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Abstract

Motivated by the calculation of correlation functions in inhomogeneous one-dimensional
(1d) quantum systems, the 2d Inhomogeneous Gaussian Free Field (IGFF) is studied
and solved. The IGFF is defined in a domain Ω ⊂ R2 equipped with a conformal class
of metrics [g] and with a real positive coupling constant K : Ω → R>0 by the action

S[h] = 1
8π

∫

Ω

p
gd2x

K(x) gi j(∂ih)(∂ jh). All correlations functions of the IGFF are expressible in
terms of the Green’s functions of generalized Poisson operators that are familiar from
2d electrostatics in media with spatially varying dielectric constants.

This formalism is then applied to the study of ground state correlations of the Lieb-
Liniger gas trapped in an external potential V (x). Relations with previous works on
inhomogeneous Luttinger liquids are discussed. The main innovation here is in the
identification of local observables Ô(x) in the microscopic model with their field theory
counterparts ∂xh, eih(x), e−ih(x), etc., which involve non-universal coefficients that them-
selves depend on position — a fact that, to the best of our knowledge, was overlooked
in previous works on correlation functions of inhomogeneous Luttinger liquids —, and
that can be calculated thanks to Bethe Ansatz form factors formulae available for the ho-
mogeneous Lieb-Liniger model. Combining those position-dependent coefficients with
the correlation functions of the IGFF, ground state correlation functions of the trapped
gas are obtained. Numerical checks from DMRG are provided for density-density corre-
lations and for the one-particle density matrix, showing excellent agreement.

Copyright Y. Brun and J. Dubail.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 21-12-2017
Accepted 28-05-2018
Published 25-06-2018

Check for
updates

doi:10.21468/SciPostPhys.4.6.037

Contents

1 Introduction 2
1.1 Relation with previous works on inhomogeneous Luttinger liquids 3
1.2 The underlying assumption: separation of scales 4
1.3 The effective Gaussian action 5

2 The 2d Inhomogeneous Gaussian Free Field 7
2.1 Propagator of the IGFF, generalized Poisson equation 7
2.2 Correlations at equal points, regularized Green’s function 8

1

https://scipost.org
https://scipost.org/SciPostPhys.4.6.037
mailto:yannis.brun@univ-lorraine.fr
mailto:jerome.dubail@univ-lorraine.fr
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.4.6.037&amp;domain=pdf&amp;date_stamp=2018-06-25
http://dx.doi.org/10.21468/SciPostPhys.4.6.037


SciPost Phys. 4, 037 (2018)

2.3 Vertex operators, analogy with electric charges 9
2.4 Compactification of the height field, magnetic operators 10
2.5 Correlation functions of magnetic operators from electric-magnetic duality 10
2.6 Mixed electric-magnetic correlators, the mixed function FD,N

[K ,1/4K] 12
2.7 Mixed electric-magnetic operators 13

3 Application to the Lieb-Liniger model in a trap 14
3.1 The limit ħh→ 0 15
3.2 Fixing K(x) and g(x) from LDA 15
3.3 Expansion of the density operator 17
3.4 Density profile, and density-density correlation 19
3.5 The one-particle density matrix 21

4 Conclusion 22

A The Tonks-Girardeau limit 23

B Extracting the dimensionful coefficients from form factors 26

C Electrostatics on the 2d lattice 27

D DMRG setup 31

References 32

1 Introduction

Most gapless 1d quantum systems fall into the Luttinger liquid universality class, an effective
field theory approach that accounts for their low-energy (or large distance) excitations [1–5].
This paradigm is well known for being intimately related to certain 2d conformal field theories
(CFT) [6] with central charge c = 1, namely free massless boson theories at different com-
pactification radii, that are themselves at the heart of the Coulomb gas picture of 2d statistical
models developed in the 1970s and 1980s [7–10]. Nowadays, those free theories are playing
a fundamental role in modern mathematics, especially at the intersection of probability theory
and conformal geometry, where they are known as the “Gaussian Free Field” (GFF).1 [11]

While Luttinger liquids have been studied extensively in homogeneous, translation invari-
ant, situations, the present paper follows on from the recent series [12–20] that aims at ex-
tending the free boson CFT, or GFF, to inhomogeneous situations. [Troughout this work, inho-
mogeneity is understood as spatial dependence of physical quantities and parameters.] This is
motivated, in part, by problems of ultracold gases in trapping potentials, see e.g. Refs. [21–32]
or the discussion in Sec. 1.1 below.

So far, in the series [12–20], the focus was on those systems that possess a Luttinger pa-
rameter K — a parameter that appears in the effective large-scale description and encodes
the interaction strength in the 1d quantum system, see e.g. Refs. [4,5]— that is constant. In
that case, the inhomogeneous Luttinger liquid is nothing but a 2d CFT in a curved metric, a

1In this paper we adopt the terminology “GFF” introduced by mathematicians [11], as it has now become
standard (The “GFF” has a wikipedia page: https://en.wikipedia.org/wiki/Gaussian_free_field). In physics,
the GFF is known under other names such as “massless free boson”, or “massless free scalar field”.
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fact that can be exploited to easily get nice exact analytic formulae in a variety of interesting
physical situations, see Refs. [12–20].

In this paper, our goal is to explore the case where the assumption of a constant parameter
K is relaxed. This is natural in many physically relevant situations. Perhaps the most notable
example is that of a 1d gas of bosons, modeled by the Lieb-Liniger model [33], trapped in
an external potential V (x), where x is the spatial coordinate. In this model, the Luttinger
parameter K acquires a spatial dependence,

K → K(x).

As we will explain shortly, contrary to the case of constant Luttinger parameter K , the underly-
ing field theory is no longer a GFF. Instead, it is an “inhomogeneous” generalization of the GFF,
with a spatially varying coupling constant, which we will dub “Inhomogeneous GFF” (IGFF).
Because the IGFF is a free (or Gaussian) theory, calculating correlation functions in the IGFF
boils down to solving some boundary value problem by calculating its Green’s function. This
will be discussed in full detail in Sec. 2. In Sec. 3, we will apply that formalism to calculate
ground state correlation functions in the trapped Lieb-Liniger model.

In the rest of this introduction, we explain how exactly this work differs from previous ones
on inhomogeneous Luttinger liquids, and then motivate the introduction of the IGFF, defined
by the action (8) below.

1.1 Relation with previous works on inhomogeneous Luttinger liquids

Over the past twenty years, some of the results we will derive or use in this paper have been
partially reported in the literature. Here, we give a brief account of the existing works that
aimed at the same direction, to the best of our knowledge.

In 1995, Maslov and Stone [34] and (independently) Safi and Schulz [35] investigated the
Landauer conductance of an interacting electron wire. Both ends of the wire are connected to
a lead, represented by free electrons. In that setup, the Luttinger parameter jumps from K = 1
in the leads to some value fixed by the interactions in the wire. So does the velocity v of gapless
excitations, jumping from the Fermi velocity in the leads to some other value in the wire. Thus,
the problem of calculating reflection and transmission coefficients reduces to studying the
Luttinger liquid Hamiltonian with K(x) and v(x) that are step functions. To our knowledge,
this is the first occurence of an “inhomogeneous Luttinger liquid” with non-constant Luttinger
parameter K(x). It turns out that, in this particularly simple setup, the Green’s functions
can be expressed analytically. Maslov and Stone [34] used a Lagrangian formulation and
therefore wrote the action of the IGFF (8) — see Eq. (3) in their paper —; to our knowledge,
this is the first time that action appeared in the literature. Maslov and Stone also derived a
differential equation for the propagator (Eq. (6) in their paper) that is similar to the generalized
Poisson equation from Sec. 2 below. The same model was studied by Fazio, Hekking and
Khmelnitskii [36] in the context of thermal transport. However, the physical quantities studied
in Refs. [34–36] were simply defined in terms of integrals of the propagator, so the authors
did not have to push further the calculation of more general correlation functions.

About a decade later, in 2003, Gangardt and Shlyapnikov [37] had similar insights, and
wrote the Hamiltonian of the inhomogeneous Luttinger liquid (see the equation above Eq. (12)
in their paper), this time with the purpose of computing correlation functions of a 1d Bose gas
trapped in a harmonic potential. They took the Luttinger liquid Hamiltonian [2], assumed
that K and v were both position-dependent, and then used the Local Density Approximation
(LDA) to fix these parameters. They extracted K(x) and v(x) from the Bethe ansatz solution
of the homogeneous Lieb-Liniger model (see also Ref. [38] where LDA was used to calculate
local correlation functions). This is exactly what we will do in Sec. 3 below. From there, they
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derived an expansion of the boson field which, in principle, allows to compute correlation
functions. The same logic was followed by Ghosh in 2006 [39] and by Citro et al. in 2008 [40].
Some of these results have been reviewed in Ref. [21] (section V.E).

The same kind of approach was also developed in the context of multi-component 1d Fermi
gases. In 2003, following the spirit of [41], Recati et al. [42] investigated the spectrum and
discussed experimental realizations of spinful ultra-cold Fermi gases; independently of [37],
the authors assumed that the space-dependent parameters K(x) and v(x) could be fixed by
LDA. This idea was later used by Liu et al. [43,44] to study the phase diagram of the 1d Hub-
bard model. As far as we are aware, this has not been explicitly used to compute correlation
functions in this context.

The innovation of the present paper, compared to Refs. [34–40], is twofold. First, in Sec.
2 we discuss the IGFF and its correlation functions in full generality. To our knowledge, such a
general and complete discussion has not appeared elsewhere, and it should be useful to some
readers. Second, we believe that an important ingredient has been missed in Refs. [37,39,40],
and that the results for correlation functions reported in those references are, in fact, not
entirely correct. The reason is the following.

In general, local observables in a microscopic model Ô(x) (say, the Lieb-Liniger model) are
related to field theory operators φ(x) only through non-universal coefficients C . To elaborate,
observables Ô(x) are expected to have expansions of the form

Ô(x) =
∑

j

C (Ô)j φ j(x), (1)

where the sum in the r.h.s. runs over all possible local operators φ j in the field theory, and

the non-universal coefficients C (Ô)j are dimensionful numbers. As usual, such an expansion
is to be understood as a statement about correlation functions: correlations functions in the
microscopic model are related to the ones of the field theory, providing asymptotic expansions
of the former in the limit where all the points are well separated,




Ô1(x1) . . . Ôn(xn)
�

microsc. =
∑

j1,..., jn

C (Ô1)
j1

. . . C (Ôn)
jn




φ j1(x1) . . .φ j1(xn)
�

field th. .

