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Abstract

Magnetic skyrmions and bubbles, observed in ferromagnetic thin films with perpendicu-
lar magnetic anisotropy, are topological solitons which differ by their characteristic size
and the balance in the energies at the origin of their stabilisation. However, these two
spin textures have the same topology and a continuous transformation between them is
allowed. In the present work, we derive an analytical model to explore the skyrmion-
bubble transition. We evidence a region in the parameter space where both topological
soliton solutions coexist and close to which transformations between skyrmion and bub-
bles are observed as a function of the magnetic field. Above a critical point, at which
the energy barrier separating both solutions vanishes, only one topological soliton solu-
tion remains, which size can be continuously tuned from micrometer to nanometer with
applied magnetic field.
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1 Introduction

Skyrmions, are topological solitons which present particle-like properties: they have quan-
tized topological charges, interact via attractive and repulsive forces, and can condense into
ordered phases. The concept of skyrmions has spread over various branches of physics [1]
including condensed matter, as for example in the case of liquid crystals [2], quantum Hall
magnets [3, 4] and Bose-Einstein condensates [5]. In ferromagnets, skyrmions were origi-
nally called two-dimensional (2D) topological solitons or magnetic vortices and their exis-
tence has been predicted in isotropic ferromagnets [6], uniaxial ferromagnets [7–9] and non-
centrosymetric magnets [8,10]. Some early indirect experimental evidences of their existence
have been obtained in quasi-2D antiferromagnets [11–13]. More recently indirect [14] and
direct observations of skyrmion have been reported in chiral magnets [15] and ultrathin layers
of conventional transition-metal-based ferromagnets in contact with heavy metals [16,17].
The nanoscale size and non-trivial topology of skyrmions make them particularly attractive
for information technologies. The idea of a skyrmion-based memory was already discussed in
the 80’s [18] at the time when the research on magnetic bubbles was at its apogee. Magnetic
bubbles are cylindrical magnetic domains which appear in ferromagnetic films with perpendic-
ular magnetic anisotropy when the demagnetising energy compensates the domain wall (DW)
energy [19]. Memories based on magnetic bubbles displaced by a rotating magnetic field
were commercialised in the 90’s but were progressively replaced by transistor based memo-
ries and hard disk drives due to their higher capacity and lower cost. The recent observations
of skyrmions at room temperature (RT) and their fast displacement with low electrical cur-
rents [20–22] has triggered a revival of the quest for a memory based on topological solitons,
taking the form of a skyrmion racetrack memory [23–25].
Magnetic bubbles and skyrmions are close relatives as they can share the same topology [26].
However, their characteristic sizes differ and while classical bubbles present a long lifetime
at RT, much shorter lifetimes were found for nanometer-sized skyrmions in recent experimen-
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tal [27,28] and theoretical works [29–31]. The case of intermediate-size solitons is more favor-
able, as stable RT topological solitons with sizes of a few hundred to a few tens of nanometers
have been reported in multilayers [32] and even in a single ferromagnetic layer [33,34]. These
topological solitons are sometimes called skyrmion bubbles when the demagnetising energy
plays a role in their stabilization. In this context, the necessity to clarify whether a fundamental
difference exist between skyrmions and bubbles appears. In previous works, the difference be-
tween magnetic bubbles with a large number of collinear spins in their center and skyrmions
with a compact core has been described [35, 36]. The dynamic transformation between a
magnetic bubble and a skyrmion using a magnetic tip has also been demonstrated [37]. As
minimising the total energy of the soliton is numerically expensive, we derive in the present
work an analytical topological soliton model in order to build a skyrmion-bubble phase dia-
gram and obtain a better physical insight of the differences between skyrmions and bubbles.
This allows us to calculate skyrmions and bubbles equilibrium solutions out of a single model
from nanometer to micrometer radius and demonstrate the existence of transitions between
them as a function of magnetic field.

2 Topological soliton model

The model is developed in view of describing isolated skyrmions and bubbles spin textures in
an infinite ferromagnetic thin film. As both spin textures have the same topology, we will use
the more general name topological soliton to discuss the model solutions in the first place and
later specify what type of topological soliton solution presents the characteristic of a magnetic
skyrmion or bubble. The system we consider is a 1 nm-thick ferromagnetic thin film with an
easy axis perpendicular to the plane. The material is described by its thickness t, its sponta-
neous magnetisation Ms, its exchange constant Aex., its volume magnetocrystalline anisotropy
Ku and its micromagnetic Dzyaloshinskii-Moriya interaction (DMI) parameter D. The magne-
tocrystalline anisotropy and the DMI are written as volume-related quantities Ku and D. The
soliton is assumed to have a cylindrical symmetry and cylindrical coordinates are used, where
ρ is the radial distance and the z−axis is perpendicular to the film. We restrict ourselves to D
values sufficiently large so that DWs will have a Néel nature (based on Ref. [39]) and conse-
quently we also assume a Néel-type for the topological soliton (represented in Figure 1b). In
these conditions, the magnetisation direction is defined only by the angle θ between M and
the z−axis (θ = 0 is up, θ = π is down). A magnetic field µ0H may be applied, for which
the positive direction is in the +z direction i.e. antiparallel to the magnetisation in the soliton
center (see Figure 1a and b). The film is thinner than the exchange length lex. =

