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Abstract

We investigate six types of two-point boundary correlation functions in the dense loop

model. These are defined as ratios Z/Z0 of partition functions on the m×n square lattice,

with the boundary condition for Z depending on two points x and y. We consider:

the insertion of an isolated defect (a) and a pair of defects (b) in a Dirichlet boundary

condition, the transition (c) between Dirichlet and Neumann boundary conditions, and

the connectivity of clusters (d), loops (e) and boundary segments (f) in a Neumann

boundary condition.

For the model of critical dense polymers, corresponding to a vanishing loop weight

(β = 0), we find determinant and pfaffian expressions for these correlators. We extract

the conformal weights of the underlying conformal fields and find ∆ = −1
8 , 0, − 3

32 , 3
8 , 1,

θ
π(1+

2θ
π ), where θ encodes the weight of one class of loops for the correlator of type f.

These results are obtained by analysing the asymptotics of the exact expressions, and by

using the Cardy-Peschel formula in the case where x and y are set to the corners. For

type b, we find a ln |x − y| dependence from the asymptotics, and a ln(ln n) term in the

corner free energy. This is consistent with the interpretation of the boundary condition

of type b as the insertion of a logarithmic field belonging to a rank two Jordan cell.

For the other values of β = 2 cosλ, we use the hypothesis of conformal invariance to

predict the conformal weights and find ∆ = ∆1,2, ∆1,3, ∆0, 1
2
, ∆1,0, ∆1,−1 and ∆ 2θ

λ +1, 2θ
λ +1,

extending the results of critical dense polymers. With the results for type f, we reproduce

a Coulomb gas prediction for the valence bond entanglement entropy of Jacobsen and

Saleur.
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1 Introduction

The study of boundary critical phenomena has a long history within the realm of statistical

physics that goes back to the heyday of the renormalisation group [1]. More recently, this

line of research has been thrusted into the limelight because of its intimate connections with

quantum information and entanglement entropy (see [2] and references therein).

The two-dimensional case is of particular interest, since two different approaches offer ac-

cess to exact results. On one hand, many significant models can be reformulated as integrable

one-dimensional quantum spin chains, in which the boundary conditions are taken into ac-

count via integrable K-matrices [3]. This ultimately leads to exact results for boundary-related

properties such as surface critical exponents and surface free energies [4]. Recent results have

set the door ajar to obtaining corner free energies in this way [5–8]. The integrable toolbox
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can furthermore be employed to compute finite-size corrections, either via the Bethe ansatz

technique [9–11] or the approach using functional relations and Y -systems [12–15].

On the other hand, conformal field theory (CFT) [16] provides elegant means of obtaining

such results directly in the continuum limit [17]. Many of these results have subsequently been

made rigorous within the mathematical framework of Stochastic Loewner Evolution (SLE)

[18]. The CFT approach highlights the role of conformally invariant boundary conditions

and of the so-called boundary condition changing operators, which mark the change from one

conformally invariant boundary condition to another. The CFT methods can also accommodate

the role of corners [19] and the finite-size effects [20,21].

Within this landscape, models formulated in terms of loop and clusters [22] offer a par-

ticular fertile ground for illustrating the rich connections between integrable models and

CFT [23, 24]. These models are close to the spirit of SLE, and offer the added advantage

that their lattice formulation makes contact with cellular algebras [25] of the Temperley-Lieb

type and their representation theory. The study of boundary critical behaviour in such models

has led to remarkable successes, such as exact results for the crossing probabilities in critical

percolation [26]. It has also been realised that boundary extensions of the Temperley-Lieb

algebra [27–29] provide access to continuous families of conformally invariant boundary con-

ditions [30], including in cases with two distinguished boundaries [31,32].

Particular choices of the fugacity β of the loops lead to non semi-simple representations of

the Temperley-Lieb algebras, and to continuum limits that are logarithmic CFTs (see [33] for

a review). This is true in particular for the most physically meaningful models, such as critical

dense polymers, percolation, the Ising model and the 3-state Potts model, respectively corre-

sponding to β = 0,1,
p

2,
p

3. These models are ripe with technical subtleties and surprising

results, and the confrontation of different approaches to extracting their critical properties is

usually well justified.

The purpose of this paper is to present a detailed study of various boundary correlation

functions in the dense loop model on the m×n square lattice. We express six different types of

correlation functions in the form of determinants and pfaffians and compare their asymptotic

expansions with the predictions of logarithmic CFT. The choice of correlation functions makes

contact with several recent developments on the CFT side and confirms its remarkable predic-

tive power. More interestingly, our exact results also provide some elements which are not yet

fully understood from the CFT perspective. These include a ln(ln n) contribution to the corner

free energy, as well as partial results on the fusion rules of geometrically defined operators.

The outline of the paper is as follows. In Section 2, we first write down the conformal data

of the CFT underlying the dense loop model. We introduce the lattice model on the m × n

rectangle and review its description in terms of the Temperley-Lieb algebra. We define the six

types of correlators and express them in terms of matrix elements in the XXZ spin-chain. In

Section 3, we set β = 0 corresponding to the model of dense polymers and the XX spin-chain.

Using free-fermion techniques, we write determinant or pfaffian expressions for each correla-

tor, which we then use to extract the conformal weights of the boundary condition changing

fields, as well as the logarithmic behaviour in one case. Some of the technical details are rele-

gated to Sections 6 to 8. In Section 4, we return to generic values of β and obtain conformal

predictions for the weights of the six fields. The derivation uses the known finite-size correc-

tions of the transfer matrix eigenvalues in the standard representations of the Temperley-Lieb

algebra and its one- and two-blob generalisations. These are reviewed in Section 9. Finally in

Section 5, we present an overview of the results and a discussion of an unanswered conundrum

about the lattice interpretation for the fusion of some fields lying outside the Kac table.
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2 Dense loop models and boundary correlators

2.1 Conformal data

The dense loop models are characterised by the fugacity β of the contractible loops. For

β ∈ (−2,2), we use the parameterisation

β = 2 cosλ= 2 cos
�

π(1− t)
�

, t ∈ (0,1). (2.1)

The central charge and conformal weights of the underlying conformal field theory are

c = 13− 6(t + t−1), ∆r,s =
1− rs

2
+

r2 − 1

4t
+
(s2 − 1)t

4
. (2.2)

For the model of critical dense polymers, the loop fugacity is zero, corresponding to t = 1
2 and

c = −2, ∆r,s =
(2r − s)2 − 1

8
. (2.3)

The two-point correlation functions defined in Section 2.6 are ratios of partition functions

for two instances of the same lattice model which differ in the choice of the boundary condition.

In Section 3, we evaluate the conformal weights of the boundary condition changing fields

for the model of critical dense polymers, using two techniques. The first is to derive exact

expressions for the two-point correlators on the upper half-plane H and compare with the

expressions expected from conformal field theory. For ϕ a primary field of conformal weight

∆, the two-point function on H is

〈ϕ(z0)ϕ(z1)〉 =
K

|z0 − z1|2∆
. (2.4)

Similarly, consider a pair (ϕ,ω) of logarithmic fields with conformal weight ∆ that L0 mixes

in a rank-two Jordan cell, with ϕ the eigenstate and ω the Jordan partner. The two-point

functions are

〈ϕ(z0)ϕ(z1)〉 = 0, 〈ϕ(z0)ω(z1)〉 =
K0

|z0 − z1|2∆
,

〈ω(z0)ω(z1)〉=
K1 − 2K0 ln |z0 − z1|
|z0 − z1|2∆

.

(2.5)

The second technique is to consider the correlation function on a semi-infinite strip of finite

width n, with the two fields inserted in the corners. A partition function for the loop model on

this geometry is typically divergent, whereas the ratio of two such partition function is finite

and has the following 1
n expansion:

lim
m→∞

ln Z/Z ′ = −n( fs − f ′s )− 2 ln n
∑

corners

(∆−∆′) + . . . . (2.6)

Here, fs and f ′
s

are the surface free energies corresponding to Z and Z ′, and∆ and ∆′ are the

weights of the corresponding fields in each corner. The ln n term is a corner contribution to

the free energy and is a generalisation of the Cardy-Peschel formula [19] to the case where a

field is inserted in the corner [34].

4

https://scipost.org
https://scipost.org/SciPostPhys.4.6.034


SciPost Phys. 4, 034 (2018)

Figure 1: A loop configuration on the 6× 10 rectangle.

2.2 The dense loop model

We consider the dense loop model on a square lattice of size m×n with m and n even integers.

A configuration of the loop model is a choice of or for each of the mn tiles. An

example is given in Figure 1. The arcs drawn on the tiles combine to form loop segments

that are space-filling. The boundary of the left, right and top segments of the rectangle are

set to consist of arcs that connect nearest neighbour sites. We call those simple arcs. On the

lower segment, we attach a collection of simple arcs and vertical segments called defects. In

Section 2.6, we impose specific arrangements of the arcs and defects on this lower segment

to define six types of boundary correlation functions. We borrow the terminology from the

Coulomb gas formalism, where loops are contour curves for the height function, and use the

terms Dirichlet and Neumann to designate boundary condition which respectively consist of

collections of arcs and defects.

We refer to a collection of loop segments connecting two defects on the boundary as a

boundary loop, and to a closed loop that does not touch the boundary as a bulk loop. Bulk

loops are weighted by β and their number is denoted nβ . The number of boundary loops is d
2

where d is the number of defects attached to the boundary. This is true for all configurations.

We weigh the boundary loops by the fugacity γ= 1. The weight of a loop configuration σ and

the partition function are then

wσ = β
nβ , Z =
∑

σ

wσ. (2.7)

2.3 The Temperley-Lieb algebra

Definition. The dense loop model is described by an algebra of connectivity diagrams, the

Temperley-Lieb algebra [35] TLn(β). Its representation theory is well understood [36–41].

This algebra is generated by the identity I and elements e j , j = 1, . . . , n−1, which are depicted

as

I = ...

1 2 3 n

, e j =
... ...

1 j n

. (2.8)

The e j satisfy the relations

(e j)
2 = βe j , e je j±1e j = e j, e jek = eke j (| j − k| > 1). (2.9)

The other connectivities a in TLn(β) are words in the e j . The diagram for a is obtained by

stacking the diagrams of the corresponding e j and by straightening the loops. For example for
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n= 5:

a = e4e2e1e3e2 = = . (2.10)

The set of connectivities is made of all diagrams wherein the 2n nodes are connected by loop

segments without intersections. The rule for the product a1a2 of two connectivities is as fol-

lows: one stacks a2 above a1, straightens the loop segments and includes a multiplicative

weight of β for each closed loop. For example:

= β2 . (2.11)

Link modules and standard modules. One module over TLn(β) is the so-called link module

Ln. It is built on the vector space generated by the link states with n nodes and an arbitrary

number d of defects, with 0¶ d ¶ n and d ≡ n mod 2. For instance, L4 is spanned by six link

states:

. (2.12)

We define Ln to depend on a free parameter γ. To compute the action of an element

a ∈ TLn on v ∈ Ln, one draws v above a, straightens the loop segments and includes a factor

of β for each closed loop. If two defects annihilate, a multiplicative factor of γ is included. For

instance:

= βγ . (2.13)

If γ = 0, the number of defects is conserved and the link module decomposes as a direct

sum of standard modules, which we denote Vn,d . If γ 6= 0, the dependence on γ can be removed

by a change of basis in Ln which replaces v by v′ = γ−d/2v, with d the number of defects of v.

In this new basis, the annihilation of two defects produces a weight 1. As a result, the study

of the representation content of Ln reduces to two cases: γ= 0 and γ = 1.

Bilinear forms. We define the product v · v′ as an application from Ln × Ln to C. For two

link states v and v′ with respectively d and d ′ defects, v · v′ is defined as

v · v′ = βnβγ(d+d′)/2 (2.14)

where nβ is the number of closed loops in the diagram where v is flipped in a horizontal mirror

and attached to v′. For instance, for v = and v′ = , we have

−→ v · v′ = β2γ3. (2.15)

Depending on β and γ, it may happen that v · v ¶ 0 for some v ∈ Ln, so this bilinear form is

not a scalar product in general. In the next section, we discuss generalisations of this product

wherein the weight γ depends on how the defects are connected.

We note that if v and v′ have the same number d of defects, then γ−d(v · v′) coincides with

the usual Gram bilinear form for standard modules.
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XXZ modules. The generators e j are realised in the XXZ spin-chain by

Xn(e j) = I2 ⊗ · · · ⊗ I2
︸ ︷︷ ︸

j−1

⊗






0 0 0 0

0 q 1 0

0 1 q−1 0

0 0 0 0




⊗ I2 ⊗ · · · ⊗ I2
︸ ︷︷ ︸

n− j−1

. (2.16)

These matrices satisfy the relations (2.9) for β = q + q−1, so Xn is a representation of

TLn(q + q−1). The corresponding spin-chain Hamiltonian is the XXZ Hamiltonian with the

special boundary magnetic fields of Pasquier and Saleur [10]:

H = −
n−1∑

j=1

Xn(e j)

= −1

2

� n−1∑

j=1

σx
j σ

x
j+1 +σ

y

j
σ

y

j+1
− q+ q−1

2
(σz

jσ
z
j+1 − I)
�

− q− q−1

4
(σz

1 −σz
n).

(2.17)

2.4 Homomorphisms and generalised bilinear forms

One can construct a homomorphism between the modules Ln and Xn. Each link state v in

Ln is mapped to an element of (C2)⊗n which we denote by |v〉. This map is defined from the

following local maps:

| 〉 = q1/2 |↑↓〉+ q−1/2 |↓↑〉 | 〉 = |↑〉+ |↓〉. (2.18)

In general for v ∈ Ln, |v〉 is obtained by applying multiplicatively (2.18) to each component

(arcs and defects) of v. For example,

| 〉 = q1/2 |↑↑↓〉+ q1/2 |↓↑↓〉+ q−1/2 |↑↓↑〉+ q−1/2 |↓↓↑〉. (2.19)

It is not hard to check that

Xn(e j)|v〉= |e j v〉, j = 1, . . . , n− 1, v ∈ Ln, (2.20)

with β = q+q−1 and γ = q1/2+q−1/2. Equivalently, this map is a homomorphism between Ln

and Xn.

To study bilinear forms realised in the XXZ representation, we define 〈v|= |v〉† wherein q

is treated as a real parameter. We have the following local relations:

〈 | 〉 = q+ q−1, 〈 | 〉= 2, 〈 | 〉= 〈 | 〉= q1/2 + q−1/2. (2.21)

More generally, for two link states v, v′ ∈ Ln, 〈v|v′〉 evaluates to

〈v|v′〉 = (q+ q−1)nβ 2nvv′ (q1/2 + q−1/2)nv+nv′ (2.22)

where the numbers nv, nv′ and nvv′ are read from in the diagram where v is flipped and

attached to v′: nv counts the pairs of defects of v connected pairwise, nv′ counts the pairs of

defects of v′ connected pairwise, and nvv′ counts the defects of v connected to defects of v′.
In the example (2.15), we have nv = 0, nv′ = 1 and nvv′ = 2.

It is possible to consider more refined bilinear forms. Indeed, let us define

|
s

〉= sσ
z | 〉= s|↑〉+ s−1|↓〉. (2.23)

If v has d defects, we associate a parameter si , i = 1, . . . , d , to each of its defects. Likewise we

associate a parameter t j , j = 1, . . . , d ′, to each of the d ′ defects of v′. We then consider the
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multi-variable product 〈v|v′〉s ,t , where s and t respectively denote the sets of parameters si

and t j . The local relations for this generalised product are

〈 | 〉s ,t = q+ q−1, 〈
si s j

| 〉s ,t = q1/2sis
−1
j + q−1/2s−1

i s j , (2.24a)

〈
si

|
t j

〉s ,t = si t j + (si t j)
−1, 〈 |

ti t j

〉s ,t = q1/2 t i t
−1
j + q−1/2 t−1

i t j . (2.24b)

As a result, the refined product takes the form

〈v|v′〉s ,t = (q+ q−1)nβ
∏

ℓ∈S

γ(ℓ) (2.25)

where S is the set of loops connecting two defects and the weight γ(ℓ) is specific to ℓ: It is

selected as in (2.24) according to whether ℓ connects v to v′, v to itself or v′ to itself, and is a

function of the parameters si , t j at the endpoints of ℓ.