In homogeneous systems, the non-universal coefficients merely contribute as global prefactors
in the correlation functions (a useful and detailed discussion of those coefficients can be found
in Refs. [46–49]). But, in inhomogeneous situations, those dimensionful coefficients C (O)j

are themselves position-dependent, C (O)j → C (O)j (x), so they have a crucial impact on the
correlators. This point seems to have been overlooked in previous works, see Fig. 8 in App. B
for a plot comparing our result to the case where these coefficients are omitted.

In this paper, we use LDA to fix those dimensionful coefficients. We illustrate this in Sec. 3
in the Lieb-Liniger model. The prefactors are extracted from form factors formulae derived in
the 1990s by algebraic Bethe ansatz [50–52], see App. B for more information. The method is
then checked against numerical results in the Lieb-Liniger model obtained from DMRG, using
the C++ library ITensor [53], see App. D for details about the simulation. The agreement is
quite impressive, as can be seen in Figs. 5, 6 and 7 below.

1.2 The underlying assumption: separation of scales

The approach we adopt in this paper is valid in the limit where the system exhibits separation
of scales, see Fig. 1. This is the limit where the confining potential V (x), and more generally
all local thermodynamic quantities of the quantum gas — such as its particle density, energy
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V (x)−µ

x
∼ L

∼ `

∼ 〈ρ̂〉−1

Figure 1: Cartoon illustrating the separation of scales in a trapped 1d gas. The typical
length L on which the local chemical potentialµ(x) = µ−V (x) varies is of the order of
the total size of the system. This macroscopic scale is much larger than the microscopic
scale corresponding to the inverse density 〈ρ̂〉−1. There exists a mesoscopic scale ` at
which the system consists of fluid cells that are locally homogeneous, but still contain
a very large number of particles.

density, momentum density, etc. — vary very slowly on the microscopic scale. That microscopic
scale is naturally given by the inverse density 〈ρ̂(x)〉−1, so the condition that the density varies
slowly reads

〈ρ̂(x)〉−1�
� |∂x 〈ρ̂(x)〉|
〈ρ̂(x)〉

�−1

.

The r.h.s. defines a macroscopic scale L, which is typically of the order of the length of the
system. When the macroscopic scale is much larger than the microscopic one, there exists an
intermediate — or mesoscopic — scale ` such that

〈ρ̂〉−1� `� L. (2)

Then a “mesoscopic fluid cell” of size ` is both homogeneous (because it is small compared to
the scale L at which inhomogeneity becomes important) and contains a thermodynamically
large number of particles (because it is large compared to 〈ρ̂〉−1). This is the key assumption
that underlies the Local Density Approximation used in Refs. [37–40], and more generally all
hydrodynamic approaches [54] (LDA itself being nothing but a “hydrostatic” approach [41]).
The assumption is of course also a requirement for any effective field theory approach, because
the fields themselves are supposed to describe coarse-grained versions of the microscopic de-
grees of freedom, and this makes sense only if there exist locally homogeneous cells over which
coarse-graining can be performed.

In Sec. 3, we will explain in detail what limit we take in the trapped Lieb-Liniger model,
and we will see that separation of scales holds exactly in our setup. The method we explore
in this paper (which extends the previous results of Refs. [34–40]) should then be interpreted
as a way of writing asymptotic expansions of the correlation functions in the N → +∞ limit,
including not only the leading order, but also the first few finite-N corrections.

1.3 The effective Gaussian action

To conclude this introduction, we explain why the problem of a quantum gas of particles in a
trap leads to the IGFF, defined by the action (8). The content of this subsection is very similar
to arguments given in Refs. [16,17]; we repeat those here only for completeness.

There are several ways of showing the connection between Luttinger liquids and the GFF
(homogeneous or not). Here we give an argument that is particularly short and is a good intro-
duction to Secs. 2 and 3. More standard introductions can be found for instance in Refs. [4,5].

The argument consists of two steps.
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Mapping on configurations of a height field — in 1d, configurations of indistinguishable
particles can be represented by an height function h(x) via

ρ̂(x) =
1

2π
∂xh(x), (3)

namely h(x) is a real-valued function that is piecewise constant and jumps by 2π at the position
of a particle. It is defined only up to a constant shift, h→ h+ const. To calculate ground state
correlation functions, it is useful to imagine that the system evolves in imaginary time, and
focus on correlation functions at arbitrary points (x ,τ) in spacetime, and then later specify
that all points are taken at imaginary time τ = 0. For instance, the two-point function of the
height field would be




h(x ,τ)h(x ′,τ′)
�

= lim
β→∞

tr[e−(β−τ)Hh(x)e−(τ−τ
′)Hh(x ′)e−τ

′H]
tr[e−βH]

, (4)

where H is the Hamiltonian of the system, and β is the inverse temperature, that one sends to
zero. The fluctuating field h(x ,τ) is then viewed as a function on 2d spacetime.

Action for the height field — the second step consists in writing an action for the height
field h(x ,τ). Our choice for the action is guided by two basic observations. First, assuming
that the underlying microscopic model is described by a local Hamiltonian H, the action should
be local. Second, physical observables should be invariant under constant shifts h→ h+const.,
so the action must also possess that symmetry. This leads us to the general form

S[h] =

∫

L (∂xh,∂τh, . . . ) d xdτ , (5)

where the dots stand for higher order derivatives. The Lagrangian density L cannot depend on
h(x ,τ) itself, only on its derivatives, because we are asking that it is invariant under constant
shifts. Finally, assuming that the action S[h] is minimized by a unique classical configuration
of the field, hcl., we can expand to second order around that minimum,

S[h+ hcl.]− S[hcl.] =

1
2

∫ �

∂ 2L
∂ (∂xh)2

(∂xh)2 + 2
∂ 2L

∂ (∂xh)∂ (∂τh)
(∂xh)(∂τh) +

∂ 2L
∂ (∂τh)2

(∂τh)2
�

d xdτ

+ higher order terms. (6)

In 2d, higher order terms have scaling dimensions larger than 2 and are RG irrelevant; we
can therefore discard them. The only free parameters of the effective theory are then the
three independent real components of the Hessian ∇2L at h = hcl., which is a positive 2× 2
symmetric matrix that typically depends on position. It is convenient to interpret the inverse
of that matrix as an emergent metric on spacetime

g=

 

∂ 2L
∂ (∂x h)2

∂ 2L
∂ (∂x h)∂ (∂τh)

∂ 2L
∂ (∂x h)∂ (∂τh)

∂ 2L
∂ (∂τh)2

!−1

, (7)

and to rewrite the Gaussian action as

S[h] = S[h+ hcl.]− S[hcl.]

=
1

8π

∫ p
gd2x

K(x)
gi j∂ih∂ jh , (8)

where
�

x1, x2
�

= (x ,τ) and 1
K(x) = 4π

p

det (∇2L).
This is the action of the IGFF. It is the most general action for the height field h that is both

local and invariant under constant shifts. We now study this theory in greater detail.
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2 The 2d Inhomogeneous Gaussian Free Field

This section is devoted to the 2d Inhomogeneous Gaussian Free Field, which is the mathemati-
cal object that underlies inhomogeneous Luttinger liquids. The IGFF is a rather straightforward
generalization of the Gaussian Free Field, parametrized by a function K : Ω→ R>0 that rep-

resents the position-dependent coupling strength in the action S[h] = 1
8π

∫

Ω

p
gd2x

K(x) gi j∂ih∂ jh.
The usual GFF is recovered when the function K is constant, simply by rescaling the height
field h→

p
Kh. In other words, while the usual GFF depends only on the domain Ω and on

the conformal class of the metric g [11], the IGFF also depends on the function K .
For simplicity, we work on a simply connected, open subset Ω ⊂ R2. [Later, when we

will apply the IGFF to inhomogeneous Luttinger liquids, Ω will be identified with spacetime.]
Since every metric in 2d is conformally flat, and because the action (8) is invariant under Weyl
transformations gi j → e2σgi j , w.l.o.g. we can work in the Euclidean metric

gi j = δi j , (9)

such that the action of the IGFF becomes

S[h] = 1
8π

∫

Ω

d2x
K(x)

(∇h(x))2 . (10)

Here h is a real-valued function on the closure Ω, with Dirichlet boundary conditions,

h(x) = 0, if x ∈ ∂Ω. (11)

2.1 Propagator of the IGFF, generalized Poisson equation

Correlation functions can be defined as path integrals,

〈h(x1) . . . h(xn)〉=

∫

[dh] e−S[h]h(x1) . . . h(xn)
∫

[dh] e−S[h]
, (12)

and since the action S[h] is Gaussian, the connected part of all n-point correlations with n≥ 3
vanishes. The 1-point function also vanishes, because it is antisymmetric under h 7→ −h. Thus,
all the information about the IGFF is contained in the 2-point function. From the action S[h],
one can derive a constraint on the 2-point function as follows,

0 =

∫

[dh] δ
δh(x)

�

e−S[h]h(x′)
�

∫

[dh] e−S[h]

= −
­

δS[h]
δh(x)

h(x′)
·

+δ(2)
�

x− x′
�

=
1

4π

­

∇x ·
�

1
K(x)

∇xh(x)
�

h(x′)
·

+δ(2)
�

x− x′
�

,

where we integrated by parts in the last line. Thus, the 2-point function is identified with the
Green’s function of a generalised Poisson operator ∇ · 1

K(x)∇, namely



h(x)h(x′)
�

= −GD
[K](x, x′), (13)

where GD
[K](x, x′) is symmetric under exchange of x and x′, and solves the linear differential

problem










∇x ·
1

K(x)
∇xGD

[K](x, x′) = 4πδ2(x− x′)

GD
[K](x, x′) = 0 for x ∈ ∂Ω.

(14)
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The superscript ‘D’ refers to the boundary conditions (Dirichlet), while the subscript [K] em-
phasizes the fact that the IGFF is parameterized by the function K : Ω → R>0. Contrary to
the GFF, where the Green’s function is easily obtained by conformal mapping of the domain
Ω onto the upper half-plane (leading to explicit formulas in a number of physically relevant
problems), no such explicit expression is available in general for the IGFF. The Green’s function
of the generalized Poisson operator can, however, be efficiently calculated numerically.

We note that the generalised Poisson operator is well-known from classical electrostatics
[55]: it appears in the equation satisfied by the electrostatic potential V (x) in the presence of
a spatially-varying dielectric constant ε(x): ∇·ε(x)∇V (x) = 0. The analogy with electrostatics
will be pushed further below.

