanglement –
i.e. spontaneous Hawking radiation – corresponds to the violation of the Cauchy-Schwarz
inequality along the Hawking quanta – partner (u|out− d2|out) channel in the waterfall con-
figuration, which is exactly the situation which has been recently studied experimentally by
Steinhauer [23]. We remark that this configuration corresponds to the case where the region
of overlap of the signals in momentum space is the smallest.

We also note from Fig. 7 that, for a δ-peak potential, the Cauchy-Schwarz inequality is
violated up to a temperature slightly larger than the chemical potential. This has been already
noticed in Ref. [31]. The signature of quantum correlation is more robust for a waterfall
configuration: one sees on Fig. 6 that the Cauchy-Schwarz inequality is violated up to a
temperature of order of twice the chemical potential.

3.3 Non adiabatic effects and in situ measurements.

Since the adiabatic limit described by Eqs. (33) and (34) is rather idealized, especially for
small frequencies (as discussed earlier, for low lying excitations the assumption of adiabatic-
ity is always violated), it is useful to describe how the results presented in the previous two
subsections are modified by non-adiabatic effects. Concretely, instead of Eqs. (33) and (34),
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Figure 6: Normalized correlation functions in the waterfall configuration (left plots) and flat
profile (right plots). Mu = 0.5 and Md = 4 in both cases. The vertical arrangement of the
different plots corresponds to the intensity of the correlation signal along the u|out− d2|out,
d1|out− d2|out and u|out− d1|out correlation lines identified in Fig. 4. The Cauchy-Schwarz
inequality is violated when g2 is larger than 2. In each plot the different lines correspond to
different temperatures, the values of which are indicated in units of mc2

u . The thick solid (thin
dashed) lines correspond to a situation where the system is at thermal equilibrium in the frame
of the condensate (of the obstacle) before the formation of the sonic horizon. The shaded zone
on the abscissa axis represent the region of overlap of the momenta of the outgoing channels,
see the discussion at the end of Sec. 3.1.

at late times after the opening of the trap, the Bogoliubov coefficients will behave as

eUu|in , eUu|out ∼ αu , eUd1|in , eUd1|out ∼ αd ,

fWu|in , fWu|out ∼ βu , fWd1|int , fWd1|out ∼ βd ,

eUd2|in , eUd2|out ∼ βd , fWd2|in , fWd2|out ∼ αd ,

(66)

where the α and β coefficients satisfy the same normalization condition (21) as the corre-
sponding eU , fW “tilde Bogoliubov coefficients” (20). Note that our approach encompasses also
the situation which we denote as in situ below. In this situation the measurement process gives
a direct access to the actual value of the tilde Bogoliubov coefficients without any evaporative
process which would affect these coefficients as described in Eqs. (33) and (34) for the adi-
abatic limit, or possibly differently in a non adiabatic regime. In the following, we use the
generic terminology “non adiabatic” for describing both the case of in situ measurements and
of non-adiabatic modification of the situation (33), (34).

To ease the presentation we have – only temporarily – considered in (66) a single set of
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Figure 7: Same as Fig. 7 for a δ-peak configuration (left plot) and a flat profile one (right
plot). Mu = 0.5 and Md = 1.827 in both cases.

coefficients for the upstream u region and also a single one for the downstream d region, but
it is clear that in a rigorous analysis (presented below) each mode will have its own α and β
coefficients. Hence the expressions (26) and (27) remain valid, but the eU and fW ’s are replaced
by α and β coefficients, following the rules (66).

The reason for the change of notation (66) is threefold. First, the expression of the non-
adiabatic coefficients maybe quite non-trivial and different from the ones of the eU ’s and fW ’s.
This will occur for instance after a step of dynamical Casimir amplification where the system
is artificially submitted to a rapid quench. Also, this notation allows for the possibility that,
during the opening of the trap, the initial “tilde Bogoliubov coefficients” get modified in a
manner less trivial than (33) and (34). Second, this (momentarily) simplified notations where
the mode indices are omitted permits a simple presentation of the main features of the G2
function in the non-adiabatic case (see Appendix B). Finally, in the weakly non adiabatic case
all the β ’s are small compared with theα’s, whereas keeping the previous eU ’s and fW ’s notations
would make it difficult to identify the small terms in the expression for G2.

The results for the correlator are much more complex than those presented in the previous
two subsections in the adiabatic limit. We give here the general structure of the correlators,
the explicit results – with also account of finite temperature – are given in Appendix B:

G2(k < 0, q < 0) = Diag<0δ
2(k−q)+O(|α|4)<0+O(|α|2|β |2)<0+O(|β |4)<0+(k↔ q), (67)

G2(k > 0, q > 0) = Diag>0δ
2(k−q)+O(|α|4)>0+O(|α|2|β |2)>0+O(|β |4)>0+(k↔ q), (68)
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G2(k < 0, q > 0) = Aδ2(k+ q) +O(|α|4) +O(|α|2|β |2) +O(|β |4). (69)

We recall that in the adiabatic limit, corresponding to Eqs. (33) and (34) with the substitution
(66), all the β ’s are zero. In the more general case considered here they are not; the α’s and
β ’s, with the substitution (66) – satisfy the normalization (21) – implying that α is bigger than
its adiabatic value. We see from the results presented in Appendix B that the terms already
present in the adiabatic regime are now multiplied by a factor α4. In particular, the finite
temperature adiabatic terms of (57), (58) and (59) are now given by the α4 diagonal terms
given in Eqs. (127) and (131) and by the off-diagonal terms O(|α|4)<0 in Eq. (128), O(|α|4)>0
in Eq. (132), and O(|α|4) in Eq. (136). If we consider the weakly non adiabatic regime,
this means that they are now larger than the corresponding adiabatic value. New sub-leading
terms appear, of order α2β2 terms (among which an antidiagonal term) and also higher order
β4 contribution. This results in a very complicated pattern.

3.3.1 Violation of the Cauchy-Schwarz inequality along the Hawking quantum-partner
correlation lines

Having derived the structure of the correlation lines, we now turn to the intensity of the cor-
relation signal, and to the possible violation of the Cauchy-Schwarz inequality in the non adi-
abatic regime. We shall restrict our attention to the study of the incidence of non-adiabaticity
on the Hawking quantum - partner u|out-d2|out correlator; this will bring pieces of informa-
tion valid for all the other correlation lines. The results will be given first at T = 0,5 then at
finite temperature for completeness.
• From the results in Appendix B, in the case where both k and q are negative, the zero

temperature contribution of the u|out–d2|out modes to G2 reads [see Eq. (128)]

G2(k, q)u|out−d2|out←− |αu|out|2|αd2|out|2|Su,d2|2|Sd2,d2|2δ2(ωu|out(k)−ωd2|out(−q)), (70)

The arrow in this equation indicates that its right hand side is not the sole contribution to
the u|out–d2|out correlation signal: not only should it be supplemented by a contribution in
which the roles of k and q are exchanged, but also new non-adiabatic terms arise (see below).
The contribution (70) corresponds to the signal which already exists in the adiabatic case,
whose intensity is here modified by the α coefficients. Note that, contrarily to the schematic
presentation of Appendix B, we consider here the most general case, and have explicitly written
the mode-dependence of the α coefficients. This will remain the case in the rest of the section.

In the negative k sector, the zero temperature contributions of the u|out and d2|out modes
to N (k) read

Nu|out(k < 0) = |αu|out|2|Su,d2|2|ωu|out(k) ,

Nd2|out(k < 0) = |αd2|out|2(|Sd2,d2|2 − 1)|ωd2|out(−k) .
(71)

In the calculation of g2(K ,Q)u|out−d2|out the α coefficients of Eqs. (70) and (71) factorize out
and we get for the normalized correlator the same result as in zero temperature adiabatic case,
Eq. (47), namely

g2(K ,Q)u|out−d2|out←−
2|Sd2,d2|2 − 1

|Sd2,d2|2 − 1
≥ 2 . (72)

The same factorization of the α coefficients occurs also at finite temperature, and the adiabatic
expression (60) is thus also valid in the non-adiabatic regime. We stress that this important sig-
nal is thus quite robust, not being affected by possible non adiabatic effects, and the violation
of Cauchy-Schwarz inequality is also observable from in situ measurements.

5A similar analysis in the case of the density correlator has been presented in [48].
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Figure 8: Momentum space correlation lines for the u|out-d2|out signal in a non-adiabatic case
for a flat profile configuration with Mu = 0.5 and Md = 4. The correlation line corresponding
to ωu|out(k) =ωd2|out(−q) is already present in the adiabatic regime (see the right plot of Fig.
4). The lines of identical colors are obtained one from the other by an exchange of k and q.
The same pattern arises in situ. The momenta are expressed in units of ξ−1

u .

