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Abstract

Periodically driven, or Floquet, disordered quantum systems have generated many un-
expected discoveries of late, such as the anomalous Floquet Anderson insulator and the
discrete time crystal. Here, we report the emergence of an entire band of multifractal
wavefunctions in a periodically driven chain of non-interacting particles subject to spa-
tially quasiperiodic disorder. Remarkably, this multifractality is robust in that it does
not require any fine-tuning of the model parameters, which sets it apart from the known
multifractality of critical wavefunctions. The multifractality arises as the periodic drive
hybridises the localised and delocalised sectors of the undriven spectrum. We account
for this phenomenon in a simple random matrix based theory. Finally, we discuss dynam-
ical signatures of the multifractal states, which should betray their presence in cold atom
experiments. Such a simple yet robust realisation of multifractality could advance this
so far elusive phenomenon towards applications, such as the proposed disorder-induced
enhancement of a superfluid transition.
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1 Introduction

Multifractal wavefunctions are beautifully complex states, extended yet non-ergodic, compris-
ing both rare high peaks and long polynomial tails of wavefunction amplitudes. The physics
of multifractality is commonly associated with critical wavefunctions at Anderson localisation-
delocalisation and quantum Hall plateau transitions [1–3]. Multifractality also appears in
hierarchical and infinite-dimensional systems like random regular graphs, Bethe lattices, and
more generally in fully connected random matrix ensembles and network models [4–12]. The
presence of long-ranged physics diagnosed via correlation and localisation lengths unifies these
two contexts. Hence, realising multifractality in an inherently short-ranged system, specifically
systems with short-ranged hoppings and interactions unlike those for example, represented by
power law banded or infinite ranged random matrices [5,9], without fine-tuning to criticality
poses not only an interesting and important theoretical challenge but is also desirable for a
robust experimental realisation of multifractality and consequent applications.

We find that multifractality in a short-ranged system requires only relatively simple ingredi-
ents, namely a time-periodic modulation of a spatially-quasiperiodic system possessing a single
particle mobility edge. Periodically driven systems, also known as, Floquet systems [13] have
witnessed much interest recently with significant advances [14] in the understanding of their
statistical mechanics [15–17] and phase structures [18] and in their experimental realisations
with cold atoms [19]. Technically, the eigenfunctions of the Floquet unitary time-evolution
operator over one period, U , encode the full information about the stroboscopic dynamics of
the system, much like the eigenfunctions of the Hamiltonian of a static system [14]. At the
same time, it has also been realised that single particle mobility edges occur naturally in sim-
ple incommensurate bichromatic potentials [20, 21]. At the level of one-dimensional lattice
systems, this is related to the single particle mobility edges that generally exist in deformations
of the Aubry-André model [22–28].

The central finding of this work is that, when the periodic drive hybridises the localised and
delocalised states on either side of a mobility edge in a one-dimensional system with quasiperi-
odic potential, it gives rise to a band of multifractal eigenstates of the corresponding Floquet
operator U . Remarkably, this multifractality exists in a finite range of parameters and thence
requires no fine-tuning, while the states nonetheless show anomalous algebraic multifractal
correlations similar–in some but not all–respects to the critical ones [29–33]. We present an
effective random matrix Hamiltonian, which captures the numerically obtained multifractality
remarkably well, bearing a family resemblance to the Rosenzweig-Porter random matrix en-
semble [34], generalisations of which are known to host multifractal eigenstates [9,11,35–40].
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Figure 1: Schematic of the coupling between localised and delocalised states via the periodic
drive. (a) The energy spectrum of the undriven Hamiltonian (1), where the colour shows the
scaling of the inverse participation ratio with system size, with green corresponding to the
delocalised states (∼ L−1) and blue, localised states (∼ L0). The red line denotes the mobility
edge. (b) The energy levels corresponding to V0 (denoted by the black dashed line in (a))
where a periodic drive with frequency Ω chosen to be slightly smaller than the bandwidth
couples the delocalised and localised states approximately within the gray shaded windows.

2 Model and numerical results

Our starting point is a variant of the one-dimensional Aubry-André Hamiltonian

H =
∑

x

�

J(ĉ†
x ĉx+1 + h.c.) + V v(x)ĉ†

x ĉx

�

. (1)

It comprises a simple nearest-neighbour hopping term alongside a potential

v(x) = cos(2πκx + θ )/[1−µ cos(2πκx + θ )], (2)

quasiperiodic on account of its incommensurate wavevector, which we set to the golden
mean, κ = (

p
5 + 1)/2. The model exhibits a mobility edge [28] at an energy,

εME = 2sgn(V )(|J | − |V |/2)/µ as shown in Fig. 1(a). We set J = 1 and µ = −0.6 throughout.
Eigenstates with energies above and below εME are completely delocalised and exponentially
localised, respectively. In all numerical analysis, we average the data over various values of
the θ which is analogous to disorder averaging.