2.5 Transfer tangles and partition functions

The double-row transfer tangle D(u) is an element of the algebra TLn(β):

D(u) =
. . .

. . .

. . .

. . .

u

u

u

u

u

u

︸ ︷︷ ︸

n

, u =
sin(λ− u)

sinλ
+

sin u

sinλ
, (2.26)

where u is the spectral parameter and λ = π(1 − t) is the crossing parameter, satisfying

β = 2 cosλ. The transfer matrix at different values of u commute: [D(u), D(v)] = 0. The

Hamiltonian

H = −
n−1∑

j=1

e j (2.27)

is an element of this commuting family.

We consider a partition function on the rectangle, as in Figure 1, with the link state

v0 = ... (2.28)

applied at the top. Another link state v ∈ Ln is attached to the bottom of the rectangle; it will

be specified in various ways below. The partition function (2.7) is computed using the XXZ

representation and its realisation of the bilinear product defined in Section 2.4:

Z =
〈v|Xn(D(

λ
2 ))

m/2|v0〉
(q1/2 + q−1/2)d/2

� sinλ

sinλ/2

�mn
, (2.29)

where d is the numbers of defects of v. The spectral parameter is set to u = λ/2, the isotropic

value. The factor (q1/2 + q−1/2)d/2 in the denominator ensures that each boundary loop is

weighted by γ = 1.

In Section 2.6, we define correlation functions as ratios Z/Z0 of partition functions that

differ only by the choice of boundary condition, v and v′0, of the bottom segment:

Z

Z0
=

1

(q1/2 + q−1/2)(d−d′0)/2

〈v|Xn(D(
λ
2 ))

m/2|v0〉
〈v′0|Xn(D(

λ
2 ))

m/2|v0〉
, (2.30)

where d ′0 is the number of defects of v′0. In Section 2.6, Z is chosen to depend on two specified

points x and y of the boundary in various ways, and Z0 is the reference partition function. In
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Sections 3 and 4, we study the behaviour of these ratios as functions of x and y, with Z0 kept

fixed.

For β ∈ R∗, the natural choice for Z0 is to set single arcs everywhere on the lower segment,

namely v′0 = v0. However for β = 0, the partition function with v′0 = v0 is zero: There are only

bulk loops, all of which have zero fugacity. In this case, for Z0, we set on the bottom segment

of the rectangle a link state with two adjacent defects in positions x and x + 1:

v′0 = ...
x

... . (2.31)

The nodes are labeled by the integers 1, . . . , n and x is an odd integer in this range.

The corresponding partition function Z0 is independent of the position x . To understand

why, we consider the geometry of Figure 1 with the entire boundary decorated by simple arcs

and count the configurations that contain exactly one loop. This number is non-zero and is a

well-defined partition function for the model of critical dense polymers. One way to compute

it is to select a simple arc from the lower segment, say the one tying the nodes x and x+1. We

impose that a loop has weight zero except if it passes through this special arc, in which case

it has weight 1. This number can be computed using the link representation of TLn(β = 0)

by replacing the special arc by two defects: Setting γ = 1, the unique loop has weight 1 as

required. The result is independent of which arc of the lower boundary is selected to be the

special one, thus confirming that Z0 is indeed independent of x . We immediately note that this

is consistent with the conformal interpretation wherein the operator that inserts two adjacent

defects has conformal weight ∆0 =∆1,3 = 0, see Section 4.2.

2.6 Six types of boundary correlators

In this section, we define correlation functions as ratios of partition functions. In the rectan-

gular geometry, we denote these ratios by

Cm,n(x , y) =
Z

Z0
. (2.32)

Our calculations in Section 3 are performed by taking the limit m → ∞, in which case the

rectangle becomes a semi-infinite strip:

Cn(x , y) = lim
m→∞

Cm,n(x , y), (2.33)

with n, x and y finite. For the various types of correlation functions discussed below, the

partition functions Z and Z0 diverge as m→∞, but their ratio has a well-defined limit. We

also define

C(x , y) = lim
n→∞

Cn(x , y), (2.34)

with x , y kept finite, in which case the semi-infinite strip becomes an infinite quadrant. We

note that C(x , y) is well-defined for the correlators of types a and b defined below, but not

for c, d, e and f. In these cases, the difference in boundary condition beetween the partition

functions in the numerator and the denominator is macroscopic. Indeed, the Dirichlet and

Neumann surface free energies are different and the first term in (2.6) is non-zero, so Cn(x , y)

does not converge as n→∞.

We define six types of two-point correlation functions. For each, the corresponding bound-

ary condition is illustrated in Figure 2.

(a) Correlator between two isolated defects: We assign the state

va = ...
x

...
y

... (2.35)

to the lower boundary, with 1¶ x < y ¶ n, x odd and y even. We denote by Ca
m,n(x , y)

the corresponding ratio of partition functions.
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(b) Correlator between two pairs of defects: We assign the state

vb = ...
x

...
y

... (2.36)

to the lower boundary, with 1 ¶ x < y ¶ n and x , y odd. We denote by Cb
m,n(x , y) the

corresponding ratio of partition functions.

(c) Correlator for macroscopic collections of defects: We assign the state

vc = ...
x

...
y

... (2.37)

to the lower boundary, with 1 ¶ x < y ¶ n, x odd and y even. The number of defects

is thus even. We denote by Cc
m,n(x , y) the corresponding ratio of partition functions.

(d) Correlator for cluster connectivities: We assign the state

vd =
0 1 2 ...

...
n

(2.38)

to the lower boundary. We label the midpoints between the defects by the integers

0, . . . , n. The labels 0 and n then correspond to the left and right corners. We select two

positions x and y with y− x a positive even integer. In each loop configuration, there is

a cluster cx attached to the boundary at x whose contours are drawn by loop segments.

Likewise there is cluster cy attached to the boundary at y. We write cx = cy if x and y

lie in the same cluster, and cx 6= cy otherwise. We define the partition function restricted

to configurations where cx = cy and the corresponding correlation function as:

Zd =
∑

σ

wσδcx ,cy
, Cd

m,n(x , y) =
Zd

Z0
. (2.39)

(e) Correlator for loop connectivities: To the lower boundary, we assign the state vd and select

two of the defects in positions 1 ¶ x < y ¶ n with y − x odd. We denote by ℓx and

ℓy the boundary loops attached to x and y and write ℓx = ℓy if x and y are connected

by a boundary loop. The corresponding restricted partition functions and correlation

function are defined as

Ze =
∑

σ

wσδℓx ,ℓy
, Ce

m,n(x , y) =
Ze

Z0
. (2.40)

We note that the constraint ℓx = ℓy can be expressed in terms of the connectivities of

clusters, in the vocabulary introduced for type d. Indeed, if ℓx = ℓy , then the two clusters

adjacent to ℓx must be connected to the two clusters adjacent to ℓy .

(f) Correlator for segments connectivities and valence bond entanglement entropy: To the

lower boundary, we assign the state vd. We choose x , y in the range 0, . . . , n that are

mid-points between nodes, as in case d. These split the lower edge of the rectangle in

three segments: (1) between 0 and x , (2) between x and y, and (3) between y and n.

In Figure 2 (f), the segments 1 and 3 are drawn in black, and the segment 2 in purple.

In a given configuration, there are ni j boundary loops connecting the segment (i) to

the segment ( j). In Figure 2 (f) for instance, we have n12 = 1, n23 = 3 and n13 = 1.

We define the partition function and correlation function wherein loops connecting the

segment 2 to the other segments are given a weight τ:

Z f =
∑

σ

βnβτn12+n23 , C f
m,n(x , y) =

Z f

Z0
. (2.41)
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x y

(a)
x y

(b)
x y

(c)

x y

(d)
x y

(e)

x y
︸︷︷︸

1

︸ ︷︷ ︸

2

︸ ︷︷ ︸

3

(f)

Figure 2: The boundary conditions for each of the six types of two-point correlators.

We note that for τ = 0, this specialises to Z f|τ=0 = Zd for y − x even, and to Z f|τ=0 = 0

for y − x odd. For τ = 1, Z f is independent of x and y and reproduces Zc with x = 1

and y = n.

The valence bond entanglement entropy [42,43] is defined as the expectation value of

n12 + n23 and is obtained from a logarithmic derivative:

〈n12 + n23〉m,n =

∑

σ(n12 + n23)β
nβ

∑

σ β
nβ

=
d(ln C f

m,n(x , y))

dτ

�
�
�
τ=1

. (2.42)

2.7 Spin-chain expressions for the partition functions

The correlation functions of type a, b and c are computed from (2.30) by respectively special-

ising v to va, vb and vc. For the correlation functions of type d, e and f, we make use of the

generalised bilinear forms discussed in Section 2.4 with specific choices of the si parameters.

The result is

Zd,e,f

Z0
=

1

(q1/2 + q−1/2)(n−d′0)/2

〈vd|Xn(D(
λ
2 ))

m/2|v0〉s
〈v′0|Xn(D(

λ
2 ))

m/2|v0〉
, (2.43)

where the label t is removed because the matrix element does not involve any t j .

Indeed, for correlators of type d, we split the lower edge of the lattice in three segments

as in the first panel of Figure 3 and set

si =







q−1 i = 1, . . . , x ,

iq−1/2 i = x + 1, . . . , y,

1 i = y + 1, . . . , n.

(2.44)

With this choice, a loop tying two defects from the same segment is given a weight q1/2+q−1/2,

whereas a loop tying defects from two adjacent segments has weight zero. This constrains the

cluster at x to be connected to the cluster at y, as required. Finally, a loop tying the first

segment to the third is also given the weight q1/2 + q−1/2, so the bilinear form assigns the

correct weight to each contributing configuration.
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0 x y n 0 x y n

Figure 3: Division of the boundary in segments for correlators of type d and e.

For the correlators of type e, the lower edge of the lattice is divided in five segments, two

of which consist of single nodes, as in the right panel of Figure 3. We specify the si parameters

to

si =












q−1 i = 1, . . . , x − 1,

iq−1/2 i = x ,

q−1 i = x + 1, . . . , y − 1,

iq−1/2 i = y,

1 i = y + 1, . . . , n.

(2.45)

With this choice, any loop that connects the defect at y with a defect in the first, third or fifth

segment is assigned a weight zero in 〈vd|v〉s . If v is such that 〈vd|v〉s 6= 0, then a loop connects

the nodes x and y and is assigned the weight q1/2+q−1/2. Other loops either tie a segment to

itself, or the first and fifth segments, and the weight is q1/2 + q−1/2 in each case, as required.

We compute Z f using the same ideas. We split the lower edge in three segments as for type

d and set the parameters si to

si =







q−1 i = 1, . . . , x ,

e
iθ i = x + 1, . . . , y,

1 i = y + 1, . . . , n.

(2.46)

where θ is a free parameter. With this choice, the bilinear form assigns a weight

q1/2
e

iθ + q−1/2
e
−iθ to a loop connecting segment 2 to another segment, and the weight

q1/2+q−1/2 to loops connecting the segments 1 and 3. Because n12+n23+n13 = n/2, we have

〈vd|v〉s = (q1/2 + q−1/2)n/2
�q1/2

e
iθ + q−1/2

e
−iθ

q1/2 + q−1/2

�n12+n23

(2.47)

and therefore (2.43) holds with

τ=
q1/2

e
iθ + q−1/2

e
−iθ

q1/2 + q−1/2
. (2.48)

3 Exact results for critical dense polymers

In this section, we restrict our attention to the model of critical dense polymers wherein bulk

loops have fugacity β = 0. In any given configuration, all loop segments are attached to the

boundary. For this model, we give determinant and pfaffian formulas for the six types of two-

point correlation functions defined in Section 2.6. We analyse the asymptotic behaviour and

extract the conformal weights of the corresponding boundary condition changing fields.

3.1 The XX Hamiltonian

The spin-chain Hamiltonian corresponding to β = 0 is the XX chain:

H = −
n−1∑

j=1

Xn(e j)
�
�
q=i
= −1

2

� n−1∑

j=1

σx
j σ

x
j+1 +σ

y

j
σ

y

j+1

�

− i

2
(σz

1 −σz
n). (3.1)
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This Hamiltonian was for instance studied in [44,45]. In terms of the fermions

c j = (−1) j−1
� j−1∏

k=1

σz
k

�

σ−j , c
†
j
= (−1) j−1
� j−1∏

k=1

σz
k

�

σ+j , (3.2)

the Hamiltonian takes the form

H = −
� n−1∑

j=1

c
†
j+1

c j + c
†
j
c j+1

�

− i(c
†
1c1 − c†

ncn). (3.3)

We define the operators

a j =ωc j +ω
−1c j+1, at

j
=ωc

†
j
+ω−1c

†
j+1

, ω = e
iπ/4, (3.4)

which satisfy

{a j, ak}= 0= {at
j , at

k}, {a j, at
k} = δ j,k−1 +δ j,k+1. (3.5)

The Hamiltonian can be expressed in Jordan-normal form using the following operators:

ηk =
1

κk

n−1∑

j=1

sin(
πk j

n ) a j, ηt
k =

1

κk

n−1∑

j=1

sin(
πk j

n ) a
t
j , κk =

Ç

n cos(πk
n ), (3.6)

which satisfy the fermionic commutation relations

{ηk,ηℓ}= {ηt
k
,ηt
ℓ} = 0, {ηk,ηt

ℓ}= δk,ℓ. (3.7)

We only consider the case where n is even, for which k takes values in

{1, . . . , n−2
2 } ∪ { n+2

2 , . . . , n− 1}. We complement this set of operators with

φ =

n∑

j=1

i−( j−1)c j , φt =

n∑

j=1

i−( j−1)c
†
j
, (3.8)

and

χ = − 2
n

n∑

j=1

i−( j−1)
�

j
2 − n

4

�

c j , χ t = − 2
n

n∑

j=1

i−( j−1)
�

j
2 − n

4

�

c
†
j
. (3.9)

The operators φ, φt, χ and χ t all anticommute with ηk and ηt
k
. We also have

{φ,χ} = {φt,χ t}= {φ,φ} = {φt,φt}= {χ ,χ} = {χ t,χ t}= 0, {φ,χ t}= {φt,χ}= 1.

(3.10)

The Hamiltonian then takes the form

H = φtφ +

n−1∑

k=1
k 6=n/2

λkη
t
k
ηk, λk = −2 cos(πk

n ). (3.11)

The first term is responsible for Jordan cells of rank 2. A full set of 2n eigenstates and gen-

eralised eigenstates is obtained by acting on |0〉 = |↓↓ · · · ↓〉 with the operators φt,χ t and ηt
k
,

with k in the set given above.
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3.2 Correlators on the semi-infinite strip

To compute ratios of the form (2.30), one needs the eigenvalues and eigenvectors of Xn(D(u)).

The eigenvalues are known [14,46]. Because Xn(D(u)) commutes with H = Xn(H ), the two

operators share the same set of generalised eigenvectors.

In the limit m→∞, only the eigenspace of maximal eigenvalue Λ0 contributes to (2.30).