From the results presented in Appendix B one sees that in the non-adiabatic regime three
more couples of u|out–d2|out correlation lines appear with respect to the adiabatic situation.
They correspond to the conditions

ωd2|out(k) =ωu|out(−q) for k > 0 and q > 0 ,

ωd2|out(q) =ωu|out(k) for k < 0 and q > 0 ,

ωd2|out(−q) =ωu|out(−k) for k > 0 and q < 0 ,

(73)

and to the same conditions in which the roles of k and q are exchanged. All these correlation
lines are displayed in Fig. 8, together with the ones which already exist in the adiabatic case.6

We now evaluate the intensity of the signal corresponding to each of these lines.
• In the k and q > 0 sector, we get, at T = 0 [cf. Eq. (134)]:

G2(k, q)u|out−d2|out←− |βu|out|2|βd2|out|2|Su,d2|2|Sd2,d2|2δ2(ωd2|out(k)−ωu|out(−q)) (74)

and

Nu|out(k > 0) = |βu|out|2(1+ |Su,d2|2)|ωu|out(−k) ,

Nd2|out(k > 0) = |βd2|out|2|Sd2,d2|2|ωd2|out(k) ,
(75)

leading to the following contribution to the normalized correlator:

g2(K ,Q)u|out−d2|out←− 2−
1

1+ |Su,d2|2
≤ 2 . (76)

As was previously the case for the α coefficients, the β ’s here also factorize out. A similar
factorization will occur in all the subsequent cases considered in this section. At finite temper-

6For legibility we only show in Fig. 8 the u|out–d2|out correlation lines. In the non-adiabatic case there are
many more similar lines, corresponding to the correlations identified in Appendix B.
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ature, expression (76) becomes

g2(K ,Q)u|out−d2|out←−

�

�

�S∗u,uSd2,unU + S∗u,d1Sd2,d1nD1 + S∗u,d2Sd2,d2(1+ nD2)
�

�

�

2

Nu|out(k > 0)Nd2|out(q > 0)
+ 1 , (77)

where here

Nu|out(k > 0)≡
1

|βu|out|2
Nu|out(k > 0)

=
�

|Su,u|2(1+ nU) + |Su,d1|2(1+ nD1) + |Su,d2|2nD2

�

ωu|out(−k) ,

Nd2|out(q > 0)≡
1

|βd2|out|2
Nd2|out(q > 0)

=
�

|Sd2,u|2nU + |Sd2,d1|2nD1 + |Sd2,d2|2(1+ nD2)
�

ωd2|out(q)
.

(78)

The important information here is that, even at zero temperature, the new u|out–d2|out corre-
lation line which appears in the k and q > 0 sector due to non-adiabatic effects is not associated
to a non separable signal [cf. Eq. (76)]. As expected –and can be verified from expression
(77)– thermal effects do not modify this situation. As we will now see, this conclusion remains
also valid for all the other correlation lines which where not present in the adiabatic regime.
• For k < 0 and q > 0, one of the contributions to G2(k, q)u|out−d2|out reads [cf. Eq. (137)]

G2(k, q)u|out−d2|out←− |αu|out|2|βd2|out|2|Su,d2|2|Sd2,d2|2δ2(ωd2|out(q)−ωu|out(k)) , (79)

and at T = 0 this corresponds to a normalized correlation signal:

g2(K ,Q)u|out−d2|out←− 2 . (80)

At finite temperature this contribution modifies to:

g2(K ,Q)u|out−d2|out←−

�

�

�S∗u,uSd2,unU + S∗u,d1Sd2,d1nD1 + S∗u,d2Sd2,d2(1+ nD2)
�

�

�

2

Nu|out(k < 0)Nd2|out(q > 0)
+ 1 , (81)

where

Nu|out(k < 0)≡
1

|αu|out|2
Nu|out(k < 0)

=
�

|Su,u|2nU + |Su,d1|2nD1 + |Su,d2|2(1+ nD2)
�

ωu|out(−k) .
(82)

• For k > 0 and q < 0 another contribution to G2(k, q)u|out−d2|out reads [cf. Eq. (137)]

G2(k, q)u|out−d2|out←− |αd2|out|2|βu|out|2|Su,d2|2|Sd2,d2|2δ2(ωd2|out(−q)−ωu|out(−k)) , (83)

giving at T = 0

g2(K ,Q)u|out−d2|out←− 2−
|Sd1,d2|2

(|Sd2,d2|2 − 1)(1+ |Su,d2|2)
≤ 2 . (84)

This form of writing the result has been obtained by using the pseudo-unitarity of the S matrix.
It makes clear that no violation of the Cauchy-Schwarz inequality occurs along the correlation
line considered here. At finite temperature one obtains

g2(K ,Q)u|out−d2|out←−

�

�

�S∗u,uSd2,unU + S∗u,d1Sd2,d1nD1 + S∗u,d2Sd2,d2(1+ nD2)
�

�

�

2

Nu|out(k > 0)Nd2|out(q < 0)
+ 1 , (85)
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where here

Nd2|out(q < 0)≡
1

|αd2|out|2
Nd2|out(q < 0)

=
�

|Sd2,u|2(1+ nU) + |Sd2,d1|2(1+ nD1) + |Sd2,d2|2nD2

�

ωd2|out(−q) .
(86)

To sum up, we recall that the above study is a partial focus on a subpart of the whole
correlation pattern, concerning only the most important Hawking quantum-partner signal (in
our terminology, the u|out− d2|out signal). We used it to demonstrate that the most interest-
ing correlation is the one already present in the T = 0 adiabatic case: the Cauchy-Schwarz
inequality can only be violated along this line. The same is true for the d1|out−d2|out signal.

4 Momentum correlations in the absence of sonic horizon

In this section we consider a configuration where the upstream and the downstream regions
are both subsonic. In this case there is no horizon, but one can still be in a configuration
where the upstream and downstream non linear coefficients are different (as in the flat profile
configuration), also the system can be affected by the presence of an external potential (as in
the waterfall and delta peak configuration). If this external potential is localized (i.e., tends
rapidly enough to zero at infinity), and if the nonlinear coefficient keeps the same value in all
the system, then the type of flow considered is rather simple. More precisely, as demonstrated
in Appendix C, the upstream flow velocity and density at −∞ are the same as the flow velocity
and density at+∞: Vu = Vd and nu = nd . As a result, the general formulas given in the present
section simplify, this is explained in Appendix C.

In the situation we consider in the present section, the d2 negative-norm mode disappears
since the downstream region is subsonic: there is now a single downstream mode which we
simply denote by “d”. The obstacle is thus characterized by a S-matrix which is 2 × 2 and
unitary:

S =

�

Su,u Su,d
Sd,u Sd,d

�

with SS† = 1 . (87)

In this case, instead of Eq. (8) one has

ψ̂(x) = eiKαx

∫ ∞

0

dω
p

2π

∑

L∈{U ,D}

�

ūL(x ,ω)b̂L(ω) + w̄∗
L
(x ,ω)b̂†

L
(ω)

�

, (88)

where Kα = mVα/ħh as in (8), Vα being the value of the upstream (α = u) or downstream
(α= d) asymptotic flow velocity.

We perform the usual (fake) Fourier transform on ψ̂, using the rules R1 and R2 of section
(2.4.1). Collecting separately the k < 0 and k > 0 contributions we get

ψ̂(k < 0) = eUu|out

�

Su,u b̂U + Su,d b̂D

�

ωu|out(k)
+ fW∗

d|out

�

S∗d,u b̂†
U
+ S∗d,d b̂†

D

�

ωd|out(−k)

+ eUd|in b̂D|ωd|in(k) + fW
∗
u|in b̂†

U
|ωu|in(−k) , (89)

ψ̂(k > 0) = eUd|out

�

Sd,u b̂U + Sd,d b̂D

�

ωd|out(k)
+ fW∗

u|out

�

S∗u,u b̂†
U
+ S∗u,d b̂†

D

�

ωu|out(−k)

+ eUu|in b̂U |ωu|in(k) + fW
∗
d|in b̂†

D
|ωd|in(−k) .

