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Abstract

We study the spectrum of multiple non-Abelian anyons in a harmonic trap. The sys-
tem is described by Chern-Simons theory, coupled to either bosonic or fermionic non-
relativistic matter, and has an SO(2, 1) conformal invariance. We describe a number of
special properties of the spectrum, focussing on a class of protected states whose ener-
gies are dictated by their angular momentum. We show that the angular momentum of
a bound state of non-Abelian anyons is determined by the quadratic Casimirs of their
constituents.
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Figure 1: Spectrum of low-lying states for n= 3 anyons with repulsive interactions, computed
numerically. Based on the results of [13].

1 Introduction and summary

The quantum mechanics of multiple, interacting anyons is a wonderfully rich problem. It
is simple to state but contains a wealth of interesting physics. Despite several decades of
interest, it remains unsolved. The purpose of this paper is to fail to solve the harder problem
of interacting non-Abelian anyons.

In this extended introduction, we will first summarise the story of Abelian anyons. These
are particles which, upon an anti-clockwise exchange, pick up a phase eiθ . We will write
θ = π/k so that the anyons are bosons when k =∞ and fermions when k = 1. In a field
theoretic language, anyons are described by a U(1) Chern-Simons theory at level k, coupled
to a non-relativistic scalar field.

We will explore the spectrum of n anyons placed in a harmonic trap. (See [1,2] for early
work on this subject, and [3–5] for reviews.) The trap has the potential

V =
ω2

2
(x2 + y2).

To fully specify the Hamiltonian, we also need to describe any interactions between the anyons.
It turns out that the problem simplifies tremendously if the particles experience pairwise, con-
tact interactions [6–10]. The strength of these interactions is determined by seeking a fixed
point of an RG flow. However, the sign of the coupling is arbitrary. This leaves us with two
options – attractive and repulsive interactions – exhibiting interesting and different physics.

As an aside, we should mention that when these contact interactions are turned on, the
quantum mechanics has an SO(2,1) conformal invariance of the type first introduced in [11]
and subsequently explored in [12]. This conformal invariance will play an important role
throughout this paper but we will not focus on it for the rest of this introduction.

Perhaps the best way to illustrate the physics of anyons is simply to look at the spectrum.
Low-lying states were computed numerically for n = 3 anyons with repulsive interactions by
Sporre, Verbaarschot, and Zahed [13]. A sketch of their results is shown in Fig. 1. (A similar
plot for n = 4 anyons can be found in [14].) The energy E is plotted vertically1 and the
statistical parameter θ ∈ [0,π] is plotted horizontally. The spectrum on the far left coincides

1In terms of our conventions, the plot actually shows E −ω, measured in units of ω.
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with that of free bosons; on the far right it coincides with free fermions. In between, things
are more interesting.

This plot contains some things that are easy to understand and some things that are hard.
Let’s start with the hard. The most striking feature is that there is a level crossing of the
ground state as θ is increased. Roughly speaking this occurs because the anyons have an
intrinsic angular momentum that scales as θ . As we increase θ , we increase both the angular
momentum and the energy of the state. For some value of θ , both of these can be lowered if
the particles start orbiting in the opposite direction to their intrinsic spin. This is where the
ground state level crossing occurs. A similar level crossing is expected for all n, but little is
known beyond these numerical results.

Some simple states

In contrast, some aspects of the spectrum are fairly easy to understand. In particular, there are
a number of states whose energy varies linearly with θ . Among these is the small-θ ground
state, but not the large-θ ground state which takes over after the level crossing. For obvious
reasons, these are sometimes referred to as “linear states" [15,16]. They persist in the spectrum
of n anyons and, in all cases, their wavefunctions and energies are known exactly. For example,
in the n anyon quantum mechanics with repulsive interactions, the ground state close to the
bosonic end of the spectrum (i.e. for suitably large k) has energy

E =
�

n+
n(n− 1)

2k

�

ω. (1)

Here the first term is simply the ground state energy of n particles in a two-dimensional har-
monic trap (it is 2× 1

2~ω for each particle, with ~= 1). The second term can be thought of as
a correction due to the inherent angular momentum of the particles.

The fact that some states in the spectrum have such a simple expression for their energy
strongly suggests that there is some underlying symmetry that protects them. Indeed there is:
it is supersymmetry! This is particularly surprising given that the anyonic quantum mechanics
does not have supersymmetry, but is nonetheless true. The reasoning starts with the observa-
tion that it possible to write down a supersymmetric theory of two species of anyons whose
spins differ by 1/2 [17]. When restricted to states involving just one species of anyons, this
reduces to our problem of interest. Such a statement would not be true in relativistic theories,
in which particle-anti-particle pair creation prevents other fields from decoupling at the loop
level. However, the lack of anti-particles means that it does hold in our non-relativistic theo-
ries. The supersymmetric theory of anyons has short, BPS multiplets whose energies are fixed
in terms of their quantum numbers [18,19]. These BPS states coincide with the “linear states"
in the anyon spectrum [20].

It’s worth explaining in more detail how this arises. For n anyons, the BPS states have
energy given by

E = (n− J)ω, (2)

with J the total angular momentum of n anyons. One of the surprising properties of the
angular momentum of anyons is that it does not add linearly. Instead, one finds that J ∼ n2

for large n, together with some sub-leading corrections which are more subtle and depend,
even classically, on a choice of regularisation procedure [21–23]. (We will review this in some
detail in later sections.) In the present context, a careful analysis shows that

J = −
n(n− 1)

2k
,

so that the BPS bound (2) indeed reproduces the energy spectrum (1).
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Non-Abelian anyons

The purpose of this paper is to extend the discussion above to non-Abelian anyons. The sim-
plest way to construct such particles is to couple fields to a non-Abelian Chern-Simons theory.
For example, in Section 3, we will consider an SU(N)k Chern-Simons theory coupled to scalar
fields. Each of these scalar fields transforms in some representation R of SU(N).

Suppose that we place n non-Abelian anyons in a harmonic trap, each labelled by some
representation Ri with i = 1, . . . , n. We once again tune the contact interactions so that the
theory sits at an RG fixed point. Our goal is to understand the energy spectrum.

We will fall short of this goal. As with Abelian anyons, there are many questions that we
are unable to answer analytically, such as those about possible level crossings in the ground
state of the system. We will, however, show that there are states in the spectrum analogous to
(1) whose energy can be determined exactly. We show that the energy of these states again
takes the form E = (n− J)ω but this still leaves open the problem of determining the angular
momentum J of n non-Abelian anyons. This is determined by some simple group theory.

