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Abstract

We propose and test improvements to state-of-the-art techniques of Bayeasian statisti-
cal inference based on pseudolikelihood maximization with `1 regularization and with
decimation. In particular, we present a method to determine the best value of the reg-
ularizer parameter starting from a hypothesis testing technique. Concerning the deci-
mation, we also analyze the worst case scenario in which there is no sharp peak in the
tilded-pseudolikelihood function, firstly defined as a criterion to stop the decimation.
Techniques are applied to noisy systems with non-linear dynamics, mapped onto multi-
variable interacting Hamiltonian effective models for waves and phasors. Results are an-
alyzed varying the number of available samples and the externally tunable temperature-
like parameter mimicing real data noise. Eventually the behavior of inference procedures
described are tested against a wrong hypothesis: non-linearly generated data are ana-
lyzed with a pairwise interacting hypothesis. Our analysis shows that, looking at the
behavior of the inverse graphical problem as data size increases, the methods exposed
allow to rule out a wrong hypothesis.
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1 Introduction

Concepts and tools from statistical mechanics turn out to be valuable resources to analyze
the behavior of systems of very diverse nature, ranging from neuroscience [1, 2, 3] to systems
biology [4, 5, 6], economics [7, 8, 9], finance [10, 11], sociology [12] and language evolution
[13], just to name a few. In this work, we start from the use of statistical mechanics to char-
acterize the behavior of complex optical systems [14, 15], in which many modes propagate
or develop due to external sources and nonlinearities might be fundamental in describing the
system behavior.

The study of Hamiltonian multi-body interaction systems as models to describe the in-
teractions among electromagnetic modes in multimode lasers has provided important under-
standing on several experimental studies [16, 17, 18, 19]. In these works, the interests was
mainly in the study and description of the electromagnetic output assuming some network of
interactions among the modes. In this paper we will focus on statistical inference, i.e., on the
inverse problem: the reconstruction of the statistical model parameters from data acquired in
real experiments or in numerical simulations of the output.
Even though our original motivation arises in the framework of nonlinear optics and laser
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physics [14, 20, 21, 22, 23, 24], in this work we will concentrate on state-of-the-art tech-
niques to solve inverse problems. Indeed, the techniques here presented can be applied to a
large class of models with multi-body interactions.

The most studied inverse problem within the statistical physics community is the inverse
Ising problem. This can be regarded as the E. coli of statistical physics: the thermodynamic
properties are known and the different techniques can be tested on the thermodynamic phases.
In the Ising model the interacting variables are discrete spins, σ = ±1, while the couplings
describing their interactions can be generically thought of as random variables chosen from
desired probability distributions. Many inference techniques have been tested on the Inverse
Ising model: from mean field methods [25] and their extensions [26, 27] to various likelihood
maximization techniques [28, 29]. The literature on the inverse Ising problem is very wide,
see e. g., Ref. [30] for a recent review. On the other hand, few studies can be found on contin-
uous spin models [15, 31]. Moreover, inference techniques on systems with strong nonlinear
responses have not yet been exhaustively explored. Beside the mentioned nonlinear optics,
there are many other research fields in which nonlinear inference techniques are relevant:
constraint satisfaction problems [32, 33], error correcting codes [34, 35], non linear neural
networks [36], peptide sequences in DNA [37], non linear electric networks [38], fish shoals
[39, 40], heterogeneous and frustrated glassy systems [41, 42, 43, 44, 45, 46, 47, 48, 49].

This study follows a previous paper [50], where we have presented the physical systems
of interests as well as the inference techniques used, namely pseudolikelihood methods with
`1-regularization and decimation. Pseudolikelihood methods have proved to be of primary im-
portance in a variety of research areas, e.g., in neuroscience for investigating populations of
neurons [51], in the reconstruction of gene regulatory networks [52], in the determination of
protein structure [4, 53, 54]. In the present work, we extend the analysis to provide a deeper
understanding and a broader outlook and perspective on the problem and on the results ob-
tained. In particular, i) we explain more in details the methods proposed in [50] to predict the
λ regularizer for the `1-regularization in order to restrict ourselves in a minimum reconstruc-
tion error regime; ii) we clarify the criterion chosen for the halt of the decimation procedure;
iii) we compare the dynamics realized on the inferred network of interactions with the real
one, iv) we analyze the distributions of the inferred interaction couplings in relation to differ-
ent underlying thermodynamic phases, v) we present also the results obtained starting from a
wrong hypothesis: while the real dynamics is the one of a system characterized by a nonlinear
response, the Hamiltonian is assumed to contain only 2-body interaction terms. In a previous
paper [15], we compared the performances of the pseudolikelihood maximization (PLM) esti-
mator with other estimators based on mean field approximations. With the pseudolikelihood
maximization we obtained better performances even in the low sampling regime. In this work
we, thus, concentrate on techniques based on the pseudolikelihood maximization. We note
that studying systems with strong non-linearities, the mean field techniques would have been
much more computational demanding with respect to the PLM.

