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Abstract

It has been shown that a quantum quench of interactions in a one-dimensional fermion
system at zero temperature induces a universal power law o< t~2 in its long-time dynam-
ics. In this paper we demonstrate that this behaviour is robust even in the presence of
thermal effects. The system is initially prepared in a thermal state, then at a given time
the bath is disconnected and the interaction strength is suddenly quenched. The corre-
sponding effects on the long times dynamics of the non-equilibrium fermionic spectral
function are considered. We show that the non-universal power laws, present at zero
temperature, acquire an exponential decay due to thermal effects and are washed out at
long times, while the universal behaviour o< t 2 is always present. To verify our findings,
we argue that these features are also visible in transport properties at finite temperature.
The long-time dynamics of the current injected from a biased probe exhibits the same
universal power law relaxation, in sharp contrast with the non-quenched case which
features a fast exponential decay of the current towards its steady value, and thus repre-
sents a fingerprint of quench-induced dynamics. Finally, we show that a proper tuning of
the probe temperature, compared to that of the one-dimensional channel, can enhance
the visibility of the universal power-law behaviour.
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1 Introduction

Among all open problems in the field of quantum many-body systems, of special interest is
the study of real-time dynamics far from equilibrium. In this context, recent state-of-the-
art experiments performed on cold atoms [1-7] have shown the possibility to modulate in
time various parameters and to detect transport properties as a useful tool to investigate the
system response [8-11]. Due to their high degree of tunability, cold atoms represent an ideal
platform to study quantum quenches [12-14], which consist in the rapid variation over time
of one of the system parameters in a controlled way. Such protocol naturally settles an out-
of-equilibrium state with highly non-trivial time evolution. Non-equilibrium physics of one-
dimensional (1D) systems and time-resolved dynamics has been also recently investigated in
pioneering experiments in solid-state implementation, see for example [15-19].

When dealing with out-of-equilibrium systems, two important questions arise: do such
systems eventually settle to a steady state? And if so, what characterises their relaxation dy-
namics? Several theoretical studies [20-23] and experiments have addressed such topics,
providing important results which strongly depend on the system considered. For example,
some cold atom systems have shown a faster-than-expected relaxation towards a state well
described by a grand-canonical ensemble [5]. Quantum quench experiments performed split-
ting a 1D gas of cold atoms [4], initially prepared in a thermal state, have shown the system to
settle towards a quasi-thermal state, which can be well-described in terms of an effective tem-
perature lower than the initial one. On the contrary, other cold-atom implementations have
reported relaxation towards a steady state which cannot be described as a thermal one [2,24].
In this respect, integrable systems are particularly interesting, since it has been conjectured
that they approach a steady state that can be characterised by the so-called generalised Gibbs
ensemble [25,26], whose associated density matrix is in general very different from the ther-
mal one. However, a complete characterisation of their relaxation dynamics is yet to be found.

Among all 1D integrable systems, a special role is played by Luttinger liquids [27,28] which
have been detected in several experiments [4,6,7,29,30]. Indeed, they are characterised by an
infinite number of conserved quantities which allow to promptly construct their generalised
Gibbs ensemble. Moreover, the unavoidable presence of interactions give rise to several in-
triguing effects including charge and spin fractionalisation [16-18, 28, 31-43], which have
been also investigated in the presence of a quantum quench [44,45]. Relaxation dynamics of
Luttinger liquids have been the subject of recent theoretical activity [12, 14,46-53], even at
finite temperature [54-56].

In a recent paper [45], the relaxation dynamics of a Luttinger liquid subjected to a sudden
quench of the interaction strength has been studied at zero temperature. It has been shown
that the latter generates entanglement between counter-propagating excitations [45,57], re-
sulting in finite bosonic cross-correlators among the 1D channel. This, in turn, affects the
time evolution of fermionic observables such as the charge and the energy currents locally in-
jected from a biased probe. Indeed, in the long-time limit they display a universal power-law
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relaxation dynamics o< t~2, not sensitive to the details of the quench.

In this paper, we investigate whether this universal power law is still present when the
system is prepared, before the quench, in a thermal state. We therefore study the behaviour of
the fermionic non-equilibrium spectral function and its relaxation dynamics toward the steady
state at finite temperature. We demonstrate that at long times its universal quench decay
o< t™2 is stable against thermal effects, while the non-universal interaction-induced power
laws, present at T = 0, acquire a fast exponential decay dictated by the finite initial temper-
ature. The initial preparation in a thermal state can then be useful to highlight and enhance
the visibility of universal features in comparison to the zero temperature case. We also con-
sider the impact of this quench protocol with finite temperature preparation on transport. The
behaviour of the spectral function, indeed, determines the relaxation dynamics of the charge
current injected from a biased probe, which displays a universal scaling law o< t 2, again
robust against thermal effects. This is in sharp contrast with a conventional non-quenched sit-
uation, in which a finite temperature induces a fast, non-universal exponential decay towards
the steady current value. We also consider the case of different initial temperatures for the 1D
channel and the probe, showing that a proper tuning of the latter can enhance significantly
the visibility of the o< t 2 universal decay in the current dynamics.