Suppose, for example, that we place n = 2 anyons in a trap with representations R1 and
R2. The possible representations of the resulting bound states are determined by the decom-
position of the tensor product R1 ⊗ R2. The angular momentum of the bound state in the
irreducible representation R ⊂ R1 ⊗ R2 turns out to be

J = −
C2(R)− C2(R2)− C2(R1)

2k
, (3)

where C2(R) is the quadratic Casimir of the representation R. This, in turn, determines the
energy of this state using (2). We will see that there is a straightforward generalisation of this
result to n anyons, each of which sits in a different representation.

The remainder of this paper is primarily devoted to telling the story above and providing a
number of examples. The tools we will use are those of non-relativistic field theory, rather than
non-relativistic quantum mechanics. In Section 2, we review the properties of field theories
that enjoy a non-relativistic SO(2, 1) conformal symmetry. This conformal extension of the
Galilean symmetry is known as the Schrödinger symmetry. The state-operator map in such
theories allows us to translate the problem of the spectrum of anyons in a harmonic trap to
the problem of computing the scaling dimension of certain operators.

In Section 3, we consider a bosonic Chern-Simons matter theory. Much of this section is
devoted to proving the result (3) for the angular momentum of two anyons, as well as its
generalisation to n anyons. We use this to determine the energy of these states, and confirm
our results with explicit one-loop computations. In Section 4 we repeat this story for fermionic
Chern-Simons matter theories.

2 Non-relativistic conformal invariance

The purpose of this paper is to investigate the spectrum of non-Abelian anyons in a harmonic
trap. The most natural setting to address this problem is Chern-Simons theory, where flux
attachment and the associated Aharonov-Bohm effect give rise to the desired non-Abelian
statistics.

The theories we will study have a non-relativistic conformal invariance. We will describe
these theories in some detail in later sections. In this section, we start by reviewing some basic
aspects of conformal invariance in non-relativistic field theories, following the seminal work
of Nishida and Son [24].

For high-energy theorists, used to studying relativistic conformal field theories, some as-
pects of their non-relativistic counterparts can be a little counter-intuitive. In an attempt to
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reorient these readers, we begin by stating the blindingly obvious. First, non-relativistic field
theories, conformal or otherwise, describe the dynamics of massive particles. Second, these
theories do not have anti-particles. This means that much of the subtlety of relativistic quan-
tum field theory disappears. Indeed, if we choose to focus on a sector of a non-relativistic the-
ory with a fixed particle number, then the theory reduces to quantum mechanics. Nonetheless,
the field theoretic description is often more useful and, despite the very obvious differences
described above, there are ultimately similarities between relativistic and non-relativistic con-
formal theories.

For simplicity, suppose that all particles have the same mass m. We introduce the particle
density ρ(x) and momentum density j(x), where we are working in the Schrödinger picture
so that field theoretic operators do not depend on time. From these we can build the famil-
iar conserved charges corresponding to particle number N , total momentum P and angular
momentum J :

N =
∫

d2 x ρ(x) , P=

∫

d2 x j(x) , J =

∫

d2 x x× j(x) .

As in any quantum system, time evolution is implemented by the Hamiltonian H. The conti-
nuity equation then reads

i[H,ρ] +∇ · j= 0 .

In a conformal field theory, there are three further, less familiar, generators that we can also
build from ρ and j. These are the generators of Galilean boosts G, the dilatation operator D
and the special conformal generator C , defined as

G=

∫

d2 x xρ(x) , D =

∫

d2 x x · j(x) , C =
m
2

∫

d2 x x2ρ(x) . (4)

To these we should add the Hamiltonian H. In a conformal field theory, these generators obey
the algebra

i[D,P] = −P , i[D,G] = +G , i[D, H] = −2H , i[D, C] = +2C ,

i[C ,P] = −G , [H,G] = −iP , [H, C] = −iD , [Pi , G j] = −imN δi j . (5)

with all other commutators that don’t involve J vanishing. This is sometimes referred to as
the Schrödinger algebra. The triplet of operators H, D and C form an SO(2,1) subgroup. The
commutators [J ,P] and [J ,G] are non-zero and tell us that P and G transform as vectors.

2.1 States and operators

In conformal theories, the spectrum of the Hamiltonian is necessarily continuous. Instead, as
with their relativistic counterparts, the interesting questions lie in the spectrum of the dilata-
tion operator D.

We consider local operators, evaluated at the origin: O = O (x = 0). These operators can
be taken to have fixed particle number nO and angular momentum jO , defined by

[J ,O ] = jOO , [N ,O ] = nOO .

Unitarity restricts nO ≥ 0. This is the statement that there are no anti-particles in the theory.
More interesting are the transformations under dilatations. We say that the operators have

scaling dimension ∆O if they obey

i[D,O ] = −∆OO .
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If we find one operator O with definite scaling dimension, then the algebra (5) allows us to
construct an infinite tower of further operators with the same property. Both H and P act
as raising operators: [H,O ] has scaling dimension ∆O + 2 and [P,O ] has scaling dimension
∆O + 1. In contrast, both C and G act as lowering operators: [C ,O ] has scaling dimension
∆O − 2 while [G,O ] has scaling dimension ∆O − 1.

The spectrum of D must be bounded below. Indeed, a simple unitarity argument [25]
shows that

∆O ≥ 1 . (6)

This means that there must be operators sitting at the bottom of the tower which obey

[G,O ] = [C ,O ] = 0 .

Such operators are called primary [24,26]. The other operators in the tower are called descen-
dants; they can be constructed by acting with H and P. The full tower built in this way is an
irreducible representation of the Schrödinger algebra.

The state-operator Map

One of the most beautiful aspects of relativistic conformal field theories is the state operator
map. This equates the spectrum of the dilatation operator on the plane to the spectrum of the
Hamiltonian when the theory is placed on a sphere.

There is also such a map in non-relativistic conformal field theories which, if anything, is
even more simple. First, the algebra: we define a modified Hamiltonian

L0 = H + C . (7)

For each local, primary operator O (0), we define the state |ΨO 〉 = e−HO (0)|0〉. Then it is
simple to check that

L0|ΨO 〉=∆O |ΨO 〉 . (8)

Further, J |ΨO 〉= jO |ΨO 〉 and N |ΨO 〉= nO |ΨO 〉.
Now the physics: we view L0 as a new Hamiltonian, with a very simple interpretation. This

follows from the definition of C in (4) which tells us that we have taken the original theory,
defined by H, and placed it in a harmonic trap. (We have used conventions where the strength
of the harmonic trap is ω = 1.) The spectrum of particles in this harmonic trap is equal to
the spectrum of the dilatation operator. This was first pointed out for field theories in [24],
although the analogous statement in quantum mechanics can be traced back to the earliest
work on conformal invariance [11].

In relativistic theories, we are very used to the state-operator map holding only for local
operators. This limitation is usually thought to also hold in the non-relativistic framework
considered here. However, in Section 3, we will see that we can also apply this map to certain
Wilson line operators.