The system is driven by a time-periodic modulation of the amplitude of the quasiperiodic
potential in the form of a square wave with frequency Ω, mean V0, and amplitude ∆V . Such
a protocol allows for the exact computation of the Floquet eigenstates, denoted henceforth as
|φ〉 via numerical diagonalisation of the U which can be calculated relatively straightforwardly
as U = e−iH+π/Ωe−iH−π/Ω where H± denotes the Hamiltonian in the two steps of the square
wave.

A common diagnostic for localisation properties of wavefunctions is their inverse partic-
ipation ratio, IPR = I2 =

∑

x |φ(x)|
4 which scales with system size L as L−1(L0) for delo-

calised(localised) states in one dimension. The first signs of Floquet multifractality appear
in the scalings of IPRs of the Floquet eigenstates. As Ω is chosen to be slightly smaller the
bandwidth of the spectrum of the static Hamiltonian (1), with V = V0 (see Fig. 1), the drive
primarily couples states close to the top and bottom of the undriven spectrum, leaving largely
unaffected all the localised and delocalised states in between. These latter two, together with
our newly discovered multifractal states, are evident in Fig. 2(a)-(c), which now shows three
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Figure 2: Characterisation of Floquet multifractal states. (a)-(c) The inverse participation
ratio (IPR), shown for the Floquet eigenstates sorted in increasing order of I2, for different
system sizes L. The collapse of different segments of the data for different L, when the IPR is
scaled with (a)L0, (b)L1/2, and (c)L reflects the presence of localised, multifractal, delocalised
states, respectively. The data in red in (a) shows the IPRs of static eigenstates (for L = 8192)
for reference. (d) Averaging the moments over Floquet eigenstates in different windows high-
lighted by the vertical shaded regions in (b), τq is plotted as a function of q, where the colour
corresponds to the window. While the localised (blue) and delocalised (yellow) states show
the expected standard behaviour, the multifractal states (shades of green) have τq ≈ D(q−1)
at q ¦ 1 with D ' 1/2 (red dashed line). When averaged over all the multifractal states, the
IPRs scale as L−τ2 , where τ2 = 0.55 ± 0.04 close to D ' 1/2. The τqs are extracted as the
slope of a linear fit of log Iq versus log L. Representative fits are shown in Fig. 3. (e) The corre-
sponding spectrum of fractal dimensions, f (α) as function of α clearly shows the multifractal
states distinct from both localised and delocalised cases. The system parameters are V0 = 2J ,
∆V = J/2, and Ω= 2.74πJ , where the bandwidth of the undriven spectrum is ≈ 2.76πJ (see
Appendix B for effects of lower frequencies).

distinct scalings of the IPR. In disordered systems, since the energy spectrum varies across dis-
order realisations, labelling the Floquet eigenstates in increasing order of their IPRs as in Fig. 2
turns out to be rather convenient. However, we also study the quasienergy resolved IPRs by
appropriately binning the data (see Appendix A).

A more complete characterisation of multifractality is via a generalised IPR and its scaling
exponent τq,

Iq(φ) =
L
∑

x=1

|φ(x)|2q ∼ L−τq , (3)

where Dq = τq/(q−1) is known as the fractal dimension. For delocalised and localised states,
Dq = 1 and 0, respectively (for q > 0), whereas any other behaviour of Dq implies multifrac-
tality. Multifractality is thus evidenced in τq shown in Fig. 2(d), where the localised and delo-
calised states show their standard behaviour. The multifractal states on the other hand seem
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Figure 3: Extraction of τq . Linear fit of log Iq versus log L for representative delocalised (a)
and multifractal states (b). The circles show numerical data and the dashed lines show linear
fits. The exponents mentioned in the plot suggest that τq = q − 1 for the delocalised states
and τq ≈ D(q− 1) with D ' 1/2 for the multifractal states.

to have show a good agreement with τq ≈ D(q − 1) with the q-independent Dq = D ≈ 1/2,
although one must notice that there is a spread in the behaviour of τq across the window
of all multifractal states. When averaged over all the multifractal states, Dq turns out to be
0.55± 0.04 for q ¦ 1.

To extract τq shown in Fig. 2(d), we do a linear fit of log Iq versus log L for all values of q by
selecting states in the shaded windows shown in Fig. 2(b). In Fig. 3, we show some examples
of such fits for the delocalised and multifractal states for some representative values of q.

An equally fundamental measure of multifractality is the spectrum of fractal dimensions,
f (α), which is defined via: the number of sites in a lattice system with total L sites where the
wavefunction intensity |φ(x)|2 ∼ L−α scales as L f (α) [1]. f (α) is a rather powerful measure as
it formally contains the information of all the τqs via a Legendre transform, f (α) = q∗α−τq∗

where q∗ is the solution of α = dτq/dq. f (α) for the Floquet multifractal states is shown in
Fig. 2(e) which is strikingly distinct from that of a localised ( f (α) = limαmax→∞α/αmax) and
delocalised ( f (α) = 1 for α= 1 and −∞ otherwise) state.