The outline of the paper is the following. In Sec. 2 the model is described. In Sec. 3 the
fermionic Green functions, central to the evaluation of the transport properties, are introduced.
Their basic building blocks, the bosonic two-point correlation functions are also defined and
evaluated, and their time dynamics is analysed in detail. In Sec. 4 we focus on the non-
equilibrium spectral function and its relaxation dynamics towards the steady state. In Sec. 5
we consider a possible transport setup, where a probe is assumed to be weakly tunnel-coupled
to 1D channel, and we evaluate the resulting charge current and its time-evolution after the
quench. Section 6 contains the conclusions.

2 Model

We consider an interacting 1D channel of spinless fermions with short-range repulsive interac-
tions. At times t < 0, they are governed by the Hamiltonian (in all the paper we setfi = kg = 1)

+0o

H =v Z ﬁrJ dx YT () (—id ), (x) + H™, 1)
r=R,L —0o0

with v the Fermi velocity, ¢,(x) the fermion field of the r-channel (r = L/R for left-/right-

branches), and g, = +/—. The interaction term is given by

_ g_(4) +00 +00
HEM =20 J dx [0, ()" + gE”J dx np(x)ny (x), @
2 r J—00 [ore)

where n,.(x) =: I,L’i(x)lpr(x) : is the particle density on the r-channel and gi(z), gi(4) are the
coupling strengths of the intra- and inter-channel interactions, respectively [27,28]. For sim-

@ = ¢® = g,. This fact has

no relevant consequence, as the more general case gl@) # gl@ leads to the same qualitative
results discussed here.

The non-interacting part of H; can be written in terms of free bosonic fields ¢, (x), related to
the fermionic field operator by the bosonization identity [27, 28]

plicity, hereafter we will consider the Galilean invariant case g

1 . )
ll)r(x) = z_e—lm¢r(x) en?,qFx , (3)
Vv 4aTta
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where gy is the Fermi wave vector and a is the usual short-length cut-off properly introduced
in bosonization techniques [28]. Here, we have safely omitted Klein factors. Different reg-
ularisation schemes are possible and have been considered in the literature, see for example
the constructive bosonization approach described in [58,59]. The Hamiltonian in Eq. (1) can
then be diagonalised introducing new bosonic operators ¢; . (x), connected to ¢,.(x) by the
canonical transformation

$:(x) =D Byg, ¢1,(x), @
n==+
) . . _p1/2 )2
with the Bogoliubov coefficients 2B, =K, '~ £+K;,’” and
1
K; = , (5)
' 1+ &

a parameter encoding the repulsive interaction strength, with 0 < K; < 1 and K; = 1 for
non-interacting fermions. The Hamiltonian H; then reads

+00
Vl' 2
Hi:E;J_OO dx [8,¢:, ()], 6)

where v; = v/K; is the renormalised propagation velocity of the collective excitations described
by the chiral fields
$in(x, 1) = ¢ n(x —mv;t,0) (t <0). (7)
For t < 0 the channel is prepared in a thermal state described by the equilibrium density matrix
Peq = Z71e H/T where Z = Tr{e "i/T} is the partition function.
At t = 0, the bath is disconnected and the interaction strength is suddenly quenched
g — & (K; = K§), resulting in a sudden switch of the Hamiltonian H; — Hy with

vf +0o0 )
Hy = ?;f_m dx [B,f, ()] . (8)

Here, v = v/K; and Ky = [1 +(g¢/ m/):|_1/2 describes the interaction strength in the post-
quench state. Note that also these fields obey chiral properties,

qbf,'q(x: t) = ¢f;r](x —Nvy t, O) (t > 0)5 (9)
and they are connected to ¢; ,(x, t) by the canonical transformation [44,51]
=30 ith 6, =2\ 1+ve
B, 6) = ; i 0, with 0=\ 2 Ve, (10)
with K
e=—, (1D
Ky

and to the free bosonic fields by

. 1 1
qsr(x,t):;Anﬁr(pm(x, 0 with Ar=7 |4 Kt VK | - (12)

Note that the non-quenched case (K; = Kj) is represented by 6_ = 0, 6, = 1 and
A, = B.. Finally, the different Bogoliubov coefficients are related among themselves via
B:{: =A:|:9+ +A:F9_.
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3 Fermionic and bosonic correlation functions

In the following we will discuss the local lesser fermionic Green function of the 1D channel
< N — oty 7 _ i ivV2nd.(2,0) ,—ivV2md,(2,t)
G 6D =i (W] Dy, (=), = 5 (e e ) (13)

at the generic position z. Here, the brackets (...),, denotes a quantum average performed
on the initial thermal density matrix p., and the last bosonic expression is obtained using
the identity of Eq. (3). The first step to evaluate the Green function is to compute the time
evolution of the free bosonic fields ¢,.(z, t). It crucially depends on whether the operators are
evaluated before or after the quench. Indeed, using Egs. (4) and (12) one can write

Aﬁr¢f,+(z_vft70)+A—17r¢f,—(z+vft’o) t>0

) (14)
By ¢; +(z—v;t,0)+B_y ¢; _(z+;t,0) t<0

¢,(2,t) = {
having exploited the proper chirality properties of Eq. (7) and Eq. (9).