In summary, n-point correlation functions 〈h(x1) . . . h(xn)〉 in the IGFF are all expressible
in terms of the Green’s function of a generalised Poisson operator; notice that the result is
divergent when xi → x j , because the Green’s function has a logarithmic singularity.

In applications to inhomogeneous Luttinger liguids, we need a few additional results about
the IGFF, which provide natural generalisations of the ones that are well known for the GFF.
First, we need to deal with vertex operators, which requires that we make sense of correlation
functions of several insertions of h(x) at the same point. This is what we do in the next sub-
section. Second, we need to compactify the field h (meaning that we must view h as taking
values in the circle R/2πZ instead of the real line R), which we do in subsequent subsections.

2.2 Correlations at equal points, regularized Green’s function

As usual in field theory, one needs a regularization procedure to make sense of multiple inser-
tions of the field h(x) at the same point, hn(x), n ≥ 2. This is provided by the normal order,
noted : hn(x) :, which is conveniently defined as follows. For n= 0, : 1 := 1, and for n= 1,

: h(x): = h(x), (15a)

and then, by induction on n, one defines : hn(x) : as

: hn(x): = lim
x′→x

�

: hn−1(x): h(x′) + (n− 1)K(x) log
�

�x− x′
�

�

2
: hn−2(x) :

�

. (15b)

The second term is introduced to cancel the divergence of the Green’s function,
GD
[K](x, x′) ' K(x) log

�

�x− x′
�

�

2
, when x′ → x. With that definition, the expectation value

〈: hn(x): 〉 is finite, and is equal to

〈: hn(x): 〉 =
n!

2
n
2
� n

2

�

!

�

−GD
[K](x)

�
n
2 , (n even). (16)

[If n is odd, the expectation value vanishes because of the symmetry h 7→ −h.] The function
appearing in the r.h.s. of Eq. (16) is the regularized Green’s function, defined as

GD
[K](x) = lim

x′→x

�

GD
[K](x, x′)− K(x) log

�

�x− x′
�

�

2�
. (17)

This regularized Green’s function will appear many times in the following. Notice that we
use almost the same notation as for the Green’s function itself, GD

[K](x, x′), but with a single
argument instead of two.
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2.3 Vertex operators, analogy with electric charges

Exponentials of the field h(x) define vertex operators, as in the usual GFF,

Vα(x) = : eiαh(x) : =
∑

p≥0

(iα)p

p!
: hp(x): .

Correlation functions of vertex operators can be computed directly from their definition, using
Wick’s theorem; this is a standard exercise of combinatorial nature which we leave to the
reader. The result is




Vα1
(x1) . . .Vαn

(xn)
�

=

 

n
∏

p=1

e
α2

p
2 GD

[K](xp)

! 

∏

1≤i< j≤n

eαiα j G
D
[K](xi ,x j)

!

. (18)

In the literature, such vertex operators are sometimes referred to as electric charges, in analogy
with 2d electrostatics [55]. A simple way of seeing the analogy is to interpret the expectation
value of i∇h(x), as an electric field E(x) in the plane. [Here, the factor i is cosmetic; it is
inserted in order to cancel the one in the exponential that defines the vertex operator, such
that the expectation value of i∇h(x) is real.] In the presence of vertex operators, i∇h(x)
acquires a non-zero expectation value,

E(x) =




i∇h(x)Vα1
(x1) . . .Vαn

(xn)
�




Vα1
(x1) . . .Vαn

(xn)
�

= ∇x

��

∂

∂ α
log




Vα(x)Vα1
(x1) . . .Vαn

(xn)
�

�

α=0

�

=
n
∑

j=1

α j∇xGD
[K](x, x j) . (19)

Thus, E(x) satisfies Maxwell’s equations in a medium with dielectric constant ε(x) = 1/K(x),
with pointlike electric charges at positions x j ,







∇ ·
1

K(x)
E(x) =

n
∑

j=1

4πα jδ
(2)(x− x j) ,

∇× E(x) = 0 .

(20)

The first equation is the Gauss law for the displacement field ε(x)E(x), and the second one is
the Faraday law (in the absence of magnetic flux through the plane) which is automatically
satisfied here because E(x) is a gradient.

In fact, the logarithm of the correlation function (18) is nothing but the electrostatic
energy of those pointlike electric charges, in the domain Ω with a local dielectric constant
ε(x) = 1/K(x), surrounded by a perfect conductor (corresponding to the Dirichlet boundary
condition),

1
8π

∫

d2x
K(x)

|E(x)|2 =
n
∑

p=1

α2
p

2
GD
[K](xp) +

∑

i< j

αiα jG
D
[K](xi , x j). (21)

The second term is of course the Coulomb interaction for all the pairs of particles, while the
first term is the electrostatic energy of each independent particle that arises from its interaction
with the medium and with the perfect conductor at the boundary. Notice that the integral in
the l.h.s. needs to be properly regularized to recover the regularized Green’s function in that
first term.
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2.4 Compactification of the height field, magnetic operators

So far, we have assumed that the height field h(x)was real-valued. From now on, we compact-
ify the target space, and h(x) is viewed as a point in R/2πZ instead ofR. This compactification
has two important consequences on the theory.

The first consequence is the quantization of electric charges: in order to be well-defined,
the vertex operator Vα(x) = : eiαh(x) : must be invariant under h→ h+ 2π. This implies that
α is an integer.

The second consequence is the appearance of a new type of local operator Oβ(y), repre-
senting a puncture at point y ∈ Ω, around which the field h(x) has non-zero winding: h(x)
jumps by 2πβ , for some integer β , when x is dragged around the puncture counterclockwise.
In other words,

∮

Cy

dx · ∇h(x) = 2πβ , (22)

where Cy is a small oriented contour enclosing the point y. This identity holds when inserted
inside correlation functions, e.g.

∮

Cy j

dx ·



∇h(x)Oβ1
(y1) . . .Oβm

(ym)
�

= 2πβ j




Oβ1
(y1) . . .Oβm

(ym)
�

. (23)

Due to Dirichlet boundary conditions that impose that the contour integral along the boundary
∂Ω vanishes,

∮

∂Ω
dx · ∇h(x) = 0, the set of operators Oβ1

(y1), . . . ,Oβm
(ym) inserted inside a

non-vanishing correlator must satisfy the neutrality condition

β1 + · · ·+ βm = 0. (24)

The operators Oβ are often called “magnetic operators” in the literature. Again, this is an
explicit reference to the electrostatic analogy. Indeed, the equations satisfied by the “electric
field” E(x), namely the expectation value of ∇h(x) (here we drop the cosmetic i from the
previous subsection, because the expectation value of ∇h(x) is real) with insertions of those
operators,

E(x) =




∇h(x)Oβ1
(y1) . . .Oβm

(ym)
�




Oβ1
(y1) . . .Oβm

(ym)
� , (25)

are:














∇ ·
1

K(x)
E(x) = 0 ,

∇× E(x) =
m
∑

j=1

2πβ j δ
(2)
�

x− y j

�

.
(26)

The first constraint is the equation of motion for h(x) derived from the action (10). Again, we
view it as the Gauss law in a medium with dielectric constant ε(x), this time without electric
charges. The second is just a rewriting of Eq. (23) using Stokes’ formula, and we regard
it as the Faraday law, imagining that the plane is transpierced by infinitely thin, constantly
increasing, magnetic fluxes at positions y j .

2.5 Correlation functions of magnetic operators from electric-magnetic duality

We now turn to the calculation of correlators of magnetic operators. Again, such correlators
are defined as a path integral




Oβ1
(y1) . . .Oβm

(ym)
�

=

∫

defects [dhd] e−S[hd]

∫

[dh] e−S[h]
, (27)

10

https://scipost.org
https://scipost.org/SciPostPhys.4.6.037


SciPost Phys. 4, 037 (2018)

where the path integral in the numerator is over functions hd from the punctured domain
Ω \ {y1, . . . , ym} to R/2πZ that have the correct winding β j around each puncture y j ,

∮

Cy j

dx · ∇hd = 2πβ j . (28)

We refer to those as “height configurations with defects”. In this subsection (and only here),
we use a subscript ‘d’ for configurations with defects. The denominator in Eq. (27) is the path
integral on configurations without defects, namely the partition function of the IGFF on Ω.

The numerator can be evaluated by separating the configurations with defects into a clas-
sical part that satisfies the equation of motion, and a quantum, or fluctuating, part:

hd(x) = h0
d(x) + h(x). (29)

Since both hd(x) and h0
d(x) satisfies the constraint (28), h(x) is a single-valued real function

on Ω. Moreover, since h0
d(x) is assumed to satisfy the equation of motion, the action splits,

S[hd] = S[h0
d] +S[h]. (30)

By a trivial change of variables hd(x) 7→ h(x), the path integral in the numerator of (27)
becomes an integral of the fluctuating part h(x) which cancels the one in the denominator. So
the correlation function (27) boils down to




Oβ1
(y1) . . .Oβm

(ym)
�

= e−S[h
0
d], (31)

and the remaining task is to calculate the integral

S[h0
d] =

1
8π

∫

Ω

d2x
K(x)

(∇h0
d(x))

2, (32)

where h0
d(x) satisfies the constraint (28), the equation of motion ∇ · 1

K(x)∇h0
d(x) = 0, and

possesses Dirichlet boundary conditions.
The electrostatic analogy provides an elegant way of calculating that integral. Indeed,

the integral is nothing but the electrostatic energy 1
8π

∫

d2xε(x)|E(x)|2 for the electric field
E(x) =∇h0

d(x) created by constantly increasing fluxes that pierce the plane. If we could trade
those magnetic fluxes for pointlike electric charges, then the answer would be given by Eq.
(21).

This can be done by electric-magnetic duality. If we define a new field Ẽ with components
�

Ẽ1
Ẽ2

�

=
1

2K

�

E2
−E1

�

, (33)

then we see that the constraints (26) for E, with dielectric constant 1/K , are turned into the
constraints (20) for Ẽ with dielectric constant 1/K̃ = 4K . [In Eq.(33), we introduced an extra
factor 2 such that the Green’s function is defined in its standard form with a factor 4π.] Now,
we can apply formula (21):

S[hd] =
1

8π

∫

d2x
K
|E|2 =

1
8π

∫

d2x

K̃
|Ẽ|2

=
n
∑

p=1

β2
p

2
GN
[K̃]
(yp) +

∑

i< j

βiβ jG
N
[K̃]
(yi , y j). (34)
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In the last line, notice that we have replaced the superscript ‘D’ by ‘N’. This is because Dirichlet
boundary conditions are dual to Neumann boundary conditions. To see this, one can think of E
as∇hd, and of Ẽ as the gradient∇h̃ of some other function h̃. Because hd = 0 at the boundary
∂Ω, the component E‖ that is tangential to the boundary vanishes. Since Ẽ is obtained from a
π/2-rotation of E, this implies that the normal component Ẽ⊥ vanishes. Hence, the dual field
h̃ has Neumann boundary conditions, instead of Dirichlet.