The generalised eigenspace for Λ0 is four-dimensional. There are three proper eigenstates

with magnetisation −1,0,1 which we denote |w−1〉, |w0〉 and |w1〉, and one Jordan partner to

|w0〉 denoted |w̃0〉. Explicitly, these states are given by

|w−1〉 = ηt
1η

t
2 . . .ηt

n/2−1
|0〉, |w0〉= φt|w−1〉, |w̃0〉 = χ t|w−1〉, |w1〉= φtχ t|w−1〉,

(3.12)

and satisfy

Xn(D(u))|wk〉= Λ0|wk〉, Xn(D(u))|w̃0〉= Λ0|w̃0〉+ f (u)|w0〉, (3.13)

where f (u) is a trigonometric function of u, with f (π4 ) 6= 0. Defining 〈w| = |w〉t yields the left

generalised eigenstates. The ground-state eigenspace is four-dimensional. Restricted to this

subspace, the identity operator is given by

I

�
�
�
Λ0 eigenspace

= |w−1〉〈w−1|+ |w1〉〈w1|+ |w̃0〉〈w0|+ |w0〉〈w̃0|. (3.14)

For the correlators of type a, b and c, we compute (2.30) in the limit m→∞ with v = va,

vb and vc respectively. For the correlators of type d, e and f, we instead compute (2.43) with

the corresponding values of the si parameters. In each case, the state |v0〉 is

|v0〉= at
1at

3at
5 · · ·at

n−1|0〉. (3.15)

It has zero magnetisation, so 〈w−1|v0〉 = 〈w1|v0〉 = 0. Because φ anticommutes with at
j
,

we also have 〈w0|v0〉 = 0. Denoting by Λ1 the second largest eigenvalue of Xn(D(u)) in the

interval 0< u < π
2 , we find

�
Xn(D(

π
4 ))

Λ0

�m/2

|v0〉= |w0〉〈w̃0|v0〉+O
�

(Λ1/Λ0)
m/2
�

(3.16)

and therefore

Ca,b,c
n
(x , y) =

1

2(d−2)/4

〈va,b,c|w0〉
〈v′0|w0〉

, Cd,e,f
n
(x , y) =

1

2(n−2)/4

〈vd|w0〉s
〈v′0|w0〉

, (3.17)

where v′0 is given in (2.31). As expected, the results are independent of v0, the state at the

boundary that is infinitely far away.

3.3 Type a: two isolated defects

The two-point correlation function on the semi-infinite strip between two isolated defects is

computed from (3.17) with va given in (2.35). The homormorphism defined in Section 2.4

gives

|va〉 =
� (x−1)/2∏

i=1

at
2i−1

�

(1+ c†
x )

� (y−2)/2∏

j=(x+1)/2

at
2 j

�

(1+ c†
y)

� n/2∏

k=(y+2)/2

at
2k−1

�

|0〉. (3.18)
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For convenience, we choose v′0 such that its leftmost defect sits in the same position x as the

leftmost defect of va:

|v′0〉=
� (x−1)/2∏

i=1

at
2i−1

�

(1+ c†
x)(1+ c

†
x+1)

� n/2∏

k=(x+3)/2

at
2k−1

�

|0〉. (3.19)

Using the explicit form of |w0〉, we can write down determinant expressions for 〈va|w0〉
and 〈v′0|w0〉. Because {a j ,φ

t} = 0, the part involving φt and the operators acting in positions

x and y factors out, namely

〈va|w0〉 = 〈0|
�

(−1)
x−1

2 cx + (−1)
y−2

2 cy

�

φt|0〉〈0|
(y+2)/2∏

k=n/2
step=−1

a2k−1

(x+1)/2∏

j=(y−2)/2
step=−1

a2 j

×
1∏

i=(x−1)/2
step=−1

a2i−1|w−1〉.
(3.20)

Using the commutation relations for {c j ,φ
t}, we find that the first matrix element equalsp

2ω−1. The second matrix element is rewritten using Wick’s theorem: For φℓ and ϕt
k

fermionic annihilation and creation operators, the following equality holds:

〈0|φL . . .φ2φ1ϕ
t
1ϕ

t
2 . . .ϕt

L
|0〉=

L

det
k,ℓ=1
{φℓ,ϕt

k
}. (3.21)

We apply this for L = n−2
2 , with

φℓ =









a2ℓ−1 ℓ = 1, . . . , x−1
2 ,

a2ℓ ℓ = x+1
2 , . . . ,

y−1
2 ,

a2ℓ+1 ℓ =
y+1

2 , . . . , n−2
2 ,

ϕt
k
= ηt

k
. (3.22)

These satisfy the commutation rules {aℓ,ηt
k
} = 2 cos(πk

n ) sin(
πkℓ

n ). The result is the determi-

nant of a matrix M x ,y of size n−2
2 :

〈va|w0〉=
p

2ω−1

(n−2)/2∏

k=1

2 cos(πk
n )

κk

det M x ,y , (3.23)

where

M
x ,y

k,ℓ
=









sin
�

2πk
n (ℓ− 1

2)
�

ℓ= 1, . . . , x−1
2 ,

sin
�

2πk
n ℓ
�

ℓ= x+1
2 , . . . ,

y−2
2 ,

sin
�

2πk
n (ℓ+

1
2)
�

ℓ=
y
2 , . . . , n−2

2 .

(3.24)

The factors 2 cos(πk
n ), which do not depend on the index ℓ, were factorised from the determi-

nant. The expression for 〈v′0|w0〉 is obtained from (3.23) and (3.24) by substituting y = x+1.

In this case, we abbreviate M x ,x+1 = M x . Its determinant evaluates to

det M x = (−1)(n−2)(n−4)/8 n
n−4

4

2
n−3

2

. (3.25)

Using
(n−2)/2∏

k=1

2 cos(πk
n ) =
Æ

n/2, (3.26)
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we find

〈v′0|w0〉 =
ω−1(−1)(n−2)(n−4)/8

∏(n−2)/2

k=1 κk

n(n−2)/4

2(n−3)/2
. (3.27)

It is independent of x , as expected from the discussion at the end of Section 2.5.

The case (x , y) = (1, n). Below, we present a closed-form expression for the determinant of

M x ,y for arbitrary x , y, but let us first present a limiting case: x = 1 and y = n. In this case,

det M1,n = (−1)(n−2)(n−4)/8 n
n−2

4

2
n−2

2

. (3.28)

This allows us to write an exact expression for ln Ca
n(1, n):

ln Ca
n(1, n) = 1

2 ln n− 1
2 ln2. (3.29)

This is consistent with (2.6) with boundary condition changing fields of weight

∆
a = −1

8
∆

0 = 0 (3.30)

in each of the two corners.

The general (x , y) case. The above corner free energy analysis allows one to determine

∆
a−∆0, but not each conformal weight individually. To confirm the identification (3.30), we

pursue the computation of Ca
n(x , y) for arbitrary values x , y. We have

Ca
n(x , y) =

det M x ,y

det M x
= det N , N = (M x )−1M x ,y . (3.31)

The inverse of M x is given by

(M x )−1
k,ℓ
=

4

n

(

sin
�
πℓ
n (2k− 1)
�

+ (−1)k−
x−1

2 sin
�
πℓx

n

�

k ¶ x−1
2 ,

sin
�
πℓ
n (2k+ 1)
�

+ (−1)k−
x+1

2 sin
�
πℓx

n

�

k ¾ x+1
2 .

(3.32)

The columns of M x ,y and M x labeled by ℓ= x+1
2 , . . . ,

y−2
2 are different, but the other ones are

identical. As a consequence, Nk,ℓ = δk,ℓ for ℓ = 1, . . . , x−1
2 and ℓ =

y
2 , . . . , n−2

2 . The ratio of

determinants in (3.31) then reduces to the determinant of a matrix of size
y−x−1

2 :

Ca
n(x , y) =

y−2
2

det
k,ℓ= x+1

2

Nk,ℓ. (3.33)

For x+1
2 ¶ k,ℓ ¶

y−2
2 , the matrix elements Nk,ℓ are obtained by a direct computation:

Nk,ℓ =
(−1)k+ℓ sin(2πℓ

n ) sin(
π
n (k +

x+1
2 )) sin(

π
n (k− x−1

2 ))

n sin(πn (k + ℓ+
1
2 )) sin(

π
n (k − ℓ+

1
2)) sin(

π
n (ℓ+

x
2 )) sin(

π
n (ℓ−

x
2 ))

. (3.34)

They are independent of y. This yields

Ca
n
(x , y) =

y−2
2∏

k= x+1
2

sin(2πk
n ) sin(

π
n (k +

x+1
2 )) sin(

π
n (k − x−1

2 ))

n sin(πn (k+
x
2 )) sin(

π
n (k −

x
2 ))

×
y−2

2

det
k,ℓ= x+1

2

1

sin(πn (k + ℓ+
1
2)) sin(

π
n (k − ℓ+ 1

2 ))
.

(3.35)
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The remaining determinant is evaluated using Cauchy’s identity

b

det
k,ℓ=a

1

wk − zℓ
=

∏

a¶k<ℓ¶b(wk − wℓ)(zℓ − zk)
∏b

k,ℓ=a(wk − zℓ)
(3.36)

with wk = −1
2 cos(2π

n (k+
1
2 )) and zℓ = −1

2 cos(2πℓ
n ). The result is a closed-form expression for

Ca
n(x , y):

Ca
n
(x , y) =

y−2
2∏

k= x+1
2

sin( 2πk
n ) sin(

π
n (k +

x+1
2 )) sin(

π
n (k− x−1

2 ))

n sin(πn (k+
x
2 )) sin(

π
n (k − x

2 ))

×
∏

x+1
2 ¶k<ℓ¶

y−2

2
sin(πn (k+ ℓ)) sin(

π
n (k + ℓ+ 1)) sin(πn (k− ℓ)) sin(πn (ℓ− k))

∏ j−2
2

k,ℓ= x+1
2

sin(π
n
(k+ ℓ+ 1

2 )) sin(
π
n
(k− ℓ+ 1

2 ))

.

(3.37)

The n→∞ limit is well-defined and non-zero. It is obtained by replacing each sine function

by its argument:

Ca(x , y) =
� 2

π

� y−x−1
2 ×

y−2
2∏

k= x+1
2

k(k + x+1
2 )(k −

x−1
2 )

(k+ x
2 )(k − x

2 )

∏

x+1
2 ¶k<ℓ¶

y−2
2
(k + ℓ)(k + ℓ+ 1)(k − ℓ)(ℓ− k)

∏ y−2
2

k,ℓ= x+1
2

(k + ℓ+ 1
2 )(k − ℓ+

1
2 )

. (3.38)

This expression can be written in terms of the Barnes G-functions:

G(z + 1) = Γ (z)G(z), Γ (z + 1) = z Γ (z). (3.39)

After simplification, the result reads

Ca(x , y) =
G(y)G(y + 1)

G2(y + 1
2)

G(
y
2 +

1
4 )G

2(
y
2 +

3
4)G(

y
2 +

5
4 )

G(
y
2 )G(

y
2 +

1
2)G(

y
2 + 1)G(

y
2 +

3
2 )

G(
y
2 −

x
2 +

1
2)G(

y
2 −

x
2 +

3
2)

G2(
y
2 − x

2 + 1)

×
G(x + 3

2)G(x + 1)

G(x + 1
2)G(x + 2)

G( x
2 +

1
2)G(

x
2 + 1)G( x

2 +
3
2 )G(

x
2 + 2)

G( x
2 +

3
4)G

2( x
2 +

5
4 )G(

x
2 +

7
4 )

(3.40)

×
G(

y
2 +

x
2 )G(

y
2 +

x
2 + 1)

G2(
y
2 +

x
2 +

1
2)

G2(3/2).

We consider the behaviour of ln Ca(x , y) for x , y, y− x ≫ 1. The large-z asymptotic expansion

of the logarithm of the Barnes G-function is

ln G(1+ z) =
�z2

2
− 1

12

�

lnz − 3z2

4
+

z

2
ln2π+

1

12
− lnA+O(z−2), (3.41)

where A is the Glaisher-Kinkelin constant. We thus set x = r x ′, y = r y ′, take r →∞ with

x ′, y ′ finite, and find:

ln Ca(x , y) =
1

4
ln(y + x) +

1

4
ln(y − x)− 1

8
ln x − 1

8
ln y − 1

2
ln2+ ln G2(3

2) +O(r−1). (3.42)

The power-law behaviour of Ca(x , y) in the geometry of the quadrant is therefore

Ca(x , y) = K
(y + x)

1
4 (y − x)

1
4

x
1
8 y

1
8

, K =
G2(3

2)p
2

. (3.43)
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To recover the result on the upper half-plane, we consider the regime x , y ≫ y − x , in which

case (3.43) becomes

Ca(x , y)
x ,y≫y−x−−−−−−→ 21/4K(y − x)1/4. (3.44)

This is consistent with (2.4) with

∆
a = −1

8
. (3.45)

3.4 Type b: two pairs of defects

The two-point correlation function on the semi-infinite strip between two pairs of defects is

computed from (3.17) with vb given in (2.36). We immediately note that the loop configu-

rations contributing to Zb can be split in two families according to the way that the points x ,

x + 1, y and y + 1 are connected:

x

...

y

and

x

...

y

. (3.46)

We refer to the refined partition functions as Zb and Zb , with Zb = Zb +Zb . We can com-

pute Z and Z separately by using the generalised bilinear forms discussed in Section 2.4:

〈vb|sσ
z
x

1 s
σz

x+1

2 s
σz

y

3 s
σz

y+1

4 |w0〉
〈v′0|w0〉

=
γ12γ34p

2

Zb

Z0
+
γ14γ23p

2

Zb

Z0
, γab =ω

sa

sb

+ω−1 sb

sa

. (3.47)

Alternatively, there is a simple argument to show that

Zb = Z0 (3.48)

for β = 0. Indeed, there is a simple bijective map between configurations contributing to Zb

and to Z0: In each loop configuration contributing to Zb , one ties together the defects in

y and y + 1 with a simple arc. It is easy to see that this map preserves the weight of each

configuration, and therefore Zb = Z0.

The general x , y case. We thus proceed to compute 〈vb|w0〉 without the added si factors in

(3.47), knowing in advance that Cb(x , y) = 1+ Cb (x , y) with Cb (x , y) = Zb /Z0. From

Section 2.4, we have

|vb〉 =
� (x−1)/2∏

i=1

at
2i−1

�

(1+ c†
x
)(1+ c

†
x+1)
� (y−3)/2∏

j=(x+1)/2

at
2 j+1

�

(1+ c†
y
)(1+ c

†
y+1)

×
� (n−2)/2∏

k=(y+1)/2

at
2k+1

�

|0〉,
(3.49)

where x and y are odd. This yields

〈vb|w0〉 =
∑

{ℓ1,ℓ2}⊂S

σℓ1,ℓ2
〈0|an−1 · · ·ay+2ay−2 · · ·ax+2ax−2 · · ·a3a1cℓ2

cℓ1
φtηt

1η
t
2 · · ·ηt

(n−2)/2
|0〉,

(3.50)

where ℓ1 < ℓ2 in the sum and

σℓ1,ℓ2
=

�
1 ℓ2 − ℓ1 = 1,

(−1)
y−x−2

2 otherwise,
S = {x , x + 1, y, y + 1}. (3.51)
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Using Wick’s theorem, each term in (3.50) is expressed as a determinant. We find

Cb
n(x , y) =

(−1)(y−1)/2ω−1

p
2

∑

{ℓ1,ℓ2}⊂S

σℓ1,ℓ2

det P x ,y

det M̂ x
. (3.52)

The explicit forms of the matrices are

M̂ x =






g1,1+g1,2 h1,1 h1,3 ··· h1,x−4 h1,x−2 h1,x+2 h1,x+4 ··· h1,n−1

g2,1+g2,2 h2,1 h2,3 ··· h2,x−4 h2,x−2 h2,x+2 h2,x+4 ··· h2,n−1
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

g n−2
2 ,1
+g n−2

2 ,2
h n−2

2 ,1
h n−2

2 ,3
··· h n−2

2 ,x−4
h n−2

2 ,x−2
h n−2

2 ,x+2
h n−2

2 ,x+4
··· h n−2

2 ,n−1p
2 0 0 ··· 0 0 0 0 ··· 0




 , (3.53a)

P x ,y =






g1,m1
h1,1 h1,3 ··· h1,x−2 h1,x+2 ··· h1,y−2 g1,m2

h1,y+2 ··· h1,n−1

g2,m1
h2,1 h2,3 ··· h2,x−2 h2,x+2 ··· h2,y−2 g2,m2

h2,y+2 ··· h2,n−1

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

g n−2
2 ,m1

h n−2
2 ,1

h n−2
2 ,3
··· h n−2

2 ,x−2
h n−2

2 ,x+2
··· h n−2

2 ,y−2
g n−2

2 ,m2
h n−2

2 ,y+2
··· h n−2

2 ,n−1

i−ℓ1 0 0 ··· 0 0 ··· 0 i−ℓ2 0 ··· 0




 , (3.53b)

with

gk,ℓ =
κk{ηt

k
, cℓ}

2 cos(πk
n )
=
ω−1 sin(

πk(ℓ−1)
n ) +ω sin(πkℓ

n )

2 cos(πk
n )

, hk,ℓ =
κk{ηt

k
, aℓ}

2 cos(πk
n )
= sin(πkℓ

n ). (3.54)

In particular, the powers of i in the last row of P x ,y come from the commutators of φt and

cℓ1
, cℓ2

.