This expression corresponds to Eqs. (26) and (27) in which the negative norm d2 mode
has been suppressed. From it one can compute the density distribution in momentum space
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and also the momentum correlation function. In particular, in the adiabatic limit one gets
〈N̂(k < 0)〉=N (k)×δ(k− k) where

N (k < 0) =
�

|Su,u|2nU + |Su,d |2nD

�

ωu|out(k)
+ nD|ωd|in(k)

, (90)

and
N (k > 0) =

�

|Sd,d |2nD + |Sd,u|2nU

�

ωd|out(k)
+ nU |ωu|in(k)

. (91)

Since one is in a situation where the flow is everywhere subsonic, one can define a bona fide
temperature state where, for all the modes, the occupation number of a state of energy ω is
nU = nD = nth(ω). In the idealized case of perfect transmission one has Su,u = 0 = Sd,d and
Su,d = 1= Sd,u, then Eqs. (90) and (91) reduce to

N (k) = 2 nth(ω(k)) . (92)

The factor 2 is spurious. It comes from the fact that one does two Fourier transforms, one
upstream and one downstream, and that there is a kind of built-in double counting in this
approach. The problem is suppressed if one considers upstream and downstream windowed
Fourier transforms, as done in Appendix A. In this case, in the absence of the obstacle, instead
of Eqs. (90) and (91) one gets

〈N̂(k)〉= nth(ω(k))

�

σuΛ
2
up

8π
+
σdΛ

2
dp

8π

�

. (93)

How the correct treatment of the windowed upstream and downstream Fourier transforms
leads to the precise form of the two terms in the big parenthesis of the r.h.s. of (93) is explained
in Appendix A.

From the present analysis one is thus led to define finite efficiencies of the upstream and
downstream particle detectors. A finite efficiency corresponds to a measurement process in
which a fraction of particles are missed in the detection of the momentum signal. This is de-
scribed theoretically by the normalization of the windowed Fourier transforms (16): defining
the efficiencies as λα = σαΛ2

α/
p

2π (α= u or d) with λα ∈ [0,1] one casts formula (93) under
the form 〈N̂(k)〉 = 1

2(λu + λd)nth(ω(k)). So, when both efficiencies are zero, there is no par-
ticle detected and no momentum signal, and when, on the contrary, the detection efficiencies
are both unity one gets in the absence of the obstacle 〈N̂(k)〉= nth(ω(k)), as it should be.

Note that the double counting which has been easily identified in formula (92) is present
in all the previous formulas of main text (Eqs. (53) to (56) and also Eqs. (57) to (59)). It can
be cured in the same simple way. For instance, considering perfect detectors, one should have
added a factor 1/

p
2 in the definition of rules R1 and R2 of section (2.4.1) for the schematic

Fourier transforms. We did not do that for avoiding an overall multiplicative factor in all the
formulas, and also because, as demonstrated in Appendix A this double counting (and also
the finite efficiency of the detector) disappears in the formulas for the normalized correlation
signal g2 which is our main interest in the present work.

Finally, we give the expression for the momentum correlator, for simplicity in the adiabatic
regime

G2(k < 0, q < 0) =N 2(k < 0)δ2(k− q)

+
�

| eUu|out|2| eUd|out|2|Su,d |2n2
Dδ

2(ωu|out(k)−ωd|in(q)) + (k↔ q)
�

, (94)

G2(k > 0, q > 0) =N 2(k > 0)δ2(k− q)

+
�

| eUu|in|2| eUd|out|2|Sd,u|2n2
U
δ2(ωd|out(k)−ωu|in(q)) + (k↔ q)

�

, (95)
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G2(k < 0, q > 0) = | eUu|out|2| eUd|out|2
�

�

�S∗u,uSd,unU + S∗u,dSd,d nD

�

�

�

2
δ2(ωu|out(k)−ωd|out(q))

+ | eUu|out|2| eUu|in|2|Su,u|2n2
U
δ2(ωu|out(k)−ωu|in(q)) (96)

+ | eUd|out|2| eUd|in|2|Sd,d |2n2
D
δ2(ωd|in(k)−ωd|out(q)) .

These expressions can be further simplified by considering, for this configuration which is
everywhere subsonic, a common occupation number nth(ω) of a state of energyω. As expected
the corresponding expressions in the black hole case, Eqs. (57-59), reduce to the above in the
absence of the negative norm d2 modes. Also, unlike in the black hole case all contributions
disappear in the case where the initial state is the vacuum.

5 Limitations of the theoretical description

In this section we properly define the domain of applicability of our approach. A first limitation
concerns the low density regime. As well known, in one dimension phase fluctuations prevent
a true Bose-Einstein condensation. As a result, a description based on the simple separation
(1) between a classical field and a small quantum correction does not allow to properly esti-
mate the large x behavior of the one body density matrix 〈Ψ†(x)Ψ(0)〉 of a homogeneous 1D
system (see, e.g., Ref. [49]) and, at low density, phase fluctuations blur the sharp correlations
of Figs. 4 and 5, cf. Refs. [50] and [51]. We nonetheless argue that (1) it is still useful for un-
derstanding the qualitative behavior of some observables important for analyzing correlations
in the system: for instance (1) yields the correct two-body correlation 〈Ψ̂†(0)Ψ̂†(x)Ψ̂(x)Ψ̂(0)〉
of a homogeneous 1D system [52].

The relevance of (1) depends on the characteristic length involved in the spatial correla-
tion considered. If the correlation characteristic length is smaller than the phase coherence

length Lφ = ξexp
�

π
Ç

ħhn
2maω⊥

�

then (1) may be used. This is what happens for the two-body

correlation : this quantity is non trivial (i.e., different from the square n2 of the linear density
n = 〈Ψ̂†(0)Ψ̂(0)〉) only in a range of distances x < ξ, typically much smaller than Lφ . More
precisely, Lφ is exponentially larger than ξ, and the separation (1) is thus valid, when

�

a
a⊥

�2

� n a , (97)

where a⊥ =
p

ħh/mω⊥ is the transverse harmonic oscillator length.
In the large density limit the 1D description also fails, not because of lack of BEC as just

discussed, but because the transverse degrees of freedom of the system are not completely
frozen. A realistic 3D black-hole configuration has been first considered in Ref. [53], with also
account for 3 body losses. In the present discussion we focus on the treatment of transverse
excitations. Assuming that Bose condensation is total, but not disregarding the transverse de-
grees of freedom, one considers the dynamics of the system as described by a Gross-Pitaevskii
equation for the classical field Ψ0(~r, t):

iħh∂tΨ0 =

�

−
ħh2 ~∇2

2m
+ V⊥(~r⊥) + g |Ψ0|2

�

Ψ0 , (98)

where ~r = x ~ex + ~r⊥, ~r⊥ denoting the transverse coordinate, V⊥(~r⊥) =
1
2 mω2

⊥r2
⊥ being

the transverse potential and g = 4πħh2a/m. In (98) the normalization is chosen so that
ρ0(~r, t) = |Ψ0(~r, t)|2 is the density of particles. At equilibrium, in the so-called Thomas-Fermi
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limit [54], the Laplacian term in (98) can be omitted and the density has a cylindrical symme-
try with

ρ0(r⊥) =

¨ 1
g [µ− V⊥(~r⊥)] if µ≥ V⊥(~r⊥) ,

0 elsewhere .
(99)

Here µ is the chemical potential fixed by the normalization:
∫

d2r⊥ρ0(r⊥) = n ;
µ = 2ħhω⊥

p
a n [55, 56]. The Thomas-Fermi approximation holds in the large density limit

a n� 1 [27,57]. In this limit, which has been denoted as “3D cigar” in Ref. [58], the classical
field description is accurate, that is, the quantum fluctuations around Ψ0 are small.

In the cylindrical geometry we consider here, the excitation spectrum has several branches
corresponding to density fluctuations of the form δρ0(~r, t) = δρ(r⊥)eimθ ei(qx−ωt), where θ is
a polar angle in the transverse plane. For each branch the lowest state is obtained for m = 0
and q = 0 and its energy reads ħhωn = ħhω⊥

p

2n(n+ 1), with n ∈ N. Taking into account
possible longitudinal excitations one gets in the long wave-length limit [55,56]

ω2
0(q) = c2

TF
q2
�

1−
1
48
(qR⊥)

2 + . . .
�

, (100)

ω2
n≥1(q) = 2n(n+ 1)ω2

⊥ + c2
TF

q2 + . . . , (101)

where cTF =
p

µ/2 m is the sound velocity in the Thomas-Fermi limit (which has been measured
by the MIT group [59]) and R⊥ = 2 cTF/ω⊥ is the transverse extension of the condensate
(in the same limit). Eqs. (100) and (101) describe a lower mode with sonic-like dispersion
relation and gaped transverse excited states which behave quadratically at low q. Note that
the low q expansion displayed in Eq. (100) does not correspond to what is expected from
the usual Bogoliubov dispersion relation (6). This is a hint that the longitudinal dynamics of
the system is modified in the Thomas-Fermi limit. Of course, the hydrodynamic result (100) is
limited to the region q� R−1

⊥ and cannot provide a reliable description of the whole excitation
spectrum. But the departure from the usual Bogoliubov dispersion is confirmed by numerical
solutions of Bogoliubov-de Gennes equations [60, 61] which are valid for the whole range
of wave vectors and for a range of densities wider than those based on the Thomas-Fermi
approximation. These computations show that when increasing the linear density starting
from a value n∼ a−1 (i.e., when one goes deeper in the Thomas-Fermi regime) the dispersion
relation develops a plateau in the region q ∼ 1/R⊥. This is interpreted as a tendency of the
excitations to explore the radial parts of the condensate where the density is lower and where
the local sound velocity accordingly decreases. This effect is not taken into account in the
theoretical analysis presented in the main text where we work in a regime which has been
denoted as “1D mean field” in Ref. [58]. At zero temperature this corresponds to the regime
where the condition (97) is supplemented by

n a� 1 . (102)

In this regime µ = 2ħhω⊥an [25] which is much smaller that the energy 2ħhω⊥ of the first
transverse excited state,7 one can thus safely neglect transverse excitations and the transverse
density profile is not of the type (99), but has rather a Gaussian shape.