In summary, the result for the correlation function of magnetic operators is




Oβ1
(y1) . . .Oβm

(ym)
�

=

 

m
∏

p=1

e
β2

p
2 GN

[1/4K](yp)

! 

∏

1≤i< j≤m

eβiβ j G
N
[1/4K](yi ,y j)

!

, (35)

where the Green’s function (as well as its regularised version, defined exactly as in Eq. (17)
above) is the one of the generalized Poisson operator ∇ · 4K∇, with Neumann boundary con-
ditions. This Green’s function GN

[1/4K](y, y′) is symmetric under exchange of y and y′, and it
solves the linear differential problem























∇y · 4K(y)∇yGN
[1/4K](y, y′) = 4πδ2(y− y′)− 4π

Vol(Ω) ,

∫

Ω
d2y GN

[1/4K](y, y′) = 0 ,

n̂y · ∇yGN
[1/4K](y, y′) = 0 for y ∈ ∂Ω,

(36)

with n̂y the unit vector normal to the boundary at y ∈ ∂Ω. The term 4π/Vol(Ω) in the first
equation, as well as the second equation that imposes zero mean value, both come from the fact
that the generalized Poisson operator ∇ · 4K∇ with Neumann boundary conditions possesses
a zero mode: it annihilates any constant function on Ω. The second equation is then imposed
to restrict the problem to the subspace of functions on Ω that have zero mean value. On that
subspace, ∇ · 4K∇ is invertible. The Green’s function is then defined as the operator inverse
on that subspace, which is what is expressed by the first equation, where both the l.h.s. and
r.h.s. have zero mean value.

2.6 Mixed electric-magnetic correlators, the mixed function FD,N
[K ,1/4K]

In some applications of the IGFF, one expects that we will need correlation functions involv-
ing both electric and magnetic operators. Once again, the electrostatic analogy provides a
convenient way of evaluating such “mixed” correlators. Indeed, the result must take the form




Vα1
(x1) . . .Vαn

(xn)Oβ1
(y1) . . .Oβm

(ym)
�

=
 

n
∏

p=1

e
α2

p
2 GD

[K](xp)
∏

1≤i< j≤n

eαiα j G
D
[K](xi ,x j)

!

×

 

m
∏

q=1

e
β2

q
2 GN

[1/4K](yq)
∏

1≤i< j≤m

eβiβ j G
N
[1/4K](yi ,y j)

!

×

� n
∏

k=1

m
∏

l=1

eiαkβl F
D,N
[K ,1/4K](xk ,yl )

�

, (37)

such that its logarithm is the total electrostatic energy of a configuration of n pointlike electric
charges and m punctures with insertions of fluxes. This total energy is a sum of
n + n(n−1)

2 + m + m(m−1)
2 + nm terms. Each of the first n terms is the Coulomb energy of a

single electric charge at position xp in Ω, the next n(n−1)
2 terms are the Coulomb energies of
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each pair of electric charges. Similarly, m terms are the energy of each individual flux inser-
tion, and there are m(m−1)

2 terms for each pair of those. We have already encountered all those
terms in previous subsections. The new n×m terms here are the ones that correspond to the
energy of an electric charge at position xk in the electrostatic potential created by a magnetic
flux inserted at yl .

This potential, which we call FD,N
[K ,1/4K](xk, yl), is a function of x and y with value in R/2πZ

that satisfies a number of constraints, which we detail now. First, we need to choose a con-
tinuous function f : ∂Ω → [0,2π] with winding number one:

∮

∂Ω
dx · ∇ f (x) = 2π. Then

FD,N
[K ,1/4K](x, y) is defined as the solution to the problem







∇x ·
1

K(x)
∇xFD,N

[K ,1/4K](x, y) = 0 if x ∈ Ω \ {y},

FD,N
[K ,1/4K](x, y) = f (x) if x ∈ ∂Ω.

(38)

Notice that, as a consequence,
∮

Cy

dx · ∇xFD,N
[K ,1/4K](x, y) = 2π (39)

for any contour Cy that encircles y.
It is important to stress that, while FD,N

[K ,1/4K](x, y) depends on the choice of the function
f , the correlation function (37) does not. Indeed, imagine that we have two functions f1
and f2 with winding number one, and that we look at the corresponding F1(x, y) and F2(x, y)
defined by Eqs. (38). Then F1(x, yl) − F2(x, yl) is a continuous function for x ∈ Ω, with no
winding anywhere, that satisfies ∇· 1

K∇[F1− F2] = 0, with F1− F2 = f1− f2 along the bound-
ary. Then, summing over l from 1 to m and using the neutrality condition (24), one sees that
∑m

l=1 βl[F1(x, yl)− F2(x, yl)] is a function that is annihilated by ∇· 1
K∇, with boundary condi-

tions
∑m

l=1 βl[F1(x, yl)− F2(x, yl)] = 0. Thus, it has to vanish everywhere. So the correlation
function (37) is independent of the choice of f as claimed.

It is interesting to note that, when viewed as a function of y, FD,N
[K ,1/4K](x, y) satisfies a set

of constraints that are dual to Eqs. (38):


















∇y · 4K(y)∇yFD,N
[K ,1/4K](x, y) = 0 ,

∮

Cx

dy · ∇yFD,N
[K ,1/4K](x, y) = −2π

n̂y · ∇yFD,N
[K ,1/K](x, y) = t̂y · ∇ f (y) if y ∈ ∂Ω .

(40)

where n̂y and t̂y are two unit vectors respectively normal and tangent to the boundary ∂Ω at
position y. This is more easily seen by considering a discrete version of the compactified IGFF,
in analogy with lattice electrostatics, see App. C.

2.7 Mixed electric-magnetic operators

Finally, it might also be convenient to deal directly with vertex operators that possess both
an electric and a magnetic charge. The latter are obtained when one fuses an electric oper-
ator with a magnetic one, meaning that one takes the limit x, y → z in correlation functions
involving Oβ(y) and Vα(x). It is therefore convenient to introduce a new notation for vertex
operators that carry both an electric and a magnetic charge:

Vα,β(z), (41)
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with two indices for the two charges, such that the previous “pure electric” or “pure magnetic”
operators correspond to Vα(x) = Vα,0(x) and Oβ(y) = V0,β(y) respectively. The correlation
function of such operators can be obtained by taking m = n and xi, yi → zi in Eq. (37). The
result is




Vα1,β1
(z1) . . .Vαn,βn

(zn)
�

=
 

n
∏

p=1

e
α2

p
2 GD

[K](zp)+
β2

p
2 GN

[1/4K](zp)+iαpβp FD,N
[K ,1/4K](zp)

!

×

 

∏

i 6= j

e
αiα j

2 GD
[K](xi ,x j)+

βiβ j
2 GN

[1/4K](yi ,y j)+iαiβ j F
D,N
[K ,1/4K](xi ,y j)

!

. (42)

Here the regularized function FD,N
[K ,1/4K](z) is defined as

FD,N
[K ,1/4K](z) = lim

x,y→z

�

FD,N
[K ,1/4K](x, y)− arg(x− y)

�

, (43)

where arg(x) is the argument of the complex number x1 + ix2 made out of the coordinates
x= (x1, x2). It is easy to see that this definition is compatible with the short-distance behavior
of the function FD,N

[K ,1/4K](z, z′) that is imposed by Eq. (39).

This concludes this section on the (compactified) IGFF. Formula (42) for the correlation
functions of mixed electric-magnetic vertex operators is all we need, since all correlation func-
tions of local observables can be obtained from those. Thus, all correlation functions in the
(compactified) IGFF can be expressed in terms of two Green’s functions GD

[K] and GN
[1/4K] of

two mutually dual generalized Poisson operators, and a third “mixed” function FD,N
[K ,1/4K], as

well as their regularizations.

3 Application to the Lieb-Liniger model in a trap

We now turn to the problem of calculating correlation functions of trapped 1d Bose gases. This
will illustrate how the machinery of the IGFF developed in Sec. 2 is useful in practice.

We focus on the Lieb-Liniger model of spinless bosons with repulsive delta interaction,
defined by the Hamiltonian

H =

∫

dx

�

Ψ̂†(x)

�

−
ħh2

2m
∂ 2

x −µ+ V (x)

�

Ψ̂(x) +
ħhḡ
2
Ψ̂†2(x)Ψ̂2(x)

�

, (44)

where Ψ̂†(x) (Ψ̂(x)) is the boson creation (annihilation) operator that satisfies the canonical
commutation relation [Ψ̂(x), Ψ̂†(x ′)] = δ(x − x ′), m is the mass of a boson, g = ħhḡ > 0 is the
interaction strength, µ is the chemical potential and V (x) is a trapping potential. There are two
main reasons for focusing on this Hamiltonian: it is the model that is experimentally relevant to
describe Bose gases through the whole range of repulsion strength in one dimension [56], and,
in the homogeneous case V (x) = 0, it is exactly solvable by Bethe Ansatz (for an introduction
to the Bethe Ansatz solution of the Lieb-Liniger model, see e.g. Ref. [57]).

Throughout this section, we consider that m, µ, V (x) and ḡ are fixed parameters, and we
focus on the limit ħh→ 0. Our goal is to study correlation functions in the ground state of H,
and to understand how to get the first few terms of their asymptotic expansion in ħh in that
limit.
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3.1 The limit ħh→ 0

Taking the limit ħh → 0 while keeping all other parameters fixed is a particularly convenient
way of taking the thermodynamic limit N → +∞. The reason is the following.

In the homogeneous case V (x) = 0, dimensional analysis shows that the particle density
in the ground state must take the form

〈ρ̂(x)〉 =



Ψ̂†(x)Ψ̂(x)
�

=
p

mµ
ħh

F
�

ḡ
Æ

m/µ
�

, (45)

for any positive value of the chemical potential µ > 0, where F(.) is some function that can be
calculated from Bethe Ansatz. Thus, at least in the homogeneous case, the density of particles
diverges as 1/ħh when ħh→ 0.