The matrices P x ,y and M̂ x are identical except in the columns 1 and
y+1

2 . As a result,

det
�

(M̂ x )−1P x ,y
�

simplifies to the determinant of a 2× 2 matrix. The upper-right n−2
2 × n−2

2

minor of M̂ x is just the matrix M x defined in Section 3.3. The inverse of M̂ x is thus easily

written down in terms of (3.32). We find:

det
�

(M̂ x )−1P x ,y
�

=
1p
2

det

�

i−ℓ1 i−ℓ2

f(y−1)/2,ℓ1
f(y−1)/2,ℓ2

�

, (3.55)

where

fk,ℓ =

(n−2)/2∑

j=1

(M̂ x )−1
k, j

g j,ℓ =ω
−1 f̃k,ℓ−1+ω f̃k,ℓ, (3.56a)

f̃k,ℓ =
2

n

(n−2)/2∑

j=1

�

sin
�π j

n (2k+ 1)
�

+ (−1)k−(x+1)/2 sin(
π j x

n )
� sin(

π jℓ
n )

cos(
π j
n )

. (3.56b)

The resulting expression for Cb
n(x , y) is thus considerably different from the one for Ca

n(x , y)

found in Section 3.3. We evaluate the determinant in (3.55), explicitly write down each term

of the sum (3.52) and find

Cb
n(x , y) =

1

2

�

(−1)
y−x−2

2 ( f̃x−1 + 2 f̃x + (1+ 2i) f̃x+1) + (1− 2i) f̃ y−1 + 2 f̃ y + f̃ y+1

�

, (3.57)

where we abbreviate f̃(y−1)/2,ℓ = f̃ℓ. The function f̃k,ℓ is simplified in Section 6. For ℓ even,

f̃k,ℓ admits a simple form given in (6.2), from which we read:

f̃x−1 = f̃ y+1 = 0, f̃x+1 = (−1)
y−x−2

2 , f̃ y−1 = 1. (3.58)

We thus have

Cb
n
(x , y) = 1+ (−1)

y−x−2
2 f̃x + f̃ y . (3.59)
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A simplified expression for f̃k,ℓ with ℓ odd is (6.4). We now take the limit n→∞. To compute

Cb(x , y), we use (6.6) and find after simplification:

lim
n→∞

f̃x =
(−1)

y−x−2
2

π

� (y+x−2)/2∑

k=0

1

k+ 1
2

+

(y−x−2)/2∑

k=0

1

k + 1
2

−
x−1∑

k=0

1

k+ 1
2

�

, (3.61)

lim
n→∞

f̃ y =
1

π

� (y+x−2)/2∑

k=0

1

k+ 1
2

+

(y−x−2)/2∑

k=0

1

k + 1
2

−
y−1∑

k=0

1

k + 1
2

�

, (3.62)

and finally

Cb(x , y) = 1+
1

π

�

2

(y+x−2)/2∑

k=0

1

k + 1
2

+ 2

(y−x−2)/2∑

k=0

1

k+ 1
2

−
y−1∑

k=0

1

k + 1
2

−
x−1∑

k=0

1

k+ 1
2

�

. (3.63)

We study the behaviour in the regime x , y, y − x ≫ 1 by setting x = r x ′, y = r y ′, expanding

in powers of 1/r and using

t∑

k=0

1

k + 1
2

= ln t + 2 ln2+ γ+O(t−1), (3.64)

where γ is the Euler-Mascheroni constant. This yields

Cb(x , y) = 1+
1

π

�

2 ln(y + x) + 2 ln(y − x)− ln y − ln x
�

+
2γ

π
+O(r−1). (3.65)

The result on the upper half-plane is obtained by taking x , y ≫ y − x :

Cb(x , y)
x ,y≫y−x−−−−−−→ 1+

2

π
ln(y − x) +

2

π
(γ+ ln2) (3.66)

from which we read off

Cb (x , y)
x ,y≫y−x−−−−−−→ 2

π
ln(y − x) +

2

π
(γ+ ln 2). (3.67)

This logarithmic behaviour is consistent with the rightmost equation in (2.5), with

∆
b = 0. (3.68)

The case (x , y) = (1, n − 1). We investigate in greater detail the case where the two pairs

of defects are at the two corners. In this case, we find that

f̃1 = (−1)n/2 f̃n−1 =
4

n
(−1)n/2

(n−2)/2∑

j=1

j≡ n−2
2 mod 2

sin2
�π j

n

�

cos
�π j

n

� . (3.69)

Analysing the large-n asymptotic expansion of this function, we obtain

Cb
n(1, n) = 1+ (−1)n/2 f1 + f̃n−1 ≃

4

π
ln n+ 1+

4

π
(γ+ 2 ln2− lnπ− 1). (3.70)

As discussed in Section 7, the coefficient 4/π in front of ln n in (3.70) is universal. In the con-

formal description, the field inserted at the corner is not primary and is instead the logarithmic

partner of the identity field. Instead of the usual ln n contribution of the corner free energy,

we find an expansion of the form

ln(Zb/Z0) = ln(ln n) + ln(4/π) + o(n0). (3.71)

The presence of a ln(ln n) dependence is unusual and is a distinctive feature of the logarith-

mic field inserted in the corner. Similar ln(ln n) terms were previously found for the large n

asymptotics of the entanglement entropy [47,48].
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3.5 Type c: macroscopic collections of defects

The two-point correlation function of type c on the semi-infinite strip is computed from (3.17)

with vc given in (2.37), for which

|vc〉 =
(x−1)/2∏

i=1

at
2i−1

y∏

j=x

(1+ c
†
j
)

n/2∏

k=(y+2)/2

at
2k−1|0〉. (3.72)

The corresponding product reads

〈vc|w0〉=
∑

L⊂{x ,...,y}
|L|=(y−x+1)/2

〈0|
(y+2)/2∏

k=n/2
step=−1

a2k−1

1∏

j=(y−x+1)/2
step=−1

cℓ j

1∏

i=(x−1)/2
step=−1

a2i−1|w0〉, (3.73)

with L = {ℓ1,ℓ2, . . . ,ℓ(y−x+1)/2}.

The case (x , y) = (1, n). We start by discussing the case x = 1, y = n. Using Wick’s theorem,

we find

〈vc|w0〉 =
(−1)(n−2)/2ω−1

∏(n−2)/2

k=1
κk

∑

L⊂{1,...,n}
|L|=n/2

detQL, (3.74)

where Q is a rectangular matrix of size n/2× n, with entries

Qk,ℓ =ω
−1 sin(

πk(ℓ−1)
n ) +ω sin(πkℓ

n ). (3.75)

In (3.74), QL denotes the restriction of Q to the columns with indices in L = {ℓ1,ℓ2, . . . ,ℓn/2}.
The label k for the rows takes the values 1, . . . , n/2. We use the Cauchy-Binet formula for

pfaffians given in the following lemma [49].

LEMMA 3.1. Let r, t be positive integers with r ¶ t and r, t even. For M an r × t matrix and X a

t × t antisymmetric matrix, we have

∑

L⊂{1,...,t}, |L|=r

det(ML)pf(X L,L) = pf(MX M t), (3.76)

where X L,L is the restriction of X to rows and columns with indices in L.

We apply this lemma with

X =











0 1 1 1 · · · 1

−1 0 1 1 · · · 1

−1 −1 0 1 · · · 1

−1 −1 −1 0 · · · 1
...

...
...

...
. . . 1

−1 −1 −1 −1 −1 0











, (3.77)

for which pf(X L,L) = 1 for all L.

For n/2 even, Q has an even number of rows and the lemma is applied with the matrix X

of size n:

〈vc|w0〉 =
(−1)(n−2)/2ω−1

∏(n−2)/2

k=1
κk

pf
�

QXQt
�

. (3.78)
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The matrix elements of QXQt are obtained by an explicit computation:

�

QXQt
�

k,ℓ
=







0 k ≡ ℓmod 2,
cos(πℓ2n ) cos(πℓn ) sin(

πk
n )

sin(πℓ2n ) sin
�
π(k−ℓ)

2n

�

sin
�
π(k+ℓ)

2n

� k ≡ 0 mod 2, ℓ≡ 1 mod 2. (3.79)

The matrix elements with k odd and ℓ even are obtained from (3.79) by recalling that QXQt

is antisymmetric. Because the entries are zero for k ≡ ℓmod 2, the rows and columns of QXQt

can be reordered in such a way that

pf
�

QXQt
�

= (−1)n(n−4)/32pf

�

0 −Y t

Y 0

�

= (−1)n/4 det Y. (3.80)

This yields

pf
�

QXQt
�

=(−1)n/4
n/4∏

k=1

cos
�
π
n (k − 1

2)
�

cos
�

2π
n (k − 1

2)
�

sin(2πk
n )

sin
�
π
n (k−

1
2 )
�

×
n/4

det
k,ℓ=1

1

sin
�
π
n (k− ℓ+

1
2)
�

sin
�
π
n (k+ ℓ−

1
2)
� . (3.81)

Expanding the denominator as 1
2(cos(πn (2ℓ + 1)) − cos(2πk

n )), we evaluate the determinant

using (3.36) and find, for n/2 even:

〈vc|w0〉=
(−1)(n−4)/4ω−1

∏(n−2)/2

k=1
κk

n/4∏

k=1

cos
�
π
n (k − 1

2)
�

cos
�

2π
n (k− 1

2 )
�

sin(2πk
n )

sin
�
π
n (k − 1

2)
� (3.82)

×
∏

1¶k<ℓ¶n/4 sin
�
π
n (k + ℓ− 1)
�

sin
�
π
n (ℓ− k)
�

sin
�
π
n (k + ℓ)
�

sin
�
π
n (k− ℓ)
�

∏n/4

k,ℓ=1
sin
�
π
n (k − ℓ+ 1

2)
�

sin
�
π
n (k + ℓ− 1

2)
� .

For n/2 odd, Lemma 3.1 cannot be applied directly because Q has an odd number of rows.

Instead, we use the following corollary.

COROLLARY 3.2. Let r ¶ t with t odd. For M an r×t matrix and X a (t+1)×(t+1) antisymmetric

matrix, we have

∑

L⊂{1,...,t}, |L|=r

det(ML) =
∑

L′⊂{1,...,t+1}
|L′|=r+1

det M̂L′ = pf(M̂X M̂ t) (3.83)

where X is defined in (3.78) and M̂ is defined as

M̂ =







0

M
...

0

0 · · · 0 1







. (3.84)
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Using the same technique as for n/2 even, we find, for n/2 odd:

〈vc|w0〉 =
(−1)(n−2)/2ω−1

∏(n−2)/2

k=1
κk

pf
�

Q̂XQ̂t
�

=

p
2ω−1

∏(n−2)/2

k=1 κk

(n−2)/4∏

k=1

cos
�
π
n (k − 1

2)
�

cos
�

2πk
n

�

sin(2πk
n )

sin
�
π
n (k −

1
2)
�

×
∏

1¶k<ℓ¶(n+2)/4 sin
�
π
n (k + ℓ− 1)
�

sin
�
π
n (ℓ− k)
�

∏(n−2)/4

k=1

∏(n+2)/4

ℓ=1
sin
�
π
n (k − ℓ+

1
2 )
�

sin
�
π
n (k+ ℓ−

1
2)
� (3.85)

×
∏

1¶k<ℓ¶(n−2)/4

sin
�
π
n (k+ ℓ)
�

sin
�
π
n (k − ℓ)
�

.

Computing the 1
n expansion of the logarithm of Cc

n
(1, n) = 2−(n−2)/4〈vc|w0〉/〈v′0|w0〉, we find

ln Cc
n(1, n) = n

G

π
+

3

8
ln n+

1

8

�

1− 35

3
ln2− 12 lnA+ lnπ

�

+O(n−1), (3.86)

where G is Catalan’s constant. This holds for both parities of n/2. The details of the calculation

are discussed in Section 8. This expansion is consistent with (2.6) with

fs − f ′s = −
G

π
, ∆

c = − 3

32
, ∆

0 = 0. (3.87)

The general (x , y) case. In this case, we can write 〈vc|w0〉 as

〈vc|w0〉 =
(−1)(n−2)/2ω−1

∏(n−2)/2

k=1
κk

∑

L⊂{x ,...,y}
|L|=d/2

det P, (3.88)

where d = y − x + 1 and the matrix P is

P =







h1,1 h1,3 ··· h1,x−2 g1,ℓ1
g1,ℓ2

··· g1,ℓd/2
h1,y+1 h1,y+3 ··· h1,n−1

h2,1 h2,3 ··· h2,x−2 g2,ℓ1
g2,ℓ2

··· g2,ℓd/2
h2,y+1 h2,y+3 ··· h2,n−1

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

h n−2
2 ,1

h n−2
2 ,3
··· h n−2

2 ,x−2
g n−2

2 ,ℓ1
g n−2

2 ,ℓ2
··· g n−2

2 ,ℓd/2
h n−2

2 ,y+1
h n−2

2 ,y+3
··· h n−2

2 ,n−1

0 0 ··· 0 ω i−(ℓ1−1) ω i−(ℓ2−1) ··· ω i
−(ℓd/2−1)

0 0 ··· 0







(3.89)

and has entries that depend on L = {ℓ1,ℓ2, . . . ,ℓd/2}. To compute Cc
n(x , y), we multiply P by

(M̂ x )−1, see (3.53a), and find

Cc
n(x , y) =

1

2(d−2)/4

∑

L⊂{x ,...,y}
|L|=d/2

det RL, (3.90)

with

Rk,ℓ =

� ωp
2
i−(ℓ−x) k = 1,

ω−1R̃k,ℓ−1+ωR̃k,ℓ k = 2, . . . , d
2 ,

R̃k,ℓ = f̃ x−3
2 +k,ℓ . (3.91)

The function f̃k,ℓ is defined in (3.56b). For d/2 even, we use Lemma 3.1 and find

Cc
n(x , y) =

1

2(d−2)/4
pf

d/2

k,ℓ=1
(RX Rt)k,ℓ, (3.92)
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e
− G(y−x)

π Cc(x , y)

y − x

Figure 4: Values for Cc(x , y) in the regime 1 ¶ y − x ¶ x , y obtained from the pfaffian

formulas.

where R is rectangular of size d
2 × d , with matrix entries Rk,ℓ, k = 1, . . . , d

2 , ℓ = x , . . . , y. The

matrix (RX Rt) is antisymmetric and its elements read

(RX Rt)k,ℓ =












p
2

y−1∑

i=x

R̃ℓ,i, k = 1,ℓ > 1,

2

y−1∑

i=x+1

i−2∑

j=x

�

R̃k, jR̃ℓ,i − R̃k,iR̃ℓ, j

�

+

y−1∑

i=x+1

�

R̃k,i−1R̃ℓ,i − R̃k,iR̃ℓ,i−1

�

, k,ℓ > 1.

(3.93)

For d/2 odd, we use Corollary 3.2 and write the result in terms of the matrix R̂ of size

( d
2 + 1)× (d + 1):

Cc
n
(x , y) =

1

2(d−2)/4
pf

d/2+1

k,ℓ=1
(R̂X R̂t)k,ℓ. (3.94)

In this case, it turns out that the only non-zero element of the first row is the last:

(R̂X R̂t)1,ℓ = δℓ,d/2+1. The result is thus the pfaffian of the minor with k,ℓ = 2, . . . , d/2:

Cc
n(x , y) =

1

2(d−2)/4
pf

d/2

k,ℓ=2
(RX Rt)k,ℓ, (3.95)

with the matrix elements given in the second line of (3.93).