Note that, since space translational invariance is not broken by the quench protocol, the
Green function will not depend on the generic position z. On the other hand, it will feature
four different time regimes, depending on the sign of ¢t and t, due to the breaking of time
translational invariance. One can thus write

Gf(t, t) = V(=t)F(—t)9"(¢t,t) + () (—t)9"" (¢, 1)
+O(—t)0(t)9 P (¢, t) + F(t)F(E)9PP(¢t, 1), (15)
where 9(t) is the unit step function. If both time arguments are negative (n), the Green func-

tion is not affected by the subsequent quench and it thus reduces to the standard equilibrium
result

gm(t,F) = ﬁ exp[2n (B2 +B2) %, (v(t—D)]  (,E<0). (16)
Here, we have introduced the equal time bosonic correlator
(€+(x) = <¢i,+(x> O)¢i,+(0: 0)>eq - ( i2,+(07 O))eq: (17)

whose expectation value on the initial thermal state is [28]

+—In

(18)
I(1+ Tw; )2 21

2
1 (14 Tw ' —iTxv 1) 1 1
6. (x) = 2—1n | - ' | (ﬁ)’
Vi —ixa~

with I'(z) the Euler Gamma function and w; = v;a™! a cut-off frequency. From now on, we
will safely set a ™ = gp. It is worth to notice that ¢™"(t, t) depends only on the time difference
T =t—t. By contrast, if t > 0 and t < 0 one has

YPn(t,t) = ﬁ exp [27‘5 0,(BjA, +B_A_) G, (vi(t —t) + (v —v;)t)
+2m6_(B4A_+B_A}) 6, (vi(t — ) —(vf +v;)t) (19)
+2MALA_0,0_(6.(2v5 1) + G (—2v41)) .

The opposite regime (t < 0, t > 0) can be easily obtained by exploiting
(glflp(t3 E) = _(gfn(f, t)*-
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Finally, the fourth regime, when both t and t are positive, is the most interesting one and
can be expressed as

GPP(t,F) = 2; exp[2m 62(A2 +A2) 6, (—v; (¢ — D)) + 27 62(A2 +A%) 6, (v (¢t — D))
na
+ 27tA_A+9+9_(<€+(vf(t +t))+ <€+(—vf(t +1t))) (20)
—2mA_AL0,0_(,(vit) + Co(—vt) + C(2v, D) + G (—2v,D) |-
Indeed, as we will see, it is the only one responsible for the presence of the universal features
which characterise the post-quench relaxation dynamics. Moreover, it is the only one control-
ling the transport properties after the quench. It is therefore worth to analyse it in details,
highlighting the physical origin of its peculiar quench-induced features. To this end, it is use-

ful to rewrite it in terms of correlation functions between the final chiral bosonic fields. This
reads

oL 2 z 2
‘grPP(t,t)—%exp{ﬂ[AﬁrDJr’Jr(t,t—t)+A_ﬁrD_’_(t,t t)+2A,A D, _(t, t— )]} 2D
with

Dop(t,7) = 2(¢s4(0,t—7)sp(0,6))eq—(Pfa(0,t —T)Pf (0, —T))eq
_<¢f,a(01 t)¢f,ﬁ(oy t))eq' (22)

Here a, 8 = + and the time difference should satisfy 7 =t — t < t. Exploiting the chirality of
the fields as well as Egs. (10) and (18), these correlation functions can be decomposed as

Dy, p(t,7) = DA (t, 7) + AD, p(t, 7), (23)

with D(O) (t, 7) the zero-temperature contribution and AD, 4(t, T) corrections due to the finite-
temperature of the initial state. In particular, one obtains

pO(t,7) = — 2
aa(t:7) Z s log 1—l’f)a)f’l,' @9
9f+93 |1“(1+Tcol._1 +iTet)|?
AD, (t,T) = log — , (25)
’ T r2(1+Tw;")
0.6 [14402(t—1)*](1+4w2t?)
D(O) J[t,7) = —T—log ! 5 ! , (26)
21 [1+wf(2t—’r)2]2
20,6 F(14 Tw ' —iTe(2t —1))?
AD, _,(t,7) = ———log _|1 — |_1 ; , (27)
’ T IT(1+ Tw;" +2iTe(t —7))|IT(1+ Tw; " +2iTet)|

with € defined in Eq. (11). As a general feature, we note that auto-correlators (a = f3) only
depend on 7 and not on t. In contrast, cross-correlators (a = —f3) feature a full dependence
on both t and 7. A direct comparison between the quenched and the non-quenched cases
turns out to be particularly useful. In the latter one has _ = 0 and cross-correlators vanish,
ie.