Æ

2Aex./µ0M2
s

so we assume that magnetisation does not depend on z. In the following, we will present the
energy functional containing all the energy terms required to describe the topological soliton
energy (Section 2.1). Then, in a first step, we will use the local approximation for the demag-
netising energy, generally used for skyrmions [26,40–42], to calculate the topological soliton
profile and energy (Section 2.2 and Section 2.3). In a second step, we will show that analytical
expressions of the energy terms can be used to calculate the skyrmion solution (Section 2.4)
and we will extend the model by taking into account the long range surface demagnetising
effect which is at the origin of the bubble solution stabilisation (Section 2.4.4).
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Figure 1: (a) Schematic view of the ferromagnetic thin film with axis orientation. The mag-
netisation and magnetic field positive directions are indicated. (b) Schematic view of the
topological soliton. (c) Energetically minimised topological soliton θ (ρ) profile as a function
of ρ calculated with the parameters Ms = 1 MA/m, Ku = 1.6 MJ/m3, Aex. = 10 pJ/m, t = 0.5
nm and D(1) = 2.8 mJ/m2. (d) Topological soliton wall energy density σs, defined in Section
2.3, as a function of radius, calculated from Eq. (2) (black triangles) and Eq. (9) (black line).
The planar DW energy density σw is indicated by a dashed line. (e) Energies versus topolog-
ical soliton radius calculated from Eq. (2) (symbols) and Eq. (9) (lines) with the parameters
given in (c) and normalised by the RT thermal energy ERT = kB T293K. The normalised zero
radius energy is indicated as ε0 = E0/ERT ∼ 31. All the programs used to create the data for
the figures can be found in a repository [38].

2.1 Energy functional

The topological soliton energy Es[θ (ρ)] is the sum of 5 terms: exchange energy Eexch.,
anisotropy energy Eanis., DMI energy EDMI, demagnetising energy Edem. and Zeeman energy
Ezee.:

Es[θ (ρ)] = 2πt

∫ ∞

0

�

Aex.

�

�

dθ
dρ

�2

+
sin2θ

ρ2

�

− Kucos2θ

−D
�

dθ
dρ
+

cosθsinθ
ρ

�

−µ0MsHcosθ + Edem.

ª

ρdρ. (1)

The demagnetising energy can be decomposed into two terms Edem. = Evol.
dem. + Esurf.

dem. corre-
sponding to the contributions from volume and surface magnetic charges. The volume charges
appear only inside the topological soliton. The surface charges are present inside the soliton
but also in the infinite region with uniform magnetisation. Due to the long range nature of the
demagnetising effects, it is analytically impossible and numerically difficult to find the function
θ (ρ) which minimizes the Es functional. This has been done in the early 70’s, in absence of
DMI, in the case of magnetic bubbles stabilised by the surface demagnetising energy [43,44]
and by Kiselev and co-workers in presence of DMI [35]. In other works, the demagnetising
energy is often taken into account only as a local energy contribution [26,40–42] as described
in the next Section.
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2.2 Local approximation for the demagnetising field

We restrict ourselves to the ultrathin film limit where the DW width is much larger than the
film thickness and where Evol.

dem. is negligible compared to Esurf.
dem.. Indeed, in a thin film, the

demagnetising contribution from the volume charges inside a Néel DW is proportional to the
ratio between the film thickness and the DW width [45]. This consideration is also valid for
a Néel skyrmion which possesses a 2π DW cross section. In addition, the film thickness is
much smaller than the exchange length and we make a short range uniform magnetisation
assumption. In these conditions the surface charge contribution to the demagnetising field
is Hd = −Mz. We obtain Esurf.

dem. = µ0(−Mz) · (−Mz)/2 = +µ0M2
s cos2θ/2 . The local surface

demagnetising energy becomes equivalent to an anisotropy and the anisotropy constant in
Eq. (1) is replaced by an effective anisotropy constant Keff. = Ku − Kd where Kd = µ0M2

s /2.
Considering now the energy difference between the topological soliton and the uniform state
we obtain the following Euler Equation [26]:

Aex.