The present paper is developed along the following scheme: in Sec. 2 we quickly introduce
the models as well as the physical problems of interest; in Sec. 3 we explain in details the
inference techniques that have been adopted; in Sec. 4 we present the results obtained. In
section 5 we look at the outcomes of statistical inference starting from a wrong hypothesis; in
Sec. 6 conclusions and further perspectives are elaborated.
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2 Test Model

In this section the models and the physical systems of interest are introduced. The inter-
ested reader can find more details in [14]. This paper is organized in such a way to let the
reader interested only in inference techniques applied to nonlinear systems to skip this section.

2.1 Complex Spherical Model: Relevance in Photonics

The class of Hamiltonians that we will consider has the form

H = −
1
8

d.i.
∑

jklm

J jklm a ja
∗
kal a

∗
m + c.c. (1)

where, in the most general case, a j are complex numbers and Ji jkl are the complex interaction
couplings among them. The sum considered in Eq. (1) is subjected only to distinct indices. A
complete derivation of the above model in the context of optics is presented in Ref. [21]. The
Hamiltonian description comes about as the electromagnetic field can be expressed as

Ẽ(r , t) =
∑

k

ak(t)Ek(r )e
ıωk t + c.c. (2)

where Ek(r ) are the time-independent solutions of the wave equation in the medium, the so-
called normal modes. The ak(t)’s vary on a time scale much longer thanω−1

k [55]. Each mode
can then been seen as a phasor “spin”, complemented with its own mode intensity A2

k = |ak|2

and phase φk = arg(ak) ∈ [0, 2π]. As we can see from Eq. (1), we consider systems with
4-body interaction terms, representing the first nonlinear order term for optical systems with
time reversal symmetry (i. e., with optical susceptibility χ(3) ). Eventually, because of the
total power constraint and regulatory mechanisms such as, e.g., gain saturation responsible
for the stationarity of the laser regime, the ak ’s satisfy a global spherical constraint, i. e.,
∑N

k=1 |ak|2 = const × N , which assures a bounding of the energy (1). The inverse of the
pumping rate plays the role of the effective temperature. The model introduced in Eq. (1)
can, then, describe how the intensity is distributed among the modes in the stationary regime
and how and if the phases of the modes would be synchronous. In this setup, the interaction
couplings J jklm express the interaction among the modes due to the competition for the energy
in the same region of the gain medium.

Starting with Ref. [56], Gordon and Fischer were the first to consider multimode lasers
in a statistical-mechanical framework. They studied the statistical properties in homogeneous
cavities taking into account non-linear effects like gain saturation and intensity dependent
refractive index: the system shows a thermodynamic phase transition, i.e., the transition to
the so-called multi-mode mode-locking ultrafast laser regime, in which the modes oscillate in
a phase-locked behavior. Different thermodynamic phases are also observed in random lasers
[20, 21, 57, 58].

2.1.1 XY model, aka Quenched Amplitude model

Being interested in studying possible mode-locking regimes characterized by strong cor-
relations among the phases of the modes, one can consider to investigate the situation of all
the intensities |A j| as being quenched with respect to the phases, i.e., varying on much longer
timescales with respect to the phases and considered as constants. Starting from Eq. (1), by a
rescaling of the coupling coefficients A jAkAlAmJ jklm→ J jklm, we are left with the Hamiltonian
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of the X Y model:

H = −
1
8

d.i.
∑

jklm

�

JR
jklm cos(φ j −φk +φl −φm) (3)

+ J I
jklm sin(φ j −φk +φl −φm)

�

,

being JR and J I the real and imaginary part of the network coupling. We have analyzed
the inverse problem for both models: the complex spherical/phasor model, Eq. (1), and the
X Y /rotor model, Eq. (3). Introducing the X Y model gives also the possibility to analyze the
dynamics on sparse graphs with a number of total quadruplets scaling only with N . Indeed, if
the number of total quadruplets does not scale at least with N2, the dynamics of the spherical
model displays power condensation: all the energy condensates in a quadruplet of phasors,
the behavior is not homogeneous and ergodicity is not satisfied.

2.2 Frequency Matching Condition and mode-locking

Deriving Eq. (1) (see, for example, [14]), one can see that 4-modes can interact if and
only if the following Frequency Matching Condition (FMC) is satisfied, i.e.,

|ω j −ωk +ωl −ωm|. γ, (4)

where with ωk we indicate the frequency of mode k and with γ the linewidth. Our interest
will rely on whether or not the inference techniques proposed are able to reconstruct this
underlying structure. Moreover, knowing this constraint in advance, it might be possible to
determine the frequency distribution of the modes. The 24 possible permutations of the 4
indexes in Eq. (4) can be divided into 3 non-equivalent subsets of 8 permutations each. So,
the FMC can be satisfied by one, or more, of these independent classes of permutations. The
term “narrow band” [56, 58, 59, 60, 61] indicates the case in which all modes oscillate in
a relatively small frequency bandwidth, i.e., ωl ' ω0 within the linewidth γ of mode l and
the FMC does not play any-role in the system behavior. For comb-like distributed frequencies,
we have ωl = ω0 + lδ with γ � δ. In this case, the systems is not fully connected and the
connectivity of each mode depends on its frequency: the FMC plays a role in the construction
of the interaction network. These graphs are termed Mode-Locked (ML) graphs. In this paper,
we will consider both narrow band and ML graphs.