It is interesting to evaluate the actual range of parameters corresponding to the fulfill-
ment of conditions (97) and (102), which is the regime of validity of our approach. For
a transverse trap of frequency of 1 kHz, one gets for 23Na (a⊥/a)2 = 1.7 × 10−5, for 87Rb
(a⊥/a)2 = 2.6×10−4 and for He∗ (a⊥/a)2 = 2.2×10−5.8 Hence the domain of validity of the

7The value 2ħhω⊥ is the same as ħhωn=1(q = 0) in (101) : it is model independent as a result of a scaling property
of the Gross-Pitaevskii equation in two dimensions [62].

8 The values of the s-wave scattering length are extracted from Ref. [63] for 23Na, from Ref. [64] for 87Rb
|F = 1, mF = −1〉, and from Ref. [65] for He∗ spin-polarized helium atoms in the 23S1 metastable state.
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Figure 9: Sketch of the typical dispersion relations of a transverse mode in the subsonic (left
plot) and supersonic (right plot) case. The horizontal dashed line is fixed by the chosen value
of ω.

1D mean field approximation used in the present work ranges over four orders of magnitudes
in density.

In present time experiments, when the 1D mean field regime fails, this is mostly due to
the fact that the linear density is large, and in this case (102) may be violated. Then, the
transverse density profile has the Thomas-Fermi shape (99). It is thus of interest to briefly and
qualitatively discuss the features appearing in momentum correlators in acoustic black holes
due to the transverse modes (101).9

A first remark is in order here: the new transverse modes are typically not coupled to
the modes studied in the present work. The reason for this is that the potential V (x) used
to implement the sonic horizon does not couple modes with different transverse quantum
numbers. Only small imperfections and nonlinear effect would induce such a coupling, and
the results presented in the present work would remain almost unaffected. If the dispersion
relation were limited to expression (101), i.e., were of the Klein-Gordon type, new outgoing
modes would appear which would be populated by the time dependent formation process
of the horizon, as in the gravitational context. In the present case however, the transverse
dispersion relation (101) encompasses terms of higher order in q, and new transverse incoming
modes appear in the supersonic region, of the d2|in type, as illustrated in Fig. 9. As a result
of the existence of these new incoming modes, the Hawking radiation process would occur
also in the transverse sector even in the stationary context, and consequently new correlations
lines appear which should add to the ones studied in the main text. However, in the regime
(102) they should correspond to a very weak signal.

6 Conclusions

In this work we have investigated in detail the two-body momentum correlation in a quasi 1D
BEC in the presence of a sonic horizon. Our modeling of the measurement process shows that
the measurements have to be performed with some care: (1) the spatial windows selected
for the Fourier analysis must be chosen carefully in order not to damp the expected signal
(see Appendix A and also Ref. [33]) and (2) a separation of the upstream and downstream
signals in the detection scheme favors the highlighting of quantum non separability (end of
Sec. 3.1). Once the appropriate requirements are met, the normalized correlator (29) appears
to be a robust quantity, making it possible to test quantum entanglement in a rich variety of
situations, namely, in situ, or after artificially inducing a quench in the system or at the end

9Transverse modes can be incorporated in our analysis following the approach of Ref. [66].
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of an adiabatic expansion after opening of the trap. Among the possible implementations of
a sonic horizon we have studied, the largest quantum correlation signal, observed between
the Hawking quantum and its partner, is realized in the so-called “waterfall configuration”. In
this configuration the Cauchy-Schwarz inequality is violated up to a temperature larger than
the chemical potential and therefore should be experimentally testable in a finite temperature
setting [the violation is still present at T = 1.5×mc2

u , see Fig. 6, upper left panel].
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A Rigorous local Fourier transform

In this appendix we present the precise form of the Fourier transforms performed by using the
window functions which, in the upstream region, are of the form (16).

We first note that the Fourier transform of the window function is:

Πu(K) =

∫

R

dx
p

2π
e−iK x Πu(x) =

Λuσup
2

e−
1
4 K2σ2

u−iKXu =
p

2πΛu e−iKXuδ(1)u (K) , (103)

where δ(1)u (K) = (σu/2
p
π)exp{−K2σ2

u/4} is an approximation of the Dirac distribution
(tending towards the δ function when σu→∞). One also has

|Πu(K)|2 =
s

π

2
σuΛ

2
uδ
(2)
u (K) , (104)

where δ(2)u (K) = (σu/
p

2π)exp{−K2σ2
u/2} is another approximation of the Dirac δ-

distribution defined by (104) and verifying δ(2)u (0) = σu/
p

2π. So, instead of the approximate
formula (18) one gets

ψ̂u(K) =

∫ ∞

0

dω
p

2π

¦

Πu(K − Ku − qu|out)Uu|out(Su,u b̂U + Su,d1 b̂D1 + Su,d2 b̂†
D2
)

+Πu(K − Ku + qu|out)W∗
u|out(S

∗
u,u b̂†

U
+ S∗u,d1 b̂†

D1
+ S∗u,d2 b̂D2)

+Πu(K − Ku + qu|in)W∗
u|in b̂†

U
+Πu(K − Ku − qu|in)Uu|in b̂U

©

.

(105)
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Formula (19) is modified in a similar way:

ψ̂d(K) =

∫ ∞

0

dω
p

2π

¦

Πd(K − Kd − qd1|out)Ud1|out(Sd1,u b̂U + Sd1,d1 b̂D1 + Sd1,d2 b̂†
D2
)

+Πd(K − Kd + qd1|out)W∗
d1|out(S

∗
d1,u b̂†

U
+ S∗d1,d1 b̂†

D1
+ S∗d1,d2 b̂D2)

+Πd(K − Kd − qd2|out)Ud2|out(Sd2,u b̂U + Sd2,d1 b̂D1 + Sd2,d2 b̂†
D2
)

+Πd(K − Kd + qd2|out)W∗
d2|out(S

∗
d2,u b̂†

U
+ S∗d2,d1 b̂†

D1
+ S∗d2,d2 b̂D2)

+Πd(K − Kd + qd1|in)W∗
d1|in b̂†

D1
+Πd(K − Kd − qd1|in)Ud1|in b̂D1

+Πd(K − Kd − qd2|in)Ud2|in b̂†
D2
+Πd(K − Kd + qd2|in)W∗

d2|in b̂D2

©

.

(106)

In the following we present the results for the flat profile configuration. In this case
Ku = Kd ≡ K0 and we note k = K − K0, q =Q− K0.

We first evaluate the one-body term 〈N̂(K)〉 which has contributions coming from both
〈ψ̂†

u(K)ψ̂u(K)〉 and 〈ψ̂†
d(K)ψ̂d(K)〉. The double integral overω andω′ defining these terms is

reduced to a single integral by means of the contractions (52). In this integral one can safely
discard overlap terms such as Πu(k − qu|out(ω))Πu(k − qu|in(ω)) when σu →∞ since Πu(K)
is proportional to δ(1)u (K). One thus gets terms generically of the form of the one resulting
from the contraction of the first term of the integral in the r.h.s. of (105) with its hermitian
conjugate, which reads:

∫ ∞

0

dω
2π
|Su,u(ω)Uu|out(ω)|2 nU(ω) |Πu(k− qu|out(ω)|2 =

∫ 0

−∞

dp
2π

�

�

�

�

∂ωu|out

∂ p

�

�

�

�

|Su,u Uu|out|2 nU |Πu(k− p)|2 =
σuΛ

2
up

8π

�

�

�

�

∂ωu|out

∂ k

�

�

�

�

|Su,u Uu|out|2 nU .