The tower of descendant operators maps into a tower of higher energy states in the trap.
There are two ways to raise the energy. The first is to construct states which sit further out in
the trap. This is achieved by introducing the raising and lowering operators

L± = H − C ± iD ⇒

¨
�

L0, L±
�

= ±2L±
�

L+, L−
�

= −4L0
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The second way is to take a given state and make it oscillate backwards and forwards. This is
achieved by introducing the complexified momentum,

P = P+ iG ⇒

¨
�

L0,P
�

=P
�

L0,P †
�

= −P †

The primary states sit at the bottom of this tower and obey L−|ΨO 〉 = P †|ΨO 〉 = 0. Acting
on these primary states with L+ and P raises the energy, filling out the representation of the
Schrödinger algebra.

3 The bosonic theory

In this section we study a class of d = 2+ 1 Chern-Simons-matter theories. For concreteness,
we will take the gauge group to be SU(N)k, where k denotes the level, although everything we
say generalises to arbitrary gauge groups. The Chern-Simons action takes the familiar form

SCS = −
k

4π

∫

d3 x Trεµνρ(Aµ∂νAρ −
2i
3

AµAνAρ) . (9)

The Chern-Simons theory is coupled to non-relativistic matter. In this section, this will take the
form of N f scalar fieldsφa, with a = 1, . . . , N f . Each of them transforms in some representation
Ra under SU(N). We denote the corresponding generators as tα[Ra] where α= 1, . . . , N2 − 1
and we have suppressed the matrix indices. The generators in the fundamental representation
are normalised such that Tr tα tβ = δαβ . Each of these scalar fields is endowed with a non-
relativistic kinetic term. For simplicity, we give each particle the same mass m. The action is
given by

S =

∫

dt d2 x
§

iφ†
aD0φa −

1
2m

~Dφ†
a
~Dφa −λ(φ†

a tα[Ra]φa) (φ
†
b tα[Rb]φb)

ª

. (10)

The quartic term gives rise to a delta-function interaction between particles. The coupling λ
is marginal and is known to run logarithmically. There are two fixed points given by [7,8]

λ= ±
π

mk
.

The λ > 0 fixed point is stable; the λ < 0 fixed point is unstable. In what follows, we choose
to set

λ= +
π

mk
, (11)

but we do not fix the sign of the Chern-Simons coupling k, so this choice includes both stable
and unstable fixed points.

This fixed point also exists in the U(1) theory, where λ > 0 corresponds to repulsive inter-
actions between particles and λ < 0 corresponds to attractive interactions. In the non-Abelian
theory, this classification is not so simple because, for a fixed sign of λ, interactions in chan-
nels for different irreducible representations R ⊂ R1 ⊗ R2 can be either attractive or repulsive.
(Such behaviour also holds in classical Yang-Mills theory. For example, a quark and anti-quark
attract in the singlet channel, but repel in the adjoint channel.)

It has long been known that the fixed points (11) exhibit an enhanced non-relativistic
conformal invariance of the sort described in Section 2 [2]. The generators of the conformal
algebra are constructed from the particle density and momentum current

ρ = φ†
aφa and j= −

i
2

�

φ†
a
~Dφa − ( ~Dφ†

a)φa

�

,
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together with the Hamiltonian

H =

∫

d2 x
2
m
Dz̄φ

†
aDzφa , (12)

where we have introduced complex coordinates on the plane z = x1 + i x2 .
Our real interest lies in the spectrum of non-Abelian anyons when placed in a harmonic

trap. In the present context, this means that we want the spectrum of L0 = H + C . As we
explained in Section 2, this is equivalent to determining the spectrum of the dilatation operator
D. It turns out that this latter formulation of the problem is somewhat simpler to work with.

3.1 Gauge invariant operators

The first thing to do is to identify the operators of interest. As always, we must talk about
gauge invariant operators. We will construct such operators simply by attaching Wilson lines
stretching out to infinity. Thus we define

Φa(x) =P exp

�

i

∫ x

∞
Aα tα[Ra]

�

φa(x) . (13)

This requires some explanation. Φ(x) is not a local operator; it depends on the value of the
gauge field along a line stretching to infinity. Meanwhile, the state-operator map described in
the previous section is usually taken to hold only for local operators. However, closer inspec-
tion of the argument leading to (8) shows that we require only that the operator O (x) has a
well defined scaling dimension. It is simple to check that the Wilson line does not affect this
property of Φ.

Under the state operator map, the state |Φ†
a〉 describes a single anyon, transforming in

representation Ra, sitting in a harmonic trap. The particle retains the attached Wilson line
and is entirely analogous to the correct description of a physical electron in QED. Importantly,
the SU(N)k Chern-Simons theory does not confine and so this particle has finite energy. We
will compute this energy explicitly below.

It’s worth pausing to comment that the situation differs from that in relativistic confor-
mal theories, where the state-operator map is restricted to local operators. Indeed, in the
relativistic context the states are considered on a spatial sphere where there is no option to
attach a Wilson line that stretches to infinity. Instead, in Chern-Simons theories Gauss’ law
requires that charged states are accompanied by monopole operators, which places further
constraints on the possible electric excitations. At least for this aspect of the physics, thinking
about Chern-Simons-matter theories with relativistic conformal invariance does not appear to
be a good guide to the non-relativistic theories.

Now we can discuss the kinds of operators that we are interested in. In the n-particle
sector, we will look at operators of the form

O ∼
n
∏

i=1

(∂ li ∂̄ miΦ†
ai
) , (14)

where we have introduced (anti)-holomorphic spatial derivatives ∂ = 1
2(∂1 − i∂2) and

∂̄ = 1
2(∂1 + i∂2). The primary operators are those which cannot be written as a total derivative.

Before we proceed, a comment is in order. The operators written above are not the most
general and, indeed, do not necessarily have fixed scaling dimension. This is because there’s
nothing to stop these from mixing with operators of the form (Φ†)n+pΦp, possibly with deriva-
tives attached too. However, because non-relativistic theories contain no anti-particles, these
additional operators annihilate the vacuum |0〉 and so result in the same state |O 〉 under the
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state-operator map. Since our real interest lies in the theory with the harmonic trap, for many
purposes it will suffice to use (14) as a way to characterise the operators.

It is not a totally trivial task to list the primary operators from (14). The only one that is
simple to write down has no derivatives

Oa1...an
= Φ†

a1
. . .Φ†

an
. (15)

(Here ai are flavour indices. We have suppressed colour indices.) The n-particle ground state
is expected to take such a form for suitably large k; we will compute its energy shortly.