3 Inverse problem: data and inference techniques

The aim of supervised statistical learning is to predict the model parameters from data
describing the dynamics of the system. Having modeled our optical system in terms of com-
plex spherical or X Y spins interacting on a given graph, we now want to analyze the inverse
problem: reconstructing the network of interaction as well as the coupling strength.

Since at present we have no access to experimental data, we will use numerical experiments
to generate data providing, as a first step, an easy interface with real world experiments. The
data used have been generated through Monte Carlo numerical simulations of the systems at
equilibrium. Both systems, Eq. (1) and Eq. (3) have been simulated. We have considered
both the case of sparse graphs, in which the number of interacting quadruplets scales like the
number of variables, Nq ∝ N , and more dense graphs, in which Nq ∝ N3. Notice that a
complete dense graph would contain O(N4) interacting quadruplets. Furthermore, we have
considered strict frequency matching conditions, cf. Eq. (4), based on comb-like single mode
resonance distributions (γ� δω), as well as narrow-band conditions (γ > δω). Considering
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the physical model of interests, the couplings Js will depend on the spatial distribution of the
modes and on the non-linear response of the system. Particularly for random lasers, in which
the modes are randomly distributed in space and the nonlinear susceptibility is highly inhomo-
geneous, we expect a variation of the value of the coupling among the interacting quadruplets.
Because of the partial knowledge of modes localization and the very poor knowledge of the
nonlinear response so far in experiments, the random values for the Js can be taken from any
physically reasonable arbitrary probability distribution. We will then take the couplings of a
multibody interacting network, with number of variables N and number of couplings Nq ∼ N z ,
as generated either through a bimodal distribution, i.e.,

P(J) = 1/2[δ(J − Ĵ) +δ(J + Ĵ)], (5)

with Ĵ = 1/N (z−1)/2, or through a Gaussian distribution of mean square displacement σ ∼ Ĵ .
Indeed, we can analyze the performance of the inference techniques for both discrete and
continuously distributed couplings. The methods exposed also work for the simpler cases of
uniform couplings like in standard mode-locking lasers [22, 56, 62, 63]. We inferred data
within the equilibrium hypothesis, expressed by the Boltzmann-Gibbs distribution in the like-
lihood function. To reduce the Monte-Carlo steps required for thermalization we used the
parallel tempering algorithm.

For the “narrow band” approximation, where the frequencies of the modes do not play
any role in the construction of the interaction graph, we generate instances of Erdös Rényi
(ER) graphs: each quadruplet is added to the graph independently, with probability M/

�N
k

�

,
where M is the total number of quadruplets in the graph. In order to obtain a Mode-Locked
(ML) graph, starting from a so generated ER graph, we remove those quadruplets that do
not satisfy the Frequency Matching Condition (FMC), Eq. (4). As proved in Appendix A, in
the thermodynamic limit, the number of removed quadruplets scales like N/2 while the node
connectivity distribution tends to a Poissonian, as in ER-like graphs [64]. On the other hand,
finite size effects are clearly stronger in the ML graph with respect to the ER-like graph for the
relatively small simulated sizes.

3.1 Pseudolikelihood method

A standard approach used in statistical inference is to predict the model parameters by
maximizing the likelihood function. This technique, however, requires the evaluation of the
partition function that, in the most general case, concerns a number of computations scaling
exponentially with the system size. Different approaches have then been used: Boltzmann ma-
chine learning [65, 66], mean field methods [67, 68] with various extensions [26, 27, 69, 70].
A local alternative to the likelihood function was introduced and referred to as Pseudo Like-
lihood Function (PLF) [28]. It was first developed for spatial models in Ref. [71] and later
extended as an alternative to maximum likelihood function for networks. The most attractive
part of the PLF is its computational tractability in comparison to the likelihood function. It
keeps a good balance between the computational complexity and the efficiency of the estima-
tion. The PLF is maximized with respect to its parameters to find the corresponding estimators.
This method is known as Pseudo Likelihood Maximization (PLM). Such a logistic regression
based method proves to work very efficiently on sparse networks. As well as the likelihood
maximum estimator, the PLM estimator is consistent and asymptotically normal , i.e., as the
number of training samples increases (i) the inferred values tend to the true values and (ii)
the distribution of the inferred parameters tends to a Gaussian one. We are now deriving the
PLF for non-linearly interacting wave systems.