O (6,T)=AD, ,(t,7)=0 ifK;=K;. (28)
This is a consequence of the fact that chiral fields ¢ ,(x, t) are completely decoupled from

each other in the Hamiltonian H¢. Conversely, we observe that a quantum quench always
leads to finite cross-correlations, see Egs. (26) and (27).
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Figure 1: (a) Plot of #IADQ’_a(t,T)I as a function of time t for different temperatures:
T =10"* (red), T = 1073 (green), T = 1072 (yellow), T = 107! (blue). (b) Plot of the full
cross-correlator r’%_lDa’_a(t, 7)| as a function of time t for different temperatures: T = 10™*
(red), T = 1073 (green), T = 1072 (yellow), T = 10! (blue). Here, T = 10, K; = 0.9,

K¢ = 0.6, time units w fl and temperature units w;.

To study the relaxation dynamics it is useful to derive asymptotic expressions for

D, _,(t,7). For the zero-temperature contribution of D((fla(t, 7) the relevant time scale is
7 and for t > 7 one finds via [45]

6 9_ 2 3
D@ (t,7)=— = (th) +o(%) . (29)

Inspecting the temperature-dependent term AD, _,(t,7), an additional time scale (eT)7!
emerges and two different regimes of the gamma functions, present in Eq. (27), have to be
considered

27‘C(T€t)1+2Twi_1€_nT€t £> (GT)_l
21+ T H[1-(Tet)’I(1, 1+ Tw )] t<(eT)Y’

(30)
where T'(n, ) is the n-th order polygamma function. Inserting Eq. (30) in the expression for
AD, _,(t,7) of Eq. (27) and considering the reasonable temperature regime T < w;, one
obtains the leading terms

|F(1 + Ta)l._1 + iTet)|2 R {

AD, _,(t,T)~ 31

0,6 {Z(TGT)ZF(1,1+Twl._1) Tt (eT)!
T

(1+2Tw ) (£) T<(eT) <t

The validity of this asymptotic expansion is confirmed in Fig. 1(a), where we have numerically
evaluated AD, _,(t,7) as a function of time t for different temperatures and at fixed 7. At
short time t < (eT)™! the thermal component of the cross-correlator saturates to a time-
independent value, while a power law decay o< t 2 is evident for t > (¢T)™!, in accordance
with Eq. (31).

Combining Egs. (29) and (31) we obtain the asymptotic expression for the full cross-
correlator

Dy _4(t,7)~

0.6 {2(T€T)2 M(L1+To N~ (£)" r<t<(en)™ 32

2 .
2Tw ! (5) T (eT) I < t
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As one can see there are two different regimes, both featuring a power-law decay o< t 2
but with different prefactors. For long time t > (eT)™! the cross-correlator is positive and
proportional to the temperature. By contrast, when finite temperature effects have not yet
kicked in, i.e. at shorter time t < (eT)™!, the prefactor of the t~2 power-law decay has a
negative prefactor and is temperature-independent. This behaviour emerges clearly in Fig.
1(b) where we plotted |D,, _,(t, 7)| for fixed 7. The transition between the two regimes spans
an order of magnitude.

4 Non-equilibrium spectral function

To fully characterise the effects of the quench, we now focus on the local (lesser) non-
equilibrium spectral function. This is a key quantity to inspect the presence of universal fea-
tures in the relaxation dynamics and where the role of finite temperature plays a non-trivial
role. Moreover, it is a important ingredient to evaluate transport properties. The local non-
equilibrium spectral function is defined as [48]

. oo
AS(w,t) = _—lf e T G(t,t —1)dT. (33)
27 r

—0Q

Our task is to investigate its time evolution after the quench, i.e. for t > 0. Since the in-
tegration range over T extends to +00, the calculation of the above expression requires to
distinguish between two different regimes of the Green function:

AT (w,t) = FPP(w, )+ AP (w, 1)

. t . oo
—L iwT —1 iwT n (34)
=— eGP (¢t t—1)dT+ — ' T @l (t t—1)dT.
21 ) _ o r 2m ), r
Equation (34) is exact and suitable for numerical investigation, using Egs. (19,20).
This quantity admits a finite steady state A, (w) = lim,_,, A~ (w, t) given by
—l + 00
A (w)= —f e'®” lim 9PP(t,t—1)dt
21 | t—oo T
_ a? °°el.m ( 1 )( 1 ) IT(1+ Tw ' +iTe)|? ”*”*dT
(2m)2 )_, 1—iwsT 1+iwet r2(1+ Tw;?t) ’
(35)
with
vy = 02(A2 +A%). (36)

It is instructive to derive some helpful analytical expansions. In particular, we can observe
that the integrand e!“* ¢¥*P(t,t — 1) contributes to .#"?(w, t) only in two distinct regions:
near T ~ 0, where the Green function approaches its poles - see Egs.(20,24) - and close to the
boundary of the integration domain 7 ~ t. As a consequence, in the long-time limit t > ™!
one has [45]

PP (w,t) ~ szr(l)(w, t)+ .,(27,,(2)((1), t), (37)

the former term stemming from an expansion of the integrand for T — 0 and the latter from
an expansion for T — t. In particular, using Eq. (31), one finds