Turning to spatial correlations, multifractal wavefunctions exhibit algebraic be-
haviour concomitant with usual notions of criticality. To tease out multifractal be-
haviour, one again takes variable powers of the wavefunctions, to define the correlators
C(r; p, q) = 〈|φ(x)|2p|φ(x + r)|2q〉x ,disorder, which are averaged both spatially and over dis-
order realisations. These then have a scaling form ∼ L−ap,q r−bp,q , where ap,q = τp+q + 1 as
shown in Fig. 4. This is similar to known critical multifractal wavefunctions but in our case
bp,q is larger than the reported value of τp + τq − τp+q + 1 [1, 30]. These states are thus
genuinely fractal, not just mimicking fractality in their moments as in certain random-energy
models [41].
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Figure 4: Power law decay of multifractal correlations. Multifractal spatial correlations
C(r; p, q) in space shown as a function of the distance r for different values of (p, q), where the
collapse of the data suggests an algebraic scaling form C(r; p, q)∼ L−τp+q−1r−bp,q . The evident
algebraic decay of the correlations is faster than for the previously studied critical multifractal
states (red dashed lines).

Figure 5: Spectral decomposition of the Floquet multifractal states. The spectral density of
states ρ(ε) for typical Floquet multifractal states chosen at random (different colors) show
overwhelming contributions from the static eigenstates separated by ε = Ω. The blue and
green shaded regions correspond to the localized and delocalized part of the undriven spec-
trum, respectively. The black dashed line denotes the mobility edge, states near which do not
get affected by the Floquet drive. The parameters correspond to Fig. 2.

3 Spectral decomposition of Floquet multifractal states

The underlying mechanism of Floquet generation of multifractality is the hybridisation of the
localised and delocalised eigenstates of the undriven Hamiltonian close to the bottom and
top of the spectrum, respectively. In this section, we provide evidence in form of the spectral
decomposition of the Floquet eigenstates in terms of the those of the undriven Hamiltonian.
To this order, we define the spectral density of states at energy ε for a Floquet eigenstate |φ〉
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Figure 6: Dependence of multifractality on driving frequency. Absence and presence of multi-
fractal states in the Floquet spectrum when the frequency of the driving is larger and smaller
than the bandwidth of the undriven spectrum, respectively. The two rows correspond to the
two values of Ω, also shown schematically by the arrows next to the undriven spectrum,
whereas the columns correspond to different scalings of IPR with L. The presence (absence)
of multifractal states can be identified from the presence (absence) of finite fraction of states
with IPR∼ L−1/2 in the second column.

as

ρφ(ε) =
1
N

∑

|ψ〉

|〈φ|ψ〉|2
η

η2 + (ε − εψ)2
, (4)

where εψ is an eigenvalue of the undriven Hamiltonian corresponding to the eigenstate |ψ〉,
N is a normalization factor to ensure

∑

ερ(ε) = 1 and η is a small broadening factor. As
expected, ρ(ε) for typical Floquet multifractal states chosen at random has overwhelming
contributions from the localized and delocalized states near the bottom and top of the undriven
spectrum as shown in Fig. 5.

To further corroborate this, we also show that the multifractal states appear only when the
frequency of the driving, Ω is smaller than the bandwidth of the undriven spectrum. This is
shown in Fig. 6 where the IPRs of the Floquet eigenstates show only two scalings ∼ L0 and
∼ L−1 when Ω is larger than the bandwidth. On the contrary as soon as Ω is tuned below the
bandwidth, the multifractal states show their presence which can be identified by the IPR of
the finite fraction of Floquet eigenstates scaling approximately as L−1/2.

4 Effective random matrix model

We now turn towards understanding the Floquet multifractality within a random matrix frame-
work. A central ingredient is the coupling between localised states {|l〉}, mediated by the delo-
calised states, {|d〉}, to which the localised ones couple through the driving. That the Floquet
drive strongly couples eigenstates of the undriven Hamiltonian which are resonant (separated
in energy by the frequency of the drive), is elegantly represented in the so called Shirley pic-
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ture [42], where the time-periodic problem is mapped onto a static problem of hopping on a
ladder, whose legs are copies of the chain and whose ‘transverse’ coupling is provided by the
time-periodic drive. With our Ω just below the bandwidth, resonant coupling occurs between
states close to the edges of the undriven spectrum on the localised and delocalised sides in
the undriven spectrum. This can be modelled by a two-leg truncation of the Shirley ladder as
couplings to higher legs come with an energy denominator of the order of the bandwidth and
are therefore parametrically suppressed.