Using Eq. (1), we have that the probability of observing a configuration a given a set of
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couplings J is:

P(a|J) =
1

Z[J]
exp {−βH[a|J]} . (6)

Eq. (1) can be rewritten as:

H[a] = −
1
8

N
∑

j=1

a jH j[a\ j] + c.c. (7)

Where a\ j is the set of all amplitudes but a j and we have defined the complex-valued local
effective fields as

H j[a\ j] =
1
4

d.i.
∑

klm6= j

J jklmFklm (8)

Fklm =
1
3

�

a∗kal a
∗
m + aka∗l a∗m + a∗ka∗l am

�

. (9)

We want to determine Pi(ai|J , a\i) that, using Eq. (7), can be written as

Pi(ai|J , a\i) =

∏N
j=1 exp

¦

β
8 a jH j[a\ j]

©

∑

{ai}
∏N

j=1 exp
¦

β
8 a jH j[a\ j]

© . (10)

All the terms in
∑

j a jH j[a\ j] that do not depend on ai will simplify with the denominator. We
write explicitly:

∑

j

a jH j[a\ j] = aiHi[a\i] +
∑

j 6=i

a jH j[a\ j]. (11)

The sum over j of the terms that depend on ai gives another term aiHi[a\i] and

Pi(ai|a\i) =
exp

�

β
4 ai Hi[a\i]+c.c.

�

Zi[a\i]
, (12)

where
Zi[a\i]≡

∑

{ai}

exp
�

β
4 ai Hi[a\i]+c.c.

�

.

The factor 4 will be absorbed in the definition of inverse temperature. The integral sum over
ai can be successfully carried out by evoking the global spherical constraint

∑

j |a j|2 = εN ,
with constant ε. Given all the a\i , indeed, the value of |ai| is fixed by

|ai|=
√

√

√εN −
∑

j 6=i

|a j|2 (13)

and
∑

ai
simply reduces to an integral on the angular phase variable φi ∈ [0 : 2π[.

Assuming that we are given M independent configurations aµ, µ ∈ 1, . . . , M , extracted from
the Gibbs measure, the log-pseudolikelihood function eventually reads

Li =
M
∑

µ=1

β
�

aµi Hi[a
µ

\i] + c.c.
�

−
M
∑

µ=1

ln Zi[a
µ

\i]. (14)
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Next step is to minimize −Li with respect to the Hamiltonian parameters that we want to
infer: {J}. The stationary solution, in general, can only be computed by using a local gradient-
based minimization [72]. To do so we need to compute explicitly the partial derivatives of −Li
with respect to each coupling constant:

∂ (−Li)
∂ Ji jkl

=
M
∑

µ=1

Fµjkl

�

〈ai〉
µ
i − aµi

�

, (15)

where we denoted

〈(. . .)〉µi ≡
1

Zi[a
µ

\i]

∑

{ai}

(. . .)exp
¦

βaiHi[a
µ

\i] + c.c.
©

. (16)

3.1.1 Pseudolikelihood functional with rotor variables

Rewriting the complex amplitude in polar coordinates ai = Aie
ıφi we have the following

expression for the marginal, Eq. (12),

Pi(Ai ,φi|A\i ,φ\i) =
exp

�

βAi

�

HR
i cosφi +H I

i sinφi

�	

Zi[A\i ,φ\i]

=
exp {βAi|Hi| cos(φi − γi)}

2π
∫

dAi I0(βAi|Hi|)
, (17)

where

|Hi| =
r

�

HR
i

�2
+
�

H I
i

�2
, (18)

γi = arctan
H I

i

HR
i

, (19)

and I0(x) is the modified Bessel function of the first kind:

I0(x) =
1

2π

∫ 2π

0

dϑex cosϑdϑ.

When the couplings are considered real-valued, the polar expressions of the local effective
fields in Eq. (7) can be rewritten by substituting Eq. (9) with

FR
jkl = cosφ j cosφk cosφl

+
cosφ j sinφl sinφk + cosφl sinφ j sinφk + cosφk sinφ j sinφl

3
(20)

F I
jkl = sinφ j sinφk sinφl

+
sinφ j cosφl cosφk + sinφl cosφ j cosφk + sinφk cosφ j cosφl

3
. (21)

In this case, the log-pseudolikelihood functional Li , Eq. (14), and its gradient, Eq. (15),
simplify to

−Li =
M
∑

µ=1

�

ln2πI0

�

β
�

�

�Hi(φ
µ

\i)
�

�

�

�

− β
�

HR
i (φ

µ

\i) cosφµi +H I
i (φ

µ

\i) sinφ
µ
i

�

�

(22)

∂ (−Li)
∂ Ji jkl

=
M
∑

µ=1

�

Fµjkl

�

I1(β |Hi(φ
µ

\i)|)

I0(β |Hi(φ
µ

\i)|)

Hi(φ
µ

\i)

|Hi(φ
µ

\i)|
− eıφµi

�

+ c.c.

�

. (23)
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We note that in the mean-field-like inference, one crucial minimal criterion for the inverse
problem to be tractable is that the number of data observations M has to be larger or equal
to N , in order for the correlation matrix to be invertible. In the present method this lower
bound is not strictly requested, though a unique solution to PLM is guaranteed only when
M is larger than the number of coupling constants to be inferred. We will now compare
two pseudo-likelihood techniques: PLM with `1-regularization [28, 73] and the PLM with
decimation [29].