92A 3
A (w, 1) =A,(w)—x(t)y %(”)Jro(%) , (38)
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Figure 2: Plot of real (left panel) and imaginary (right panel) part of
0A (w,t) = AT (w,t) — A.(w) (units vf_l) as a function of time for different tempera-
tures: T = 107! (orange), T = 1072 (blue), T =0 (green). Black lines show a power-law
decay o< t* (left panel) and o< ¢t~ (right panel). Here w = 0.1wy, K; = 0.9, K; = 0.6, time
units cojjl and temperature units w;. We have included the zero temperature case (green
curve) to underline the difference with the finite temperature case.

where

-1 t < (eT)™ !
t)= 2 d =—A _9 9_. 39
K(8) {Tw;l t>(eT)! an v +A-0s (39)

Considering Jzir(z)(co, t), it is useful to introduce z = t — T and expand the integrand retaining
only the leading term in z/t. The result reads

. -1 . 4y -1 2(v, +v_—4y)
) et |1“(1+Tw. +21Tet)~ |F(1+Tco. +1Tet)|
AP (w,t) = i (wft)w+vf—2yl f(T,w), (40)
with
1 °0 IP(1 + Too]! +2iTez)|* '
171 2(ve+v) —i i
T,w)= ———|[T(1+ Tw;* * dz e71@%
Se) (2m)>47 [x¢ Rl fo 1+4wsz?
(41)
Using Eq. (30), two asymptotic regimes can be identified
" wi [[T2A+To )] (wpt)E £ < (eT)™!
AP, 0) % f(T, @) et | :
a |2%2mn)* |:w—ft] exp[—2nTet(v,+v_)] t>(eT)!
(42)
with
E=v, +v_—2v. (43)

a non-universal exponent encoding the strength of the interaction quench which, for reason-
able values of the interaction quench, can take values [45] 1 < & < 2. The first regime, which
is present as long as t < (eT)™!, is a typical interaction-dependent power law. On the other
hand, for t > (eT) ™}, a fast exponential decay appears which basically kills szr(z)(w, t) in the
long-time limit.

The same arguments can be used to derive the asymptotic behaviour of ./’ (w, t) present
in Eq. (34). In this case, the integrand contributes only for 7 ~ t and © ~ t(v; + vf)vi_l. The
final expression reads

AP (w,t) = D(w, )+ 9D (w,1), (44)
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where the contribution stemming from the expansion for T — t is

eia)t V- (wf t)—i

Vve[T(1 + Tew;1)]28(27)2

3w, ) ~

272 T(1+ TwH)* t < (eT)™?
: (45)
(Tet)(1+2Twi_1)£ (zn)5—2y22yTwi_le—ﬁTet£ > (ET)_1 ’
while the one for T — t(v; + v¢ )vi_1 is
ot(142
427(4)((,0 . lwt(“’ v )(_i)v_—2y j(w)a ™
ro (2m)2[T(1 + Tw; 1)]% Qwyt) -
[(14 Tw )24 t < (eT)™!
X ! o . (46)
[27‘E(T€t)(l+T°)i )](v_—2)f) e—nTet(v_—Z)f) > (ET)_1
In the latter equation we have introduced the function
[e3s} 1 V=27 )
j(w)= f dz e'®* (T) [T+ Tw; +iTex)|™ . (47)
oo lwsz

As one can see, ./ (w, t) qualitatively behaves like ,efr(z)(w, t): at long times t > (eT)! it
becomes negligibly small due to the presence of a fast non-universal exponential decay induced
by the finite temperature.

In the end, the transient dynamics of the non-equilibrium spectral function is dominated

by

(wpt)™® t < (eT)™

_ , 48
—t2 yTwi_lajAr(w) t>(eT)™! (48)

5A (w,t) =AT (w, 1) —A(w) ~ {

where &, given in Eq. (43), attains values 1 < £ < 2 for reasonable quenches.

At short times (t < (eT)™') a non-universal power law behaviour with exponent & is
present and could dominate the relaxation dynamics, masking the universal features. For suf-
ficiently long times t >> (e T) ™! the situation changes and the non-equilibrium spectral function
presents a very clear t 2 decay, directly linked to the interaction quench. This is an interest-
ing feature, since in a standard equilibrium case (non-quenched system) one would expect a
exponential behaviour for fermionic correlation functions at finite temperature. It is also in
contrast with the zero temperature case discussed in Ref. [45] and shown with green curves
in Fig. 2 for reference. At T = 0, indeed, the non-equilibrium spectral function always shows
non-universal power laws o< t~¢, masking the o< t~2 behaviour. On the contrary, the initial
preparation in a thermal state allows to identify of oc t~2 features in the relaxation dynamics:
provided that t > (eT) ™! this universal power-law decay, a fingerprint of the quench-induced
entanglement, remarkably emerges in the non-equilibrium spectral function at long enough
times.