To obtain the correlator Cc(x , y) in the upper half-plane, we take the limit n→∞ of each

matrix entry and consider the regime where x , y ≫ y − x ≫ 1 for each R̃k,ℓ. The function

f̃k,ℓ has a well-defined such limit which we compute in Section 6, with the final results given

in (6.2) and (6.6). We find, as expected, that the corresponding pfaffians are invariant under

translations, namely under x → x ′ + 2a, y → y ′ + 2a, k→ k′ + a and ℓ→ ℓ′ + a, with a ∈ Z.
We are unfortunately unable to evaluate the resulting pfaffian and obtain an expres-

sion in product form. The final pfaffian formula is however convenient for numerical com-

putations. We have computed Cc(x , y) with y − x up to 1003. In Figure 4, we plot

exp(−G(y − x)/π)Cc(x , y) as a function of y− x , using our prior knowledge from (3.86) that

the difference in surface free energy between Neumann and Dirichlet boundary conditions is

G/π. Expecting a power-law behaviour of the form

e
−G(y−x)/πCc(x , y) =

K

(y − x)∆c
, (3.96)

we extract the conformal weight using a fit and find ∆c ≃ −0.09405. This is consistent with

the conformal dimension in (3.86): ∆c = − 3
32 = −0.09375.
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3.6 Type d, e and f: cluster, loop and segment connectivities

The correlation functions for cluster, loop and segment connectivities are computed from

(3.17) with vd given in (2.38) and the parameters si respectively fixed to

si =







ω−2 i = 1, . . . , x ,

ω i = x + 1, . . . , y,

1 i = y + 1, . . . , n,

si =












ω−2 i = 1, . . . , x − 1,

ω i = x ,

ω−2 i = x + 1, . . . , y − 1,

ω i = y,

1 i = y + 1, . . . , n,

si =







ω−2 i = 1, . . . , x ,

e
iθ i = x + 1, . . . , y,

1 i = y + 1, . . . , n,

(3.97)

where we recall that ω = eiπ/4. We have

〈vd|w0〉s = 〈0|
n∏

i=1
step=−1

(s−1
i + sici)|w0〉=

� n∏

i=1

s−1
i

� ∑

L⊂{1,...,n}
|L|=n/2

� n/2∏

j=1

s2
ℓ j

�

〈0|
n/2∏

ℓ=1
step=−1

cℓ j
|w0〉

=
(−1)(n−2)/2ω−1

∏(n−2)/2

k=1
κk

� n∏

i=1

s−1
i

� ∑

L⊂{1,...,n}
|L|=d/2

� n/2∏

j=1

s2
ℓ j

�

detQL

=
(−1)(n−2)/2ω−1

∏(n−2)/2

k=1 κk

� n∏

i=1

s−1
i

� ∑

L⊂{1,...,n}
|L|=d/2

det(QS)L

=
(−1)(n−2)/2ω−1

∏(n−2)/2

k=1
κk

� n∏

i=1

s−1
i

�

×
�

pf(QSX StQt) n/2 even,

pf(Q̂ŜX ŜtQ̂t) n/2 odd,
(3.98)

where Q is defined in (3.75) and S is an n× n matrix with entries Sk,ℓ = (sk)
2δk,ℓ. We used

Lemma 3.1 and Corollary 3.2 at the last equality. Together with (3.27), this yields

Cd,e,f
n (x , y) = (−1)n(n−2)/8

� n∏

i=1

s−1
i

�2(n−4)/4

n(n−2)/4
×
�

pf(QSX StQt) n/2 even,

pf(Q̂ŜX ŜtQ̂t) n/2 odd.
(3.99)

We have not found out how to push the calculation further and instead evaluated the exact

formulas using a computer. For type d and e, the computation was performed for n = 1500,

x = 750 and 750 < y ¶ 1500. The results are displayed in Figure 5. Using power-law fits of

the form

e
− Gn
π Cd,e

n (x , y) =
K

(y − x)∆d,e
, (3.100)

we obtained∆d ≃ 0.37247 and∆e ≃ 0.994845. This is consistent with the values obtained in

Section 4.4 and Section 4.5:

∆
d =

3

8
= 0.375 , ∆

e = 1. (3.101)

For correlators of type f, we performed the same numerical analysis as those presented in

Figure 5, for multiple values of τ ∈ [0,2] and for n = 1000, and estimated the conformal

weight in each case. The results are given in Figure 6. Our investigation separates the cases

where y − x is even and odd, for which one could expect different behaviours. Indeed, Z f is a

polynomial in τ; for y − x even, the constant term is non-zero and equals Zd. For y − x odd,
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e
− Gn
π Cd

n (x , y)

y

e
− Gn
π Ce

n(x , y)

y

Figure 5: Values of Cd
n
(x , y) and Ce

n
(x , y) obtained from the pfaffian formulas, for n = 1500

and x = 750. The power-law behaviour is only approximate for finite system sizes and gets

progressively worse as y gets closer to the right corner.

∆(τ)

(y − x) even

τ

∆(τ)

τ

(y − x) odd

Figure 6: The value of ∆ for C f
n(x , y) as a function of τ, for y − x even and odd. Each data

point is obtained from a power-law fit of the pfaffian expression (3.99) for n= 1000.

Z f|τ=0 = 0, so the constant term vanishes. In Figure 6 however, it seems that the conformal

weights are identical in the odd and even cases. In both panels, we have plotted the curve

∆ =∆4θ+1,4θ+1 =
θ
π(1+

2θ
π ). (3.102)

We discuss in Section 4.5 how this curve is obtained and provide possible explanations for the

deviation between the numerics and the theoretical curve near τ = 0.

4 Predictions from conformal invariance

In this section, we use the hypothesis of conformal invariance to predict the leading behaviour

of the correlation functions. In particular, it will become clear why some of the lattice correla-

tors studied in Section 3 exhibit pure power-law behaviours whereas others have logarithmic

corrections.

For two-point functions of primary fields of weight∆, the transformation law between two

domains D1 and D2 is

〈φ(y0)φ(y1)〉D1
=

�
�
�
�

dy

dz

�
�
�
�

−∆

y=y0

�
�
�
�

dy

dz

�
�
�
�

−∆

y=y1

〈φ(z0)φ(z1)〉D2
. (4.1)

The derivations presented in this section combine (4.1) with the knowledge of the finite-size

corrections for the eigenvalues of the lattice transfer matrices. These are given in Section 9

for the Temperley-Lieb algebra and its generalisations with blobs on one and two boundaries.
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y0=0

y1=−im

m

n

...
...

...
...

y

)

R1









R2

)

R3

z=eiπy/n

−−−−−→

z0=1 z1=e
πm/n

z

Figure 7: The conformal map between the domains V and H. The two marked points y0 and

y1 in V are mapped in H to z0 and z1.

Using these two ingredients, we are able to give predictions for the correlators that match the

results found in Section 3 for critical dense polymers. The technique in fact gives predictions

for β ∈ (−2,2).

For D1, we take the infinite vertical strip of width n and denote it V. For D2, we take the

upper half-plane H. The map between these two domains is

z = e
iπy/n (4.2)

and is illustrated in Figure 7. In Sections 4.1 to 4.6, we decorate the boundary ofVwith simple

arcs and defects corresponding to each type of correlation function. Each time, we split V in

three regions R1, R2 and R3. The horizontal dashed lines that bound R2 in Figure 7 are leveled

with the two marked points y0 = 0 and y1 = −im on the left segment for which we want to

compute the correlation function.

4.1 Type a: two isolated defects

For the correlators of type a, we decorate the domains V and H with simple arcs and two

defects, as in Figure 8. The regions R1 and R3 are drawn as finite; in the calculation below, we

consider the limit wherein their vertical length is infinite.

The partition function on V can be expressed in terms of two states ψ1 and ψ3. These

are obtained as the linear combination of link states coming out of R1 and R3. Concretely, to

construct ψ1 and ψ3, we first define

φ1 = φ3 = lim
m′→∞

�
D̂(λ2 )

Λ̂0

�m′

v0, (4.3)

where

D̂(u) =
. . .

. . .

. . .

. . .

u

u

u

u

u

u
(4.4)

and v0 is defined in (2.28). The states φ1 and φ3 are elements of Vn+1,0 and Λ̂0 is the ground-

state eigenvalue of D̂(λ2 ) in this representation. We then obtain ψ1,ψ3 ∈ Vn,1 from φ1,φ3 by

converting the first node to a defect.
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ψ1

ψ3

−→

... ...

Figure 8: Boundary conditions on V and H corresponding to the correlator of type a.

With y0 = 0 and y1 = −im, we have

Ca
V
(y0, y1) =

1

Z0
ψ3 · (D(λ2 )m/2ψ1)

�
�
Vn,1

. (4.5)

This computation is performed in the standard module with one defect, and with the bilinear

form defined in Section 2.3 specialised to γ = 1. The generating function for the conformal

spectrum of D(u) on Vn,d is given in (9.4). For d = 1, there is a unique ground state w1. Its

eigenvalue Λ1 has a 1/n expansion of the form (9.1) with ∆ = ∆1,2 [9]. This is true for β

generic.

For m ≫ n, the leading contribution to the right-hand side of (4.5) is from the ground

state. Decomposing ψ1 in terms of the eigenstates of D(λ2 ) as ψ1 =
∑

wαww, we find

Ca
V
(y0, y1)

m≫n−−−→
Λ

m/2
1

Z0
αw1
(ψ3 ·w1)
�
�
Vn,1

. (4.6)

The factors αw1
and (ψ3 ·w1) do not depend on m, whereas Λ

m/2
1 behaves as

Λ
m/2
1 = exp
�

− mn
2 fb − m

2 fs − πm
n (∆1,2 − c

24 ) + . . .
�

. (4.7)

where fb is the bulk free energy. For generic values of β , the partition function in the denom-

inator is computed with only simple arcs on the boundary of V, and behaves as

Z0 ≃ Λm/2
0 = exp
�

− mn
2 fb − m

2 fs − πm
n (∆1,1 − c

24 ) + . . .
�

. (4.8)

Recalling that ∆1,1 = 0, we find

Ca
V
(w1, w2)

m≫n−−−→ K̃e−
πm
n ∆1,2 , (4.9)

where K̃ is a constant that does not depend on m. This equality holds for generic and non-

generic values of β , including β = 0. Indeed in this last case, Z0 is instead the partition

function where the two defects in Figure 8 are adjacent. The calculation is computed with

the standard module with two defects and yields Z0 ≃ Λm/2
2 where Λ2 is the ground state

eigenvalue in Vn,2. The finite-size correction for Λ2 involves ∆1,3 which is also zero.

On V, the correlation function of type a thus varies exponentially in the distance

m= |y0− y1| between the two points. From a CFT perspective, the insertion of a single defect

on the boundary corresponds to the insertion of a boundary changing field ϕa, and Ca(x , y)

is the two-point function of this field. Supposing that this field is primary, the correlation

function in the upper half-plane is

Ca
H
(z0, z1) ≃ 〈ϕa(z0)ϕ

a(z1)〉H =
K

|z0 − z1|2∆a
. (4.10)
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z
w

w=z1/2

−−−−→

Figure 9: The map w = z1/2 from H to Q.

To determine ∆a, we note that we can obtain Ca
V
(y0, y1) from Ca

H
(z0, z1) by using the transfor-

mation law (4.1) with the map (4.2):

Ca
V
(y0, y1) =

K ′e
πm
n ∆

a

(e
πm
n − 1)2∆a

m≫n−−−→ K ′e−
πm
n ∆

a

, K ′ = (πn )
2∆a

K . (4.11)

Comparing with (4.9), we find K ′ = K̃ and ∆a = ∆1,2. For critical dense polymers, the con-

formal prediction for the correlation function of type a on H is therefore a power-law increase

with

∆
a =∆1,2 = −

1

8
. (4.12)

This reproduces the exact result (3.45).

As a final remark, we note that the correlation function in the first quadrant Q can be

obtained from (4.10) by applying the transformation law with w = z1/2. This transformation

is illustrated in Figure 9. The result is

Ca
Q
(w0, w1) =

K ′′|w0|∆
a |w1|∆

a

�
�w2

0 −w2
1

�
�
2∆a , K ′′ = 22∆a

K . (4.13)

With ∆a = −1
8 , this precisely reproduces the lattice result (3.43).

4.2 Type b: two pairs of defects

For the correlators of type b, we decorate the domains V and H with simple arcs and two

pairs of defects, as in Figure 10. Using the terminology of Section 3.4, we first consider the

correlator Cb (x , y) where defects belonging to a same pair are not connected together. We

follow the same ideas as in Section 4.1 and write the partition function on V using two states

ψ1,ψ3, which in this case have two defects. These should not connect, so the computation is

performed in Vn,2. In this case, the conformal weight appearing in the finite-size term of the

ground-state eigenvalue of Vn,2 is ∆1,3 [9]. We find:

Cb
V, (y0, y1) =

1

Z0
ψ3 · (D(λ2 )m/2ψ1)

�
�
Vn,2

m≫n−−−→ K̃
�
Λ2

Λ0

�m/2
≃ K̃e−

πm
n ∆1,3 . (4.14)

To understand the conformal interpretation, we repeat the argument used in Section 4.1. In-

serting a pair of adjacent defects should correspond to the insertion of a primary field ϕb of

weight ∆b for which the two-point correlator on H has the same form as (4.10). Applying the

conformal transformation, the same two-point correlator on V is found to have the form

Cb
V, (y0, y1) =

K ′e
πm
n ∆

b

(e
πm
n − 1)2∆b

m≫n−−−→ K ′e−
πm
n ∆

b

. (4.15)
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ψ1

ψ3

−→

... ...

Figure 10: Boundary conditions on V and H corresponding to the correlators of type b.

Comparing with (4.14), we conclude that ∆b = ∆1,3. For critical dense polymers, we have

∆1,3 = 0, which is consistent with the exact result (3.48), where this correlator is independent

of the distance between the two points.

To compute Cb (x , y), we perform a calculation similar to (4.14) but in the link module

Ln, to allow defects in the same pair to connect:

Cb
V, (y0, y1) =

1

Z0
ψ3 · (D(λ2 )m/2ψ1)

�
�
Ln

. (4.16)

In contrast with (4.14), the states ψ1 and ψ3 in (4.16) are linear combinations of link states

with zero or two defects. Acting with D(λ2 )
m/2 on ψ1 mixes these two subsectors further. The

product v1 ·v2 appearing in (4.16) is then defined to be zero if both v1 and v2 have two defects,

with the defects of v1 connected to those of v2. This product is βnβ otherwise.

The spectrum of D(λ2 ) in Ln is the union of its spectra in the subsectors Vn,d . The state

ψ1 has non-zero contributions along w0 and w2, the ground states corresponding to the two

subsectors with d = 0 and d = 2. For β generic, the two corresponding eigenvalues Λ0 and Λ2

are different and the leading and subleading contributions to Cb
V, (y0, y1), for m≫ n, are

Cb
V, (y0, y1)

m≫n−−−→ 1

Z0

�

Λ
m/2
0 αw0

ψ3 ·w0 +Λ
m/2
2 αw2

ψ3 ·w2 + . . .
�

= K̃0

�
Λ0

Λ0

�m/2
+ K̃2

�
Λ2

Λ0

�m/2
+ · · ·= K̃0 + K̃2e

− πm
n ∆1,3 + . . . , (4.17)

where K̃0 and K̃2 are independent of m.

In fact, subleading orders can also be computed in (4.14). In this case, one obtains a

sum of the form
∑

i K̃ie
− πm

n ∆(i) where ∆(i) differs from ∆1,3 by an integer. Presumably, these

subleading terms reproduce the Taylor expansion of the function K ′eπm∆b/n/(eπm/n−1)2∆
b

as

in (4.15). The difference in (4.17) is that ∆1,1 = 0 and∆1,3 are not integer-spaced in general.

This points to the fact that the conformal field that inserts two adjacent defects forced to

connect together is not primary, and is instead a composite field that mixes two primary fields

of dimensions ∆1,1 and ∆1,3. The field ϕb is then interpreted as the fusion of two fields of

type a, which is consistent with the operator product expansion (OPE) for these fields:

ϕb ≃ ϕa ×ϕa = ϕ1,2 ×ϕ1,2 = ϕ1,1 +ϕ1,3. (4.18)

The case β = 0 is special because ∆b =∆1,3 = 0 is equal to ∆1,1. The eigenvalues Λ0 and

Λ2 are equal and the two corresponding states form a Jordan cell in Ln:

D(λ2 )w0 = Λ0w0, D(λ2 )w2 = Λ0w2 + f (π4 )w0. (4.19)
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From the representation theoretic point of view, this Jordan cell belongs to a projective module

of TLn(β = 0) that is reducible yet indecomposable. This will be discussed further in Section 5.