3.2 Improved Pseudo Likelihood Maximization with l1 regularization: hypoth-
esis testing

A regularizer is usually required to prevent overfitting in the minimization procedure. It is
done so by putting a kind of prior to enforce couplings to take small values [28]. One particular
kind of regularizer used is the lp-norm regularizer. It is defined for a vector x = (x1, . . . , xN )
as,

||x ||p =
p
Æ

|x1|p + · · ·+ |xN |p. (24)

Any regularizer should be convex so that the convexity of the inverse problem remains intact.
In this approach, we add an `1 norm:

Li → Li −λJ

d.i.
∑

jklm

|J jklm|. (25)

The `1 has proved to be special with respect to p > 1 norms, because it performs well on
sparse problems, where only a few parameters are actually non-zero. This is the case, e. g.,
of sparse graphs, in which the number of couplings per variable, the "connectivity" c = Nq/N ,
does not grow with N1. The reconstruction of the topology is further enhanced by the so called
δ-thresholding [73], i.e., couplings that are inferred less that δ are set to zero. This technique
comes with its own shortcoming in the decision of the value of δ. Indeed, there can be cases
where the zero and non-zero couplings are not clearly separated [29], see, e.g., the left panel
of Fig. 12 in Sec. 4.4 for low number of samples M .

With the knowledge of the probability distribution of the estimators, this problem can be
overcome by using an accurate hypothesis testing scheme. It is known that as M →∞, the
probability distribution of the PLM estimator converges to a Gaussian distribution centered
around the true value of the coupling with variance estimated by the diagonal elements of the
inverse of the Fisher information matrix [75]. The elements I i

ab of the information matrix are
defined through:

I i
ab = −

∂ 2Li

∂ Ja∂ Jb

�

�

�

�

Ĵ
, (26)

where a, b indicate two possible quadruplets to which node i might belong to, i.e., I i
ab ≡ I i

jkl, j′k′ l ′ .
Then, we can determine, for every estimated value, if it is compatible with a Gaussian centered
in zero, i.e., if the hypothesis for the true coupling to be zero must be accepted or rejected.
Note that, in order for the procedure to be consistent, the eigenvalues of the Fisher Informa-
tion Matrix need to be bounded from below. This condition together with the requirement that
the entries of I i

ab related to nonneighbors of i cannot exercise an overly strong effect on the
subset related to the neighbors of i assures that the PLM with l1 regularization has a unique

1One might argue that in dense graphs where c ∼ Nα, with α > 0 (see Appendix B), the `1-regularization
for sparse models is ineffective. However, though this regularization does not bring any advantage with respect
to `p>1 regularizations in absence of sparsity, it does not hinder PLM either. This suites the so-called “bet on
sparsity" principle [74]: “use a procedure that does well in sparse problems, since no procedure does well in dense
problems".
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solution and correctly reconstruct the neighbors of i if enough number of samples are provided
(M larger than the number of parameters to be inferred) [28]. These requirements are then
checked2 in our data.

The hypothesis testing is subsequently developed as follows. At the initial step, after finding
the maximum of the PLF, the inverse of the Fisher information matrix is evaluated, Eq. (26).
In the case of rotors (but proceeding analogously for phasors) from Eq. (22), we have:

I i
ab =

M
∑

µ=1

Fµa F
µ

b















Hi(φ
µ

\i)
�

�

�Hi(φ
µ

\i)
�

�

�





2

B
�
�

�

�Hi(φ
µ

\i)
�
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(28)

where B (x) is defined as:

B (x) = 1
2

�

I2(x)
I0(x)

+ 1
�

−
�

I1(x)
I0(x)

�2

.

In Eq. (28), to simplify the notation, we have included the factor β through a rescaling of the
Js. The diagonal terms of the inverse Fisher matrix, σ̂a, are then computed as the estimators
for the variances of the distributions P(Ĵa):

σ̂a = I i
aa. (29)

As a further step, every coupling is hypothesized to be zero and it is verified whether
every estimated value is compatible with the P(Ja) = N (0, σ̂a) distribution: we construct a
confidence interval Cn containing the estimated value Ĵa within a 97.5% probability; if the
inferred Ĵa is contained in Cn the zero hypothesis cannot be ruled out and that coupling is
considered to be zero and taken away from the inferred network.
We conclude this section noting that, by maximizing each Li separately, one has 4 different
estimated values for each quadruplet coupling. For the final estimated value, the mean is
usually evaluated but we remark that the information on the symmetry of couplings of the
system is not used in the inference procedure. We will now see how, in the Pseudo Likelihood
Maximization with Decimation, this problem is overcome, further reducing the number of
unknown couplings by a factor four.