�

d2θ

dρ2
+

1
ρ

dθ
dρ
−

sin2θ
2ρ2

�

+ D
sin2θ

ρ
− Keff.

sin2θ
2
−µ0MsHsinθ = 0. (2)

2.3 Soliton energies versus radius

We solved the Euler-Lagrange Equation (2) using the shooting method starting from an in-
verse tangent try function and the two boundaries values : θ (0) = π and θ (∞) = 0. The
energetically minimised soliton profile θ (ρ) is shown in Figure 1c. The topological soliton ra-
dius r is defined as the ρ value at which θ (ρ) = π/2 (Mz = 0). The exchange (blue triangles),
anisotropy (red triangles) and DMI energies (black circles) are plotted versus topological soli-
ton radius r in Figure 1e. The Bloch DW width defined as π∆ = π

p

Aex./Keff. is indicated.
The DMI and anisotropy energies present a linear variation versus r down to r < π∆. On the
contrary, in the same r range, the exchange energy deviates from linearity and tends toward
a non-zero constant value. This is due to the curvature 1/ρ exchange term in Eq. (1) which
is related to the rotation of the spins in the (x,y)-plane: when the topological soliton radius
is decreased, the angle between two adjacent spins in this plane increases and the exchange
energy increases, leading to a non zero exchange energy limit when r → 0. Consequently the
topological soliton wall energy density σs defined as the sum of the exchange, anisotropy and
DMI energy densities deviates from the planar DW energy densityσw = 4

p

Aex.Keff.−πD in the
low r range as illustrated in Figure 1d. This non-linearity in the exchange term is at the origin
of the presence of a local minimum in the total energy in presence of a sufficiently large DMI as
we will discuss in Section 3.1. As Eanis., EDMI and Eexch. show relatively simple r dependences,
we will in the following derive analytical expressions to reproduce these dependences.

2.4 Analytical model

We now introduce analytical expressions for the 5 different energy terms which constitute the
total energy of the topological soliton. The total energy, as well as each energy term is defined
as the energy difference between an isolated topological soliton with a down magnetisation in
its core and the uniform ferromagnetic state in the up direction.

2.4.1 Anisotropy and exchange energies

For r � π∆ the sum of exchange and anisotropy energies is proportional to 4
p

Aex.Keff. and
both energies contribute equally :

Eanis. = 2
p

Aex.Keff. · 2πr t, (3)
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Eexch. = 2
p

Aex.Keff. · 2πr t. (4)

For r < π∆, the exchange energy deviates from linearity as discussed in Section 2.3 and we
modify this expression by adding a low r correction:

Eexch. = 2
p

Aex.Keff. · 2πr t +
E0

2r
π∆ + 1

, (5)

which gives the exact E0 = 8πAex. t zero-radius limit for the exchange energy, (Belavin and
Polyakov [6], see also [26, 46]) and a zero (r = 0) dEexch./dr derivative. The analytical
expressions of Eanis. and Eexch. as well as their sum appear as lines in Figure 1e. This expression
reproduces the exchange energy obtained in Section 2.3 with a 3% maximum error in the full
radius range.

2.4.2 DMI energy

The DMI energy is proportional to the total π rotation of the spins (from the center to the
periphery of the topological soliton) and varies linearly with r as observed in Figure 1e. It
expresses as:

EDMI = −πD · 2πr t. (6)

We have chosen the rotation chirality which lowers the energy and D > 0. EDMI is negative,
thus it favours the expansion of topological solitons.

2.4.3 Zeeman energy

We use an approximate expression for the Zeeman energy of the topological soliton which
represents the Zeeman energy difference between a film with a uniform +Ms magnetisation,
containing a magnetic cylinder of radius r with an opposite uniform −Ms magnetisation, and
the Zeeman energy of the uniform +Ms state.

EZee = 2µ0MsH ·πr2 t. (7)

The error associated with this approximation will be discussed in Section 4.3.2.

2.4.4 Demagnetising energy

As discussed in Section 2.1 the demagnetising energy, cannot be expressed analytically and
approximations have to be used [44]. The local effect of the demagnetising energy in the
region where the spin rotates is taken into account using a local approximation and replacing
Ku by Keff. in Eq. (1) as discussed in Section 2.2. This local approximation neglects the long
range demagnetising effect which becomes non negligible as the skyrmion radius grows. This
long range demagnetising energy contribution is at the origin of classical magnetic bubbles
formation [19] and its role in the stabilisation of skyrmions in thin films has been recently
shown [34, 46]. We will use a classical expression [47] for the surface demagnetising energy
which represents the demagnetising energy difference between a magnetic cylinder of opposite
magnetisation included in an uniform ferromagnetic state and the fully uniform ferromagnetic
state:

Elong range
dem. = −µ0M2

s I(d)2πr t2, (8)

where I(d) = − 2
3π

�

d2 + (1− d2)E(u2)/u− K(u2)/u
�

, d = 2r/t, u2 = d2/(1+ d2) and where
K(u) and E(u) are the complete elliptic integrals of the first and second kind. This formula is
a very good approximation to obtain the surface demagnetising energy when the topological
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soliton radius is much larger than the DW width r � π∆. For r ∼ π∆ it leads to an overesti-
mation of this energy as it assumes an abrupt variation of the surface charge density instead of
a progressive variation along the DW. The impact of this overestimation is discussed in Section
4.3.1 and Section 4.4.