To highlight how other primary operators arise, it will be useful to look at a simple example.
We take U(1)k with a single field φ of charge +1. (This was the case discussed in [20].) To
make contact with the introduction and, in particular, the numerical spectrum of [13], let
us look at the case n = 3. As we mentioned above, the large k ground state is simply the
state corresponding to (Φ†)3, as we will see shortly through explicit computation. What about
higher states? Any state with a single derivative can be written as a total derivative and so
is a descendant. This explains the gap between the ground state and the first excited state
seen in Figure 1. The next primary operator will contain two derivatives. There are six such
operators: ∂Φ†∂Φ†Φ†, ∂Φ†∂̄Φ†Φ†, ∂̄Φ†∂̄Φ†Φ†, ∂ 2Φ†Φ†2, ∂ ∂̄Φ†Φ†2 and ∂̄ 2Φ†Φ†2. However,
four linear combinations of these can be written as total derivatives of the form ∂ (∂Φ†Φ†2),
where either derivative could also be ∂̄ . The upshot is that there are two primary states with
two derivatives. This agrees with the spectrum shown in Figure 1.

We can play a similar game with operators that contain three derivatives. It is simple to
check that one can write down 13 such operators, 10 of which turn out to be descendants. The
upshot is that there are 3 primary operators that contain 3 derivatives. (The obvious pattern
does not persist!) From Figure 1, we learn that one of these will become the ground state at
small k.

3.2 The spectrum

Next comes the question that we initially set out to answer: what is the spectrum of the states
(14)? As we stressed in the introduction, this is a difficult and unsolved question, even for
Abelian anyons. Here we offer two approaches.

In Section 3.4 we explain how one can compute the spectrum of these operators for Chern-
Simons theory with scalars perturbatively in 1/k. We present the results only at one-loop.

However, before we do this, there is a special class of operators for which the result sim-
plifies tremendously. These are the “linear states" referred to in the introduction. They corre-
spond to so-called chiral operators which have no anti-holomorphic derivatives,

O ∼
n
∏

i=1

(∂ miΦ†
ai
) . (16)

The simplest such operator is Oa1...an
in (15). The scaling dimension of any such operator turns

out to be fixed by its angular momentum J :

∆= n− J . (17)

We will not explain the argument behind this here since it involves a detour through the su-
persymmetry algebra. Instead we refer the reader to our earlier paper [20] (which follows in
the footsteps of [18,19]) where this result is derived.2

2Our conventions differ slightly from those of [20], where we defined the angular momentum with an appro-
priate twist of the R-symmetry, so that J = −n2/2k for n anyons. The convention chosen in this paper is more
natural in the context of non-Abelian gauge theories.

9

https://scipost.org
https://scipost.org/SciPostPhys.4.4.022


SciPost Phys. 4, 022 (2018)

Note that each derivative ∂ decreases the angular momentum by one. Correspondingly,
the dimension of a chiral operator (16) is given by

∆O = n+
n
∑

i=1

mi − J0 ,

where J0 is the angular momentum of Oa1...an
.

3.3 Angular momentum

From the discussion above, we learn that the dimension of Oa1...an
and other chiral operators

(16) is entirely determined by the angular momentum J . But what is this angular momentum?
The tensor product of representations ⊗n

i=1Rai
is decomposed into irreps. (Note that, de-

spite the presence of the Chern-Simons term, it is the tensor product and not the fusion rules
which are relevant here.) When the operator O sits in the representation R, its angular mo-
mentum is given by

J0 = −
C2(R)−

∑

i C2(Rai
)

2k
, (18)

where C2 is the quadratic Casimir, defined by
∑

α

tα[R]tα[R] = C2(R)1 .

Note that because Oa1...an
is built out of commuting scalar fields Φ, in the absence of any

derivatives it must transform in the fully symmetrised representation Rsym = Sym
�

⊗n
i=1Rai

�

.
However, the more general operators (16) can transform in other representations.

The purpose of this section is to prove the result (18). Before we do this, we will first look
at some examples.

Examples

We start with an Abelian gauge theory U(1)k, where representations are labelled by charge
q ∈ Z. The quadratic Casimir in this case is simply C2(q) = q2. The result (18) says that the
angular momentum of n anyons, each of charge 1, is given by

J = −
n(n− 1)

2k
. (19)

This is indeed the angular momentum of n anyons. Moreover, when substituted into (17), it
gives us the correct answer for the dimension of the n anyon operator; this is the result quoted
in (1).

Next, consider SU(2)k. Representations of SU(2) are labelled by a spin s ∈ 1
2Z and the

final bound state has spin S =
∑

i sai
. In this case, the angular momentum is given by

J = −
S(S + 1)−

∑

i sai
(sai
+ 1)

k
.

This has a simple generalisation to n anyons, each of which sits in the fundamental representa-
tion of SU(N). We have C2(N) = (N2−1)/N . The bound state transforms in the nth symmetric
representation of SU(N), with C2(Symn(N)) = n(N − 1)(N + n)/N . We have

J = −
n(n− 1)

2k
×

N − 1
N

. (20)
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Finally, consider a general representation of SU(N) whose Young tableau has rows of length3

λ1 ≥ λ2 ≥ · · · ≥ λN has quadratic Casimir given by the formula C2(λ) = 〈λ,λ+ 2ρ〉, where λ
is the highest weight and ρ is the Weyl vector. In particular, we have

C2(λ) =

(
∑N

i=1

�

λ2
i + (N + 1− 2i)λi

�

for U(N)
∑N

i=1

�

λ2
i + (N + 1− 2i)λi

�

− 1
N

�

∑N
i=1λi

�2
for SU(N)

This translates into the following result for n fundamental anyons brought together into the
representation λ:

J = −

∑N
i=1

�

λ2
i − (2i − 1)λi

�

2k
for U(N) ,

and

J = −

∑N
i=1

�

λ2
i − (2i − 1)λi

�

− n(n− 1)/N

2k
for SU(N) .

Deriving the angular momentum

We now return to prove the result (18) for the angular momentum. We insert n anyons in
various representations Rai

of the group G at level k, such that they collectively transform in
the irrep R ⊂ ⊗iRai

. There are two issues which we need to explain. The first is that angular
momentum of this state, inserted at the origin, is related to the quadratic Casimir C2(R). The
second is that there are some ambiguities to do with regulators, but that the correct choice of
angular momentum for our purposes is the one given above:

J = −
C2(R)−

∑

i C2(Rai
)

2k
.

It will be helpful to first develop some intuition for how this quadratic behaviour arises. It can
be understood by considering the phase of the wavefunction for our n anyons under rotations.
To see this, place each anyon at a different distance from the origin. Now rotate the configura-
tion by 2π. In doing this, each anyon encircles all the others which are closer to the origin than
itself, accumulating an Aharonov-Bohm phase per pair of particles. We additionally pick up a
phase due to the inherent spin of each individual anyon. As we scale the configuration towards
the origin, these are the only phases contributing to the behaviour of the wavefunction.