All features described so far can be seen in Fig. 2, where the real and the imaginary part
of the transient spectral function 6A,(w,t) are evaluated numerically as a function of t for
different temperatures. Notice that we have also inserted the zero temperature case (green
line) to better clarify the differences at finite temperature. The universal decay o< t~2 clearly
emerges in the real part once the exponential decay of the non-universal contributions sets
in, around t ~ 5(eT)™!. A similar behaviour is observed looking at the imaginary part of
the non-equilibrium spectral function even if, in this case, the power-law decay is faster and
o< t73,
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5 Transport properties

In this section we focus on a possible setup to observe the intrinsic features present in the
fermionic spectral function induced by the quantum quench. To this end we focus on the
relaxation dynamics of the average current injected into the channel from a weakly tunnel-
coupled 1D non-interacting probe. It is worth to underline that the probe is a tool to inspect
the intrinsic properties of the fermionic channel out-of-equilibrium and, thus, it is supposed
to be as non-invasive as possible. A perturbative approach in the weak tunnel coupling is
therefore fully justified in evaluating the related transport properties [61].} Fermions of the
probe are described by the Hamiltonian

+00
H, :—ivf dx yT(x)3, x(x), (49)
—00
with y (x) the fermionic field. The probe is initially (¢t < 0) prepared in equilibrium at a given
temperature T}, (not necessarily equal to T) with associated density matrix pgg) =e /Ty Z,
with Z, = Tr[e™»/T»]. 1t is also subjected to a bias voltage V taken with respect to the Fermi
level of the channel.

A localised injection at x = X, is switched on at t = 0% — immediately after the quench —

and is described by the tunneling Hamiltonian [44,45,63-65]
H () =9(A D, ¥l(x)x(xo) +He., (50)

r=L,R

with A the tunneling amplitude and 3(t) the step function. We note that after the tunneling
process both the channel and the probe will evolve dynamically and can be considered as a
closed system. We are interested into the total injected current I(V,t) = I (V,t) + I_(V, t),

where
+ 00

I,(V,t) =3, J dx (5, (x, 1)) (51)

—00
is the chiral current associated to the © channel, with g the fermion charge. Here,
(6n,(x, t)) = Tr{n, (x, P oc (t) — Proc (0)1}, (52)
where p,¢(0) = peq ® pg;) and its time evolution is computed in the interaction picture with
respect to H,. The chiral particle density reads

K
f
n,(x,t) =-—n\ 53x¢f,n(x—nvf t). (53)
At the lowest order in the tunneling amplitude, the total current can be written as [45]

t

I(V,t) = 2q|A|*Re if dr ZGf(t,t—T) G;(T)sin(qVT) , (54)
0 r=L,R

where Gr<(t, t — 1) is the lesser Green function of the fermionic channel defined in Eq. (13)
and

2
_1 .
.F(1+prp +lTpT)’ 1

G (t)=— 55
P() 2ma F2(1—|—pr;1) 1-iw,T (55)

Indeed, a weak and point-like tunneling between the probe and the 1D channel does not affect the latter [61].
Note that a perturbative approach would be justified also for more generic tunnel couplings as long as they are
weak enough and there is a finite energy scale set by finite (effective) temperature and bias [49, 61, 62].
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is the greater Green function of the probe with w, = v/a the associated energy cut-off. Recall-

. . 400 _:
ing that the lesser Green function can be expressed as G~(t,t —7) = |___ e '“"AS(w,t)dw
by Fourier transform, one immediately recognise the direct link with the non-equilibrium
spectral function of the channel discussed in the previous Section.

Plugging Eq. (21), with D, g(t, 7) given in Eqgs. (24-27), and Eq. (55) into Eq. (54) one
can eventually write the total current as

2
_1 .
4q|2|2 t ‘F(1+Tpco +1Tpfr)’ 1
I(V,t)ZLRe Jd P
0

(2ma)? r2(1+ prljl) 1-iw,T
9 vitv_
IT(1+ Tw; ! +iTer)| [ 1 ][ 1 ]
X
2(1+ Tew? l—iweT l1+iweT
(1+ 40} (t =121 + 4w} t?) -
(1+ coj%(Zt —1)2)2

IP(1 + Tw ' —iTe(2t — )|
IT(1+ T +2iTe(t —1)| [T + Tw ! +2iTet)|

isin(gVt) ¢,

where v, and y are defined in Egs. (36) and (39), respectively. Equation (56) contains both
the initial temperatures of the probe T, and of the channel T.

Useful analytical expansions in the long-time limit can be obtained following the same
procedure described in the previous Section. In particular, in the long-time limit the current
decomposes into two terms

1V, ) ~ IO, ) + 1PV, 1), (57)

the former stemming from an expansion of the integrand for T — 0 and the latter from an
expansion for T — t [45]. I(D(V, t) is responsible for the universal features and reads

D, e)=1(v)- tlﬁ(v, t), (58)

where
FV,0) = K(t)qlzavzf(vx (59)

with k(t) given in Eq. (39). The steady-state current is

_ |2 ‘ 1 1 - 1 v
fovy= 2 e I e — : :
(2ma)? 0 l—iw,7 \1—iwsT I+iwst

P+ Ty, " +iT, D) [P + Tow; ! +iTen) 2 (@7)
L S1N! T .
[2(1+ Tyo, 1) r2(1+ Tw ) !