2.4.5 Total energy

We obtain the following analytical expression for the soliton energy with respect to the homo-
geneous state:

Es = Eexch. + Eanis. + EDMI + EZee + Elong range
dem.

=
E0

2r
π∆ + 1

+ 4
p

Aex.Keff. · 2πr t −πD · 2πr t + 2µ0MsH ·πr2 t −µ0M2
s I(d)2πr t2 (9)

= σs · 2πr t + 2µ0MsH ·πr2 t −µ0M2
s I(d)2πr t2,

whereσs is the topological soliton wall energy density defined in Section 2.3. When the radius
decreases, it deviates from σw, as shown in Fig. 1d, and the radius dependent correction
coming from the curvature of the wall is becoming comparable to σw itself.

3 Topological soliton solutions

Topological soliton solutions are minima in the soliton energy Es as a function of the topological
soliton radius r. We call the equilibrium topological soliton radius rs. In order to study the
conditions giving rise to these minima, we fix the parameters Aex., Ms, Ku and t and vary D.
We have checked that changes in the fixed parameters do not modify qualitatively the results
presented here but rather shift the main features to different D values. The different energy
terms (except the Zeeman energy) are plotted as a function of r (up to 1µm) in Figure 2a, using
the same parameters as in Figure 1, and three different DMI values. The resulting topological
soliton energies Es are shown in Figure 2b. As the different energy terms compensate, a small
variation of D is enough to modify the slope of E(1)s , E(2)s and E(3)s . In the following sections
we will describe three type of topological solition solutions, observed for increasing D values.

3.1 Skyrmion solutions

As discussed in Section 2.3 and illustrated in Figure 1e, dEexch./dr decreases with r in the
r < π∆ range. This non linearity may lead to the formation of an energy minimum as observed
in Figure 2c. For r < rs (indicated with an α) , the soliton energy variation is dominated by
the dEDMI/dr variation while for r > rs (indicated with a β), the d(Eexch.+ Eanis.)/dr variation
is taking over. This soliton solution corresponds to what is usually referred to as a skyrmion:
its radius is of the order of a few ∆ or less and it exists down to H = 0. The skyrmion radius
increases with D and depends weakly on the applied magnetic field as we will see in Section 4.

3.2 Bubble solutions and coexistence of skyrmions and bubbles

The second situation occurs when the positive and negative energy terms nearly compensate
over a wide r range (see E(2)s in Figure 2b). In this case, as we can see on Figure 2d, the
positive slope of the sum of exchange and anisotropy dominates at intermediate r (β part),
but E(2)s decreases again with r at larger r (γ part), due to the non-linear increase in Elong range

dem.
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Figure 2: (a) Energies versus topological soliton radius calculated from Eq. (9) with the same
parameters as in Figure 1, for zero applied magnetic field and D(1) = 2.8 mJ/m2, D(2) = 3.46
mJ/m2 and D(3) = 3.6 mJ/m2. (b) Topological soliton energies E(1)s , E(2)s and E(3)s calculated
with the same parameters as in (a). (c), (d) and (e) Topological soliton energies E(1)s , E(2)s and
E(3)s for applied magnetic fields of respectively µ0H = 0 (c), µ0H = 0.28 mT (d), µ0H = 2 mT
(e). The α, β , γ, and δ letters are indicating the different parts of the Es(r) curve showing a
monotonous variation. (f), (g) and (h) Topological soliton energies calculated with the same
parameters as in (a) and respectively for (f) D = 3.51 mJ/m2 and a magnetic field between
0.6 and 0.7 mT for (g) D = 3.46 mJ/m2 and a magnetic field between 0.27 and 0.35 mT for
(h) D = 3.52 mJ/m2 and µ0H = 0.925 mT. All the programs used to create the data for the
figures can be found in a repository [38].

with r, before Ezee. with a r2 variation takes over for larger r (δ part). Consequently, in
presence of magnetic field, two soliton solutions are observed, separated by a local maximum
of energy. The lower radius solution is the skyrmion solution described in Section 3.1 and
shown in Fig. 2c. The second solution presents the characteristics of what is usually named
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a magnetic bubble: it collapses when increasing the magnetic field (see Fig. 2g) and its size
diverges at H = 0. This coexistence of a skyrmion and a bubble solution was evoked in a
pioneering work on skyrmions [8] and described in theoretical works from Kiselev et al. [35]
and Büttner et al. [46]. The local maximum of energy creates an energy barrier which is at
the origin of hysteretic behaviours in the M(H) loops of magnetic bubble materials [19].