Then, in the inhomogeneous case, one can rely on the following self-consistent argument.
Assuming that the density of particles is sufficiently large at each point where the local chemical
potential µ(x) = µ− V (x) is positive, one can rely on separation of scales, see Fig. 1. Under
this assumption, the density is

〈ρ̂(x)〉 =
ħh→0

ρLDA(x) :=

p

mµ(x)
ħh

F
�

ḡ
Æ

m/µ(x)
�

. (46)

This is the Local Density Approximation. It shows that the density locally diverges as 1/ħh at
every point where µ− V (x) > 0, thus separation of scales (see Fig. 1) becomes exact in the
limit ħh→ 0.

Since the total number of particles is the integral of the density 〈ρ̂(x)〉 over the region
where µ − V (x) > 0, it is clear that N ∝ 1/ħh, so that limit is a thermodynamic limit, as
claimed. Importantly, in our setup, the local dimensionless parameter

γ(x) :=
mḡ

ħhρLDA(x)
(47)

stays finite as ħh→ 0. [This is in contrast with other possible ways of taking the thermodynamic
limit (in particular, if one kept g = ħhḡ fixed, instead of ḡ) where the dimensionless interaction
parameter γ could diverge.]

3.2 Fixing K(x) and g(x) from LDA

For simplicity, we now assume that the domain where µ(x) = µ− V (x) is positive is a single
interval, which we take to be symmetric around the origin, [−R, R], with 2R the total size of
the boson cloud in the limit ħh → 0. To calculate ground state correlations, we then need to
consider the IGFF defined in the spacetime domain (x ,τ) ∈ Ω := [−R, R]×R. Importantly,
in the ground state of the trapped gas, the density of particles vanishes at the edges, which
imposes some boundary conditions on the height field h(x ,τ). To see what they are, let us
look back at the definition (3).

In Sec. 1.3, the effective Gaussian action S[h] was obtained by expanding h around a
classical configuration hcl.. It means that h(x ,τ) is just the fluctuating part of the height
function. So now, the definition (3) only makes sense if we invert it in the following way

h(x) = 2π

∫ x

−R
du [ρ̂(u)− 〈ρ̂(u)〉] , (48)

which satisfies 〈h(x)〉 = 0. But, since the total number of particles N is fixed in the interval
[−R, R], this necessarily imposes Dirichlet boundary conditions,

h(−R,τ) = h(R,τ) = 0. (49)
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(a) Set of parameters: ḡ = 3.16, m= 1, µ= 1.4,
ω= 0.12 and ħh= 5.44× 10−4.
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(b) Set of parameters:
ḡ = 15.81, m = 1, µ = 5.0, ω = 0.23
and ħh= 7.56× 10−4.

Figure 2: Density profiles in a harmonic potential V (x) = 1
2 mω2 x2. The profile

ρLDA(x) obtained from the Local Density Approximation — see Eq. (46) and Ref. [41]
— is compared to the exact profile obtained numerically from DMRG. The two sets of
parameters shown here give rise to a different value of the dimensionless interacting
parameter γ(x). The minimum of γ(x) is reached at the center of the trap x = 0.

Now, to apply the formalism of Sec. 2 to the trapped Lieb-Liniger gas, we need to fix the
Luttinger parameter K and the (conformal class of the) metric g on the domainΩ= [−R, R]×R.
To do this, we rely once again on separation of scales, and we use the exact solution from Bethe
Ansatz that is available in the homogeneous case.

Thanks to separation of scales, we can imagine that we focus first on correlation functions
within a single mesoscopic fluid cell, see Fig. 1. The mesoscopic cell is homogeneous and
contains a thermodynamically large number of particles, so the correlation functions must be
exactly the same as the ones of the homogeneous system in the thermodynamic limit. But, in
the homogeneous problem, both K and g are known, and the metric is simply (with x= (x ,τ))

ds2 = gi jdxidx j

= d x2 + v2dτ2. (50)

By dimensional analysis, the effective velocity v of gapless excitations above the ground state
is of the form v = vF f1(γ) for some function f1, where vF =

p

2µ/m is the Fermi velocity.
Similarly, the (dimensionless) Luttinger parameter K is of the form f2(γ). These functions f1
and f2 are known from Bethe Ansatz; they are plotted in Fig. 3.

This fixes the metric g and the parameter K within each mesoscopic cell. Then, of course,
the action of the IGFF in the entire domain Ω= [−R, R]×R is determined.

So, to sum up, we know what field theory needs to be solved: it is the IGFF in the metric
(50), with a velocity v and a Luttinger parameter K that both depend on the position x through
the local density ρLDA(x) and the local dimensionless interaction parameter γ(x). Correlation
functions can thus be expressed in terms of the Green’s functions GD

[K] and GN
[1/4K] defined in

Sec. 2, which are efficiently calculated numerically.

We conclude this subsection with a short remark about the coordinate system. In Sec. 2,
we relied on a system of isothermal coordinates to simplify the expressions associated with the
differential operators — the generalized Poisson operators — whose Green’s functions appear
in the IGFF correlators. Here, a system of isothermal coordinates is readily available [13].
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v(γ)/vF

Figure 3: The Luttinger parameter K and the velocity of gapless excitations v (here
divided by the Fermi velocity vF =

p

2µ/m) are functions of the dimensionless in-
teraction parameter γ in the Lieb-Liniger model. Galilean invariance implies that
K(γ)v(γ)/vF = 1, see Ref. [2]. The two dashed lines correspond to the two sets
of parameters for which we provide DMRG checks in this paper (see Fig.2); the
corresponding interaction parameter at the center of the trap are γ(0) = 3.64 and
γ(0) = 13.08.

Indeed, one can stretch the spatial coordinate x according to

x̃ =

∫ x

0

du
v(u)

, (51)

such that x̃ ∈ [−R̃, R̃] with R̃=
∫ R

0
du

v(u) . The new coordinate system ( x̃ ,τ) is isothermal,

ds2 = e2σ(x)
�

d x̃2 + dτ2
�

with eσ(x) = v(x). (52)

As a consequence, correlation functions can be written directly with the formalism of Sec. 2, by
working in stretched coordinates x = ( x̃ ,τ). To get expressions of correlators in the physical
coordinates (x ,τ), one simply has to keep track of Weyl factors: under the Weyl transformation
g → e2σg, a local operator φ(x) with scaling dimension ∆ transforms as φ(x) → e−σ∆φ(x).
For instance, the two-point function of φ could first be calculated in the coordinate system
( x̃ ,τ) using the formalism of Sec. 2, and then be rewritten as




φ(x ,τ)φ(x ′,τ′)
�

= v(x)−∆v(x ′)−∆



φ( x̃ ,τ)φ( x̃ ′,τ′)
�

. (53)

3.3 Expansion of the density operator

To relate correlation functions of a microscopic observable Ô(x) to the ones in the IGFF, we
need to find an expansion of the form (1) for Ô(x) in terms of local operators in the field
theory. This is what we do now, for the local density ρ̂(x). As in Sec. 2, we view the operators
as evolving in imaginary time τ. So they are functions of the coordinate x = ( x̃ ,τ), and we
will take τ= 0 at the end of the calculation, to get equal-time ground state correlations.

The local operators in the IGFF are the derivative of the height field ∂xh and the mixed
electric-magnetic operators Vα,β(x). Operators with non-zero magnetic charge β 6= 0 cannot
appear in the expansion of the local density ρ̂(x ,τ), because they correspond to creation/an-
nihilation processes at point (x ,τ); those will be discussed in more details in Sec. 3.5 below.
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Figure 4: The functions A(γ) and B(γ) appearing in the expansion of the local den-
sity ρ̂(x) and the particle creation operator Ψ̂†(x) in terms of the fields in the IGFF,
calculated from Bethe Ansatz form factors [50–52]. See e.g. Refs. [46–49, 58] for
details on how to extract such coefficients from form factors. The dashed lines cor-
respond to known asymptotics: A(γ)→ 1/(2π) when γ� 1, B(γ)→ 1 when γ� 1,
B(γ)→ G2(3/2)/(2π)

1
4 ' 0.722 when γ� 1 (where G(.) is Barnes’ G-function, see

Ref. [59]).

So, the local density must have an expansion of the form

ρ̂(x ,τ) = ρLDA(x) +
1

2π
∂xh(x ,τ) +

∑

p 6=0

C (ρ̂)p,0 Vp,0(x ,τ) + descendents, (54)

where the C (ρ̂)p,0 are dimensionful coefficients that we need to determine, and the “descendents”
terms correspond to derivatives of the local operators, which are less local and generate sub-
leading corrections to correlation functions. For simplicity, in this paper we will discard them
and keep only the terms p = ±1 in the sum:

ρ̂(x ,τ) = ρLDA(x) +
1

2π
∂xh(x ,τ) + C (ρ̂)1,0 V1,0(x ,τ) + C (ρ̂)−1,0V−1,0(x ,τ)

+ less relevant terms. (55)

Our task is now to identify the dimensionful coefficients C (ρ̂)1,0 and C (ρ̂)−1,0. Once again, we
rely on separation of scales, and on the existence of mesoscopic fluid cells in which the system
is locally identical to an homogeneous Lieb-Liniger gas. The scaling dimension of the operator

V±1,0 is K , so, by dimensional analysis,
�

�

�C (ρ̂)±1,0

�

�

� = 〈ρ̂〉1−K A(γ), where 〈ρ̂〉 is the particle density,

and A(γ) is a real positive function of the dimensionless interaction parameter γ. It is also
known (see e.g. Ref. [5]) that the phase of the coefficient C (ρ̂)±1,0 is e±i2kF x where kF = π 〈ρ̂〉 is
the Fermi momentum. The function A(γ) can be calculated from Bethe Ansatz, and is plotted
in Fig. 4 (see App. B for details). Since the coefficients C (ρ̂)±1,0 should depend only on the local
properties of the gas, the expression found in the homogeneous case must remain valid also
in the inhomogeneous case, replacing 〈ρ̂〉 and γ by ρLDA(x) and γ(x). We then arrive at the
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Figure 5: Top row: comparison of the density profiles obtained from formula (58)
against the DMRG results for the Lieb-Liniger gas in a harmonic trap (same data
as in Fig. 2). We see that the density profile obtained by including the first IGFF
correction is in excellent agreement with the exact numerical profile, and that the
Friedel oscillations are correctly reproduced at the edge of the trap. Bottom row: to
show that the excellent agreement is not restricted to the case of harmonic potentials,
we also display the density profile for the Tonks-Girardeau gas (i.e. γ→ +∞) in a
double-well potential.

expansion of the density operator

ρ̂(x ,τ) = ρLDA(x) +
1

2π
∂xh(x ,τ) + ei2ϑ(x)ρLDA(x)

1−K(x)A(x)V1,0(x ,τ)

+ e−i2ϑ(x)ρLDA(x)
1−K(x)A(x)V−1,0(x ,τ). (56)

Here, to lighten the notations, we write A(x) and K(x) instead of A(γ(x)) and K(γ(x)). The
phase ϑ(x) is a WKB phase, given by

ϑ(x) = π

∫ x

0

ρLDA(u)du−
π

2
. (57)

It is obtained by requiring that ∂xϑ(x) equals the local Fermi momentum kF(x) = πρLDA(x);
the additive constant π2 is fixed by an exact calculation in the free fermion case (i.e. the Tonks-
Girardeau limit γ→∞), see App. A.