4.1 Derivation of effective random matrix Hamiltonian

We start with deriving the offdiagonal matrix elements of the effective random matrix Hamil-
tonian.

According to the Bloch-Floquet theorem, the eigenstates of a time periodic Hamiltonian
H(t) = H(t + 2π/Ω) have a form |Φ(t)〉 = |φ(t)〉e−iωt , where ω is called the quasienergy
and |φ(t)〉 is itself periodic in time with frequency Ω. Expressing |φ(t)〉 in terms of its Fourier
components |φ(t)〉=

∑

n |φn〉einΩt , the Schrödinger equation for |φn〉 is given by

ω|φn〉= (H0 + nΩ)|φn〉+
∑

m 6=0

Hm|φn−m〉, (5)

where the Hm denote Fourier components of H(t) =
∑

m HmeimΩt . One can choose to work in
the eigenbasis of H0 denoted by {|ψ〉} such that

|φn〉=
∑

ψ

cn,ψ|ψ〉, (6)

in which case, the Schrödinger equation can be recast as

ωcn,ψ = (εψ + nΩ)cn,ψ +
∑

m

∑

ψ′

cn−m,ψ′〈ψ|Hm|ψ′〉. (7)

Since our driving frequency is only slightly smaller than the bandwidth, resonances can
occur only between states near the top and the bottom of the static spectrum which are sep-
arated in energy by Ω. Hence, we employ a simple two-leg Shirley ladder to analyze the
system, as further legs correspond to processes involving multiples of Ω, to which there are
no corresponding resonances. Thus, we only keep H±1 ∼ ∆V

∑

x vx n̂x and only the n = −1
and n = 0 sectors. Also, in our notation |ψ〉 =

∑

x ψ(x)c
†
x |0〉. Hence the matrix element

〈ψ′|H±1|ψ〉 = ∆V
∑

x ψ
′∗(x)ψ(x)v(x). These results can be put back in the equations for

cn,ψ(t) as

ωc−1,ψ = (εψ −Ω)c−1,ψ +∆V
∑

ψ′

∑

x

c0,ψ′ψ
′∗(x)ψ(x)v(x),

ωc0,ψ = εψc0,ψ +∆V
∑

ψ′

∑

x

c−1,ψ′ψ
′∗(x)ψ(x)v(x). (8)

We know that the multifractal states come from the hybridisation of the localised ({|l〉})
and delocalised states ({|d〉}) near the bottom and the top of the spectrum, respectively. Hence,
in the two-leg Shirley ladder [42], the only states with relevant contributions are the delo-
calised ones from the n = −1 sector and the localized ones from the n = 0 sector. This is
schematically shown in Fig. 7 where the participating undriven states are marked with a gray
shaded window.

Hence the coefficients of interest are c−1,d and c0,l . The equation for c−1,d reads

c−1,d =
∆V

(ω− εd +Ω)

∑

l

∑

x

c0,lψ
∗
l (x)ψd(x)v(x). (9)

8

https://scipost.org
https://scipost.org/SciPostPhys.4.5.025


SciPost Phys. 4, 025 (2018)

Figure 7: Schematic quasienergy spectrum of the undriven two-leg Shirley ladder. The gray
shaded regions highlights the window of states which hybridize between the two legs when
the driving is turned on.

Assuming that a localized state |li〉 is δ-function localized at x i , Eq. (9) can be plugged in
Eq. (8) to obtain the equation for the coefficients of c0,li as

ωc0,li = εli c0,li +
∑

l j

Mli l j
c0,l j

, (10)

where Mli l j
denotes the off-diagonal matrix elements of the effective Hamiltonian,

Mli l j
=
∑′

d

ψd(x i)v(x i)ψ∗d(x j)v(x j)∆V 2

(ω− εd +Ω)
. (11)

which is the leading effective matrix element determining a resulting Floquet eigenstate at
quasienergy ω.

Here, a localised eigenstate of the undriven Hamiltonian |li〉 = |x i〉 is assumed to be δ-
function localised at x = x i , and the primed sum denotes a sum over resonant delocalised
states, highlighted by the gray shaded window in Fig. 1(b). This leads to a fully connected
random matrix Hamiltonian within the localised states, with the undriven eigenenergies on
the diagonal, and the Mli l j

as the off-diagonal matrix elements. As an aside, we note that
this model formally resembles the Rosenzweig-Porter random matrix ensemble, unlike which,
however, it has a probability distribution of M (Eq. (11)), denoted by P(M) which is not
Gaussian as we show in the following section 4.3.

The effective random matrix model allows us to connect the multifractality of the wave-
functions to the statistical properties of the Floquet-generated matrix elements M and their

9
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scalings with system size.