This decomposition into two phases is very similar to the usual decomposition of angular
momentum into orbital and spin parts. We will find that the J arising in the conformal (and
superconformal) algebra is the one without intrinsic spins.

We now gather the ingredients needed for the computation. The angular momentum used
in our algebra is given by

J =

∫

d2z
∑

a

φ†
a(zDz − z̄Dz̄)φa .

To begin with, since we are going to place all particles at the origin, we can ignore the nor-
mal orbital angular momentum terms φ†(z∂z − z̄∂z̄)φ. Further, we will compute the angular
momentum of states satisfying Gauss’ law which, for our bosonic theory, reads

Bα =
2π
k

∑

a

φ†
a tαφa , (21)

3Note that by including the possibility of λN 6= 0, this formula works even for baryons. λN has the interpretation
of the number of baryons in the state.
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where Bα = Fα12 is the non-Abelian magnetic field. We then have

J =
ik
2π

∫

d2z (z̄Aαz̄ − zAαz )B
α ,

acting on a state satisfying Gauss’ law.
The reason for doing this is that this expression is now only sensitive to the Wilson line in

(13). Let us give this a name: pick some representation tα, and let

W (x) =

�

P exp

�

i

∫ x

∞
Aα tα

��†

.

If Gauss’ law (21) holds for the object Φ=W †φ, then it is straightforward to show that4

�

k
2π

Bα(x), W (x′)
�

=W (x′) tαδ(2)(x− x′) (22)

This is enough to start computing the action of J on a state containing Wilson lines. We
take the Wilson lines to be Wi = W (zi , z̄i) |t=t i

, where we allow each Wi to sit in a different
representation Rai

whose generators are tαai
. Explicitly,

J W1 ⊗ · · · ⊗Wn |0〉=
ik
2π

∫

d2z (z̄Aαz̄ − zAαz )B
α W1 ⊗ · · · ⊗Wn |0〉

= i

∫

d2z (z̄Aαz̄ − zAαz )
�

W1 ⊗ · · · ⊗Wn

�

n
∑

i=1

tαai
δ(2)(z − zi) |0〉 ,

where tai
is understood to act only on the ith factor of the product to the left.

Now we set x′ = 0 in (22) and use the complex coordinate z = x1 + i x2 = reiθ . If we
integrate over a disc of radius r, the integral reduces to a boundary term, and

1
2π

∫

dθ
�

z̄Aαz̄ (z, z̄)− zAαz (z, z̄), W (0)
�

=
i
k

W (0) tα .

That is, evaluating this quantity around a circle gives this particular non-zero contribution if
the Wilson line ends inside that circle; by contrast, it is zero if the end is outside that circle.
This shows why we need to be careful with regularisation.

To regularise, let us proceed as above by smearing each Wi around progressively smaller
circles, of radius |z1| > |z2| > · · · > |zn|, and then taking the smallest one to zero first. In this
manner, we find that we get only one contribution to the result per distinct pair (i, j). However,
it is not yet clear what happens when both terms in J hit the same Wilson line.

To address this last case, we need one final argument. The simplest line of reasoning is
that any translationally invariant regularisation of terms like [Az(zi , z̄i), W (zi , z̄i)] must vanish
if we multiply it by zi and then take zi → 0.5

4One can prove this using the commutation relation [Aα1(x), Aβ2(x
′)] = − 2πi

k δ
αβ δ(2)(z−z′) . arising from the term

− k
4πTrεµνρAµ∂νAρ in the Chern-Simons action SCS. Notice that ikBα/2π generates spatial gauge transformations:

for any function hα(x)
�∫

d2 x
ik
2π

Bαhα, Aβm(x
′)

�

= Dmhβ (x′) .

But the Wilson line is charged only at its endpoints, and for compactly supported h it transforms at the x end so
that

�∫

d2 x ik
2πBαhα, W (x′)

�

= +iW (x′) tαhα(x′). Setting h to be a delta function, we obtain the above result.
5For a more careful approach, one could work in holomorphic gauge Az̄ = 0, and then solve explicitly for Az as

an integral of B; similarly in the Abelian case Coulomb gauge would work. In these formalisms, one finds that J
can be expressed as a double integral of Bα(x)Bα(x′) against a term like x×∇ log(x− x′). Then the self-interaction
terms we are concerned with vanish for regularisations preserving reflections at arbitrary locations.
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Now we have the result

J W1 ⊗ · · · ⊗Wn |0〉= −
1
k

W1 ⊗ · · · ⊗Wn





∑

i< j

tαai
⊗ tαa j



 |0〉 ,

where as above, tai
is understood to act only on the ith factor of the product to the left.

All that remains is to relate this to the quadratic Casimir. But notice that the product rep-
resentation R in which the particles sit has the generators Tα =

∑

tαai
, and hence the quadratic

Casimir is given by

C2(R) = TαTα =
∑

i, j

tαai
⊗ tαa j

= 2
∑

i< j

tαai
⊗ tαa j

+
∑

i

C2(Rai
) .

This completes our proof. We have

J = −
C2(R)−

∑

i C2(Rai
)

2k

as claimed.

3.4 Perturbation theory

The field theoretic approach to non-relativistic anyons comes equipped with the powerful
methods developed for relativistic field theories. In particular, we can use Feynman diagrams
to compute quantum corrections order by order in perturbation theory.

The diagrammatic method applies in much the same way as for relativistic theories with
one crucial difference: there are no anti-particles, not even in loops! The absence of propagat-
ing anti-particles drastically reduces the number of diagrams, rendering the loop computations
tractable.

It also follows that, in theories with multiple flavours, one type of species does not affect
the dynamics of the other types unless it is present as an external particle. This was particu-
larly useful in [20] where we embedded the bosonic theory in a supersymmetric theory [17]
which includes both bosons and fermions. The supersymmetry algebra shows that the scaling
dimensions of certain chiral operators involving only bosons are one-loop exact, a property
which then survives even when the fermions are thrown away! Indeed, this is the trick that
allowed us to determine the dimensions (17) in terms of the angular momentum.

Our goal in this section is to determine the one-loop corrections to the dimensions of opera-
tors of the form (14). We will use this to confirm our previous, algebraic results (17) and (18).

One-loop corrections

The Feynman rules for (10) are a simple generalization of those presented in [20]. To avoid
clutter we only discuss the case with only one species of scalars living in some representation
R of the gauge group. The generalisation to multiple species living in different representations
is straightforward. We will use Greek letters ρ,σ = 1, . . . , dim(R) to denote the colour indices.