3.3 Pseudo Likelihood Maximization with Decimation

In the PLM with decimation [29], instead of maximizing N different pseudo-likelihood
functions Li , an average PLF L over all variables is maximized [29]:

L ≡
∑

i

1
N
Li =

N
∑

i=1

1
N

M
∑

µ=1

1
M

log P(aµi |a
µ

\i).

(30)

One of the advantages over PLM-l1 is that we are not perturbing the function to be maximized
by adding a regularizing term and there is no choice of the λ parameter to be carried out. To
reconstruct the set of non-zero couplings, the smallest estimated couplings are recursively put

2The second can be checked after the reconstruction.
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to zero and the maximization procedures is repeated until the best inferred model is achieved.
Let us indicate with J1/J0 the set of non-zero/zero couplings. The procedure goes at follows.
At the zeroth step of decimation, J∗0, the inferred set of null couplings, is empty. At each step we
maximize the L function obtaining the set J∗ of inferred couplings. We sort them by absolute
value and we move the least ρ couplings from J∗1 to J∗0. That is, we decimate ρ couplings from
the system. We want to stop the decimation procedure when J0 = J∗0, i. e., all the couplings
that are zero in the original system are put to zero in the inferred system. At each step, the
PLF is between its value PLFmax, evaluated when all possible couplings are considered, i.e., a
fully connected graph with J∗0 = ;, and PLFmin, i.e., an empty graph with J∗1 = ;:

PLFmin ≤ PLF≤ PLFmax. (31)

When we decimate couplings that are actually in J0, the value of PLF does not change from
PLFmax since we are decimating irrelevant couplings. As the set J∗0 approaches the real J0, the
chance of eliminating an existing coupling increases and the PLF starts decreasing. To deter-
mine more precisely the fraction x of remaining couplings where the PLF starts decreasing, a
tilted PLF is defined:

tPLF= PLF− xPLFmax − (1− x)PLFmin (32)

with

x =
non-decimated couplings
total number of couplings

. (33)

At zeroth, when the graph is fully connected and x = 1, tPLF is zero. For an empty graph,
x = 0 and PLF=PLFmin, the tPLF= 0 once again. As x is decreasing from 1 to 0, we will observe
first a linear increase up to a maximum and then a decrease [50]. The best representation of
the real network occurs at the value of x such that tPLF is maximum. The decimation stops
there.

4 Multi-body inference results

4.1 `1-regularization PLM and a priori λ estimation: no-match parameter

For the PLM with `1-regularization the value of the λ regularizer is usually chosen arbitrar-
ily and checked a posteriori: assuming that one knows the solution of the inverse problem for
one set of data, the best λ is the one yielding minimum reconstruction error for the inferred
couplings and - possibly simultaneously - the best network reconstruction of the inferred sys-
tem.

In this section, we develop a mechanism through which we can choose the best λ regular-
izer a priori, without any knowledge of the couplings. Cross-Validation (CV) techniques are
also often applied to determine the best value of λ on supervised learning algorithms (see,
e.g., Ref. [76]) and they do not require the knowledge of any solution of the inverse problem.
A CV method might be developed on the following scheme: (i.) the observed configurations
are divided in two sets, a training and a validating set; (ii.) the training set is used to fit the
model, i.e., to determine the interaction couplings as a function of the trial value for the regu-
larizer; (iii.) a Monte Carlo dynamics of the model with these inferred couplings is performed,
the equilibrium configurations are acquired and the four point correlation functions, Cmc

i jkl , are
computed; (iv.) these correlation functions are, then, compared to those obtained from the
configurations of the validating set, Cval

i jkl ; (v.) the optimal λ is, finally, taken as the value that

minimizes the distance among Cmc
i jkl and Cval

i jkl .
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CV techniques are quite computational demanding and the number of samples used to fit
the model and infer the interaction couplings is further reduced because the method also re-
quires a validating set of data. We will show the study and comparison of correlation functions
in the original and the inferred systems in Sec. 4.3.3.

In this section, we venture into the system to find the optimal value ofλ from three different
perspectives. We start considering a system with N = 16 spins on ER graph with number of
quadruplets, Nq = 32. The analysis is shown at T = 2.2, next to the critical temperature
Tc ' 2.3.

1. For the first perspective we evaluate the True Positive Rate (TPR), that is the fraction of
true bonds appearing also in the inferred set of bonds, i.e., J ∈ J1 ∩ J∗1 , and the True
Negative Rate (TNR), that is the fraction of missing bonds absent also in the inferred set
of bonds, i.e., J ∈ J0∩J∗0 . We, then, look at the minimum λ for which the ratio TNR/TPR
is equal to 1, i.e., the network is perfectly reconstructed. It is important to notice that
the smaller the λ the less perturbed is the PLF. The entire range of the ratio TNR/TPR
vs. λ is shown in Fig. 5.

2. The second perspective is the one which would give the minimum reconstruction error.
To determine how far the inferred values J∗q of the distinct quadruplets q ≡ {i, j, k, l} are
from the true values Jq, we evaluate the reconstruction error:

errJ ≡

√

√

√

√

∑

q(Jq − J∗q )2
∑

q J2
q

. (34)

In Fig. 7 we show the reconstruction error obtained for the λ values show in Fig. 5.