3.3 Solutions above a critical Dcs value

The third situation occurs when the DMI reaches a critical Dcs value above which the local
maximum of energy, as observed in Fig. 2d, disappears (see Fig. 2e). In this case, the total
energy E(3)s presents a negative slope at all r in absence of applied magnetic field (Figure 2b).
In presence of magnetic field, an energy minimum is restored in E(3)s as the positive Zeeman
energy variation dominates at sufficiently large radius due to its r2 variation (δ part in Fig.
2e). For increasing magnetic field, this solution can be compressed to very low radius, as it
is the case for skyrmions, without encountering a collapse field. When the magnetic field is
decreased, the topological soliton radius will increase and diverge at H = 0 as it is the case for
bubbles. The critical Dcs value above which these solutions appears will be further discussed
in Section 4.

4 Topopogical solitons phase diagram

In Figure 3, we present the evolution of the topological soliton radius rs, calculated with the
same Aex., Ms, t, and Ku parameters as in Figure 1 and Figure 2, as a function of µ0H and D.
The result is shown for a large range of D and µ0H values (up to 100 mT) in Fig. 3a and for
D close to Dcs and low fields (close to 1 mT) in Figs. 3d and e. The main features appearing
in Fig. 3a, d and e are represented schematically in Figures 3b and f. Vertical cross sections of
the diagrams in Figs. 3a and d,e are shown in Figs. 3c and g. Our analytical model allows us
to obtain a skyrmion phase diagram similar to the one described by Bogdanov et. al. [48] and
Kiselev et. al. [35] (Figure 3b) and to complete it with the bubble solution at low magnetic
field (Figure 3f). The asymmetry of the topological soliton phase diagram with respect to the
magnetic field comes from the fact that we are describing metastable states compared to the
ground state uniformly magnetised in the positive z direction.

4.1 Description of the topological soliton phase diagram

We have divided the topological soliton phase diagram in different zones appearing in Figure
3b and f and described in the following.

4.1.1 Single topological soliton: zones 1 and 2

The skyrmion solutions described in Section 3.1 appears in zone 1. These solutions persist
down to H = 0 and for negative applied magnetic fields (see Figure 3a) and disappear along
a blue line visible in Fig. 3b which was defined as the skyrmion bursting line in previous
works [35, 48]. This suppression of the skyrmion solution for decreasing magnetic field is il-
lustrated in Figure 2f. The skyrmion bursting line ends at a critical point (Dcs,Hcs) indicated
by a blue dot in Fig. 3b at which no local maximum is observed any more in Es(r). In the
works where the long range demagnetising effect is neglected [48], this critical point appears
at H = 0 and Dcw = 4

p

Aex.Keff./π. In our case, the critical topological soliton D value Dcs is
lowered compared to Dcw, because we take into account the long range contribution in the de-
magnetising energy, which stabilizes the topological soliton similarly to the DMI energy term.
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Figure 3: (a) Topological soliton equilibrium radius as a function of applied magnetic field and
parameter D, calculated with the same parameters as in Fig. 1. When two solutions coexist
the solution corresponding to the larger radius is shown. (d) Zoom of (a) at low magnetic
field and close to Dcs. (e) same as (d) but showing the solution corresponding to the lower
radius when two solutions coexist. (b) and (f) Schematic representations of characteristic lines
appearing respectively in (a) and (d) and/or defined Section 4.1.1: dashed black line: limit
for isolated solitons, red line: bubble collapse line, blue line: skyrmion bursting line. The
numbers in circles corresponds to the zones defined in Sections 4.1.1,4.1.2 and 4.1.3. (c) and
(g) Topological soliton equilibrium radius as a function of magnetic field for fixed D values.
The D values are ranging from D/Dcw = 0.59 to 1.13 for (c) and from D/Dcw = 0.87 to 0.93
for (g). The green line in (g) correspond to D/Dcw = 0.896, close to Dcs. All the programs
used to create the data and the figures can be found in a repository [38].