Since the interactions are at most quartic, all corrections arise from pairwise diagrams.
Thus it suffices to compute the one-loop correction to the two-anyon operator

∂ n1 ∂̄ m1φ†
ρ1
∂ n2 ∂̄ m2φ†

ρ2
. (23)

Note that we have not included the Wilson lines in this operator as they do not play any role
in what follows. The one-loop corrections to (23) are encoded in the correlation function

〈φσ1
(p1)φσ2

(p2) ∂
n1 ∂̄ m1φ†

ρ1
∂ n2 ∂̄ m2φ†

ρ2
〉 . (24)
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At tree level we schematically denote this correlation function by the diagram:

(ni ,mi ;ρi ,σi)

= δρ1
σ1
δρ2
σ2
(−ip1z)

n1(−ip1z̄)
m1(−ip2z)

n2(−ip2z̄)
m2

+δρ1
σ2
δρ2
σ1
(−ip1z)

n2(−ip1z̄)
m2(−ip2z)

n1(−ip2z̄)
m1 .

(25)

Henceforth we shall suppress the diagram labels. At one-loop order the four-point function
(24) is corrected by the diagrams

= −
1

2k
log
Λ

µ

�

tαρ1σ1
tαρ2σ2

+ tαρ1σ2
tαρ2σ1

�

�

−
i
2

P+z

�n1+n2
�

−
i
2

P+z̄

�m1+m2

+O (Λ2) ,

with P± = p1 ± p2, and

=
1

2k
log
Λ

µ

�

tαρ1σ1
tαρ2σ2

K(p1, p2) + tαρ1σ2
tαρ2σ1

K(p2, p1)
�

+O (Λ2) , (26)

where K(p1, p2) is given by the following integral over the Feynman parameter x:

K(p1, p2) = (−i)l
∫ 1

0

dx

� 2
∏

i=1

�

P+z
2
−
(−1)i x P−z

2

�ni
∂

∂ x

� 2
∏

i=1

�

P+z̄
2
−
(−1)i x P−z̄

2

�mi
�

−
∂

∂ x

� 2
∏

i=1

�

P+z
2
−
(−1)i x P−z

2

�ni
� 2
∏

i=1

�

P+z̄
2
−
(−1)i x P−z̄

2

�mi �
(27)

with l = n1 + n2 +m1 +m2.
Note that we only need the logarithmic correction to extract the contribution to the anoma-

lous dimension. Moreover, the results above are all one needs to evaluate the anomalous
dimension of operators of the form (14) at one-loop.

We remark that the operators of the form (14) may not have a well-defined dimension at
one-loop.6 Nonetheless for a special class of such operators it is an easy task to find oper-
ators with well-defined scaling dimensions. These are the chiral operators discussed earlier
(16) which only include holomorphic derivatives. Below we consider a few examples of such
operators.

Examples

As a warm-up, consider the following operator in an Abelian theory with a single species of
unit charge scalars:

On = φ
† n . (28)

This is the n-anyon operator with no derivatives. The kinematical factor in (26) vanishes and
we only have the bubble diagrams (26) to sum over. As was discussed earlier, there is one such
diagram for each pair, and each yields the same contribution

= −
1
k

log
Λ

µ
+O (1) .

6As is evident from the results above, a two-anyon operator with fixed ni and mi mixes at one-loop with operators
with the same number of derivatives. Furthermore the one-loop diagrams above have polynomial divergences
which need to be removed by counter-terms with fewer derivatives.
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This results in the anomalous dimension

∆− n=
n(n− 1)

2k
= −J , (29)

in agreement with (19).
Now consider the operator Oρ1...ρn

= φ†
ρ1

. . .φ†
ρn

in an SU(N) Chern-Simons theory coupled
to a single species of scalars in the fundamental representation of the gauge group. As in the
previous examples the absence of derivatives implies that we only need to evaluate the bubble
diagram:

= −
N − 1
2Nk

log
Λ

µ

�

δρ1
σ1
δρ2
σ2
+δρ1

σ2
δρ2
σ1

�

+O (1) ,

where we have used the following identity satisfied by the generators of SU(N) in the funda-
mental representation

tαρ1σ1
tαρ2σ2

= δρ1
σ2
δρ2
σ1
−

1
N
δρ1
σ1
δρ2
σ2

. (30)

Taking the contribution from each pair into account we obtain the anomalous dimension

∆− n=
n(n− 1)(N − 1)

2Nk
, (31)

reproducing (20).
As our last example, consider the SU(N) theory with one species of scalars in the funda-

mental representation. This time we look at the operator O = φ†
[ρ1
∂ φ†

ρ2
. . .∂ n−1φ†

ρn]
. Con-

trary to the previous examples, the corrections to this operator only arise from the gluon ex-
change diagrams:

=
N + 1
2Nk

log
Λ

µ
δ
ρi
[σi
δ
ρ j

σ j]

�

(−ipiz)
ni (−ip jz)

n j − (−ipiz)
n j (−ip jz)

ni
�

+O (Λ2) .

The contribution is the same for every pair yielding the one-loop corrected dimension

∆n =
n(n+ 1)

2
−

n(n− 1)
2

N + 1
kN

,

and in particular the dimension of the baryon operator is given by

∆N =
N(N + 1)

2
−

N2 − 1
2k

. (32)

Evaluating the angular momentum, remembering to include a contribution of−1 per ∂ deriva-
tive, yields the same result.

To illustrate this, in Fig. 2 we have plotted the low-lying states for two anyons in SU(2)k
Chern-Simons theory coupled to scalars in the fundamental representation. The energy E (in
units ofω) is plotted vertically and the statistical parameter7 θ ∈ [0,π] is plotted horizontally.
Here the black lines depict the linear states while the blue curves approximate the non-linear
states up to O(θ2).

It is straightforward to count the low-lying states for two SU(2) anyons. In this case there
are only two possible representations R for the composite operator. These are the trivial rep-
resentation (anti-symmetric) and the adjoint representation (symmetric) of SU(2). In the

7The statistical parameter for the SU(2)k anyons is given by θ = 2π/k.
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Figure 2: SU(2) anyons.

absence of any derivatives we have a single operator in the adjoint representation correspond-
ing to the ground state. Allowing for a single derivative we find two descendants of the ground
state as well as two primary operators only one of which corresponds to a linear state. Lastly
there are twelve operators with two derivatives. Half of these are descendants and the other
half are primary operators but only two of them give rise to linear states. Note that, with only
two anyons in the trap, there is no level crossing for the ground state.

To find level crossing, we need to turn to three or more SU(2) anyons. However, as we
increase the number of anyons, the number of derivatives, or the rank of the gauge group, the
counting of operators becomes more involved. In general, we do not have a systematic way
to determine the number of chiral, primary and descendant operators. It would be interesting
to better understand this counting of states.

3.5 Operators at the unitarity bound

For Abelian anyons, there is a rather striking difference between repulsive interactions, with
k > 0, and attractive interactions, with k < 0. In both cases, the dimension of the BPS state
O ∼ Φ† n is given by

∆=
�

n+
n(n− 1)

2k

�

.