3.4 Density profile, and density-density correlation

We now have all the ingredients that are necessary to calculate correlation functions of the
local density ρ̂(x). Taking the expectation value of the r.h.s. in Eq. (56), and using the results
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Figure 6: Connected part of density-density correlation function for the Lieb-Liniger
gas in an harmonic trap. We compare Eq. (59) to DMRG results (we use the same
parameters as in Fig. 2).

of Sec. 2, one finds

〈ρ̂(x)〉= ρLDA(x) + 2cos [2ϑ(x)]
ρLDA(x)1−K(x)

v(x)K(x)
A(x) e

1
2 GD

K (x). (58)

This follows from the fact that 〈∂xh〉= 0 and




V1,0(x ,τ)
�

= v(x)−K(x)



V1,0( x̃ ,τ)
�

= v(x)−K(x)e
1
2 GD
[K](x),

see Eqs. (53) and (42).
In Fig 5, we compare this result to a direct DMRG simulation of the Lieb-Liniger gas. The

agreement is excellent. [Another highly non-trivial check for formula (58) is the fact that, in
the Tonks-Girardeau limit γ → +∞ and in a harmonic trap, the result is an exact match to
the one obtained by evaluating the large-N asymptotics of the Hermite kernel, see App. A for
details.] The oscillations of the density are well reproduced by the first subleading corrections
from Eq. (55) and are usually interpreted as Friedel oscillations [60,61].

Next, we use the expansion (56) and the formulae of Sec. 2 to evaluate density-density
correlations. [For a study of density-density correlations in the homogeneous case, see e.g.
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Ref. [62].] We find, for the connected part,




ρ̂(x)ρ̂(x ′)
�

c = −
1

4π2

�

v(x)v(x ′)
�−1
∂ x̃∂ x̃ ′G

D
K (x, x′)

+
1
π

v(x)−1
�

∂ x̃ GD
[K](x, x′)

�

sin
�

2ϑ(x ′)
� ρLDA(x ′)1−K(x ′)

v(x ′)K(x ′)
A(x ′)e

1
2 GD
[K](x

′)

+
1
π

v(x ′)−1
�

∂ x̃ ′G
D
[K](x, x′)

�

sin [2ϑ(x)]
ρLDA(x)1−K(x)

v(x)K(x)
A(x)e

1
2 GD
[K](x)

+ 2
��

eGD
[K](x,x′) − 1

�

cos
�

2ϑ(x) + 2ϑ(x ′)
�

+
�

e−GD
[K](x,x′) − 1

�

cos
�

2ϑ(x)− 2ϑ(x ′)
�

�

×
ρLDA(x)1−K(x)

v(x)K(x)
ρLDA(x ′)1−K(x ′)

v(x ′)K(x ′)
A(x)A(x ′)e

1
2

�

GD
[K](x)+GD

[K](x
′)
�

, (59)

where x = ( x̃ ,τ) and we set τ = τ′ = 0. In Fig. 6, we display a comparison with the density-
density correlation obtained from DMRG, as a function of x , for two positions x ′ = 0 and
x ′ = −0.5R. Again, the agreement is excellent.

3.5 The one-particle density matrix

Finally, we will apply the IGFF to the computation of the one-particle density matrix

g1(x , x ′) :=



Ψ̂†(x)Ψ̂(x ′)
�

. (60)

Again, the first step consists in identifying the most relevant field theory operators that appear
in the expansion of the creation and annihilation operators Ψ̂†(x) and Ψ̂(x). Here, for sim-
plicity, we restrict ourselves to the leading order, which is given by a single magnetic vertex
operator,

Ψ̂(x ,τ) = C (Ψ̂)0,1 V0,1(x ,τ) + less relevant operators. (61)

[Subleading terms will be investigated elsewhere.] The coefficient C (Ψ̂)0,1 is identified in the
same manner as for the density operator: we start by considering the case of homogeneous
mesoscopic fluid cells, then go to the inhomogeneous case relying on LDA.

Given that the creation/annihilation operator has dimension 1/2, and that the magnetic
vertex operator has scaling dimension 1/4K , the amplitude of the coefficient must take the

form
�

�

�C (Ψ̂)0,1

�

�

�= 〈ρ̂〉
2K−1

4K B(γ) for some function of the dimensionless interaction parameter B(γ).
This function B(γ) is again calculated using form factors formulae, see Refs. [50–52, 63] and
Fig. 4. When going to the inhomogeneous case, we know from the homogeneous solution that

the coefficient C (Ψ̂)0,1 (x) does not have a position-dependent phase but can only have a global
constant phase, which we can fix to zero, such that B(γ) is real and positive. We then have

(

Ψ̂(x ,τ) = ρLDA(x)
2K(x)−1

4K(x) B(x)V0,1(x ,τ),

Ψ̂†(x ,τ) = ρLDA(x)
2K(x)−1

4K(x) B(x)V0,−1(x ,τ).
(62)

where we write B(x) instead of B(γ(x)).
The rest of the calculation is straightforward. We use formula (35), and, taking into ac-

count the Weyl factors (53), we obtain

g1(x , x ′) =
ρLDA(x)

2K(x)−1
4K(x)

v(x)
1

4K(x)

ρLDA(x ′)
2K(x′)−1

4K(x′)

v(x ′)
1

4K(x′)

B(x)B(x ′)
e

1
2

�

GN
[1/4K](x)+GN

[1/4K](x
′)
�

eGN
[1/4K](x,x′)

, (63)

with x= ( x̃ ,τ), and τ= τ′ = 0. In Fig. 7, we check this formula against DMRG. Even though
we only considered the leading order here, we find very good agreement.
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Figure 7: One-particle density matrix for the Lieb-Liniger gas in a harmonic trap,
compared to DMRG simulations. (We again use the same parameters as in Fig. 2.)

4 Conclusion

The purpose of this paper was to develop the formalism of the IGFF, and provide an exhaus-
tive study of correlations of local observables in that theory. We did so in Sec. 2. Then, in
Sec. 3, we explained how, in practice, this formalism gives access to correlation functions of
inhomogeneous systems, by focusing on ground state correlations of the Lieb-Liniger gas in a
trapping potential.

To conclude this paper, let us mention four directions which, in our opinion, would deserve
further investigation.

• in cold atoms experiments, where some correlation functions are measurable [21, 26–
28, 32], the gas is at finite temperature. Therefore, it would be very interesting to gen-
eralize the results of this paper to finite temperature. Usually, in field theory, working at
finite temperature is relatively easy: one simply needs to compactify the imaginary time
direction. However, there could be issues related to the boundary of the system: how to
properly describe the fluctuations of the particles near the edge of the gas? Those won’t
be obtained simply by compactifying the time direction in the field theory. It would also
be interesting to make the connection with other recent works on trapped 1d quantum
gases at finite temperature, for instance Refs. [64–66].

• as mentioned in Sec. 1.1, the inhomogeneous Luttinger liquid also appears in the context
of multi-component 1d Fermi gases. Motivated by recent experimental advances [67],
it would be interesting to extend the results of Sec. 3 to the case of SU(N) systems. In
this case, the integrable model of interest (the one that replaces the Lieb-Liniger model)
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would be the Gaudin-Yang model [45].

• another natural extension of this work would be to tackle time-dependent problems.
In the static case studied here, a key role is played by LDA, or hydrostatics, to fix the
parameter K and the background metric g in the effective field theory. In a dynamical
situation, for instance a breathing Lieb-Liniger gas in a trap [68–71], those parameters
would have to be extracted from an hydrodynamic approach. It would be interesting to
study how this works in practice, starting with the zero-temperature case. We note that,
in a very inspiring paper, Abanov [72] has studied a related problem in imaginary time
(see also Ref. [14], on a similar imaginary time problem).

• finally, perhaps the most challenging problem is to understand whether it is possible to
have a more general theory of fluctuations and correlations in the recently developed
theory of Generalized HydroDynamics (GHD) [73, 74]. So far, the IGFF approach dis-
cussed here models only fluctuations of the particle density at zero temperature (and
therefore corresponds only to a particular case in the more general GHD framework,
dubbed “zero-entropy GHD” in Ref. [75]). In GHD, not only the particle density is ex-
pected to fluctuate, but all densities of conserved charges. Perhaps such a theory could
take the form of a “fluctuating hydrodynamics” in the spirit of Ref. [76], or perhaps a
multi-component version of the IGFF (possibly with arbitrarily large number of compo-
nents). A step towards correlation functions in GHD has been taken very recently by
Doyon in Ref. [77]; it would be a good starting point to understand if/how his results
connect to inhomogeneous Luttinger liquids.
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A The Tonks-Girardeau limit

The Tonks-Girardeau (TG) regime is the limit of hard-core repulsion, i.e. γ→ +∞. In the spe-
cial case of a harmonic potential V (x) = 1

2 mω2 x2, we will show that we recover some known
results. But first, let us recall how the exact density can be computed in this case. To keep
notations light, we set ħh= m=ω= 1; then, we have kF (x) = v(x) = πρLDA(x) =

p
2N − x2.
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Exact density in the harmonic trap — finding the eigenstates of a single boson confined in
the harmonic trap V (x) = 1

2 x2 is the same problem as solving the quantum harmonic oscillator.
The eigenstates take the form

ψn(x) =
1

p
2nn!

π−
1
4 e−

x2
2 Hn (x) , (64)

where the nth. eigenstate has energy En =
�

n+ 1
2

�

and Hn is the Hermite polynomial of order
n. Now, since bosons with infinite-repulsion map to free fermions [78], the groundstate for N
bosons can be built by filling up the first N eigenstates. The density is then given by

〈ρ̂(x)〉=
N−1
∑

n=0

|ψn(x)|
2 , (65)

which is easily evaluated with the Christoffel-Darboux formula

lim
x ′→x

N−1
∑

n=0

Hn(x)Hn(x ′)
2nn!

=
H′N (x)HN−1(x)−H′N−1(x)HN (x)

2N (N − 1)!
.