The skyrmion radius in zone 1 is always smaller than the radius at the critical point rcs ( ∼100
nm in our case). In addition the skyrmion radius shows a small susceptibility drs/dH, except
close to the critical skyrmion bursting line (see Fig. 3c). This is due to he fact that the Zeeman
energy term is a second order contribution at low r due to its r2 variation.
Zone 2 contains the solutions described in Section 3.3. As observed in Fig. 3c the topologi-
cal solitons in this zone present a skyrmionic behaviour at high positive magnetic field: low
drs/dH susceptibility and no collapse field. At low magnetic field their susceptibility is large
and increases with decreasing field, as it is the case for bubbles. The dashed line in Figs. 3a,b
and d,f is the line at which the isolated topological soliton energy Es(rs) becomes negative
indicating that the uniform ferromagnetic state is not any more the ground state. Above this
line the low energy cost of topological solitons and DWs favours the formation of a topological
soliton lattice or a stripe/helical phase as described in the works from Bogdanov et al. [48]
and Kiselev et al. [35]. We point out that zone 2 is extending above the critical Dcw value. In
this zone, for high magnetic fields, the magnetic field compresses rs down to r ∼ π∆ and the
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non-linearity in the exchange term causes the soliton energy to increase and become positive
again: the isolated soliton solution is restored despite a negative σw (see Figure2e). Experi-
mental observations of such metastable isolated topological soliton at high magnetic field can
be found in the work from Romming et. al. [17] who reported skyrmions in systems with
D > Dcw under high magnetic fields of a few Tesla.

4.1.2 No topological soliton: zone 0 and 3

Zone 1 starts for D values larger than Dmin. = 2
p

Aex.Keff./π. Below this value, in zone 0, the
DMI energy is too low to compensate the anisotropy energy, the α slope in Figure 2c becomes
positive, and there is no energy minimum in Es(r). This defines a lower DMI value for the
formation of a static topological soliton, however, dynamical solitons [49, 50], not discussed
in the present work, can still be created for example using spin polarised currents [51,52]. In
addition, higher order exchange energy terms, not taken into account in the present model can
also lead to the stabilisation of skyrmions in absence of DMI [8,9,53,54]. Zone 3 is delimited
by the blue skyrmion bursting line at which the skyrmion solution disappear and the H = 0 red
line. In this zone the negative magnetic field suppresses the isolated metastable state at low D.
For sufficiently large D, at low magnetic field, a topological soliton lattice or a stripe/helical
phase is predicted in this zone [26,35,48]).

4.1.3 Bubbles solutions and skyrmion and bubble coexistence: zone 4

The region where bubbles appear is defined as zone 4. This zone overlaps with zone 1: a
second energy minimum corresponding to the bubble solution appears in E(r) without mod-
ifying the skyrmion radius. In Figs. 3d and e we show the topological soliton solution at low
magnetic field and for a narrower DMI range compared to Figure 3a. The dashed line in zone
4 correspond to the line at which the bubble energy becomes negative. When two solutions
coexist, as discussed in Section 3.2, the larger/smaller solution is shown respectively in Figs.
3d and e. The coexistence zone is delimited by the H = 0 line, the bubble collapse red line and
the skyrmion bursting blue line. The bubble collapse line and the skyrmion bursting line meet
at the critical (Dcs,Hcs) point. The coexistence is also visible in the vertical cross Section of Figs.
3d and e shown in Fig. 3g. When D is decreased, the bubble collapse field decreases and zone
4 vanishes because the topological soliton wall energy becomes to large to be compensated by
the long range demagnetising energy.

4.2 Transitions close to the critical (Dcs,Hcs) point

In Figure 3g we show the rs evolution with magnetic field very close to Dcs. Below Dcs the en-
ergy barrier which separates the two solutions, visible in Fig. 2d, causes hysteretic behaviors
in the bubble-skyrmion transformations. A bubble transform into a skyrmion via collapse for
increasing magnetic field and skyrmions abruptly expand when the magnetic field is increased
in the negative direction up to the bursting field (see Fig. 2f and g and Fig. 3g). At D = Dcs
and H = Hcs (blue dot in Fig. 3f), the hysteretic behaviour is suppressed (see green line in
Fig. 3g). This is due to the suppression of the energy barriers separating the two solutions
which leads to a remarkably flat Es(r) energy profile close to rcs as visible in Fig. 2h. This
particularity, which is only observed close to the critical point, is due to an almost perfect
compensation, when the radius is varying, of the topological soliton wall energy cost by the
surface demagnetising energy gain.
The skyrmion-bubble transition observed here is reminiscent of the critical phenomena ob-
served in the liquid-gaz second order phase transition. Firstly, the transitions occur along lines
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that terminate at a critical point (Dcs,Hcs). Secondly, for D < Dcs an interval where both soli-
tons coexist is observed similarly to the gas and liquid mixture observed in the temperature
versus density plane of the liquid/gas phase diagram. Thirdly, we observe numerically a di-
vergence in the topological soliton compressibility drs/dH at the critical point (Figure 3g). In
analogy to the opalescence phenomena observed in liquids at the critical point, topological
soliton at this point should present remarkable behaviours due to strong thermally activated
fluctuations of its radius.