For k > 0, this is the spectrum of anyons discussed in the introduction. For k < 0, there is
a new twist to the story because, for n > |2k|, this operator appears to violate the unitarity
bound ∆≥ 1.

This issue was resolved in [20]. (Similar issues were also addressed in [27].) The pres-
ence of attractive delta-function interactions between anyons mean that the wavefunctions
diverge as particles come close. For a suitably small number of particles, the divergence in the
state O ∼ Φ† n is normalisable and the wavefunction describes an honest state in the Hilbert
space. However, when the number of particles hits n = 2k, the divergence becomes logarith-
mically non-normalisable and this state is no longer part of the Hilbert space. The true ground
state now requires that the particles have extra orbital angular momentum. This softens the
divergence, once again rendering the state normalisable.

This same behaviour also occurs in the non-Abelian theory. Roughly speaking, sym-
metrised representations have anomalous dimensions that scale as +1/k, while those of anti-
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symmetrised representations scale as −1/k. When k < 0, it is simple to see that placing too
many anyons together in a symmetrised representation will violate the unitarity bound. There
is now, however, a similar story for k > 0. Perhaps the simplest example of an operator that
violates the unitarity bound for k > 0 arises in the case of SU(N)with N f = N different species
of scalar, φa, each in the fundamental representation. We can then build a baryon operator
without the need to add any derivatives: B = εa1...aN

φ
a1
1 . . .φaN

N . Using the methods above,
the dimension of this operator is

∆B = N −
N2 − 1

2k
.

This violates the unitarity bound∆B ≥ 1 for k < (N+1)/2. Note that here the bound constrains
the rank of the gauge group, N . It seems likely that, as in [20], this can once again be traced
to the non-normalisability of the quantum mechanical wavefunction.

Interestingly, effective non-relativistic theories describing the low energy dynamics of mas-
sive relativistic theories always satisfy |k| > N due to quantum shifts of the level. This means
that in these theories, the baryon B never violates the bound for any k. Nonetheless we can
consider non-relativistic theories with arbitrary k for which the bound is non-trivial.

4 The fermionic theory

In this section, we give another description of anyons, this time using non-relativistic fermions
as the starting point. We will couple these fermions to an SU(N)k Chern-Simons theory.

The matter consists of N f complex, Grassmann-valued fields ψa, each transforming in
some representation Ra of SU(N). These fields have non-relativistic kinetic terms, with the
action given by

S =

∫

dt d2 x
§

iψ†
aD0ψa −

1
2m

~Dψ†
a
~Dψa −

1
2m
ψ†

aFα12 tα[Ra]ψa

ª

. (33)

The coupling to the non-Abelian magnetic field F12 plays an analogous role to the quartic
interactions in the bosonic Lagrangian (10). (This is particularly apparent if we substitute F12
using the Gauss’ law constraint.)

Like its bosonic counterpart, this theory also exhibits conformal invariance. The various
symmetry generators can be constructed from the number density and momentum current,
which are given by

ρ =ψ†
aψa and j= −

i
2

�

ψ†
a
~Dψa − ( ~Dψ†

a)ψa

�

.

The Hamiltonian is given by

H =

∫

d2 x
2
m
Dzψ

†
aDz̄ψa .

As explained in Section 3, we can construct gauge invariant operators by attaching a semi-
infinite Wilson line to each particle,

Ψa(x) =P exp

�

i

∫ x

∞
Aα tα[Ra]

�

ψa(x) . (34)

As before, our interest lies in the spectrum of n anyons in a trap. The most general operator
takes the form

O ∼
n
∏

i=1

(∂ li ∂̄ miΨ†
ai
) (35)
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where, again, primary operators are those which cannot be written as a total derivative.
However, the anti-commuting nature of ψa means that the simplest operators are rather

different to those in the bosonic case. Consider, for example, the situation where we have a
single species of fermion Ψ transforming in the N representation of SU(N). Now the operator

O = Ψ† n (36)

is non-vanishing only for n≤ N and transforms in the nth anti-symmetric representation. If we
wish to place n> N anyons in a trap, the different operators must be dressed with derivatives.
To illustrate this, let’s revert to Abelian anyons, charged under a U(1) gauge field. Now there
is no operator of the form (36) with n > 1. Instead, the operator with the lowest number of
derivatives takes the form

O = Ψ† ∂Ψ† ∂̄Ψ† ∂ 2Ψ† ∂ ∂̄Ψ† . . .

This operator has ∼ n3/2 derivatives. At large k, this is the ground state of the n anyon system,
with ∆∼ n3/2. However, at smaller k, the ground state is expected to undergo level crossing.

Computing the spectrum in the fermionic case is no easier than for bosons. Once again,
there are two approaches that we can take. The first is the brute force, perturbative approach,
valid for large k. We describe this below in section 4.1. However, once again there is a class of
operators whose spectrum is constrained by their angular momentum. These were described
in [20] where they were referred to as anti-chiral operators and have only anti-holomorphic
derivatives

O =
n
∏

i=1

(∂̄ miΨ†
ai
) .

For these operators, the dimension is fixed in terms of their angular momentum as

∆= n+ J . (37)

Note that the opposite minus sign compared to (17). In the context of supersymmetry, these
should be thought of as anti-BPS states rather than BPS states.

Examples

The simplest example we can consider is a single fermion ψ coupled to an Abelian U(1)k
Chern-Simons theory. This was already discussed in [20]. The simplest anti-chiral n-particle
operator is

On = Ψ
† ∂̄Ψ† ∂̄ 2Ψ† . . . ∂̄ n−1Ψ† .

This operator has n(n − 1)/2 derivatives, each of which contributes +1 to the total angular
momentum. Meanwhile, the angular momentum from the Wilson lines is given by (19) as for
the bosonic theory. We have

J =
n(n− 1)

2
−

n(n− 1)
2k

⇒ ∆=
n(n+ 1)

2
−

n(n− 1)
2k

. (38)

In SU(N) gauge theories, the simplest operator (36) sits in the nth anti-symmetric representa-
tion. We have C2(Anti-Symn(N)) = n(N − n)(N + 1)/N and, correspondingly,

J =
n(n− 1)(N + 1)

2Nk
. (39)
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Recall that for the bosonic case, when k > 0 the symmetrised representations increased the
dimension of the operator whilst anti-symmetrised ones decreased it. Because of the different
sign in (37) relative to (17), this is reversed for fermions.

In the bosonic theories, we saw that certain states violate the unitarity bound. These do not
arise in the Abelian fermionic theories, nor in the non-Abelian theories with k > 0. However,
there are such states in the non-Abelian fermionic theories with k < 0, with the baryon being
the obvious example.