When N � 1, this can be put in a more explicit form using the asymptotics of the Hermite
polynomials, i.e.

e−
x2
2 HN (x)∼

2
2N+1

4
p

N !

(πN)
1
4

1
p

sin(ϕ)
sin
�

2N + 1
4

(sin(2ϕ)− 2ϕ) +
3π
4

�

,

where x =
p

2N + 1 cos(ϕ), with ε ≤ ϕ ≤ π − ε (ε → 0 as N → ∞). Carrying out the
asymptotic expansion, we arrive at

〈ρ̂(x)〉=
1
π

p

2N − x2 −
1

2π
cos [2θ (x)]
p

2N
�

1− x2

2N

� +O(1/N), (66)

where the phase θ (x) is the integral of the Fermi momentum kF (x),

θ (x) =

∫ x

0

kF (u)du=
x
p

2N − x2

2
− N arccos

x
p

2N
.

After some manipulation, we can also write down an asymptotic expression for the density-
density correlation,




ρ̂(x)ρ̂(x ′)
�

c =
1

2π2

�

1− x x ′
2N

�

�

x − x ′
�−2

q

1− x2

2N

q

1− x ′2
2N

−
1

2π2

�

sin [2θ (x)]− sin
�

2θ (x ′)
�� �

x − x ′
�−1

p
2N
q

1− x2

2N

q

1− x ′2
2N

−
1

4π2

cos
�

2(θ (x) + θ (x ′)
�

h

x x ′
2N −

�

1+
q

1− x2

2N

q

1− x ′2
2N

�i−1

2N
q

1− x2

2N

q

1− x ′2
2N

+
1

4π2

cos
�

2(θ (x)− θ (x ′)
�

h

x x ′
2N −

�

1−
q

1− x2

2N

q

1− x ′2
2N

�i−1

2N
q

1− x2

2N

q

1− x ′2
2N

+O(1/N2). (67)
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Now, when γ→ +∞, the Luttinger parameter is constant, K = 1 (that is the value for free
fermion systems). As a consequence, the action (8) is conformally invariant, and the Green’s
functions GD

[1], GN
[1/4] as well as the mixed function FD,N

[1,1/4] can be obtained explicitly. Indeed,
when the strip is conformally mapped to the upper-half plane, it boils down to an exercise in
the method of images,2 see e.g. [16]. Below, we will show that we recover exactly the results
for the average density and for the density-density correlation.

Density from the (Dirichlet) Green’s function GD
[1] — when ħh = m = ω = 1, the Green’s

function with Dirichlet boundary conditions takes the explicit form

GD
[1](x, x′) = log







�

�

�sin
�

x̃− x̃ ′
2

�

�

�

�

2

�

�sin
� x̃+ x̃ ′

2

��

�

2






, (68)

where x= ( x̃ ,τ) and τ= τ′ = 0. Its regularization then gives

GD
[1](x) = log

�

1

|2sin ( x̃)|2

�

. (69)

The coordinate x̃ is the stretched coordinate from Eq. (51); here, it has an explicit expression,
namely x̃ = π

2 + arcsin x
2N . Finally, with the definition (57), the phase ϑ(x) reads

ϑ(x) = θ (x)−π.

Plugging everything into Eq. (58), we indeed recover the result obtained from the asymp-
totic expansion of Hermite polynomials (66), with limγ→∞ A(γ) = 1

2π . The same goes for the
density-density correlation (59).

(Neumann) Green’s function GN
[1/4] and g1(x , x ′) — similarly, the Green’s function with

Neumann boundary conditions reads

GN
[1/4](x, x′) = log

 

2

�

�

�

�

sin
�

x̃ − x̃ ′

2

�

�

�

�

�

1
2
�

�

�

�

sin
�

x̃ + x̃ ′

2

�

�

�

�

�

1
2

!

, (70)

and its regularized part takes the form

GN
[1/4](x) = log

�

|2 sin ( x̃)|
1
2

�

, (71)

for x= ( x̃ ,τ) and τ= τ′ = 0. Plugging these in Eq. (63), we recover the celebrated result for
the one-particle density matrix in an harmonic trap, see Refs. [16,79,80],

g1(x , x ′) = B(+∞)2
1
p

2π

|sin ( x̃)|
1
4
�

�sin
�

x̃ ′
��

�

1
4

�

�sin
� x̃− x̃ ′

2

��

�

1
2
�

�sin
� x̃+ x̃ ′

2

��

�

1
2

, (72)

where we know that limγ→∞ B(γ)2 = G4(3/2)p
2π

, with G(.) the Barnes’ G-function.

2The method of images has a wikipedia page: https://en.wikipedia.org/wiki/Method_of_image_charges

25

https://scipost.org
https://scipost.org/SciPostPhys.4.6.037
https://en.wikipedia.org/wiki/Method_of_image_charges


SciPost Phys. 4, 037 (2018)

The mixed function FD,N
[1,1/4] — for completeness, we can also write explicitly the mixed

function FD,N
[1,1/4](x, y), where now x represents the complex coordinate x= x̃ + iτ. We find

FD,N
[1,1/4](x, y) = arg

�

4sin
�x− y

2

�

sin
�

x+ ȳ
2

��

, (73)

so that its regularized part, taking x, y→ z, gives

FD,N
[1,1/4](z) = arg [2 sin (z)] . (74)

B Extracting the dimensionful coefficients from form factors

In Sec. 3, we have shown how correlation functions can be evaluated using the IGFF. An impor-
tant ingredient was the set of coefficients C Ô

j that appears in the expansion of a local observable

Ô in the microscopic model, in terms of primary operators in the field theory φ j ,

Ô(x ,τ) =
∑

j

C (Ô)j φ j(x ,τ). (75)

In this appendix, we explain how the dimensionful coefficients C (Ô)j can be calculated in
practice. For similar discussions that have appeared previously in the literature, see e.g.
Refs. [46–49,58].

We work in the homogeneous, translation-invariant, problem, and the field theory is the
usual GFF, which is conformally invariant. Thus, we will rely on conformal transformations
and on the operator-state correspondence, namely that the operatorsφ j in the CFT correspond
to eigenstates of the CFT hamiltonian

�

�φ j

�

.
In fact, Eq. (75) is strictly valid for an infinite system (x ,τ) ∈ R2. Since we will rely on

numerical evaluation (i.e. we have finite system sizes L), our first task is to find a way of
taking the limit L→∞. To do so, we start by making the following assumptions:

• for sufficiently large system sizes L, the low-energy excited states of the microscopic
hamiltonian H can be unambiguously identified with the ones of the CFT Hamiltonian.
In particular, the ground state of H for a system of size L, |0〉L , is viewed as a microscopic
version of the CFT vacuum |0〉. Similarly, there is a unique eigenstate of H, noted

�

�φ j

�

L ,
that is viewed as a microscopic version of the CFT state

�

�φ j

�

.

• the form factor in the microscopic model, L




φ j

�

� Ô(x) |0〉L , is known for arbitrary L.

With this at hand, the dimensionful coefficient C (Ô)j in Eq. (75) is given by

C (Ô)j = lim
L→∞





�

L
2π

�∆φ j L




φ j

�

� Ô(0) |0〉L
q

L 〈0|0〉L L




φ j

�

�φ j

�

L



 , (76)

where ∆φ j
is the scaling dimension of the CFT operator φ j . This formula is easily obtained as

follows.
First, we need to rewrite Eq. (75) for a periodic system (x ,τ) ∈ [0, L]×R with periodic

boundary conditions in the x-direction. This is done by conformal mapping: the cylinder
x + iτ ∈ [0, L] + iR of circumference L is mapped on the infinite plane with the conformal
transformation z = ei2π x+iτ

L . Then, the r.h.s. in Eq. (75) becomes
∑

j

C (Ô)j

�

2π
L

�∆φ j
φ j(z, z̄).
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Next, inserting the l.h.s. of Eq. (75) in L




φ j

�

� . |0〉L and the r.h.s. in



φ j

�

� . |0〉, one gets for
τ= 0:

L




φ j

�

� Ô(x) |0〉L
q

L 〈0|0〉L L




φ j

�

�φ j

�

L

' C (Ô)j

�

2π
L

�∆φ j 


φ j

�

�φ j(e
i 2πx

L ) |0〉 ,

where the denominator in the l.h.s. is the normalization of the two microscopic states and the
CFT states and operators are normalized such that




φ j

�

�φ j′(0) |0〉= δ j, j′ in the plane.
This is an approximation in finite size L, but it is expected to become exact in the thermody-

namic limit L→∞, hence the formula (76). [In the case where the operator φ j has non-zero
spin (or equivalently, if the eigenstate

�

�φ j

�

L has non-zero momentum), the dimensionful co-
efficient possesses an x-dependent phase, which we dropped from Eq. (76) for simplicity.]

In practice, for the Lieb-Liniger model, we evaluate the coefficients by solving the Bethe
equations for a range of particle number N , simultaneously varying the length L = N/ρ such
that the density ρ is fixed. We solve the Bethe equations numerically,

L
2π

k j +
1

2π

N
∑

p=1

i log

�

ic + k j − kp

ic − k j + kp

�

= I j .

The eigenstates of the Lieb-Liniger model are indexed by the configurations of Bethe (half-
)integers {I1, I2, . . . , IN}.

For instance, it is known that the ground state corresponds to the configuration
{−N−1

2 ,−N−3
2 , . . . , N−3

2 , N−1
2 }, while the state

�

�V1,0

�

N corresponds to the configuration
{−N+1

2 ,−N−3
2 , . . . , N−3

2 , N−1
2 }. More generally, any state in the CFT can be identified with a

configuration of Bethe roots close the ground state one, with only a few I j ’s that are shifted.
See e.g. formula (9.18) in the first chapter of the book by Korepin et al. [57] for more infor-
mation on the relation between the eigenstates of the LL model and those of the free boson
CFT.

Given the ground state and an excited state for a given number of particles N , we evaluate
the corresponding form factors using the formulae given in Refs. [50–52]. We do this for
several system sizes N (or lengths L = N/ρ), then perform a polynomial fit in 1/N to get a
numerical estimate of the limit N →∞ in formula (76). This is how we obtain the functions
A(γ) and B(γ) displayed in Fig. 4.

In Fig. 8 we display the result from our approach for the one-particle density matrix with
the non-universal dimensionful coefficient B(x), against the the result where this coefficient is
omitted, B = 1. The agreement with the DMRG calculation is much worse in the latter case.