(107)

In the integral of the second term of (107) one has made the change of variable p = qu|out(ω)
and all the ω-dependent terms have to be evaluated at ωu|out(p). In the last term of (107)
one has used the fact that |Πu(k− p)|2 is proportional to δ(2)u (k− p) and all the ω-dependent
terms have to be evaluated at ωu|out(k). As can be checked for instance by comparison with
the similar contribution to 〈N̂(k)〉 in Sec. 3.2, using the correct windowing for the Fourier
transform, instead of the singular term δ(k − k) obtained with the schematic rules R1 and
R2, one gets now a factor σuΛ

2
u/
p

8π for the terms issued from the upstream window and a
factor σdΛ

2
d/
p

8π for the terms issued from the downstream window. As an illustration, the
formulas equivalent to (37) and (38) (which, we recall, correspond to the adiabatic and zero
temperature situation) read here

〈N̂(k < 0)〉= |Su,d2|2|ωu|out(k) ×
σuΛ

2
up

8π
+
�

|Sd2,u|2 + |Sd2,d1|2
�

ωd2|out(k)
×
σdΛ

2
dp

8π
. (108)

and

〈N̂(k > 0)〉= |Sd1,d2|2|ωd1|out(k) ×
σdΛ

2
dp

8π
. (109)

It now remains to evaluate the two-body function G2(K ,Q). This involves four integrations
overω, two of which disappear when using the contraction rules (52). In the contributions to
G2(K ,Q) one has to distinguish the diagonal terms — i.e., intra-channel correlations — and
the crossed ones — inter-channel. The evaluation of the diagonal terms is simpler, and we only
state the results: Instead of the singular term δ2(k − q) (such as obtained for instance in the
diagonal terms of (57) and (58)) one gets a term Λ4

u(σu/4
p
π)δ(1)u (k−q) for the contributions
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from the upstream windowing and a term Λ4
d(σd/4

p
π)δ(1)d (k− q) for the contributions from

the downstream windowing.
One now has all the tools for determining the effect of the windowing on the evaluation

of the intra-channel correlation signals, of the type g2(K , K)u|out for instance:

g2(K , K)u|out =
G2(K , K)u|out

〈N̂(K)〉2u|out

+ 1 , (110)

where 〈N̂(K)〉u|out and G2(K , K)u|out are the u|out contributions to 〈N̂(K)〉 and to G2(K , K).
With the correct rules presented above, one gets g2(K , K)u|out = 2, as in the main text. The
same result holds true for all the intra-channel correlation terms.

We present the evaluation of the inter-channel terms in more detail, because it is less
straightforward than the one of the diagonal terms, and also because it involves considerations
relevant to the experimental detection scheme. Let us focus on the u|out-d2|out contribution
for instance. As done above [Eq. (107)] we illustrate the general case by studying one of the
many contributions to G2|u|out−d2|out. In the four field quantity (30), one has a product of four
integrals of the type (105) and (106). For instance, one of the double contractions of terms
issued from these integrals is

�

Uu|outSu,d2

�∗
ω1

�

Wd2|outSd2,d2

�

ω2

�

Uu|outSu,d2

�

ω3

�

Wd2|outSd2,d2

�∗
ω4
×




b̂D2(ω1)b̂
†
D2
(ω2)b̂

†
D2
(ω3)b̂D2(ω4)

�

.
(111)

The contractions are evaluated using the finite temperature rules (52), and the contribution of
the term corresponding to (111) can be written as the products of two independent integrals,
I and J :

I(k, q) = ei(kXu+qXd )

∫ ∞

0

dω
2π
(1+ nD2)Sd2,d2S∗u,d2U

∗
u|outWd2|out

Πu(k− qu|out)Πd(q+ qd2|out)e
−iqu|outXueiqd2|outXd ,

(112)

J(k, q) = e−i(kXu+qXd )

∫ ∞

0

dω
2π

nD2S
∗
d2,d2Su,d2Uu|outW∗

d2|out

Πu(k− qu|out)Πd(q+ qd2|out)e
iqu|outXue−iqd2|outXd .

(113)

The two integrals have similar forms. Each appears with a prefactor which disappears when
the product I × J is performed: we thus drop this prefactor in the following and denote Ĩ and
J̃ the integrals where this prefactor is removed. We now focus on the evaluation of Ĩ ; after a
change of variable p = qu|out(ω) it reads

Ĩ(k, q) =

∫ ∞

0

dp
2π

A(ωu|out(p))Πu(k− p)Πd(q+ qd2|out(ωu|out(p))e
−iqu|outXueiqd2|out(ωu|out(p))Xd ,

(114)
where A(ω) = (1+ nD2)Sd2,d2S∗u,d2U

∗
u|outWd2|out|∂ωu|out/∂ p|.

For presenting the results it is easier to work in a simple regime where the dispersion
relations are dispersionless; this will be assumed in the remaining of this appendix, the general
result being given in the final formula (126). In this case ∂ωu|out/∂ k = Vu − cu ≡ Vu|out
and ∂ωd2|out/∂ k = Vd + cd ≡ Vd2|out and10 one can write qd2|out(ωu|out(p)) = −γ p, where
γ ≡ −Vu|out/Vd2|out > 0, cf. Fig. 10 (the notation γ is temporarily introduced to make the
computations easier to follow). Then (114) reads

10We will use indifferently the notations ∂ω`/∂ k or V` (with ` = u|out or d2|out) in the following of this
appendix.
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ω

k
p qd2|out(ωu|out(p)) = −γ p

ωd2|out(k) = Vd2|out · k

ωu|out(k) = Vu|out · k

Figure 10: Dispersion relations in the long wavelength (dispersionless) limit.
Vu|out = Vu − cu(< 0), Vd2|out = Vd + cd and γ≡ −Vu|out/Vd2|out (> 0).

Ĩ(k, q) = ΛuΛd
σuσd

2

∫ ∞

0

dp
2π

A(ωu|out(p)) exp{T (p, k, q)} (115)

where

T (p, k, q) =−
σ2

u

4
(k− p)2 −

σ2
d

4
(q− γ p)2 − ip(Xu + γXd)

=−
σ2

u + γ
2σ2

d

4
(p− P(k, q))2 −

σ2
uσ

2
d(γk− q)2

4(σ2
u + γ2σ2

d)
− Z(k, q) ,

(116)

with

P(k, q) =
σ2

uk+σ2
dγq− 2i(Xu + γXd)

σ2
u + γ2σ2

d

, (117)

and

Z(k, q) =
(Xu + γXd)2

σ2
u + γ2σ2

d

+ i
(Xu + γXd)(σ2

uk+σ2
dγq)

4(σ2
u + γ2σ2

d)
. (118)

It suffices to evaluate the integral (115) for σu and σd →∞, which is the relevant limit as
explained in the main text (cf. Sec. 2.4.1). In this case A(ωu|out(p)) is a weakly dependent
function of p compared with the rapidly varying exponent, and the integral in (115) can be
computed by means of the steepest descent method. This amounts to evaluate A(ωu|out(p))
for p = P(k, q) and to compute the remaining Gaussian integral. The result reads

Ĩ(k, q) = ΛuΛdA(ωu|out(P))Vd2|outδ
(3)
u.d(Vu|outk+ Vd2|outq) exp{−Z(k, q)} , (119)

where

δ
(3)
u.d(K) =

√

√

√

√

σ2
uσ

2
d/4π

V 2
d2|outσ

2
u + V 2

u|outσ
2
d

exp

¨

−σ2
uσ

2
d K2/4

V 2
d2|outσ

2
u + V 2

u|outσ
2
d

«

, (120)

is again an approximation of the Dirac δ-function. The term exp{−Z} in (119) induces a
damping which is not present in the schematic approach presented in the main text. This term
can be removed if one imposes Xu = −γXd , i.e.,

Xu

Vu|out
=

Xd

Vd2|out
. (121)

This relation has a simple physical interpretation: the time taken by an elementary excitation
pertaining to the u|out channel to go from the horizon to the center (Xu < 0) of the upstream
detection zone has to be the same as the time taken by its partner (d2|out channel) to go from

35

https://scipost.org
https://scipost.org/SciPostPhys.4.4.019


SciPost Phys. 4, 019 (2018)

the horizon to the center (Xd > 0) of the downstream detection zone. Note that this relation
depends on the signal one is interested in (here the u|out−d2|out channel): For other channels
(say the u|out− d1|out channel) the condition (121) will be modified and the centers of the
window functions have to be shifted accordingly.