4.3 Impact of the model approximations on the critical point position and topo-
logical soliton radius

4.3.1 Demagnetising energy

As discussed in Section 4.1.1, the presence of the long range surface demagnetising energy
Elong range

dem. shifts the critical D value at which the compensation between positive and negative
energy terms occurs. However, as discussed in Section 2.4.4 the expression we use to estimate
Elong range

dem. leads to an overestimation of this energy. Consequently, while the Dcs calculated
with the parameters used in the present work is equal to 0.88 · Dcw, the critical Dcs in a real
system may be closer to Dcw. This is confirmed by our micromagnetic simulations presented
in Section 4.4 where the Dcs value is found to be 8% larger leading to Dcs = 0.95 · Dcw.

4.3.2 Zeeman energy

The error associated with the Zeeman energy analytical expression that we use comes from a
non compensation of the up and down Mz component in the region where the spins rotate.
When r � π∆ this error is negligible (< 1%). For r = 2π∆= 20 nm the error in EZee is of the
order of 5%. For r = 5 nm it reaches 30% of EZee. However the impact of this underestimation
on the topological soliton radius is limited by the fact that EZee decreases quadratically with r
and that the Zeeman energy and its variations are always one to several orders of magnitude
smaller than the total energy value and total energy variations in the r <∆ range.

4.4 Comparison with micromagnetic simulations

We have carried out micromagnetic simulations in order to confirm the predictions obtained
using our analytical model and to estimate the impact of our approximations. The simulations
have been performed using the Mumax3 open source software from Ghent University [55].
The skyrmion stability under an applied external magnetic field has been computed after dis-
cretising the system into orthorhombic cells (finite difference approach). Periodic boundary
conditions has been used to limit size effects and the damping coefficient is set to 0.5 to speed
up convergence (no magnetization dynamics). The system is a 2048 x 2048 nm2 square box
with a mesh size of 0.5 x 0.5 x 0.5 nm3, in which a nanometer sized Néel-type skyrmion is
first relaxed. Once the skyrmion is initialized, a 5 mT perpendicular magnetic field is applied
and reduced in steps of 0.5 mT. A series of simulations is run for variable D values, ranging
from 3.60 to 3.90 mJ/m2. We present the relaxed topological soliton radius as function of ap-
plied magnetic field (Figure 4a) and for comparison the equilibrium topological soliton radius
obtained analytically using the same parameters except the D values, ranging from 3.40 to
3.60 mJ/m2 (Figure 4b). The results support qualitatively the predictions from the analytical
model. In zone 1, the skyrmion solution shows a low drs/dH susceptibility. In zone 2, the
topological soliton is larger and this susceptibility is increased. In zone 4, the susceptibility
varies strongly with decreasing magnetic field. Close to the critical D value Dcs=3.8 mJ/m2 for
Fig. 4a and Dcs=3.5 mJ/m2 for Fig. 4b we observe a skyrmion burst when the magnetic field
is decreased to the critical Hcs value. Close to these Dcs and Hcs values we observe hystretic
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ୱ

ୱ
Figure 4: (a) Topological soliton equilibrium radius as a function of applied magnetic field,
calculated with Mumax3 using the same Ms, Ku and Aex. parameters as in Fig. 1 and D values
ranging from 3.60 to 3.90 mJ/m2. (b) Topological soliton equilibrium radius as a function of
applied magnetic field calculated with the analytical model (Eq. 9). The parameters are the
same as for (a) except for D values ranging from 3.4 to 3.60 mJ/m2.

behaviours in the topological soliton radius variation versus magnetic field in the micromag-
netic simulation (not shown here). This behaviour, which reveals a bi-stability, is very similar
to both what was reported in a recent micromagnetic study very similar to the one carried out
here [56] and to what is predicted by our analytical model (see Figure 3g). To finish we would
like to emphasize that such micromagnetic results must be considered with care, especially for
bubbles which have a diameter of a fraction of the simulation box. Indeed, when D becomes
large (D > 3.86 mJ/m2 typically) or when the applied field is small the skyrmion starts to
develop a squareness [57]. In addition, the skyrmion starts to feel the edges of the simula-
tion box and confinement effects cannot be neglected any more, explaining the fact that the
measured radius is not diverging at very low field.