Looking at the term I®(V, t), it is useful to introduce z = t — 7 and expand the integrand of
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Eq. (56), retaining only the leading term in z/t. One thus obtains

—2y vi+v_
_ 1 4 1, 2
1Dy, ¢) = ®(V, 1) 272 |I‘(1+Tcoi —lTet)| {l"(l-i—Tcol. +1Tet)|
(wpOF =20 | Ip(1 4 To? ! +2iTet)|” (14 Ter)
2
’1“(1 + pr;1 + iTpt)‘
, (60
r2(1+ prljl) (60)
where
_4g| 22 T P14+ Tw; ' +2iTez)|*
s(v,0)= —HA [Em - v_)] dz L sin[qV(t —2)] (61)
(2ma)?Ky 2 0 [1+ (wazz)]Y

is an oscillating function of time with period o< (qV)™!. Exploiting the asymptotic expression
for the gamma functions in Eq. (30), one finds

[2r(1 + T )] (wpt) t<(eT) LT, (62a)
[2r(1 + Tcol._l)]_zy 0p(Ty, t) () e Tl <t < (eT)™ (62b)

@(T, t) (wy )t Tet(vtr) (eT) 'kt TP_1 (620)
PT,0) 9Ty 0 (o) 57 O (LT € (624)

1D, ) ~ 8V, t)

Here,

—2 -1
p(Tpt) =20 [T(1+ Ty )| (T,0) 20, (63)
O(T,0) = (2m)F 29797 [T2(1+ T )] 7" (Ter)F0+2Te) (64)

are power-law corrections to the exponential decays in time. As one can see I®®)(V, t) contains
all the non-universal contributions.

To discuss the analytical results obtained so far, we begin by recalling the T = T, — 0
limit. In this case Eq. (58) with x(t) = —1/2 and Eq. (62a) contribute to I(V, t): the current
decay shows then a competition between the t 2 power law and a non-universal power law
o< t7571. Since for reasonable quenches £ + 1 2 2, the two power laws are similar: although
the universal decay is leading, distinguishing its contribution in I(V,t) can be cumbersome.
Let us now consider the case of a thermal preparation for the channel and the probe starting
with the case T = T, > 0, considering quenches which increase the interaction strength, i.e.
Ky <K; (implying € > 1). Here, two different time regimes must be distinguished:

e For t < (eT)™!, the same competition between the universal o< t~2 and the non-
universal o< t=~! power laws as in the T = 0 case is present;

e Fort>> (eT)™',Eq. (58) withx(t) = Tw; ! and Eq. (62¢) (for t < Tp_l) or Eq. (62d) (for
t> Tp_ 1y contribute to the current. In both cases, the non-universal power law is now
exponentially suppressed and the decay of I(V, t) is entirely dominated by a universal
power law t~2 with a prefactor o< T.

Thus we can conclude that a thermal preparation with a common temperature T for the system
strongly enhances the visibility of the universal decay, setting a time scale (e T)~! beyond which
the latter becomes the only relevant contribution to I(V, t).

The situation is even better if the case T, > €T > 0 is considered. Now, three regimes arise
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1074f

S1(v.1)

10 t 104

Figure 3: Solid lines show |5I(V, t)| (units 4q|A|? w;la_z) as a function of time in a quenched
channel with K; = 0.9 and K; = 0.6. Crosses show |61(V, t)| in a non-quenched channel with
K; = Ky = 0.6. Different colors refer to different temperatures T = T,: T = 107! (blue),
T = 1072 (orange), T = 1072 (green). The inset displays |5I(V, t)| in the absence of quench
with K; = Ky = 0.6 and T = 1072 on a logarithmic plot. The black dashed line shows an
exponential decay o< exp[—nTet(1+ v, + v_)]. Here qV = 0.1wy, time is in units w7, and
temperature in units w;.

e For t < T 1 both the universal o< t~2 and the non-universal oc t=5~! power laws
compete;

e For Tp_1 < t < (eT)™}, Eq. (58) with k(t) = —1/2 and Eq. (62b) characterise I(V, t):
the non-universal power law is exponentially suppressed and I(V, t) decays universally
o< t72

e Fort>> (eT)™}, Eq. (58) with k(t) = Ta)l._1 and Eq. (62d) must be considered for I(V, t):
the non-universal power law is still exponentially suppressed and the decay of I(V, t) is
still led by the universal decay with a prefactor o< T.

Thus, by suitably choosing a larger temperature T, for the initial preparation of the probe
with respect to the initial temperature T of the channel, the universal power law is the only
leading term beyond the time scale T_ ! and two regimes with universal decay but different
prefactors are now visible (see the last two points above).

We close this discussion by commenting the non quenched case (y = 0, ¢ = 1) with
T, > €T > 0: without quench the universal power is not present - see Eq. (58). For t < Tp_1

the non-universal power law o< t =571 is found, while for t > T, ! the current decays expo-
nentially as normally expected. Thus, the presence of a universal decay is a unique fingerprint
of the quantum quench, stable even in the case of a preparation at a finite temperature.