We find

ψ3 · (D(λ2 )m/2ψ1)
�
�
Ln

m≫n−−−→ Λm/2
0

�

αw0
(ψ3 ·w0) +αw2

�

ψ3 ·w2 +
m
2

f (π4 )

Λ0
ψ3 ·w0

��

+ . . . (4.20)

and therefore

Cb
V, (y0, y1)

m≫n−−−→ K̃0 + K̃2m+ . . . . (4.21)

Because (4.21) is linear in m instead of exponential, the assumption that the corresponding

field is a primary field or a composition thereof fails here and must be modified.

For c = −2, let ω(z) be a conformal field of weight zero and a logarithmic partner of the

identity field ϕ1,1(z). Under a conformal transformation w = f (z), the transformation law for

ω(z) is

ω(z)→ω(w) +λ0ϕ1,1(w) ln

�
�
�
dw

dz

�
�
�

2

, (4.22)

where λ0 is a constant. The one- and two-point functions on H are

〈ϕ1,1(z)〉H = 0, 〈ω(z)〉H = λ1, 〈ω(z0)ω(z1)〉H = −4λ0λ1 ln |z0 − z1|+λ1λ2, (4.23)

where λ1 and λ2 are constants. Applying the transformation law (4.1) with (4.2), we find

〈ω(y0)ω(y1)〉V = −4λ0λ1 ln(e
πm
n − 1) + 2λ0λ1π

m
n +λ1λ

′
2

m≫n−−−→−2λ0λ1π
m
n +λ1λ

′
2, (4.24)

where λ′2 = λ2 + 4λ0 ln(π/n). This has the desired linear dependence in m, as in (4.21). The

insertion of two defects constrained to connect together is thus interpreted as the insertion of

a field ω(z). In this setting, the partition function Z0 is the one-point function 〈ω(z)〉. It is

independent of z, consistent with the lattice result discussed at the end of Section 2.5. The

correlation function of type b is

Cb (z0, z1) =
〈ω(z0)ω(z1)〉
〈ω(z0)〉

. (4.25)

On H, this yields

Cb
H, (z0, z1) = −4λ0 ln |z0 − z1|+λ2. (4.26)

This is precisely the lattice result (3.67), with

λ0 = −
1

2π
λ2 =

2

π
(γ+ ln 2). (4.27)

The constant λ0 is in fact universal; the value found here is the same as the one obtained

in [50, Equation (76)]. In contrast, λ1 and λ2 are not universal.

Finally, the result in the first quadrant is obtained from (4.26) by using the transformation

law (4.1) with w = z1/2:

Cb
Q
(w0, w1) = −4λ0 ln |w2

0−w2
1|+2λ0 ln |w0|+2λ0 ln |w1|+λ′′2 , λ′′2 = λ2+4λ0 ln2. (4.28)

This is identical to the lattice result (3.65).
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ψ1

ψ3

≃

ψ1

ψ3

−→

... ...

Figure 11: Boundary conditions on V and H corresponding to the correlators of type c.

4.3 Type c: macroscopic collections of defects

For the correlators of type c, we decorate the domains V and H with simple arcs and defects

as in the first and last panels of Figure 11. On V, the two states ψ1 and ψ3 for the regions R1

and R3 are

ψ1 =ψ3 = lim
m′→∞

�
D(λ2 )

Λ0

�m′

v0. (4.29)

To obtain the partition function on V, one should act m/2 times on ψ1 with a double-row

transfer tangle that has two defects attached to its left end, and then take the product with

ψ3. We do the calculation using the blob algebra, recalling that the fugacity of the boundary

loops is set to one. The definition of this algebra is reviewed in Section 9. For the region

R2, we replace pairs of consecutive defects by arcs equipped with blobs, as in the central

panel of Figure 11, and set the fugacity of loops containing a blob to β1 = 1. In terms of the

parameterisation (9.9), this holds for

r1 =
π−λ

2λ
. (4.30)

The corresponding transfer matrix is

D(1)(u) =
. . .

. . .

. . .

. . .

u

u

u

u

u

u
. (4.31)

In this setting, the states ψ1 and ψ3 are elements of the standard module of the blob algebra

with zero defects, V
(1)

n,0. The two-point function on V is given by

Cc
V
(y0, y1) =

1

Z0
ψ3 ·
�

(D(1)(λ2 ))
m/2ψ1

��
�
V
(1)
n,0

. (4.32)

The corresponding bilinear form here is adapted so that the loops with a blob are given the

fugacity β1 = 1.

In the limit m≫ n, the leading behaviour is a contribution from the ground state. In this

case, the maximal eigenvalues in the numerator and denominator belong to transfer matrices

with different boundary conditions on the left. As pointed out in (3.87), the difference in

surface energy is −G
π . Using the expression (9.12) for the conformal character corresponding

to V
(1)

n,0, we find

Cc
V
(y0, y1)

m≫n−−−→ e
Gm
π K̃e−

πm
n ∆r1,r1 = e

Gm
π K̃e−

πm
n ∆0,1/2 , (4.33)
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where we used the symmetries of the Kac formula (2.2) at the last step. The correlator of

type c thus takes the form of a non-universal boundary term times the two point function

〈ϕc(z0)ϕ
c(z1)〉 of a primary field of weight∆c =∆0,1/2. On the upper half-plane, the universal

part of the two-point function is then

Cc
H
(z0, z1)≃ 〈ϕc(z0)ϕ

c(z1)〉H =
K

|z0 − z1|2∆0,1/2
. (4.34)

This result holds for all β . The conformal dimension of this boundary changing field was

previously obtained in [30, Equation (3.20)] in the case p′ = p + 1, where it was written as

∆p/2,p/2. For dense polymers, the conformal weight is

∆
c =∆0,1/2 = −

3

32
, (4.35)

consistent with the exact results (3.87) and the numerics of Figure 4.

The case of percolation, namely β = 1 corresponding to t = 2/3, provides a second ver-

ification of the result (4.34). In this case, the model does not distinguish between arcs and

defects in the boundary condition, as both bulk and boundary loops have weight 1. For this

model, one expects that Cc
H
(z0, z1) = 1 for all z0 and z1. In this case, ∆0,1/2 = 0 and (4.34) is

indeed independent of |z0 − z1|.
Another nice remark can be made. From the geometric definition of the fields ϕa and ϕc ,

we expect their OPE to be of the form

ϕa ×ϕc = ϕc + . . . . (4.36)

Indeed, on the lattice, this corresponds to imposing the boundary condition

... ...
a c

(4.37)

to the lower edge of the rectangle. As the isolated defect approaches the transition midpoint

between the Dirichlet and Neumann boundary conditions, it becomes indiscernable from the

rest of the defects. Little is known about the fusion of fields that are not in the Kac table, yet

one expects that fusing ϕ1,2 with a field ϕr,s changes the s index by +1 or −1. In particular,

ϕa ×ϕc = ϕ1,2 ×ϕ0,1/2 = ϕ0,−1/2 +ϕ0,3/2. (4.38)

At the level of conformal weights, ∆0,−1/2 =∆0,1/2 =∆
c, consistent with the geometric inter-

pretation.

4.4 Type d: cluster connectivities

For the correlators of type d, we decorate the domains V and H with simple arcs and defects

as in the first and last panels of Figure 12. The defects lying between the two marked points

y0 and y1 are drawn in green. The cluster starting from y0 reaches y1 if and only if each green

defect is connected to another green defect. Although this is not illustrated in Figure 12, the

cluster is allowed to touch the boundary in multiple points, either between y0 and y1 or outside

of this interval.

To carry out the calculation, we use the generalisation of the Temperley-Lieb algebra with

blobs on both boundaries [27–29]. The definition of this algebra is reviewed in Section 9. In

the regions R1 and R3, we replace pairs of adjacent defects by square blobs, as shown in the

second panel of Figure 12. We impose that each closed loop containing a square blob has a

weight 1. The states ψ1 and ψ3 are thus identical and are linear combinations of link states

with arcs that may or may not be equipped with a square blob, and no defects.
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For R2, we replace the defects on the left and right boundaries by round and square blobs

respectively and impose that a loop containing a single blob (round or square) has weight one,

whereas a loop that contains both types of blobs has weight zero: β1 = β2 = 1, βe
12 = 0. In

terms of the parameterisations given in Section 9, this holds for

r1 = r2 =
π−λ

2λ
, r12 = r1 + r2 + 1=

π

λ
. (4.39)

The computation of Cd
V
(y0, y1) is then performed in the standard module with zero defects:

Cd
V
(y0, y1) =

1

Z0
ψ3 ·
�

(D(2)(λ2 ))
m/2ψ1

��
�
V
(2)
n,0

, (4.40)

where

D(2)(u) =
. . .

. . .

. . .

. . .

u

u

u

u

u

u
(4.41)

and the corresponding bilinear form assigns to each type of loop the weights β1, β2 and βe
12.

The conformal character corresponding to the spectrum of D(2)(u) in V
(2)

n,0 is given in (9.24).

For r12 = π/λ, the symmetries of the Kac formula allow us to write

∆r12−2k,r12
=∆2k−1,0. (4.42)

At the lowest order, we therefore have

Cd
V
(y0, y1)

m≫n−−−→ K̃e−
πm
n ∆r12,r12 = K̃e−

πm
n ∆1,0 . (4.43)

The corresponding leading behaviour for the same correlator in H is

Cd
H
(z0, z1)

m≫n−−−→ K

|z0 − z1|2∆1,0
. (4.44)

The field that probes the connectivity of a cluster on a boundary with Neumann boundary

conditions thus has conformal weight∆1,0. For critical dense polymers, this conformal weight

is

∆
d =∆1,0 =

3

8
, (4.45)

consistent with the numerical data presented in Section 3.6.

ψ1

ψ3

≃

ψ1

ψ3

−→

... ...

Figure 12: Boundary conditions on V and H corresponding to the correlators of type d. The

red curve is one path connecting the two marked mid-points inside the corresponding cluster.
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ψ1

ψ3

≃

ψ1

ψ3

−→

... ...

Figure 13: Boundary conditions on V and H corresponding to the correlators of type e.

The next leading orders in (4.43) are also exponentially decreasing in m, with the weights

∆2k−1,0, k ∈ Z. For generic β , these are not integer-spaced. With the current technique, we

cannot determine whether the constants multiplying these exponentials are zero or not. If they

are not, one should conclude that the conformal field ϕd inserted to probe the connectivity of

a cluster is not a primary field.

4.5 Type e: loop connectivities

For the correlators of type e, we decorate the domains V and H with blue and green defects,

as in the first and last panel of Figure 13. There are only two green defects: those on the left

segment that are just above and just below the region R2, in V. This colour code indicates

that these two defects are constrainted to connect together. To perform the computation, we

replace the blue defects by round and square blobs as in the second panel: round blobs on the

left segment of R2 and square blobs elsewhere. We impose β1 = β2 = 1, or equivalently

r1 = r2 =
π−λ

2λ
, (4.46)

ensuring that blue defects can connect pairwise with weight 1. Only the two green defects are

not transformed into arcs; ψ1 andψ3 are therefore states with one defect. For these defects to

connect together, they should avoid connecting to the blobs in the boundary. To impose this,

we equip the green defects with two unblobs: a round one and a square one. In this setting,

ψ1 and ψ3 are elements of V
(2, u, u)

n,1 , and we have:

Ce
V
(y0, y1) =

1

Z0
ψ3 ·
�

(D(2)(λ2 ))
m/2ψ1

��
�
V
(2, u, u)
n,1

. (4.47)

The weight βo
12 does not appear in the sector V

(2, u, u)

n,1 , so we need not specify its value for the

computation at hand. The conformal character corresponding to the spectrum of D(2)(u) in this

sector is believed to be given by (9.23d). For r1 and r2 specified as in (4.46), the symmetries

of the Kac formula yield

∆−r1−r2−1−2k,−r1−r2
=∆2k+1,−1. (4.48)

At the lowest order, the conformal part of the correlation functions is

Ce
V
(y0, y1)

m≫n−−−→ K̃e−
πm
n ∆1,−1 , Ce

H
(z0, z1)

m≫n−−−→ K

|z0 − z1|2∆1,−1
. (4.49)

The field that probes the connectivitiy of a loop segment on a Neumann boundary has weight

∆1,−1. As mentioned in Section 2.6, the correlator of type e can be viewed as the correlator

35

https://scipost.org
https://scipost.org/SciPostPhys.4.6.034


SciPost Phys. 4, 034 (2018)

between two adjacent clusters at x and two others at y. The more general case of ℓ adjacent

clusters will be discussed in Section 5. Remarkably,

∆
e =∆1,−1 = 1 (4.50)

for all values of β . For critical dense polymers, this is consistent with the numerics presented

in Section 3.6. Like for correlators of type d, the conformal dimensions of the next leading

orders are not integer-spaced, implying that the field ϕe that probes the connectivity of a loop

in a Neumann boundary may not be primary.

In the geometric interpretation, we expect that the OPE of the fields ϕa and ϕd is of the

form

ϕa ×ϕd = ϕe + . . . . (4.51)

Indeed, fusing ϕa and ϕd corresponds to inserting an isolated defect near a starting cluster,

which ends at a point far away to the right. This isolated defect can either connect to a point

in its immediate neighbourhood, or to a point on the other side of the cluster:

... ...

a d

or

... ...

a d

(4.52)

We identify the latter with the case e, where a defect connects to a point far away to the right.

This is consistent with the fusion rule

ϕ1,2 ×ϕ1,0 = ϕ1,1 +ϕ1,−1 (4.53)

and the equality ∆e =∆1,−1.

4.6 Type f: segment connectivities and valence bond entanglement entropy

For correlators of type f, we consider separately the cases where y−x is even and odd. For y−x

even, we decorate the domains of V and H as in the first and last panels of Figure 12, with the

red path removed and the green defects replaced by purple ones. To perform the computation,

we replace pairs of adjacent purple defects by rounds blobs and set r1 and r2 to their values

in (4.46), so that β1 = β2 = 1. A closed loop that contains both blobs is equivalent to two

boundary loops that tie the region R2 to the other two regions. We therefore have βe
12 = τ

2

and, with the parametrisation (9.21a),

r12 =
2θ

λ
+ 1. (4.54)

In this setting, we can write C f
V
(y0, y1) in terms of states ψ1 and ψ3 in V

(2)

n,0:

C f
V
(y0, y1) =

1

Z0
ψ3 ·
�

(D(2)(λ2 ))
m/2ψ1

��
�
V
(2)
n,0

. (4.55)

The conformal character in this case is (9.24). For m≫ n, at the lowest order, we have

C f
V
(y0, y1)

m≫n−−−→ K̃e−
πm
n ∆r12,r12 , C f

H
(z0, z1)

m≫n−−−→ K

|z0 − z1|2∆r12,r12

, (4.56)
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with r12 = r12(τ) defined by (2.48) and (4.54). We thus find

∆
f(τ) =∆r12(τ),r12(τ)

. (4.57)

This result is consistent with the special cases ∆f(0) = ∆d and ∆f(1) = 0. In the upper half-

plane, the valence bond entanglement entropy is then given by

〈n12 + n23〉H =
dθ

dτ

dr12

dθ

d∆

dr12

d(ln C f
H
(x , y))

d∆

�
�
�
τ=1
=

2(λ/π)

π(1−λ/π)
cos(λ/2)

sin(λ/2)
ln(y − x), (4.58)

which is identical to the result found in [43].