4.2 Perturbative calculation of wavefunction intensity distributions from effec-
tive random matrix

Similar to the analysis in Ref. [9], we treat the corrections to the δ-function localised eigen-
states perturbatively φli (x j) = Mli l j

/(εli − εl j
). From the statistics of the perturbed wavefunc-

tions, f (α) can be extracted as we will show now.
We derive the leading behavior of the distribution of wavefunction intensitiesPL|φ|2 . Since,

the offdiagonal terms of the effective random matrix Hamiltonian (11) typically decay with
system size, they can be treated perturbatively as the thermodynamic limit is approached, in
an analysis similar to Ref. [9]

The localized eigenstates of the unperturbed effective Hamiltonian are approximated to
be δ-function localized in space. As mentioned before, the localized state denoted by |li〉 is
assumed to be localized at x i . To leading order in M , the wavefunction intensity at any site
can then be written as

|φli |
2(x j) = δx i ,x j

+
M2

li l j

(εli − εl j
)2

. (12)

Since we are interested in the probability distribution, PL|φ|2 , we consider its generating
function

G(s) = 〈eisLφ2
〉 ⇒ (−i)q∂ q

t G(s)|s=0 = 〈(Lφ2)q〉, (13)

where 〈·〉 denotes the average over sites and disorder realizations. The regular part of the
generating function G(s) coming from the perturbative couplings is given by

Greg(s) = 〈eisLφ2
〉=

∫

d(L|φ|2) PL|φ|2 eisL|φ|2reg . (14)

For simplicity, we consider the energy differences (εl−εl ′)2 =∆2
l,l ′ belonging to a Gaussian

distribution P∆ = e−∆
2/2σ2

∆/
q

2πσ2
∆, the width of which is assumed to have no scaling with

L. With these assumptions, the regular part of G(s) can be expressed as

Greg(s) =

∫ ∞

−∞
d∆ P∆

∫ ∞

−∞
dM PM eisLM2/∆2

=

∫ ∞

−∞
dM PM e−

p
−2isLM2/σ∆ . (15)

Our quantity of interest, PL|φ|2 , is the inverse Fourier transform of Greg(s),

PL|φ|2 =

∫ ∞

−∞
ds e−isL|ψ|2

∫ ∞

−∞
dM PM e−|M |

p
−2isL/σ∆ . (16)

In the thermodynamic limit, in the integral over s in Eq. (16), the range of s which contributes
is such that sL|ψ|2 ∼ 1. This implies that, if we are interested in the probability of the wave-
function intensity scaling as L−α, we must consider s ∼ Lα−1. Assuming a single-parameter
scaling of the distribution PM = P(m = M/M0) × M0 with the scaling M0 ∼ L−γ/2, and the
convergence of the integral in Eq. (15) as

Greg(s) =

∫ ∞

−∞
dM PM e−

p
−2isLM2/σ∆ ≡ g(M0

p

−2isLM2/σ∆), (17)
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one can expand the latter in a series and truncate at the first order for α < γ

Greg(s) = 1− c
p

−2isL1−γ/σ∆, (18)

with an L-independent constant c. We will discuss the question of the convergence of the
above mentioned series and scaling of the distribution function PM for the next section. The
leading behavior in PL|φ|2 is

PL|φ|2 ∼
L(1−γ)/2

(L|φ|2)3/2

∫ ∞

−∞
d(sL|φ|2)

�

e−isL|φ|2 (sL|φ|2)1/2
c(−2i)1/2

σ∆

�

, (19)

which in terms of α can be expressed as

PL|φ|2 ∼ C1
L(1−γ)/2

(L|φ|2)3/2
∼ C1

L(1−γ)/2

(L1−α)3/2
, (20)

where C1 depends at most logarithmically with L. The normalization of the probability distri-
bution and the wavefunction intensities put further bounds on α.

• Normalization of the distribution
∫∞

0 d(L|φ|2) PL|φ|2 = 1 implies that the lower bound
of L|φ|2 and hence the upper bound of α is given by L(1−γ)/2 L(αmax−1)/2 ∼ L0, which
implies αmax = γ .

• Normalization of the wavefunction
∫∞

0 d(L|φ|2) L|φ|2PL|φ|2 = 1 implies that the upper
bound of L|φ|2 and hence the lower bound of α is given by L(1−γ)/2 L(−αmin+1)/2 ∼ L0,
which implies αmin = 2− γ .

Within these bounds of α, the spectrum of fractal dimensions, f (α) can be calculated as fol-
lows. Since PL|φ|2 d(L|φ|2) = P(α)dα, one obtains up to logarithmic corrections

P(α) = L|φ|2PL|φ|2 = L f (α)−1 (21)

which in turn yields Eq. (5):

f (α) = 1+ (α− γ)/2; 2− γ < α < γ. (22)

4.3 Scaling of distribution of off-diagonal elements of random matrix Hamilto-
nian

In order to justify the assumptions in Sec. 4.2, we analyse the distribution PM in detail. We
focus on the distribution of the absolute value |M | as the probability distribution of Mli l j

is sym-
metric with respect to the sign of the matrix element. Constructing the probability distribution
P(M) numerically, Fig. 8(a), shows a strongly non-Gaussian distribution with polynomial tails
consistent with the Levy random matrices [37,43].