3. For the third perspective, we introduce a new parameter called no-match parameter.
Consider the inferred value, J∗q , for the quadruplet q ≡ {i, j, k, l}. By maximizing each
Li separately, we have four different inferred values for J∗q . The no-match parameter
counts the quadruplets for which the result of the hypothesis testing was not the same
for the four J∗q s. Running the inference scheme for different values of λ gives us different
values of the no-match parameter. In Fig. 1 we plot the values of the no-match parameter
as a function of λ. We see that as λ increases, the no-match decreases. There is a value
of λ(M) beyond which the no-match parameter remains zero. We consider this as the
optimal value of λ.

We stress that, in comparison with the requirements for the reconstruction error to be
minimal or the TNR and TPR to be 1, to find λ(M), for which the no-match parameter is first
zero, we do not need any information about the real underlying network. We compare in Fig.
2 the performance of the newly introduced procedure 3 against the other two as a function of
sample sizes M .

4.2 `1-regularization PLM and estimators variance

Next, we move to the analysis of the variance of the inferred coupling distributions, eval-
uated as explained in Sec. 3.2 by computing the diagonal elements of the inverse of the
Fisher information matrix I i

jkl, j′k′ l ′ , cf. Eq. (26). We consider the same system as earlier,
N = 16 XY spins on ER graph with Nq = 32. Fig. 3 shows the variance for each coupling
estimator. Each 4-index set is labeled by an integer index of quadruplet a ≡ {i, j, k, l}, with
a = 1, . . . , N(N − 1)(N − 2)(N − 3)/24. The quadruplet indices are arranged according to
the ascending order of the coupling values: the left most are, thus, the σ2

a ’s associated with
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non-zero couplings with negative value (12 of them in the considered system) and the right
most are the σ2

a ’s associated with the non-zero quadruplets with positive value (20 of them).
The rest in the middle, are the σa ’s associated with zero couplings (1788 of them). No signi-
ficative dependence on the index of quadruplet is observed. As expected from the consistence
property of the PLM estimator, the σ values decreases as the number of samples increases.

In Fig. 4, we show that average value of σs as a function of temperature T . On top of
the net decrease with increasing M , we observe that, when T ∼ Tc , the σ2 exhibit a sharp
increase.

4.3 `1-regularization and decimation PLM: a comparison

In this section, we compare the regularized and the decimated inference schemes using a
variety of tests. For illustration, we choose a system constituted of N = 16 nodes.
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Figure 1: Value of no-match parameter obtained for various values of λ
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Figure 2: Best values of λ, for various data size M , obtained with different criteria:
(i) TPR=TNR= 1, (ii) zero no-match parameter and (iii) minimal errJ .
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Figure 3: Variance σ2 of the coupling estimator distribution for each quadruplet at
various M for T = 2.2. The system is constituted by N = 16 nodes, hence a total of
1820 quadruplets are displayed, sorted by increasing value of estimated J .
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Figure 4: Average σ2 for various M as a fuction of T . For T < Tc , σ
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increase.

4.3.1 True Positive and True Negative Rates

For the model with bimodal distributed couplings, in Fig.5, the ratio TNR/TPR is shown,
both as a function of the λ regularizer for `1 and as a function of the number of non-decimated
couplings x for decimation. The top figure shows the behavior for M = 1024 at T = 1.9 as a
function of λ. Together with `1 we also use δ-thresholding as previously reported. We used
δ = 0.1, 0.01,0.0001. We see that the best result for the multi-decades range of λ examined
is given by the `1 scheme with the hypothesis testing technique. For certain high values of
λ, we see that the ratio becomes even larger than 1: with a strong regularization too many
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couplings go to zero.
The bottom plot shows the results obtained with the PLM with decimation. x = 1 corre-

sponds to the first step of decimation, TPR= 1 and TNR= 0. As we decimate couplings the
TNR/TPR increases. At x ∼ 0.02, TPR=TNR= 1. This would be the ideal point where to stop
the decimation. In Fig. 6, we analyze the difference among x∗, the maximum point of the tPLF,
Eq. (32), that is actually determined without any knowledge of the graph, and this ideal x .
We can clearly see that the best results are obtained working around the critical temperature,
here Tc ∼ 1.34.

We can see that as T depart from Tc and M is not large enough, x∗ departs from x . For the
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Figure 5: The TNR/TPR ratio vs. the regularizerλ for the `1-regularization PLM (top)
and vs. the fraction x of undecimated couplings for the decimation PLM (bottom).
In the first case two different criteria are chosen to eliminate small bonds: with an
a-priori threshold δ or by means of the a posteriori hypothesis testing procedure,
indicated as L1 in the legend. Data are taken from the 4XY model on sparse, ER like
graph, with N = 16, Nq = 2N . Here, Tc ∼ 1.34
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Figure 6: TPR (Left) and TNR (Right) for decimated networks at x∗, i.e., maximum
point of the tPLF, varying T and M for the 4XY model on sparse, ML-like, graphs with
Nq = 47, N = 16 Tc(N = 16)' 0.5.

worst case, M = 512, we always have TNR<1. In Sec. 4.4.2, we will explain how we could
reach better performances.