5 The topological soliton skyrmionic factor

In order to estimate the role of the long range surface demagnetising energy in the stabilization
of a given topological soliton with radius rs, we introduce the skyrmionic factor S which repre-
sent the ratio between the topological soliton wall energy cost and long range demagnetising
energy gain:

S(rs) = −
Eexch. + Eanis. + EDMI

Elong range
dem.

. (10)

The S values corresponding to solutions from Figure 5a are shown in Figure 5b. For rs� π∆
the skyrmionic factor is large: S � 1 as Elong range

dem. is negligible in this range compared to the
topological soliton wall energy cost which tends toward E0 (Figure 1e). On the contrary, large
skyrmions with rs� π∆ are only formed when the topological soliton wall energy cost is lower
than the energy gain due to long range demagnetising effect which implies S < 1. To check this
correlation between the size and the S factor of a given topological soliton, we plot the soliton
radius as a function of S in Figure 5d. Bubble and skyrmion solutions from zone 4 and 1 are
shown respectively in red and black while topological soliton above the critical point (zone 2)
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Figure 5: (a),(b) and (c) Topological soliton equilibrium radius (a), S factor (b) and collapse
energy barrier Ec normalised by the RT thermal energy ERT = kB T293K (c), as a function of the
micromagnetic DMI, calculated with the parameters Ms = 1 MA/m, Ku = 1 MJ/m3, Aex. = 15
pJ/m, t = 0.7 nm. (d) Topological soliton equilibrium radius as a function of the S factor
extracted from (a) and (b). (e) Topological soliton equilibrium radius as a function of Ec/ERT
extracted from (a) and (c). The numbers in circles corresponds to the zones indicated in the
diagrams in Figure 3f. All the programs used to create the data and the figures can be found
in a repository [38].

appear in yellow in Figure 5d. Skyrmion and bubble solutions appear in two distinct r ranges,
above and below rcs. However above the critical point, the radius of topological solitons as
well as their S factor can be tuned continuously across rcs. Topological solitons with S close
to 1 shows a large rs distribution while the rs of skyrmions and compact topological solitons
at high magnetic field are strongly correlated with S. We conclude that the size criteria is
relevant to distinguish between skyrmions and bubbles only below the critical (Dcs,Hcs) point.

6 Topological solitons stability

The analytical topological soliton model derived here allows us to calculate the energy barrier
protecting the solitons from collapse. This collapse energy represents the energy necessary for
the topological soliton to annihilate via compression. This gives an estimation of the stability
of a topological soliton, keeping in mind that our continuous model may become irrelevant at
the atomic scale and that other annihilation mechanism with lower energy paths may exist, in
particular in the presence of defects or edges [30]. We define the topological soliton collapse
energy barrier as Ec = E0 − Emin

s where Emin
s is the local minimum in Es(r). The bubble col-
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lapse energy is defined as Ec = Emax
s − Emin

s where Emax
s is the local maximum. In figure 5c we

plot the collapse energies corresponding to solutions from figure 5a divided by ERT = kB T293K.
In figure 5e we show the topological soliton equilibrium radius rs as a function of their col-
lapse barrier Ec/ERT where the topological solitons from zone 2 are represented in yellow
while skyrmion and bubbles solutions appear respectively in black and red. The segregation
of skyrmion and bubbles in two different rs ranges, due to the presence of an energy barrier
between them in Es(r), appears again clearly. In addition, bubbles have a strong dispersion
in their collapse energies while the skyrmion stability is strongly correlated with its size with
a power-law dependence. Topological solitons above the critical point in yellow show large
collapse energy barriers and their energy at a given size is tunable. When the magnetic field
increases, these solutions show the same power-law collapse energy versus radius dependence
as skyrmions. Topological solitons and skyrmions of 20 nm and above present collapse barriers
larger than 21kBT293K, which corresponds to lifetimes longer than 1s (Arrhenius-Néel law with
a try rate 1/τ0 = 109 Hz) and their stability increases with size and can further be increased
by parameter engineering (see also [46]).

7 Conclusion

We have developed an analytical topological soliton model containing expressions of the long
range demagnetising and exchange curvature energies, two key ingredients to stabilize bubbles
and skyrmions in ferromagnetic thin films. This allowed us to study systematically topological
soliton solutions over a wide range of parameters and explore quantitatively the possible tran-
sitions between small and large topological solitons. The observed skyrmion-bubble transition
present similarities with the liquid-gas transition, in particular a critical point is present above
which the transformation between both spin textures becomes continuous. While distinct
characteristics of skyrmions and bubbles remain, their common nature as topological solitons
is emphasised. Above the critical (Dcs,Hcs) point, the topological soliton can not be strictly
named a skyrmion or a bubble, as it possesses some characteristics of both spin textures. This
hybrid between a bubble and a skyrmion may be referred to as a supercritical skyrmion.
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