Rescaling the distribution as

P(M/M0 = m) = P(M = M0 ·m)M0 , (23)

with M0 = L−ν gives a reasonable collapse for ν= 0.9±0.2 in the considered range of system
sizes L = 29−213, (see Fig. 8(b)). P(M/M0 = m)∼ m−2a decays polynomially with m= M/M0
saturating at m' m0 ∼ 1. The best fit

Pf i t(M/M0 = m)∼
1

mb(m2 +m2
0)c

, (24)
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Figure 8: Probability distribution of M . (a) P(M) calculated from the distribution of the
elements in Eq. (11) for different L (denoted by the color scale) is not Gaussian. (b) The
collapsed probability distribution P(M/M0) with the corresponding polynomial fit (see legend
for details). (c) The scaling of 〈|M |〉P (mean) and exp[〈ln M〉P] (typical) with L. Dashed lines
of the corresponding colors show fits with algebraic decay with exponents ≈ 0.78 and ≈ 0.69,
respectively. The algebraic decay ∼ L−(2−D) with D = 0.55± 0.04 expected from multifractal
analysis is shown by a black dashed line. Parameters are the same as in Fig. 2.

gives b ' 0.5, m0 ' 4, c = a − b/2, and a ' 1.1 for ν = 0.9 (see Fig. 8(b)). This confirms
the first assumption of Sec. 4.2. However, the accuracy of the extracted parameter ν which
assumed to be equal to γ/2 is of order of 20 %.

The integral (15) of the form

g(AM0) =

∫ ∞

−∞
dM PM e−A|M | =

∫ ∞

−∞
dm P(m) e−AM0|m|, (25)

with Re[A]> 0 converges both at m= 0 (as b < 1) and at m→∞ (due to exponential decay
of the integrand). The first-order expansion (18) in AM0 is valid for the parameters a > 1
corresponding to the converging first moment 〈|M |〉 in the limit AM0→ 0. As the best fit gives
a ' 1.1 this justifies the second and the final assumption of Sec. 4.2.

For a more accurate estimate of ν, we calculate the mean 〈|M |〉 and the typical
〈|M |〉t yp ≡ exp〈ln |M |〉 values of the distribution as both of them should be governed
by M0. The numerical calculations show the algebraic decay of both mean and typical
with the exponents νmean = 0.78 and νt yp = 0.69 rather close to the expected value
ν= γ/2= 1− D/2' 0.725 (see Fig. 8(c)).

The difference between νmean and νt yp should be considered as an error bar estimate as
the points for different L scattered within this interval. As mentioned previously, since τq
and f (α) are related via Legendre transformation one obtains from this analysis and Eq. (22),
τq = (2− γ)(q− 1) with 2− γ= 0.53± 0.11. This is in rather close agreement with the result
numerically obtained in Fig. 2(d) thus validating the random matrix model. Thus, the scaling
analysis of the distribution PM confirms both assumptions of Sec. 4.2.

The underlying origin of multifractality is hence the non-trivial mixing of localised states
mediated by the delocalised states as an effect of the Floquet drive, thus linking our fully
short-range model to an effective long-ranged random matrix ensemble.
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Figure 9: Signatures of multifractality in wavepacket spreading. (a) Ballistic spreading,
σ2(n)/n2, is suppressed as increasing the drive ∆V converts delocalised into multifractal
states. (b) Local density |ψn(x)|2 as a colour map over x and n, where x < (>)0 shows
the ballistic (subdiffusive) dynamics due to delocalised (multifractal) states. The blue (red)
dashed lines corresponding to ballistic (subdiffusive) dynamics indicate the difference between
the two. The initial state is localised at the origin for x < 0, while for x > 0, all the de-
localised components have been projected out of this state. (c) Subdiffusive behaviour in
σ2(n) of multifractal states with exponent β ≈ 0.72. (d) Collapse of the data shown in (c) as
σ2 ∼ L2F (n/L2/β). For (a)-(b), L = 4096, and rest of the parameters are the same as that of
Fig. 2.