4.1 Perturbation theory with fermions

Non-relativistic conformal fermions with Chern-Simons interactions can be studied perturba-
tively in much the same way as the scalars in section 3.4. Here we restrict the analysis to
one-loop order.

One-loop corrections

Similar to the theory with scalars, all one-loop corrections to the operators of the form (35)
arise from pairwise diagrams. Therefore to extract the anomalous dimension of such operators
we need only to compute the logarithmic correction to the two-anyon operator

∂ n1 ∂̄ m1ψ†
ρ1
∂ n2 ∂̄ m2ψ†

ρ2
, (40)

with the Greek letters ρ,σ = 1, . . . , dim R denoting the colour indices. (As before, we drop the
Wilson lines.) We restrict the analysis to a single flavour of fermions living in the representation
R of the gauge group but the generalisation to multiple flavours is straightforward. As in the
bosonic case, we focus on the correlation function

〈ψσ2
(p2)ψσ1

(p1) ∂
n1 ∂̄ m1ψ†

ρ1
∂ n2 ∂̄ m2ψ†

ρ2
〉 . (41)

At tree level, we schematically denote this correlation function by the following diagram:

= δρ1
σ1
δρ2
σ2
(−ip1z)

n1(−ip1z̄)
m1(−ip2z)

n2(−ip2z̄)
m2

−δρ1
σ2
δρ2
σ1
(−ip1z)

n2(−ip1z̄)
m2(−ip2z)

n1(−ip2z̄)
m1 .

(42)

The only correction this correlation function receives at one-loop arises from the gluon ex-
change diagram

=
1

2k
log
Λ

µ

�

�

tαρ1σ1
tαρ2σ2

− tαρ1σ2
tαρ2σ1

�

�

−
i
2

P+z

�n1+n2
�

−
i
2

P+z̄

�m1+m2

+ tαρ1σ1
tαρ2σ2

K(p1, p2)− tαρ1σ2
tαρ2σ1

K(p2, p1)
�

+O (Λ2) ,

(43)

with P± = p1 ± p2. The function K(p1, p2) is the same function (27) we encountered in
the perturbative study of scalars. The above diagram is sufficient to evaluate the anomalous
dimension of operators of the form (35) at one-loop.

Examples

Let us start by considering the U(1) theory with a single flavour of fermions. The simplest
operator of the form (35) is

On =ψ
†∂̄ ψ† . . . ∂̄ n−1ψ† . (44)
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In the supersymmetric theory this is an anti-chiral primary operator and is therefore one-
loop exact. This holds true even in the non-supersymmetric theory and the operator is only
corrected by the pairwise diagrams correcting ∂̄ m1ψ†∂̄ m2ψ† which evaluate to

=
1

2k
log
Λ

µ
+O (Λ2) .

As this is independent of the number of derivatives mi the dimension of On is simply

∆=
n(n+ 1)

2
−

n(n− 1)
2k

, (45)

as derived earlier (38). We remark that – as was observed in [20] – the spectrum of On in
the U(1)k theory with fermions matches precisely that of Õn = φ† n in the U(1)k̃ theory with
scalars if we choose 1/k̃ = 1− 1/k.

Another important example is the baryon operator in SU(N) Chern-Simons theory

B =ψ†
1 . . .ψ†

N . (46)

More generally, we can consider the operators

Oρ1...ρn
=ψ†

ρ1
. . .ψ†

ρn
, (47)

with B = O1...N . The pairwise diagrams that contribute to the anomalous dimension of these
operator evaluate to

= −
N + 1
2Nk

log
Λ

µ
+O (Λ2)

The dimension of the Oρ1...ρn
therefore evaluates to

∆= N +
n(n− 1)(N + 1)

2Nk
. (48)

consistent with (39).

4.2 A comment on bosonization

In previous sections we have studied Chern-Simons theories coupled to both bosons and
fermions. Yet, in both cases, the resulting particles are neither: they are anyons. This motivates
the possibility that the theory of bosonic and fermionic theories are actually equivalent.

Indeed, there is now a well established set of conjectures relating relativistic, bosonic
and fermionic Chern-Simons matter theories. These typically go by the name of non-Abelian
bosonization dualities and, roughly speaking they relate SU(N)k bosonic theories to U(k)N
fermionic theories [28–31]. More precise statements of the dualities at finite N and k were
given in [32–34], and various pieces of evidence for the duality were complied in [35–42].

It is interesting to ask whether there is a non-relativistic counterpart of these dualities. Ev-
idence was given for the equivalence of quantum Hall states in [34]when N f = N and one can
ask if this extends to the spectrum. Naively, however, this does not appear to be the case. The
kind of operators (13) and (34) that we have discussed above are gauge invariant by virtue of
the attached Wilson line which extends to infinity. But they nonetheless transform non-trivially
under the global part of the gauge group. For such states, the two theories most certainly are
not equivalent. Perhaps the simplest way to see this is that they have different global symmetry
groups, SU(N) and U(k) respectively. Nonetheless, there is clearly a similarity between the
spectra of the bosonic and fermionic theory described above. It would be interesting if this
could be extended to a full bosonization duality in this non-relativistic context.

(Note added: As this paper was being prepared for publication, this issue was addressed
in [43].)
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[41] Ð. Rad̄ičević, Disorder operators in Chern-Simons-fermion theories, J. High Energ. Phys.
131 (2016), doi:10.1007/JHEP03(2016)131.

[42] G. Gur-Ari, S. Hartnoll and R. Mahajan, Transport in Chern-Simons-matter theories, J.
High Energ. Phys. 90 (2016), doi:10.1007/JHEP07(2016)090.

[43] C. Turner, Bosonization in Non-Relativistic CFTs, arXiv:1712.07662.

23

https://scipost.org
https://scipost.org/SciPostPhys.4.4.022
http://dx.doi.org/10.1007/JHEP09(2016)095
http://dx.doi.org/10.1007/JHEP12(2016)067
http://dx.doi.org/10.1007/JHEP04(2015)129
http://dx.doi.org/10.1007/JHEP10(2015)176
http://dx.doi.org/10.1007/JHEP02(2016)103
http://dx.doi.org/10.1007/JHEP09(2013)009
http://dx.doi.org/10.1007/JHEP11(2013)037
http://dx.doi.org/10.1007/JHEP11(2015)013
http://dx.doi.org/10.1007/JHEP03(2016)131
http://dx.doi.org/10.1007/JHEP07(2016)090
https://arxiv.org/abs/1712.07662

	Introduction and summary
	Non-relativistic conformal invariance
	States and operators

	The bosonic theory
	Gauge invariant operators
	The spectrum
	Angular momentum
	Perturbation theory
	Operators at the unitarity bound

	The fermionic theory
	Perturbation theory with fermions
	A comment on bosonization

	References