For y − x odd, Ẑ f = Z f/τ is polynomial and non-zero at τ = 0, and we define

Ĉ f
V
(y0, y1) =

Ẑ f

Z0
. (4.59)

To give a prediction using CFT, we decorate the domains of V and H with purple and blue

defects as in the first and last panels of Figure 14. The region R2 contains y − x − 1 purple

defects, and the last purple defect is in R1. We proceed with the computation using the two-

blob Temperley-Lieb algebra and replace the purple defects in R2 with round blobs. Pairs of

blue defects are replaced by square blobs, except for one which we choose for convenience to

be the first defect on the left boundary of R3. We attach a round blob and a black square blob

to the remaining blue and purple defects. The states φ1 and φ3 are elements of V
(2, b, b)

n,1 . The

fugacities of the loops touching the boundaries are set to β1 = β2 = 1 and βo
12 = τ

2 as before,

assigning the correct weights to each configuration. This choice of the fugacities is satisfied

for the values of r1, r2 and r12 given in (4.46) and (4.54). Remarkably, the relation between

θ and r12 is the same as for the even case, even though (9.21a) and (9.21b) are different. We

then have

Ĉ f
V
(y0, y1) =

1

Z0
ψ3 ·
�

(D(2)(λ2 ))
m/2ψ1

��
�
V
(2, b, b)
n,1

, (4.60)

where the bilinear form is adapted to produce the correct weights for each type of loop. For

m≫ n, at the lowest order we have

C f
V
(y0, y1)

m≫n−−−→ K̃e−
πm
n ∆, C f

H
(z0, z1)

m≫n−−−→ K

|z0 − z1|2∆
, (4.61)

where ∆ is the conformal weight of the ground state of the transfer matrix in V
(2, b, b)

n,1 . As

mentioned at the end of Section 9, the character for this representation is unknown. We

can however make an educated guess: We conjecture that the ground state in V
(2, b, b)

n,1 has the

conformal weight

∆ =∆r12,r12
=
(t − 1)2
�

(r12)
2 − 1
�

4t
, (4.62)

as it does for V
(2)

n,0. Here is the evidence that supports this claim. First, inspired by the other

cases in Section 9, we expect that∆ is of the form∆=∆r,s where r and s are linear in r12. This

would imply that∆ is quadratic in r12. We also know that∆ = 0 for r12 = ±1, because in these

cases τ = 1 and there is no distinction between the three segments. Moreover, for β1 = β2 = β

and βo
12 = 1, the ground-state conformal weight should coincide with the ground-state weight

∆1,2 for the standard module Vn,1 of the ordinary Temperley-Lieb algebra, without blobs. For

r1 = r2 = 1 and

r12 =
π− 2λ

λ
= −2t − 1

t − 1
, (4.63)
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ψ1

ψ3

≃

ψ1

ψ3

−→

... ...

Figure 14: Boundary conditions on V and H corresponding to the correlators of type f, for

y − x odd.

the three fugacities are set to the desired values and we have

∆r12,r12
=

3t

4
− 1

2
=∆1,2 (4.64)

as expected. Finally, with the conjecture (4.62), we find that in the scaling limit, the bond

valence entanglement entropy is also given by (4.58) for y− x odd. This is consistent with the

results of [43], which is obtained in the scaling limit and does not distinguish between y − x

odd and even.

We note that the curve (4.62) appears to match the numerical data of Figure 6, except in

the neighbourhood of τ = 0 where there is a non-negligible deviation. We give two possible

explanations. For the first, we note that the weights ∆r12(τ),r12(τ)
and ∆r12(τ)−2,r12(τ)

, both of

which have a contribution in (9.24), coincide at τ = 0. In the neighbourhood of τ = 0, the

power-law behaviour of C f
H
(z0, z1) may therefore be better approximated by a sum of two

exponentials. This can serve to explain the deviations for both y − x odd and even. For the

second explanation, we remark that for y − x odd, our computer program computes C f
n(x , y)

from (3.99), and not Ĉ f
n(x , y). The power law behaviour is thus multiplied by an overall factor

of τ which may increase the error in the numerics for τ close to zero.

5 Conclusion

In this paper, we studied six types of boundary correlation functions of the dense loop model.

For the model of critical dense polymers, we obtained exact expressions for these correlators

and analysed their critical behaviour through exact calculations and numerical evaluations.

Remarkably, in each case, the results are in agreement with the conformal predictions, wherein

the two-point functions are interpreted as the expectation values of boundary changing con-

formal fields. For generic values of β , the dimensions of these six fields are ∆ = ∆1,2, ∆1,3,

∆0,1/2, ∆1,0, ∆1,−1 and∆2θ/λ+1,2θ/λ+1. For polymers, the field of dimension ∆1,3 = 0 is a log-

arithmic field, partner of the primary field ϕ1,1 in a rank two Jordan cell. Inserting this field in

a corner produces a ln(ln n) contribution to the corner free energy. For the correlation function

of type f, the results also agree with the conformal prediction of Jacobsen and Saleur [30] for

the valence bond entanglement entropy.

A key ingredient we used to produce the CFT predictions is the knowledge of the indecom-

posable structures of the representations, for the Temperley-Lieb algebra at finite size and for
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the Virasoro algebra in the scaling limit. The presence of logarithmic corrections for the corre-

lators is tied to the presence of Jordan cells in the representations [51]. The projective modules

Pn,d over the Temperley-Lieb algebra are modules which exhibit this feature [33,40,52–54].

They consist of four composition factors organised in a diamond shaped diagram:

Pn,d : In,d′

In,d

In,d

In,d′′ , (5.1)

with the arrows indicating the action of the algebra. In these representations, the double-row

transfer tangle and Hamiltonian have Jordan cells of rank two that tie the two In,d composi-

tion factors. For critical dense polymers, the ln |x − y| dependence for the correlator of type

b is derived in Section 4.2 using conformal arguments where the Jordan cell plays a crucial

role. This Jordan cell belongs to a projective module, as in (5.1), which has the particularity

that its composition factor In,d′ has dimension zero. Interestingly, the exact derivations in Sec-

tion 3 for critical dense polymers do not highlight the role of these indecomposable structures.

The results are instead derived from matrix elements that involve boundary states and only

one eigenstate of the XX spin-chain. It is remarkable that the full complexity of the critical

behaviour for the six types of correlators is encoded in this single eigenstate.

The methods we used have the potential to be extended to other two-point boundary cor-

relation functions. First, one can consider generalisations of the correlators of type a and b

wherein two collections of d adjacent defects at positions x and y in a Dirichlet boundary are

constrained to connect together. In the conformal setting, the calculation uses the standard

module Vn,d and yields a power-law behaviour with ∆ =∆1,d+1. Second, one can also define

correlators wherein two collections of ℓ adjacent clusters at x and y in a Neumann boundary

are constrained to connect to one another. In the Fortuin-Kasteleyn random cluster model,

every second cluster in these collections lives on the dual lattice. The correlators of type d and

e then correspond to ℓ = 1,2. To extend the CFT arguments of Section 4 to the case ℓ ¾ 2,

one uses the standard module V
(2, u, u)

n,ℓ−1
. The leading power-law has the conformal dimension

∆ =min(∆2k+1,1−ℓ|k ∈ Z¾0) =∆1,1−ℓ. (5.2)

There thus seems to be a duality between the Dirichlet and Neumann boundary conditions:

The field that corresponds to the insertion of d defects in the Dirichlet boundary has weight

∆1,1+d , and the field that probes the connectivity of ℓ clusters in the Neumann boundary has

weight ∆1,1−ℓ.
In Section 4, we found three examples where the interpretation of the lattice results in

terms of boundary changing fields was consistent at the level of the fusion of these fields.

From the discussion of the last paragraph, in the geometric interpretation, inserting a field of

type d near a collection of ℓ clusters should yield the following fusion rule:

ϕ1,0 ×ϕ1,1−ℓ = ϕ1,−ℓ +ϕ1,2−ℓ. (5.3)

More generally, one could expect that fusing ϕ1,0 and ϕr,s produces two fields, ϕr,s−1 and

ϕr,s+1. This would be consistent with the duality ϕ1,0↔ ϕ1,2.

However, naively setting ℓ= −1 in (5.3) leads to an inconsistency with (4.53), since ϕ1,−1

and ϕ1,3 are certainly different in general. Therefore, our working hypotheses, that fusing ϕr,s

with ϕ1,2 changes s by ±1, and likewise for the fusion with ϕ1,0, give at best incomplete results

when the field ϕr,s lies outside its natural domain of the Kac table. In other words, we expect

that the various fusion rules discussed in this paper contain more channels, and maybe even
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an infinite number of channels, in addition to those written explicitly. Establishing definitive

fusion rules for non-Kac fields related to geometrical observables in loop models remains a

challenge for future research. For some recent, partial progress in the context of the affine

Temperley-Lieb algebra, see [55].

Finally, it will be interesting to see whether the techniques developed here can be extended

to compute correlators for points in the bulk, and on lattices with periodic boundary conditions.

On the cylinder, the transfer tangle has Jordan cells of rank ρ ¾ 2 in certain representations

[56, 57]. This is expected to result in correlation functions with (ln |x − y|)ρ−1 corrections.

We expect that such an investigation will shed further light on the general fusion rules for the

conformal fields ϕr,s.
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6 The function f̃k,ℓ

In this section, we study the function f̃k,ℓ defined in (3.56b) and its n→∞ limit, in the range
x−1

2 ¶ k ¶
y
2 and x ¶ ℓ ¶ y − 1. We first consider ℓ even. We use the identity

sin(
πℓ j
n )

cos(
π j
n )
= 2

ℓ/2−1∑

t=0

(−1)t sin
�π j

n (ℓ− 1− 2t)
�

, (6.1)

which is only valid for even ℓ. Applying this to (3.56b), we interchange the order of the sums,

perform the sum over j and find

f̃k,ℓ even =

ℓ/2−1∑

t=0

(−1)t
�

δℓ−1−2t,2k+1+ (−1)k−(x+1)/2δℓ−1−2t,x

�

= (−1)k−ℓ/2(δℓ−2¾x−1¾0 −δℓ−2¾2k¾0).

(6.2)

For ℓ odd, we have

f̃k,ℓ odd =














4

n

(n−2)/2∑

j=1

sin
�π j

n (k+
1+x

2 )
�

cos(
π j
n )

cos
�π j

n (k+
1−x

2 )
�

sin(
π jℓ

n ) k− x+1
2 even,

4

n

(n−2)/2∑

j=1

sin
�
π j
n (k+

1−x
2 )
�

cos(
π j
n )

cos
�π j

n (k+
1+x

2 )
�

sin(
π jℓ

n ) k− x+1
2 odd.

(6.3)

In each case, we use (6.1) on the sin-cos ratios, interchange the order of the sums and perform

the sum over j. After simplification, the result, which holds for both parities of k − x+1
2 , is

f̃k,ℓ odd =
(−1)k+(ℓ+1)/2

n

k∑

t=(1+x)/2

sin(2πt
n )

sin
�
π
n (t +

ℓ
2 )
�

sin
�
π
n (t − ℓ2 )
� . (6.4)
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In this form, it is easy to take the limit n→∞:

lim
n→∞

f̃k,ℓ odd =
(−1)k+(ℓ+1)/2

π/2

k∑

t=(1+x)/2

t

(t + ℓ
2 )(t −

ℓ
2)

. (6.5)

To obtain correlation function in the upper half-plane, we are interested in the regime

1 ≪ y − x ≪ x , y. In this regime, ℓ − x and k − 1+x
2 remain small compared to x and y,

and we find

lim
n→∞

f̃k,ℓ odd

x ,y≫y−x≫1−−−−−−−−→ (−1)k+(ℓ+1)/2

π

k−(1+x)/2∑

t=0

1

t − (ℓ− x − 1)/2
. (6.6)

7 More results for correlators of type b

It is not hard to generalise the lattice result (3.70) to compute Cb
n
(x , n− x). We find

Cb
n(x , n− x) = 1+(−1)n/2 f̃x+ f̃n−x , f̃x = (−1)n/2 f̃n−x =

4

n
(−1)n/2

(n−2)/2∑

j=1

j≡ n−2
2 mod 2

sin2
�π j x

n

�

cos
�π j

n

� . (7.1)

Large n asymptotics for f̃x and Cb
n(x , n− x) can be performed in two ways. The first way is to

take n≫ 1 while keeping x finite. We apply the Euler-Maclaurin formula to (7.1) and find:

Cb
n(x , n− x) =

4

π
ln n+ 1+

4

π
(γ+ 2 ln2− lnπ)− 2

π

x−1∑

k=0

1

k + 1
2

+O(n−1). (7.2)

This is consistent with (3.70) for x = 1. We obtain the critical behaviour in the regime x ≫ 1

by using (3.64):

Cb
n
(x , n− x)

1≪x≪n−−−−→ 4

π
ln n− 2

π
ln x + 1+

2

π
(γ+ 2 ln2− 2 lnπ). (7.3)

This critical behaviour is described in terms of the distance x between the points to the corners,

and the prefactors in front of ln n and ln x are different.

The second way is to take n, x ≫ 1 with the ratio x/n fixed. Starting from (7.1) and (6.4),

this is again achieved using the Euler-Maclaurin formula. We find:

Cb
n(x , n− x)

n,x≫1−−−→ 1+
2

π
(ln n+ ln cot(πx

n )− lnπ+ 2 ln2+ γ). (7.4)

From this formula, one recovers (3.66) in the regime x/n ≃ 1/2, and (7.3) in the regime

x/n≃ 0. The resulting critical behaviour is thus independent of the order in which the limits

are taken. In Figure 15, we have plotted the exact values of Cb
n(x , n− x) for n = 500, along

with three theoretical curves: i) (7.3) in orange, ii) (3.66) in red, and iii) (7.4) in blue. The

crossover between the two regimes is smooth.

We also remark that the critical behaviour of Cb
n
(x , y) in the regime x ≪ y ≪ n can be

read off from (3.63) and (3.64):

Cb
n
(x , y)

x≪y≪n−−−−−→ 3

π
ln y + 1+

1

π

�

3γ+ 2 ln2−
x−1∑

k=0

1

k + 1
2

�

. (7.5)
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Cb
500(x , 500− x)

x

Figure 15: Values of Cb
n
(x , n− x) obtained from the exact formula (7.1), for n= 500.

Comparing this with (3.66) and (7.3), we see that the leading logarithmic term has the pref-

actor (2+ ι)/π, where ι ∈ {0,1,2} counts the number of points (x and/or y) near a corner.

We end this section by noting that (7.4) can be obtained using a CFT argument. The map

from the upper half z-plane H to the semi-infinite strip U, with coordinates y and width n, is

z = sin2(
πy
2n ). From (4.22) and (4.23), we find

Cb
U
(y0, y1) =

〈ω(y0)ω(y1)〉U
〈ω(y0)〉U

= −4λ0 ln
�
� sin2(

πy0

2n )− sin2(
πy1

2n )
�
�+ 2λ0 ln
�
�( π2n )

2 sin(
πy0

n ) sin(
πy1

n )
�
�+λ2

(7.6)

and therefore

Cb
U
(x , n− x) = −4λ0 ln n− 4λ0 ln cot(πx

n )− 4λ0(ln 2− lnπ) +λ2. (7.7)

With the values of λ0 and λ2 given in (4.27), this precisely reproduces (7.4). The coefficient

in front of ln n in (3.70) is −8λ0 and is therefore universal.