If the condition (121) is not fulfilled, the measured correlation will be damped compared
to the perfect result [presented in the main text]. Note also that when this condition is fulfilled,
since q = γ k from the δ(3)u.d contribution in (119) one has P(k, q) = k and, in this equation,
A(ω) is evaluated at ωu|out(k) as expected. Once condition (121) is realized, the product
I × J = Ĩ × J̃ is found to be equal to

I × J = Λ2
uΛ

2
d(1+ nD2)nD2

�

�

�Sd2,d2S∗u,d2
eUu|out

fWd2|out

�

�

�

2 �
δ
(3)
u.d(Vu|outk+ Vd2|outq)

�2
. (122)

The same contribution evaluated with the less rigorous approach presented in the main text
yields to a very similar expression, where the Λ2

uΛ
2
d prefactor is missing and where the term

�

δ
(3)
u.d(Vu|outk+ Vd2|outq)

�2
is replaced by δ2(ωu|out(k)−ωd2|out(−q)).

Finally, we consider the evaluation of the normalized inter-channel correlator

g2(K ,Q)u|out−d2|out =
G2(K ,Q)u|out−d2|out

〈N̂(K)〉u|out〈N̂(Q)〉d2|out
+ 1 . (123)

When evaluating the fraction appearing in the r.h.s. of (123) along the line
ωu|out(k) = ωd2|out(−q) one obtains a ratio identical to the one obtained in Eq. (60) of the
main text, multiplied by a factor

�

�

�

�

∂ωu|out

∂ k
·
∂ωd2|out

∂ q

�

�

�

�

�

δ
(3)
u.d(0)

�2

Λ2
uσuΛ

2
dσd/8π

= 2
σuσd |Vu|out|Vd2|out

σ2
uV 2

d2|out +σ
2
d V 2

u|out

. (124)

This term is equal to unity, as it should, only if

σu

|Vu|out|
=

σd

Vd2|out
, (125)

i.e., if the width of the window functions Πu(x) and Πd(x) are in the same ratio (121) as their
center.

We recall that we have used a simplified linear dispersion relation for deriving the relations
(121) and (125). However, there is dispersion in the system; this means that these relations
have to be adapted for each k and q along a specific correlation line: they should read in the
u|out− d2|out case considered here

Xu

∂ωu|out/∂ k
=

Xd

∂ωd2|out/∂ q
, and

σu

|∂ωu|out/∂ k|
=

σd

∂ωd2|out/∂ q
. (126)

The same condition has been already derived by de Nova, Sols and Zapata in Ref. [33].

B Non adiabatic effects (explicit results)

In this appendix we give the explicit form of the different contributions to the correlators (67),
(68) and (69) discussed in subsection 3.3. The results are valid at finite temperature, and also
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in situ. The expressions are simplified as much as possible to ease readability:

Diag<0 =
�

|αu|2
�

|Su,u|2nU + |Su,d1|2nD1 + |Su,d2|2(1+ nD2)
�

+ |αd |2
�

|Sd2,u|2(1+ nU) + |Sd2,d1|2(1+ nD1) + |Sd2,d2|2nD2

�

+ |αd |2nD1 + |αd |2nD2 + |βu|2(1+ nU)

+ |βd |2
�

|Sd1,u|2(1+ nU) + |Sd1,d1|2(1+ nD1) + |Sd1,d2|2nD2

��2
,

(127)

O(|α|4)<0 = (128)

|αu|2|αd |2
�

�S∗u,uSd2,unU + S∗u,d1Sd2,d1nD1 + S∗u,d2Sd2,d2(1+ nD2)
�

�

2
δ2(ωu|out(k)−ωd2|out(−q))

+|αu|2|αd |2|Su,d1|2n2
D1
δ2(ωu|out(k)−ωd1|in(q))

+|αu|2|αd |2|Su,d2|2nD2(1+ nD2)δ
2(ωu|out(k)−ωd2|in(−q))

+|αd |4|Sd2,d1|2nD1(1+ nD1)δ
2(ωd2|out(−k)−ωd1|in(q))

+|αd |4|Sd2,d2|2n2
D2
δ2(ωd2|out(−k)−ωd2|in(−q)) ,

O(|α|2|β |2)<0 = (129)

|αu|2|βu|2|Su,u|2nU(1+ nU)δ
2(ωu|out(k)−ωu|in(−q))

+|αd |2|βu|2|Sd2,u|2(1+ nU)
2δ2(ωd2|out(−k)−ωu|in(−q))

+|αu|2|βd |2|S∗u,uSd1unU + S∗u,d1Sd1,d1nD1

+S∗u,d2Sd1,d2(1+ nD2)|2δ2(ωu|out(k)−ωd1|out(−q))

+|αd |2|βd |2|Sd2,uS∗d1,unU + Sd2,d1S∗d1,d1nD1

+Sd2,d2S∗d1,d2(1+ nD2)|2δ2(ωd2|out(−k)−ωd1|out(−q))

+|αd |2|βd |2|Sd1,d1|2nD1(1+ nD1)δ
2(ωd1|in(k)−ωd1|out(−q))

+|αd |2|βd |2|Sd1,d2|2n2
D2
δ2(ωd2|in(−k)−ωd1|out(−q)) ,

O(|β |4)<0 = |βu|2|βd |2|Sd1,u|2(1+ nU)
2δ2(ωu|in(−k)−ωd1|out(−k)) , (130)

Diag>0 =
�

|αd |2
�

|Sd1,u|2nU + |Sd1,d1|2nD1 + |Sd1,d2|2(1+ nD2)
�

(131)

+|αu|2nU + |βd |2(1+ nD1) + |βd |2(1+ nD2)

+|βd |2
�

|Sd2,u|2nU + |Sd2,d1|2nD1 + |Sd2,d2|2(1+ nD2)
�

+|βu|2
�

|Su,u|2(1+ nU) + |Su,d1|2(1+ nD1) + |Su,d2|2nD2

��2
,

O(|α|4)>0 = |αd |2|αu|2|Sd1,u|2n2
U
δ2(ωd1|out(k)−ωu|in(q)) , (132)

O(|α|2|β |2)>0 = (133)

|αd |2|βd |2|S∗d1,uSd2,unU + S∗d1,d1Sd2,d1nD1

+S∗d1,d2Sd2,d2(1+ nD2)|2δ2(ωd1|out(k)−ωd2|out(q))

+|αd |2|βd |2|Sd1,d2|2(1+ nD2)
2δ2(ωd1|out(k)−ωd2|in(q))

+|βd |2|αu|2|Sd2,u|2n2
U
δ2(ωd2|out(k)−ωu|in(q))

+|αd |2|βu|2|S∗d1,uSu,unU + S∗d1,d1Su,d1nD1
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+S∗d1,d2Su,d2(1+ nD2)|2δ2(ωd1|out(k)−ωu|out(−q))

+|βu|2|αu|2|Su,u|2nU(1+ nU)δ
2(ωu|out(−k)−ωu|in(q))

+|αd |2|βd |2|Sd1,d1|2nD1(1+ nD1)δ
2(ωd1|out(k)−ωd1|in(−q)) ,

O(|β |4)>0 = (134)

|βd |4|Sd2,d1|2nD1(1+ nD1)δ
2(ωd2|out(k)−ωd1|in(−q))

+|βd |4|Sd2,d2|2(1+ nD2)
2δ2(ωd2|out(k)−ωd2|in(q))

+|βd |2|βu|2|S∗d2,uSu,unU + S∗d2,d1Su,d1nD1

+S∗d2,d2Su,d2(1+ nD2)|2δ2(ωd2|out(k)−ωu|out(−q))

+|βd |2|βu|2|Su,d1|2n2
D1
δ2(ωd1|in(−k)−ωu|out(−q))

+|βd |2|βu|2|Su,d2|2(1+ nD2)nD2δ
2(ωd2|in(k)−ωu|out(−q)) ,

A= Re
�

αuβu

�

|Su,u|2(1+ nU) + |Su,d1|2(1+ nD1) + |Su,d2|2nD2

�

(135)

+αdβd

�

|Sd2,u|2nU + |Sd2,d1|2nD1 + |Sd2,d2|2(1+ nD2)
�

+βdαd

�

|Sd1,u|2nU + |Sd1,d1|2nD1 + |Sd1,d2|2(1+ nD2)
�

+αdβd(1+ nD1) +αdβd(1+ nD2) + βuαunU

�

�

αuβu

�

|Su,u|2nU + |Su,d1|2nD1 + |Su,d2|2(1+ nD2)
�

+αdβd

�

|Sd2,u|2(1+ nU) + |Sd2,d1|2(1+ nD1) + |Sd2,d2|2nD2

�

+βdαd

�

|Sd1,u|2(1+ nU) + |Sd1,d1|2(1+ nD1) + |Sd1,d2|2nD2

�

+αdβd nD1 +αdβd nD2 + βuαu(1+ nU)
�

,

O(|α|4) = (136)

|αu|2|αd |2
�

�

�S∗u,uSd1,unU + S∗u,d1Sd1,d1nD1 + S∗u,d2Sd1,d2(1+ nD2)
�

�

�

2
δ2(ωu|out(k)−ωd1|out(q))