C Electrostatics on the 2d lattice

In this appendix, we study classical electrostatics in an inhomogeneous dielectric medium
in 2d, in close connection with the discussion of Sec. 2. This is the construction we use to
compute the Green’s functions GD

[K], GN
[1/4K] and the mixed function F[K ,1/4K] numerically; it

should therefore help understanding the results of Sec. 2.
Let us start by considering a rectangular lattice whose nodes x are occupied by a discrete

height field h, and the Luttinger parameter K lives on the edges, see Fig. 9. Equivalently, one
can view this as a resistor network, with the field h viewed as an electrostatic potential V , and
with K viewed as a resistor R on each edge.
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g 1
(x
,0
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〈ρ

(0
)〉

DMRG

N=46, γ(0) =3.64

With B(x)

With B=1

Figure 8: The OPDM from Sec. 3 compared to the result without the non-universal
dimensionful coefficient B(x). It shows the importance of such coefficients to quan-
titatively give the correct results.

Electric field in an inhomogeneous medium — as we did in the main text, we can look at
the electric field E, on an edge




xx′
�

between two neighboring sites x and x′,

E〈x,x′〉 =
hx − hx′

|x− x′|
,

To keep notations light, we restrict to a square lattice with spacing 1. Using Ohm’s law, the
current on the (oriented) edge




xx′
�

is I〈xx′〉 =
1
K E〈x,x′〉, and the Gauss’ law at the vertex x then

gives

∇ ·
1
K
∇h=

∑

x′ neighbor
of x

1
K〈xx′〉

(hx − hx′) = 0 , (77)

in the absence of an electric charge at site xi . If there is an electric charge α on site x, the r.h.s.
is proportional to α; this is the discrete version of the Gauss law in Eq. (20).

In the absence of a magnetic flux through the plaquettes, the curl of the field E vanishes.
For instance, for the sites xi , x j , xo, xk drawn in Fig. 9,

(hxi
− hx j

) + (hx j
− hxo

) + (hxo
− hxk

) + (hxk
− hxi

) = 0,

which is the discrete version of Faraday’s law in Eq. (20),

∇× E = 0. (78)

Finally, Dirichlet boundary conditions read hx = 0 for x ∈ ∂Ω; in terms of the electric field,
this implies that the component tangential to the boundary vanishes on ∂Ω,

E‖ = 0 . (79)

In electrostatics, this corresponds to the domain Ω being surrounded by a perfect conductor
[55].

28

https://scipost.org
https://scipost.org/SciPostPhys.4.6.037


SciPost Phys. 4, 037 (2018)

edges
boundary ∂Ω
‘resistor’ K
Vα,0

V0,β

defect line

dual lattice

hxi
hx j

hxk

hxl

hxm

hxo

y1

y2

Figure 9: Classical electrostatics in a discretized 2d inhomogeneous medium.

Magnetic fluxes, electric-magnetic duality — now, imagine that two plaquettes are pierced
by two infinitely thin, constantly increasing, magnetic fluxes in their center, at positions y1 and
y2. The fluxes are topological defects around which the field h winds by a constant ±2πβ . In
Fig. 9, this is represented by a defect line linking two defects. When h crosses the defect line,
it jumps by 2πβ . Notice that we have inserted two defects (the two ends of the defect line)
with opposite ‘magnetic charge’ ±β , in order to be compatible with the Dirichlet boundary
conditions.

In the absence of electric charges on the lattice sites, the electric field now satisfies

(
�

∇ ·
1
K

E
�

x
= 0 on each site x

(∇× E)y = 2πβy on each plaquette y ,
(80)

where βy is the ‘magnetic charge’ through each plaquette, here equal to +β if y = y1, −β if
y= y2, and 0 otherwise.

On the 2d lattice, the electric-magnetic duality is easily constructed as follows. The dual
field Ẽ is defined by a π/2-rotation of E, and a rescaling by 1/(2K),

�

Ẽ1
Ẽ2

�

=
1

2K

�

E1
−E2

�

, (81)

where E1 and E2 are the two components of E. This dual field lives on the edges of the lattice,
as the original electric field E. But one can view Ẽ as the discrete gradient of a dual height
field h̃, which lives on the vertices of the dual lattice (i.e. the plaquettes of the original lattice),
see Fig. 9. Then, the Gauss law reads, for the dual field Ẽ, ∇ · 4K∇h̃ =∇ · 4K Ẽ = 4πβy, on a
plaquette y with magnetic flux βy.

Since Ẽ⊥∝ E‖, it is also clear that the dual field Ẽ satisfies Neumann boundary conditions
if E satisfies Dirichlet boundary conditions (E‖ = 0).

Mixed electric-magnetic potential Fx,y — finally, we discuss the mixed function Fx,y on the
lattice. It is defined as the potential felt by an electric charge at site x in the presence of a
single magnetic monopole at site y on the dual lattice. More precisely, we start by fixing y,
and a defect line that goes from y to an edge at the boundary, see Fig. 10. The height function
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x

y

Figure 10: Configuration used for the definition of the mixed function Fx,y on the
lattice. Fx,y is defined as the electric potential felt on vertex x, knowing that the
plaquette y is pierced by a flux: Fx,y jumps by ±2π when x crosses the defect line
that starts at y (dashed black).

hx that lives on the vertices has a 2π-discontinuity along the defect line. This means that the
discrete gradient of h along an edge




xx′
�

, which is usually defined as (∇h)〈xx′〉 = hx − hx′ , is

replaced by (∇h)(d)〈xx′〉 = ±2π + hx − hx′ on all edges that cross the defect line. The ± sign is
fixed by the orientation of the edge with respect to the defect line. One also fixes a function
fx that lives on the vertices along the boundary ∂Ω, that has a 2π-discontinuity at the edge
where the defect line crosses the boundary, see Fig. 10. The mixed function Fx,y is then defined
as the height function hx that has the right discontinuity along the defect line, and satisfies the
Dirichlet boundary conditions hx = fx along the boundary.

In other words, the mixed function Fx,y is defined as the solution of the linear problem
(

∇x ·
1
K
∇xFxi ,yi

= 0,

Fx,y = fx if x ∈ ∂Ω ,
(82)

where the definition of ∇F is replaced by (∇F)(d) on edges crossed by the defect line. This is
the lattice version of Eq. (38) in the main text.

So far, we have regarded Fx,y as a function of x, defined for some fixed y. But it is interesting
to see that it also satisfies a set of dual constraints, as a function of the variable y,

�

∇y · K∇yFx,y = 0,
(∇yFx,y)⊥ = (∇ fy)‖ if y ∈ ∂Ω,

(83)

which are the discrete version of Eq. (40). We now show that the first equation in (83) follows
from (82); we leave the second one (the boundary condition) as an exercise to the reader.

First, we note that, for two neighboring plaquettes y and y′, the discrete gradient Fx,y−Fx,y′

is the electrostatic potential created by a short defect line on the dual edge



yy′
�

, viewed at
point x. This is illustrated in the following picture,

x

y

− x

y′

= x

y y′
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Thus, the combination Qx := ∇y · K∇yFx,y corresponds to a sum of four terms, which we can
view as the potential created by four short defect lines around y:

Qx := ∇y · K∇yFx,y = x
y

Now comes the crucial observation: this combination Qx satisfies ∇x ·
1
K∇xQ = 0 for all sites

x ∈ Ω. For sites that are sufficiently far from the plaquette y, this is obvious, and it simply
follows from the fact that Fx,y satisfies this equation. However, when x is one of the four
corners of the plaquette y, one must be careful with the ±2π discontinuities. Writing the four
terms appearing in the explicit expression of the discrete operator ∇x ·

1
K∇x, one sees that

exactly two of them correspond to terms on edges that cross the defects:

∇x ·
1
K∇xQx =

y
x = 0.

The ±2π jumps coming from those two crossings cancel, and the relation∇x ·
1
K∇xQ = 0 holds,

as claimed.
In addition, it is clear that Qx = 0 along the boundary x ∈ ∂Ω. Those two facts imply that

Qx is identically zero, so ∇y · K∇yFx,y = 0 as claimed in (83).

D DMRG setup

In this work, Density Matrix Renormalization Group (DMRG) simulation was performed using
the open-source C++ library ITensor [53]. The Lieb-Liniger model can be discretized in terms
of the XXZ Heisenberg spin chain in its low-density regime [81], and in DMRG, this is the most
usual way to simulate the LL model (along with the Bose-Hubbard model) [82–85]. Under
this mapping, the XXZ Hamiltonian reads

HXXZ = −
J
2

n−1
∑

j=1

σ+j σ
−
j+1 +σ

−
j σ
+
j+1 +

n
∑

j=1

(J −µ+ V ( ja0))σ
z
j −

n−1
∑

j=1

J
1+ U/2J

σz
jσ

z
j+1, (84)

where j labels the sites, a0 is the lattice spacing, n is the total number of sites, J = ħh2/ma2
0

and U = g/a0. In the low-density regime a0 � ρ−1
max, the continuous position corresponds to

ja0→ x .
We denote by |φ〉 the ground state of Hamiltonian (84). The correlation functions of the

LL model are then easily computed in terms of the Pauli matrices σ j . The connected part of
the density-density correlation is given by




ρ̂(x)ρ̂(x ′)
�

c = 〈φ|σ
z
jσ

z
j′ |φ〉 − 〈φ|σ

z
j |φ〉 〈φ|σ

z
j′ |φ〉 . (85)

Similarly, the one-particle density matrix can be computed in terms of the raising and lowering
operators,

g1(x , x ′) = 〈φ|σ+j σ
−
j′ |φ〉 . (86)

In order to check that the low-density regime is correctly fulfilled, we can cook up some
criterion. Indeed, performing DMRG in the homogeneous gas, we can extract numerically the
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(a) Coefficient B(γ) extracted from DMRG simula-
tions compared to the result obtained from alge-
braic Bethe ansatz form factors.
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(b) Convergence of the OPDM as the lattice spacing
a0 is decreased.

Figure 11: Criterion we use to check that the low-density regime is reached. We see
that the discretization must be increased as we want to simulation the LL model with
smaller interaction parameter γ.

prefactors A(γ) and C(γ) from the simulation, and check that they match with the (exact)
ones calculated via algebraic Bethe ansatz. In Fig. 11a, we see that, as γ gets smaller, the two
results match as the density gets lower. This seems consistent with the fact that the Bethe
ansatz form factors are calculated for 〈ρ̂〉 → 0. However, since we want to simulate systems
with large numbers of particles, we can just as well increase the discretization. Concretely, we
set the lattice spacing to a0 = 1 for n= 512 sites; the, results seem to converge for a0 decreased
by at least one order of magnitude, see Fig. 11b. In Sec. 3, simulations were performed on a
lattice of n= 4096 sites.
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