8 The asymptotic expansion of C c
n(1, n)

We discuss the 1
n asymptotic expansions for 〈v′0|w0〉 and 〈vc|w0〉 leading to (3.86). For 〈v′0|w0〉,

this expansion is obtained from (3.23) and (3.25), by applying the identity

(n−2)/2∏

k=1

cos(πk
n ) =

p
n

2(n−1)/2
. (8.1)

This yields the exact expression

ln
�

(−1)(n−2)(n−4)/8ω 〈v′0|w0〉
(n−2)/2∏

k=1

κk

�

= 1
4 n ln n− 1

2 n ln2− 1
2 ln n+ 2 ln2. (8.2)

For 〈vc|w0〉 and n/2 even, the asymptotic expansion is obtained separately for each product

in (3.82):

ln
� n/4∏

k=1

cos
�
π
n (k −

1
2)
��

= n( G
2π −

1
4 ln 2) +O(n−1), (8.3a)

ln
� n/4∏

k=1

cos
�

2π
n (k − 1

2)
��

= − n
4 ln2+ 1

2 ln2, (8.3b)
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ln
� n/4∏

k=1

sin
�

2πk
n

��

= − n
4 ln2+ 1

2 ln n, (8.3c)

ln
� n/4∏

k=1

sin
�
π
n (k −

1
2)
��

= n(− G
2π −

1
4 ln 2) + 1

2 ln 2, (8.3d)

ln
� ∏

1¶k<ℓ¶n/4

sin
�
π
n (k + ℓ− 1)
��

= n2

64 (32I+ + 2 lnπ− 3) + n
8 ln2+ 1

24 ln n

+ 1
24 (12 lnA− 7 ln2− lnπ− 1) +O(n−1), (8.3e)

ln
� ∏

1¶k<ℓ¶n/4

sin
�
π
n (k + ℓ)
��

= n2

64 (32I+ + 2 lnπ− 3) + n( G
2π +

1
8 ln 2)− 11

24 ln n

+ 1
24 (12 lnA− ln 2− lnπ− 1) +O(n−1), (8.3f)

ln
� ∏

1¶k<ℓ¶n/4

sin
�
π
n (k − ℓ)
��

= n2

64 (32I− − 4 ln 2+ 2 lnπ− 3) + n
8 ln n+ n

8 ln 2− 1
12 ln n

+ 1
24 (−24 lnA+ 2 lnπ+ ln 2+ 2) +O(n−1), (8.3g)

ln
� n/4∏

k,ℓ=1

sin
�
π
n (k+ ℓ− 1

2)
��

= n2(I+ + 1
16 lnπ− 3

32 ) + n G
2π − 1

24 ln n

+ 1
24 (−12 lnA+ lnπ− 4 ln2+ 1) +O(n−1), (8.3h)

ln
�

(−1)
n(n−4)

32

n/4∏

k,ℓ=1

sin
�
π
n (k + ℓ− 1

2 )
��

= n2(I− + 1
16 lnπ− 3

32 − 1
8 ln2) + n

4 ln 2+ 1
12 ln n

+ 1
24 (24 lnA− 2 lnπ− 3 ln 2− 2) +O(n−1), (8.3i)

where

I ± =
∫ 1

4

0

∫ 1
4

0

dy dz ln s[π(y ± z)], s[y] =
sin y

y
. (8.4)

These 1
n expansions are obtained as follows. Let us define

X (a, b, x) =

nx∑

k=0

ln s[πa
n (k + b)], Y±(b, x) =

nx∑

k,ℓ=0

ln s[πn (k ± ℓ+ b)], (8.5)

where x ∈ [0,1/a) for X (a, b, x) and x ∈ [0,1) for Y±(b, x). Using the Euler-Maclaurin for-

mula, we find the following 1
n expansions:

X (a, b, x) = n

∫ x

0

dz ln s[πaz] + (b+ 1
2) ln s[πax] +O(n−1), (8.6a)

Y+(b, x) = n2

∫ x

0

∫ x

0

dy dz ln s[π(y + z)]

+ n
�

(1+ b)

∫ x

0

dz ln s[π(x + z)] + (1− b)

∫ x

0

dz ln s[πz]
�

(8.6b)

+
�

(1
2 b2 + b+ 5

12 ) ln s[2πx]− (b2 − 1
6 ) ln s[πx]
�

+O(n−1),
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Y−(b, x) = n2

∫ x

0

∫ x

0

dy dz ln s[π(y − z)]

+ 2n

∫ x

0

dz ln s[π(z)] + (b2 + 5
6) ln s[πx] +O(n−1).

(8.6c)

To show (8.3a), we have

n/4∏

k=1

cos(πn (k − 1
2 )) = e

X (2,−1
2 ,

1
4 )−X (1,−1

2 ,
1
4 )

s[πn ]

s[ π2n ]
(8.7)

and the asymptotic expansion is read off from (8.6a). The relations (8.3b) and (8.3c) are exact

identities:
n/4∏

k=1

cos
�

2π
n (k − 1

2)
�

=

p
2

2n/4
,

n/4∏

k=1

sin(2πk
n ) =

p
n

2n/4
. (8.8)

To show (8.3d), we have

n/4∏

k=1

sin
�
π
n (k−

1
2 )
�

=
(πn )

n/4+1

sin(π4 +
π
2n)

n/4∏

k=0

(k+ 1
2 )s[

π
n (k+

1
2 )] =

(πn )
n/4+1

sin(π4 +
π
2n )

Γ ( n
4 +

3
2)

Γ (1
2 )

e
X (1, 1

2 , 1
4 ) (8.9)

and the asymptotic expansion is obtained from (8.6a) and the asymptotic expansion of ln Γ (z):

ln Γ (z) = z ln z − z − 1

2
ln z +

1

2
ln(2π) +O(z−1). (8.10)

The other relations (8.3e)–(8.3i) involve double products. The calculation is more tedious, but

the strategy is similar: We rewrite the products in terms of the functions Γ (z), G(z), X (a, b, x)

and Y±(b, x), and use the asymptotic expansions (3.41), (8.6) and (8.10). Let us give one

example, for (8.3e):
∏

1¶k<ℓ¶n/4

sin
�
π
n (k + ℓ− 1)
�

= (πn )
n(n−4)/32
∏

1¶k<ℓ¶n/4

(k + ℓ− 1)s[πn (k + ℓ− 1)]. (8.11)

We rewrite this using

∏

1¶k<ℓ¶n/4

(k+ ℓ− 1) =

n/4∏

k=1

n/4∏

ℓ=k+1

Γ (k + ℓ)

Γ (k + ℓ− 1)
=

n/4∏

k=1

Γ (k + n
4 )

Γ (2k)

=
πn/8

2n2/16

n/4∏

k=1

G(k + n
4 + 1)G(k)G(k + 1

2)

G(k + n
4 )G(i + 1)G(i + 3

2)

=
πn/8

2n2/16

G( n
2 + 1)G(1)G(3

2 )

G( n
4 + 1)2G( n

4 +
3
2)

,

(8.12a)

∏

1¶k<ℓ¶n/4

s[πn (k + ℓ− 1)] =
s[πn ]
∏n/4

k,ℓ=0
s[πn (k + ℓ− 1)]1/2

∏n/4

k=0
s[πn (k− 1)]s[2π

n (k −
1
2)]

1/2

= s[πn ]e
1
2 Y+(−1, 1

4 )−X (1,−1, 1
4 )− 1

2 X (2,− 1
2 , 1

4 ),

(8.12b)

where for (8.12a), we used the duplication formula for Γ (z):

Γ (2z) =
22z−1

p
π
Γ (z)Γ (z + 1

2 ). (8.13)
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Putting the relations (8.3) together, we find, for n/2 even:

ln
�

(−1)(n−4)/4ω 〈vc|w0〉
(n−2)/2∏

k=1

κk

�

= 1
4 n ln n+ n(G

π − 1
4 ln 2)− 1

8 ln n

+ 1
24 (−36 lnA+ 3 lnπ+ ln2+ 3).

(8.14)

Combining this with (8.2) yields (3.86). Repeating the calculation with n/2 odd, we find the

same right-hand side as (8.14), but with (−1)(n−4)/4 replaced by (−1)(n−2)/4 on the left-hand

side.

9 Conformal characters and blob algebras

In this section, we collect results and conjectures about the spectra of the double-row transfer

matrices of the loop model, with the boundary conditions set to simple arcs or arcs with blobs.

The logarithm of the leading eigenvalues D(u) of the transfer matrices have 1
n expansions of

the following form [20,21]:

ln D(u) = −2n fb(u)− fs(u)− 2π
n sin(πu

λ )
�

∆− c
24 ) + o(n−1), (9.1)

where∆ is the weight of the underlying conformal field. The conformal character is then given

by

e
2mnfb(u)+mfs(u)Tr

�

Dm(u)
� m,n→∞−−−−−→ Z(q) =

∑

eigenstates

q∆−c/24, (9.2)

where the ratio m/n is taken to converge to a constant in the scaling limit and

q = exp(−2πm
n sin(πu

λ )). (9.3)

For TLn(β), the transfer matrices are labeled by the number of defects d of the standard

modules Vn,d they are defined on. We denote the corresponding characters Z
(0)

d
(q). These

were obtained in [9]:

Z
(0)

d
(q) =

q∆1,1+d−c/24

(q)∞
(1− q1+d), (q)∞ =

∞∏

k=1

(1− qk). (9.4)

For the one-boundary case, the corresponding loop model is described by the one-boundary

Temperley-Lieb algebra [27–29], or equivalently by the blob algebra. The blob algebra is an

extension of TLn(β), with an extra generator b1 in the form of a blob attached to the leftmost

strand:

b1 = ...

1 2 3 n

. (9.5)

The defining relations are (2.9) and

(b1)
2 = b1, e1 b1e1 = β1e1, b1ei = ei b1, 2¶ i ¶ n. (9.6)

These last relations are equivalently expressed in diagrams as:

= , = β1 , = . (9.7)
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The parameter β1 is the fugacity of the loops that contain a blob.

In the XXZ spin-chain, the generator b1 is represented by [27]:

Xn(b1) =
1

2i sin(r1λ)

�

−e−iλr1 i

i eiλr1

�

⊗ I2 ⊗ · · · ⊗ I2
︸ ︷︷ ︸

n−1

. (9.8)

The matrices (2.16) and (9.8) satisfy the relations (2.9) and (9.6), with β1 parameterised in

terms of r1 as

β1 =
sin
�

(r1 + 1)λ
�

sin(r1λ)
. (9.9)

The standard representations V
(1, b)

n,d
and V

(1, u)

n,d
of the blob algebra are labeled by the number

of defects d and a letter u or b according to whether the leftmost defect is allowed or forbidden

to touch the boundary. In the corresponding link states, the leftmost defect is decorated by a

blob b1 or by an unblob u1 = 1− b1. As an element of the algebra, we draw u1 as

u1 = ...

1 2 3 n

. (9.10)

In a given link state, an arc to the left of the leftmost defect, if it is not overarched by a larger

arc, is decorated by either a blob or an unblob. If there are no defects, there is no distinction

between the blob and unblob sectors, and each arc that is not overarched is decorated with a

blob or an unblob. For instance, the link states for n= 4 are

V
(1, b)

4,4 : ,

V
(1, u)

4,4 : ,

V
(1, b)

4,2 : , (9.11)

V
(1, u)

4,2 : ,

V
(1)

4,0 : .

We denote the corresponding conformal characters by Z
(1, b)

d
(q), Z

(1, u)

d
(q) and Z

(1)

0 (q). Their

expressions were conjectured in [30] using numerical data and support from exact results for

the root-of-unity cases. The results are expressed in terms of the parameter r1:

Z
(1, b)

d
(q) =

q∆r1,r1+d−c/24

(q)∞
, Z

(1, u)

d
(q) =

q∆r1,r1−d−c/24

(q)∞
, Z

(1)

0 (q) =
q∆r1,r1

−c/24

(q)∞
. (9.12)

For the two-boundary case, the relevant algebra is the two-boundary Temperley-Lieb alge-

bra [32, 58]. In its blob formulation, there are two blob generators b1 and b2, one for each

boundary. The defining relations are (2.9), (9.6) and

(b2)
2 = b2, en−1 b2en−1 = β2en−1, b1 b2 = b2 b1, b2ei = ei b2, 1¶ i ¶ n− 2. (9.13)

We draw the blob and unblob of the right boundary as black and white squares:

b2 = ...

1 2 n

, u2 = 1− b2 = ...

1 2 n

. (9.14)

For n even, there is an extra algebraic relation which quotients out the closed loops containing

both blobs:
� n/2∏

i=1

e2i−1

�

b1 b2

� (n−2)/2∏

i=1

e2i

�� n/2∏

i=1

e2i−1

�

= βe
12

� (n−2)/2∏

i=1

e2i

�

. (9.15)
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It is depicted as

= βe
12 . (9.16)

For n odd, there are two quotient relations:

� (n−1)/2∏

i=1

e2i

�

b1

� (n−1)/2∏

i=1

e2i−1

�

b2

� (n−1)/2∏

i=1

e2i

�

b1 = β
o
12

� (n−1)/2∏

i=1

e2i

�

b1, (9.17a)

� (n−1)/2∏

i=1

e2i−1

�

b2

� (n−1)/2∏

i=1

e2i

�

b1

� (n−1)/2∏

i=1

e2i−1

�

b2 = β
o
12

� (n−1)/2∏

i=1

e2i−1

�

b2, (9.17b)

which remove blobs by pairs as follows:

= βo
12 , = βo

12 . (9.18)

In the XXZ spin-chain, b1 and b2 are represented [31] by the matrices:

Xn(b1) =
1

2i sin(r1λ)

�

−e−iλr1 ie−iλr12

ieiλr12 eiλr1

�

⊗ I2 ⊗ · · · ⊗ I2
︸ ︷︷ ︸

n−1

, (9.19a)

Xn(b2) =
1

2i sin(r2λ)
I2 ⊗ · · · ⊗ I2
︸ ︷︷ ︸

n−1

⊗
�

eiλr2 i

i −e−iλr2

�

. (9.19b)

With (2.16), these matrices satisfy the defining relations (2.9), (9.6), (9.13), (9.15) and

(9.17), with the fugacities of the loops containing blobs parameterised by

β1 =
sin
�

(r1 + 1)λ
�

sin(r1λ)
, β2 =

sin
�

(r2 + 1)λ
�

sin(r2λ)
, (9.20)

and

βe
12 =

sin
�

(r1 + r2 − r12 + 1)λ2

�

sin
�

(r1 + r2 + r12 + 1)λ2

�

sin(r1λ) sin(r2λ)
, (9.21a)

βo
12 =

cos
�

(r1 − r2 − r12)
λ
2

�

cos
�

(r1 − r2 + r12)
λ
2

�

sin(r1λ) sin(r2λ)
. (9.21b)

The standard modules over this algebra are characterised by the number d of defects and

two labels b or u, one for each boundary. For d ¾ 1, there are four sectors, V
(2, b, b)

n,d
, V

(2, b, u)

n,d
,

V
(2, u, b)

n,d
and V

(2, u, u)

n,d
. Arcs to the left of the leftmost defects are decorated by a round blob or

unblob if they are not overarched. In the same way, arcs to the right of the rightmost defect

are decorated with square blobs or unblobs. For instance, here are the link states for V(2, u, b)

4,2 :

. (9.22)

47

https://scipost.org
https://scipost.org/SciPostPhys.4.6.034


SciPost Phys. 4, 034 (2018)

For d = 0, there is a single sector V
(2)

n,0. All the arcs that are not overarched by larger ones are

equipped with two decorations: a circle and a square, each one either black or white. This is

the only sector wherein βe
12 comes up. For d = 1, the unique defect has two decorations, one

from each boundary, and V
(2, b, b)

n,1 is the only sector wherein βo
12 comes up.

The conformal characters corresponding to the scaling limit of the standard modules are

denoted Z
(2, b, b)

d
(q), Z

(2, b, u)

d
(q), Z

(2, u, b)

d
(q) and Z

(2, u, u)

d
(q) for d ¾ 1, and Z

(2)

0 (q) for d = 0. In

[31], the authors investigate the case where n is even. With an argument that uses modular

invariance, they conjecture the conformal characters in this case:

Z
(2, b, b)

d
(q) =

q−c/24

(q)∞

∞∑

k=0

q∆r1+r2−1−2k,r1+r2−1+d , (9.23a)

Z
(2, b, u)

d
(q) =

q−c/24

(q)∞

∞∑

k=0

q∆r1−r2−1−2k,r1−r2−1+d , (9.23b)

Z
(2, u, b)

d
(q) =

q−c/24

(q)∞

∞∑

k=0

q∆−r1+r2−1−2k,−r1+r2−1+d , (9.23c)

Z
(2, u, u)

d
(q) =

q−c/24

(q)∞

∞∑

k=0

q∆−r1−r2−1−2k,−r1−r2−1+d . (9.23d)

and

Z
(2)

0 (q) =
q−c/24

(q)∞

∑

k∈Z
q∆r12−2k,r12 . (9.24)

The case of n odd is not discussed in that paper. We formulate the following conjecture: For

n odd, (9.23) holds for all sectors except for Z
(2, b, b)

1 (q). This last conformal character remains

unknown.
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