+|αd |4
�

�

�S∗d2,uSd1,unU + S∗d2,d1Sd1,d1nD1 + S∗d2,d2Sd1,d2(1+ nD2)
�

�

�

2
δ2(ωd2|out(−k)−ωd1|out(q))

+|αu|4|Su,u|2n2
Uδ

2(ωu|out(k)−ωu|in(q))

+|αd |4|Sd1,d1|2n2
D1
δ2(ωd1|in(k)−ωd1|out(q))

+|αd |2|αu|2|Sd2,u|2nU(1+ nU)δ
2(ωd2|out(−k)−ωu|in(q))

+|αd |4|Sd1,d2|2nD(1+ nD2)δ
2(ωd2|in(−k)−ωd1|out(q)) ,

O(|α|2|β |2) = (137)
|αu|2|βd |2|S∗u,uSd2,unU + S∗u,d1Sd2,d1nD1 + S∗u,d2Sd2,d2(1+ nD2)|2δ2(ωu|out(k)−ωd2|out(q))

+|αu|2|βd |2|Su,d1|2nD1(1+ nD1)δ
2(ωu|out(k)−ωd1|in(−q))

+|αu|2|βd |2|Su,d2|2(1+ nD2)
2δ2(ωu|out(k)−ωd2|in(q))

+|αd |2|βd |2|Sd2,d1|2(1+ nD1)
2δ2(ωd2|out(−k)−ωd1|in(−q))

+|αd |2|βd |2|Sd2,d2|2nD2(1+ nD2)δ
2(ωd2|out(−k)−ωd2|in(q))

+|αd |2|βu|2|Sd2,uS∗u,unU + Sd2,d1S∗u,d1nD1 + Sd2,d2S∗u,d2(1+ nD2)|2δ2(ωd2|out(−k)−ωu|out(−q))

+|αd |2|βd |2|Sd2,d1|2n2
D1
δ2(ωd1|in(k)−ωd2|out(q))
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nu
n(x)

Uext(x )

x

Vu Vd

nd

Figure 11: Sketch of the situation considered in appendix C. The far upstream and far down-
stream asymptotic flows are both subsonic. The obstacle is represented by a localized external
potential Uext(x).

+|αd |2|βu|2|Su,d1|2nD1(1+ nD1)δ
2(ωd1|in(k)−ωu|out(−q))

+|αd |2|βd |2|Sd2,d2|2nD2(1+ nD2)δ
2(ωd2|in(−k)−ωd2|out(q))

+|αd |2|βu|2|Su,d2|2n2
D2
δ2(ωd2|in(−k)−ωu|out(−q))

+|βu|2|αd |2|Sd1,u|2nU(1+ nU)δ
2(ωu|in(−k)−ωd1|out(q))

+|βd |2|αu|2|Sd1,u|2nU(1+ nU)δ
2(ωd1|out(−k)−ωu|in(q)) ,

O(|β |4) = (138)
|βd |2|βu|2|Sd2,u|2nU(1+ nU)δ

2(ωu|in(−k)−ωd2|out(q))

+|βu|4|Su,u|2(1+ nU)
2δ2(ωu|in(−k)−ωu|out(−q))

+|βd |4|S∗d1,uSd2,unU + S∗d1,d1Sd2,d1nD1 + S∗d1,d2Sd2,d2(1+ nD2)|2δ2(ωd1|out(−k)−ωd2|out(q))

+|βd |4|Sd1,d1|2(1+ nD1)
2δ2(ωd1|out(−k)−ωd1|in(−q))

+|βd |4|Sd1,d2|2nD2(1+ nD2)δ
2(ωd1|out(−k)−ωd2|in(q))

+|βd |2|βu|2|S∗d1,uSu,unU + S∗d1,d1Su,d1nD1 + S∗d1,d2Su,d2(1+ nD2)|2δ2(ωd1|out(−k)−ωu|out(−q)) .

C Subsonic flow in the presence of a localized obstacle

In this appendix we consider the scattering of a stationary subsonic flow onto a localized exter-
nal potential and we assume that the downstream flow is also subsonic. This is a special case
of the situation considered in section 4. The configuration is illustrated in Fig. 11. We show
in this case that – when the non-linearity coefficient g is x-independent – the far-upstream ve-
locity and density are equal to the far-downstream velocity and density: Vu = Vd and nu = nd .

Let’s initially assume that the far upstream Mach number (Mu = Vu/cu) and the far down-
stream one (Md = Vd/cd) are both less than unity, possibly different, and also that Vu (nu) may
be different from Vd (nd). In our stationary setting, from the conservation of current and the
definition of the speed of sound one gets

Vd

Vu
=

nu

nd
=
�

cu

cd

�2

≡ X , (139)

where the last equality defines the quantity X .
The equality of the upstream and downstream chemical potentials reads

1
2 mV 2

u + gnu =
1
2 mV 2

d + gnd . (140)

Plugging (139) into (140) yields a third order equation for the quantity X . This equation can
be cast under the form

(X − 1)(X 2 + X − 2 M−2
u ) = 0 . (141)
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If, for the time being, one discards the trivial solution X = 1, the only other positive solution is
X = 1

2(−1+
Æ

1+ 8M−2
u ). Then, the far downstream Mach number is Md = Vd/cd = MuX 3/2.

It can easily be checked that for Mu < 1 (which has been assumed above) this expression
yields for Md a value larger than 1: the downstream flow is supersonic, which contradicts our
hypothesis. This means that the trivial solution X = 1 is the only acceptable one. From (139)
one then gets the desired result: nu = nd and Vu = Vd .

Note that the same result also holds true when the flow is supersonic both upstream and
downstream: also in this case one has nu = nd and Vu = Vd . An important outcome of this
remark is that, in the presence of a localized obstacle, as soon as one is able to prove that
the asymptotic upstream and downstream flow velocities are different, one can be sure that a
sonic horizon has been realized.

Since for a localized obstacle the far upstream and far downstream characteristics of a
subsonic flows are identical, the general formulas given in Sec. 4 simplify due to the following
remarks:

(i) Since the far upstream and far downstream flows have the same density and velocity,
ωu|out(k) =ωd|in(k) =ω(k < 0) and ωd|out(k) =ωu|in(k) =ω(k > 0).

(ii) U` and W` are functions of ω and q`(ω) only (cf. their expression in [24]), whereas fU`
and ÝW` are functions of k and ω`(k) only.

(iii) As a result of points (i) and (ii) above, in (89) all the eU`’s can be written as eU(k) and all
the fW`’s can be written as fW(−k).

Note that these simplifications are only possible for a barrier of finite extent. If, for instance,
one considers a flat profile configuration where the upstream and the downstream regions are
both subsonic, the upstream and the downstream speeds of sound are not the same (because
the upstream and downstream nonlinear coefficient are not the same) and point (i) above is
not valid.
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Schwarz inequality and particle entanglement, Phys. Rev. A 90, 033616 (2014),
doi:10.1103/PhysRevA.90.033616.

[44] A. Finke, P. Jain and S. Weinfurtner, On the observation of nonclassical excitations
in Bose–Einstein condensates, New J. Phys. 18, 113017 (2016), doi:10.1088/1367-
2630/18/11/113017.

[45] A. Coutant and S. Weinfurtner, Low-frequency analogue Hawking radia-
tion: The Bogoliubov-de Gennes model, Phys. Rev. D 97, 025006 (2018),
doi:10.1103/PhysRevD.97.025006.

[46] D. F. Walls and G. J. Milbur, Quantum Optics, Springer-Verlag, Berlin, Heidelberg, ISBN
9783540285731 (2008), doi:10.1007/978-3-540-28574-8.

43

https://scipost.org
https://scipost.org/SciPostPhys.4.4.019
http://dx.doi.org/10.1103/PhysRevA.90.033607
http://dx.doi.org/10.1088/1367-2630/17/10/105003
http://dx.doi.org/10.1103/PhysRevA.69.053606
http://dx.doi.org/10.1142/p378
http://dx.doi.org/10.1088/0953-4075/45/16/163001
http://dx.doi.org/10.1007/978-3-319-00266-8_9
http://dx.doi.org/10.1103/PhysRevLett.108.260401
http://dx.doi.org/10.1088/1367-2630/15/11/113016
http://dx.doi.org/10.1088/1367-2630/15/11/113016
http://dx.doi.org/10.1103/PhysRevA.89.043819
http://dx.doi.org/10.1103/PhysRevD.89.105024
http://dx.doi.org/10.1103/PhysRevA.90.033616
http://dx.doi.org/10.1088/1367-2630/18/11/113017
http://dx.doi.org/10.1088/1367-2630/18/11/113017
http://dx.doi.org/10.1103/PhysRevD.97.025006
http://dx.doi.org/10.1007/978-3-540-28574-8


SciPost Phys. 4, 019 (2018)

[47] C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic and W. Ket-
terle, Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas, Phys. Rev. Lett. 83,
2502 (1999), doi:10.1103/PhysRevLett.83.2502;
R. Onofrio, C. Raman, J. M. Vogels, J. R. Abo-Shaeer, A. P. Chikkatur and W. Ketterle, Ob-
servation of Superfluid Flow in a Bose-Einstein Condensed Gas, Phys. Rev. Lett. 85, 2228
(2000), doi:10.1103/PhysRevLett.85.2228;
P. Engels and C. Atherton, Stationary and Nonstationary Fluid Flow of a Bose-
Einstein Condensate Through a Penetrable Barrier, Phys. Rev. Lett. 99, 160405 (2007),
doi:10.1103/PhysRevLett.99.160405.