5 Wavepacket dynamics

How can this physics be probed experimentally? An auspicious setting is provided in cold atom
experiments, where incommensurate potentials in one-dimension have already been realised,
for instance by superposing optical lattices of wavelengths 532 nm and 738 nm [44] and
periodic drives have recently been prominently investigated by sinusoidally modulating laser
intensities [19]. As this naturally permits dynamical measurements, we address a conceptually
simple process, the spreading of an initially localised wavepacket, |ψ0〉, focusing on signatures
of multifractality. Spreading is conveniently quantified by σ(n) via

σ2(n) = 〈ψn| x̂2|ψn〉 − 〈ψn| x̂ |ψn〉2, (26)
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Figure 10: Fraction of multifractal states in the Floquet quasienergy spectrum for different
∆V . While the three rows of plots correspond to ∆V = 0.1J , 0.3J , and 0.5J , respectively,
the three columns correspond to the three different scalings of the IPR. The multifractal states
denoted by the gray shaded window are identified by noting the collapse of the IPR×

p
L for

different L, and their fraction grows with ∆V .

averaged over disorder, where |ψn〉 = Un|ψ0〉 is the wavepacket after n driving periods. The
presence of an extensive number of delocalised states in the eigenbasis of U leads to a ballistic
leading behaviour σ2(n)∼ n2.

In the presence of multifractal states, subleading behaviour emerges as
σ2(n) ∼ λ1n2 + λ2nβ . This becomes increasingly visible with a growing ∆V which, as
we observe from our numerics, increases the fraction of multifractal states. This is visible in
the plot of σ2(n)/n2, Fig. 9(a), where the amplitude of the ballistic growth is continuously
suppressed with increasing ∆V . As a matter of principle, to accurately capture β , it is desir-
able to remove the dominant contribution of the delocalised states, which can be achieved in
theory by removing the projection of the initial wavefunction onto them.

The (normalised) projected initial state |ψ̃0〉, now has the leading contribution to the
spreading from the multifractal states. It shows a much slower growth of σ2 as shown in
Fig. 9(b). The dynamics is in fact subdiffusive with β ≈ 0.72, Fig. 9(c). A collapse of the data
suggests a scaling form σ2(n) ∼ L2F (n/L2/β) where F (x) ∼ xβ in the scaling regime and
F (x)∼ 1 as x →∞. This is not unlike the results obtained on hierarchical lattices [45].

The fact that the subleading behavior in the wavepacket spreading due to the multifractal
states becomes stronger with increasing ∆V is a consequence of the fact that the fraction of
multifractal states in the spectrum of U increases with increasing ∆V . We confirm this by
providing the scaling of the Floquet eigenstates for different ∆V , see Fig. 10.
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6 Unequal time density correlators and wavefunction moments

Alternatively, we note that the time-averaged unequal time density correlators can reproduce
all moments of the eigenstate wavefunctions and hence the full multifractal spectrum as we
show in this section.

Since, the initial state is taken to be δ-function localized at x0, |ψ0〉 = |x0〉, the quantity
of interest is the n-time density correlator measured at the site x0,

R(x0; t1, · · · , tn) = 〈x0|

� n
∏

i=1

n̂x0
(t i)

�

|x0〉=
∑

{φi}

� n
∏

i=0

|φi(x0)|2
�� n

∏

i=1

ei(Eφi−1
−Eφi

)t i

�

, (27)

where we use 〈φ j|n̂x0
|φi〉 = φ∗j (x0)φi(x0). The infinite time average of R is related to the

moments of the eigenstates averaged over the spectrum as follows,

lim
t→∞

(
n
∏

i=1

∫ t

0

d t i

t
)R(x0; t1, · · · , tn) =

∑

{φi}

� n
∏

i=0

|φi(x0)|2
�� n

∏

i=1

δφi−1,φi

�

⇒R (n)∞ (x0) =
∑

φ

|φ(x0)|2(n+1). (28)

In the next step, we take an average over the initial conditions which essentially gives

R (n)∞ =
1
L

L
∑

x0=1

R (n)∞ (x0) =
1
L

L
∑

φ=1

L
∑

x0=1

|φ(x0)|2(n+1). (29)

So Eq. (29) implies that R (n)∞ is the 2(n + 1)th moment of eigenstates averaged over all the
eigenstates. For instance n= 0 gives just the normalization, n= 1 gives the IPR, and so on.

The moments of the eigenstates, averaged over the eigenstates, can thus be useful because
they can carry non-trivial information about the presence of multifractal states in the spec-
trum. For example, consider that the Floquet spectrum has f1 L localized states, f2 L delocalized
states, and f3 L multifractal states where fis denote the respective fractions and f1+ f2+ f3=1.
In such a scenario, let us consider R (1)∞ which consists of the information of the IPRs of the
Floquet eigenstates. The numerical results presented in Fig. 2 suggest that the IPRs of the mul-
tifractal states approximately scale as L−τ2 , where τ2 = 0.55± 0.04. Hence, R (1)∞ is expected
to have an approximate form

R (1)∞ ∼
1
L

L
∑

α=1

IPRα

∼ f1 +
f2
L
+

f3
Lτ2

. (30)

So by extrapolating the data as function of 1/L to zero, one can obtain the L→∞ value which
can be subtracted, and the leading behavior with L can be obtained. As shown in Fig. 11 the
procedure yields a slope of −0.54, which is indeed within the error bars of τ2. A similar
analysis can be done for the higher moments.