All these features are confirmed by the numerical evaluation of Eq. (56). In Fig. 3 (main
panel) the quantity |SI(V, t)| = |I(V, t)—1I(V)| is plotted as a function of t, on a bi-logarithmic
scale, for different initial temperatures of the whole setup, with T = T,. The two regimes
t < (eT) ! and t > (eT)! are clearly visible: the former features oscillations as a result
of the strong competition between the universal power-law decay and the non-universal one
which, for the quench considered here, has a non-universal exponent ~ —2.3. By contrast,
the latter regime shows a very clean decay o< t 2, resulting from the exponential suppression
of the non-universal oscillating terms. The crosses in Fig. 3 (main panel) show |§I(V,t)| in
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Figure 4: (a) Density plot of | Z (V, T)| (units 4qy|A|? w;ga_z) as a function of the bias voltage
gV (units w¢) and the temperature T (units wp). (b) Plot of the transient current |61(V,t)|
(units 4q|A| w;la_z) as a function of time, for temperature T = T, = 103 w; and for two
different bias voltage: gV = 0.1wf (solid line) and qV = 0.004w; (dotted line). In both
Panels, the quench is from K; = 0.9 to Ky = 0.6.

the non-quenched case with K; = K;: the fast exponential decay for t > (eT)™ ! is evident
(note that, to improve the readability of the Figure, the data sampling rate is kept very low).
A more detailed plot of the non-quenched current is shown with a logarithmic scale in the
Inset, where the oscillations of the non-universal decay can be clearly seen enveloped by an
exponential decay, which is in good agreement with Egs. (62¢,62d) - see the dashed black line.

The t > (eT)™! regime is the most interesting one in order to assess the different time
evolution of quenched and non-quenched channels at finite temperature with T = T,. It is
therefore worth to discuss how the prefactor & (V, T) of the universal power law, introduced
in Egs. (58) and (60), depends on the temperature T and on the bias V in this regime. In
Fig. 4(a), we plot |Z(V, T)| focusing on a reasonable range of the parameters. Interestingly,
this function turns out to be non-monotonic with respect to both T and V. This fact leads to
a non-trivial feature: considering temperatures lower than 10™2w;, a decrease of the voltage
bias can actually determine an increase by orders of magnitude of the prefactor |Z(V, T)|. As
an example of this behaviour, in Fig. 4(b) we plotted the current |51(V, t)| as a function of time
for two different voltage biases but with the same temperature T = 10~ 3¢;. Inthe t > (eT)™!
regime, the dotted line (qV = 0.004w() lies more than one order of magnitude above the solid
one (qV = 0.1wy). Therefore, a proper tuning of the voltage bias can be useful to magnify
and to detect the peculiar features induced by the presence of the quantum quench.

In Fig. (5), we show [6I(V,t)| for the case T, > €T > 0. The two regimes
Tp_l < t < (eT) ! with |81(V,t)| o< 1/(2t2) and t > (eT)™! with |6I(V,t)| oc T /(w;t?)
are clearly evident, as well as the different prefactors that characterise them. This confirms
that preparing the probe in a state with a higher temperature strongly enhances the visibility
of the universal decay of the current.

6 Conclusions
We have investigated the relaxation dynamics of a 1D channel of spinless interacting fermions,

initially prepared in a thermal state at T > 0, subject to a sudden quench of the interaction
strength. The channel is modeled as a Luttinger liquid. The out-of-equilibrium fermionic spec-
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Figure 5: Plot of |61(V,t)| (units 4q|A|? w;la_z) as a function of time with K; = 0.9 and

Ky = 0.6. The temperatures of the channel and of the probe are T = 2 - 10~*w; and
T, =2-10"'w;, respectively. The black lines shows decays o< t—2. Here qV = 0.1w¢, time is

in units coj:l.

tral function is analytically evaluated and studied in details. One of the main results is that it
shows a universal t 2 decay towards the steady state in presence of finite temperature, showing
the peculiar role associated to the quantum quench and its link with universal power-law de-
cay. Indeed, at finite temperature, non-universal factors acquire an exponential decay, greatly
enhancing the visibility of the decay t 2 in the long time limit. This is in sharp contrast with
the expectation in absence of an interaction quench, where fermionic correlation functions
would acquire an exponential behaviour due to the presence of a finite temperature. These
features are also reflected in observable quantities such as charge current. In particular, we
have analysed the charge current flowing to the channel from a locally tunnel-coupled biased
probe, prepared before the quench in a thermal state with a temperature T,,. A weak tunneling
is switched on immediately after an interaction quench, and the evolution of the closed sys-
tem composed by channel and probe is analysed to lowest order in the tunneling amplitude.
The current decays towards its steady value with the same universal power law o< t~2 which
characterises the universal relaxation of the non-equilibrium spectral function. Not only the
persistence of this universal decay confirms the robustness of the results previously obtained
in the T — 0 limit [45], but finite temperature can be a tool to enhance the visibility of this
universal scaling induced by the quench. Finally we have shown that, by acting on the initial
temperature of a tunnel-coupled probe, the visibility of the o< t 2 decay can be enhanced even
further.

For a typical channel of cold atoms [4], one can estimate temperatures of about
T ~ 100 nK, for which the thermal time-scale is about T~' ~ 500 us. Typical experiments
in such a system can explore time domains well in excess of the hundred of ms, so it seems
feasible, at least in principle, to observe the striking differences between quenched and non-
quenched systems in the presence of thermal effects.
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