[48] R. Balbinot and A. Fabbri, Amplifying the Hawking Signal in BECs, Adv. High Energy Phys.
1 (2014), doi:10.1155/2014/713574.

[49] C. Mora and Y. Castin, Extension of Bogoliubov theory to quasicondensates, Phys. Rev. A
67, 053615 (2003), doi:10.1103/PhysRevA.67.053615.

[50] L. Mathey, A. Vishwanath and E. Altman, Noise correlations in low-dimensional systems of
ultracold atoms, Phys. Rev. A 79, 013609 (2009), doi:10.1103/PhysRevA.79.013609.

[51] I. Bouchoule, M. Arzamasovs, K. V. Kheruntsyan and D. M. Gangardt, Two-body momen-
tum correlations in a weakly interacting one-dimensional Bose gas, Phys. Rev. A 86, 033626
(2012), doi:10.1103/PhysRevA.86.033626.

[52] P. Deuar, A. G. Sykes, D. M. Gangardt, M. J. Davis, P. D. Drummond and K. V. Kheruntsyan,
Nonlocal pair correlations in the one-dimensional Bose gas at finite temperature, Phys. Rev.
A 79, 043619 (2009), doi:10.1103/PhysRevA.79.043619.

[53] S. Wüster and C. M. Savage, Limits to the analog Hawking temperature in a Bose-Einstein
condensate, Phys. Rev. A 76, 013608 (2007), doi:10.1103/PhysRevA.76.013608.

[54] G. Baym and C. J. Pethick, Ground-State Properties of Magnetically Trapped Bose-
Condensed Rubidium Gas, Phys. Rev. Lett. 76, 6 (1996), doi:10.1103/PhysRevLett.76.6.

[55] E. Zaremba, Sound propagation in a cylindrical Bose-condensed gas, Phys. Rev. A 57, 518
(1998), doi:10.1103/PhysRevA.57.518.

[56] S. Stringari, Dynamics of Bose-Einstein condensed gases in highly deformed traps, Phys.
Rev. A 58, 2385 (1998), doi:10.1103/PhysRevA.58.2385.

[57] A. D. Jackson, G. M. Kavoulakis and C. J. Pethick, Solitary waves in clouds of Bose-Einstein
condensed atoms, Phys. Rev. A 58, 2417 (1998), doi:10.1103/PhysRevA.58.2417.

[58] C. Menotti and S. Stringari, Collective oscillations of a one-dimensional trapped Bose-
Einstein gas, Phys. Rev. A 66, 043610 (2002), doi:10.1103/PhysRevA.66.043610.

[59] M. R. Andrews, D. M. Kurn, H.-J. Miesner, D. S. Durfee, C. G. Townsend, S. Inouye and
W. Ketterle, Propagation of Sound in a Bose-Einstein Condensate, Phys. Rev. Lett. 79, 553
(1997), doi:10.1103/PhysRevLett.79.553;
M. R. Andrews, D. M. Stamper-Kurn, H.-J. Miesner, D. S. Durfee, C. G. Townsend,
S. Inouye and W. Ketterle, Erratum: Propagation of Sound in a Bose-Einstein Con-
densate [Phys. Rev. Lett. 79, 553 (1997)], Phys. Rev. Lett. 80, 2967 (1998),
doi:10.1103/PhysRevLett.80.2967.

[60] P. O. Fedichev and G. V. Shlyapnikov, Critical velocity in cylindrical Bose-Einstein conden-
sates, Phys. Rev. A 63, 045601 (2001), doi:10.1103/PhysRevA.63.045601.

44

https://scipost.org
https://scipost.org/SciPostPhys.4.4.019
http://dx.doi.org/10.1103/PhysRevLett.83.2502
http://dx.doi.org/10.1103/PhysRevLett.85.2228
http://dx.doi.org/10.1103/PhysRevLett.99.160405
http://dx.doi.org/10.1155/2014/713574
http://dx.doi.org/10.1103/PhysRevA.67.053615
http://dx.doi.org/10.1103/PhysRevA.79.013609
http://dx.doi.org/10.1103/PhysRevA.86.033626
http://dx.doi.org/10.1103/PhysRevA.79.043619
http://dx.doi.org/10.1103/PhysRevA.76.013608
http://dx.doi.org/10.1103/PhysRevLett.76.6
http://dx.doi.org/10.1103/PhysRevA.57.518
http://dx.doi.org/10.1103/PhysRevA.58.2385
http://dx.doi.org/10.1103/PhysRevA.58.2417
http://dx.doi.org/10.1103/PhysRevA.66.043610
http://dx.doi.org/10.1103/PhysRevLett.79.553
http://dx.doi.org/10.1103/PhysRevLett.80.2967
http://dx.doi.org/10.1103/PhysRevA.63.045601


SciPost Phys. 4, 019 (2018)

[61] C. Tozzo and F. Dalfovo, Bogoliubov spectrum and Bragg spectroscopy of elongated Bose-
Einstein condensates, New J. Phys. 5, 54 (2003), doi:10.1088/1367-2630/5/1/354.

[62] L. P. Pitaevskii and A. Rosch, Breathing modes and hidden symmetry of trapped atoms in
two dimensions, Phys. Rev. A 55, R853 (1997), doi:10.1103/PhysRevA.55.R853.

[63] E. Tiesinga, C. J. Williams, P. S. Julienne, K. M. Jones, P. D. Lett and W. D. Phillips, A
spectroscopic determination of scattering lengths for sodium atom collisions, J. Res. Natl.
Inst. Stand. Technol. 101, 505 (1996), doi:10.6028/jres.101.051.

[64] B. J. Verhaar, E. G. M. van Kempen and S. J. J. M. F. Kokkelmans, Predicting scattering
properties of ultracold atoms: Adiabatic accumulated phase method and mass scaling, Phys.
Rev. A 79, 032711 (2009), doi:10.1103/PhysRevA.79.032711.

[65] S. Moal, M. Portier, J. Kim, J. Dugué, U. D. Rapol, M. Leduc and C. Cohen-Tannoudji,
Accurate Determination of the Scattering Length of Metastable Helium Atoms Using Dark
Resonances between Atoms and Exotic Molecules, Phys. Rev. Lett. 96, 023203 (2006),
doi:10.1103/PhysRevLett.96.023203.

[66] A. Coutant, A. Fabbri, R. Parentani, R. Balbinot and P. R. Anderson, Hawking
radiation of massive modes and undulations, Phys. Rev. D 86, 064022 (2012),
doi:10.1103/PhysRevD.86.064022.

45

https://scipost.org
https://scipost.org/SciPostPhys.4.4.019
http://dx.doi.org/10.1088/1367-2630/5/1/354
http://dx.doi.org/10.1103/PhysRevA.55.R853
http://dx.doi.org/10.6028/jres.101.051
http://dx.doi.org/10.1103/PhysRevA.79.032711
http://dx.doi.org/10.1103/PhysRevLett.96.023203
http://dx.doi.org/10.1103/PhysRevD.86.064022

	Introduction
	Black hole configurations and their theoretical description
	Quasi one-dimensional sonic black holes
	The ``waterfall'' configuration
	The `` peak'' configuration
	The ``flat profile'' configuration

	The excitation spectrum of a homogeneous condensate
	The wave function in real space
	The wave function in momentum space
	A local Fourier transform
	The case of the flat profile configuration


	Momentum correlations in the presence of a sonic horizon
	Zero temperature
	Finite temperature
	Non adiabatic effects and in situ measurements.
	Violation of the Cauchy-Schwarz inequality along the Hawking quantum-partner correlation lines


	Momentum correlations in the absence of sonic horizon
	Limitations of the theoretical description
	Conclusions
	Rigorous local Fourier transform
	Non adiabatic effects (explicit results)
	Subsonic flow in the presence of a localized obstacle
	References