7 Conclusion

In conclusion, periodically driving a system with a single particle mobility edge can yield ro-
bust multifractal states. Note that a single particle mobility edge exists rather generically for
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Figure 11: Subleading behavior of R (1)∞ obtained by subtracting out the leading behavior by
extrapolating the data to L→∞.

two mutually incommensurate potentials in the continuum, with the Aubry-André lattice only
a limiting case [20,21]. Thus, with both incommensurate potentials and periodic drives avail-
able in state of the art cold atom experiments, our work opens up a new avenue towards
realisation of wavefunction multifractality. No fine-tuning is required, with multifractality ex-
hibited by a finite fraction of the Floquet eigenstates for a range of driving strengths.

Avenues for future research are evident. For instance, what are the precise properties of
the sub-diffusion exhibited by the Floquet multifractal states, and are the observed nontrivial
exponents universal? Quite broadly, a key question for Floquet multifractality is the role of
dimensionality, known to be a central ingredient for the physics of Anderson localisation. More
narrowly, localisation in ‘infinite-dimensional’ hierarchical systems, where multifractality is
ubiquitous, is often considered as toy model for many-body localisation [46] owing to the
hierarchical nature of the Fock space. Hence, at a conceptual level, one may ask to what
extent a Floquet system hosting multifractal states can be likened to models of many-body
localisation, where interestingly the quasiperiodic nature of disorder can have a nontrivial
influence on the localisation transition [47].

From a practical perspective, perhaps the most tantalising prospect is to ask how one can
use robust multifractal states as basis for the realisation of other interesting phenomena, the
possibilities of which are already hinted at by their potential role in enhancing the supercon-
ducting transition temperature in a quasi-1D superconductor via algebraic spatial correlations
of multifractal states [48].

Note: During the consideration of the manuscript we have become aware of the other
work [43]where the similar effective random matrix model (called preferred basis Levy matrix
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Figure 12: IPRs as a function of quasienergies. The top row panels show the IPRs unscaled,
scaled with

p
L and L, respectively as a function of quasienergy ω. The gray shaded win-

dows denotes the multifractal states, IPRs of which show reasonable collapse for various L
when scaled with

p
L. To clarify that there are a macroscopic number of multifractal states in

the narrow quasienergy band, in the bottom panel we plot the same data but as function of
quasienergy index.

ensemble) was obtained for a completely different system. Our results are consistent with the
ones presented in [43] at γ= 1.45± 0.04.
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A Inverse participation ratios as function of quasienergy

In this appendix, we study the IPRs of the Floquet eigenstates as a function of their quasiener-
gies. Since the quasienergy spectrum varies across disorder realisations, over many realisa-
tions, we bin the Floquet eigenstates within windows in quasienergy and average the IPR of
the states within the windows. The results are shown in Fig. 12 where, in the top row the
(scaled) IPRs are plotted as a function of the quasienergies ω. The delocalised and multifrac-
tal states appear in a narrow separate bands of quasienergies. This is simply an artefact of
the narrow bandwidth of the delocalised states in the undriven Hamiltonian (see Fig. 1) and
that the multifractal states are born out of the delocalised states. To clarify this explicitly, in
the bottom row in Fig. 12, we plot the (scaled) IPRs as function of bin labels ( j) arranged in
increasing order of quasienergy from −π to π.
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Figure 13: IPRs at lower driving frequency. The (scaled) IPRs similar to Fig. 2 for a much
lower value of driving frequency Ω = 2.5πJ . The persistence of the multifractal states shows
that no fine-tuning is needed in the driving parameters.

B Robustness of Floquet multifractality to driving frequency

In order to show that the Floquet multifractality is robust to the driving frequency (Ω) and Ω
does not need to be fine tuned to close to but less than the bandwidth of the undriven Hamil-
tonian’s spectrum, in this section, we show numerical evidence for the persistence of multi-
fractality at lower frequencies as well. Recalling that the bandwidth of the undriven spectrum
was approximately 2.76πJ , here we choose Ω= 2.5πJ and in fact see an enhancement in the
fraction of multifractal states in the Floquet spectrum. The results are shown in Fig. 13 in a
similar fashion as Fig. 2. Note that there are almost no states whose IPRs scale as 1/L. This is
due to the fact that the lower frequency of the driving forces all the delocalised states in the
narrow band at the top of the undriven spectrum (Fig. 1) to participate in hybridisations. On
the other hand, the collapse of the IPRs when scale with

p
L is worse. This might be attributed

to higher order resonances for which the perturbative treatment based on the two-leg Shirley
ladder is insufficient and its detailed analysis constitutes the topic for a future work.
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