4.3.2 Reconstruction error

Fig. 7 shows the reconstruction error at T = 2.2 for increasing samples size. The error
is plotted as a function of λ for the `1-regularization scheme and as a function of x for the
decimation scheme. In all the plots, we see that there is a dip in the error curve: there is
a λ value and a x value for which we have minimum reconstruction error 3. The results
labeled by “L1" indicate that the zero couplings are selected through the `1-regularization
with the hypothesis testing scheme. In the decimation scheme the minimum is given at the
ideal x = 32/1820 ∼ 0.18 where also TPR = TNR = 1. In this case, this value coincides with
the maximum of the tPLF.

In Fig. 8 we plot the error as a function of temperature, T , and sample size, M . On the left,
we show the plot for M = 4096 for a wide range of temperatures ranging from T = 0.5 < Tc
to T = 6.5 > Tc . For the system under consideration, we have N = 16, Nq = 2N , bimodal
disordered couplings and Tc ' 2.3. On the right, we plot the error as a function of M ranging
from M = 512 to M = 8192, for T = 4.3. We see also for this system the already established
trends: errJ increases rapidly at low temperatures and decimation provides consistently less
error than the `1 scheme. Furthermore, the error scales as 1/

p
M for a given temperature.

4.3.3 Correlations

To get a better insight into the physical system that we are dealing with, we investigate the
4-point correlations, defined as

Ci jkl = cos(φi −φ j +φk −φl) (35)

The scatter plot in Fig. 9 compares correlations obtained numerically simulating the dynamics
of the original system and correlations obtained in a system whose coupling values are those
inferred by pseudolikelihood maximization. We present cases for three different temperatures:
T = 0.8, 2.57 and 7.03, and, for three different sample size, M = 512, 2048 and 4096. A green
color reference line with slope 1 is drawn to compare with the optimal condition. For the high
temperature case all correlations are zero, as expected in the paramagnetic phase.

3We plot the errors in the same plot because the range of λ and x is the same and they both show a dip in
reconstruction error at nearby values. However, let us reinstate that λ and x are not related in any form. They are
two different parameter for two different inference procedures.

16

https://scipost.org
https://scipost.org/SciPostPhys.5.1.002


SciPost Phys. 5, 002 (2018)

 0.01

 0.1

 1

 10

 0.0001 0.001  0.01  0.1  1

e
rr

J

x(dec), λ(L1)

M=512

 0.01

 0.1

 1

 10

     

e
rr

J

M=1024

T=2.2

 

 

 

 

     

M=4096

 

 

 

 

 0.001  0.01  0.1  1
x(dec), λ(L1)

M=8192

L1
L1, δ=0.1

L1, δ=0.01
L1, δ=0.0001

dec

Figure 7: Reconstruction error vs λ and x for the 4XY model on sparse, Erdos-Renyi-
like, graph with Nq = N = 16.

 0.01

 0.1

 1

 0  1  2  3  4  5  6  7

e
rr

J

T

L1, M=4096

dec, M=4096

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1000 2000  4000  8000

M

L1, T15

dec, T15

Figure 8: Reconstruction error versus T for sample size M=4096 (left) and versus M
for temperature T=4.4 (right) for the 4XY model on sparse, Erdos-Renyi-like, graph
with Nq = N = 16. The error obtained following both the `1-regularized PLMs and
the decimation PLM are shown.

17

https://scipost.org
https://scipost.org/SciPostPhys.5.1.002


SciPost Phys. 5, 002 (2018)

-1

-0.5

 0

 0.5

 1

     

C
(J

in
fe

r)

T=0.80

dec, M=512
plm l1, M=512

 

 

 

 

 

     

T=0.80

dec, M=2048
plm l1, M=2048

 

 

 

 

 

     

T=0.80

dec, M=4096
plm l1, M=4096

-1

-0.5

 0

 0.5

 1

     

C
(J

in
fe

r)

T=2.57

dec, M=512
plm l1, M=512

 

 

 

 

 

     

T=2.57

dec, M=2048
plm l1, M=2048

 

 

 

 

 

     

T=2.57

dec, M=4096
plm l1, M=4096

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

C
(J

in
fe

r)

C(Jtrue)

T=7.03

dec, M=512
plm l1, M=512

 

 

 

 

 

-1 -0.5  0  0.5  1
C(Jtrue)

T=7.03

dec, M=2048
plm l1, M=2048

 

 

 

 

 

-1 -0.5  0  0.5  1
C(Jtrue)

T=7.03

dec, M=4096
plm l1, M=4096

Figure 9: Comparison of the 4-point correlations computed in a Monte Carlo simu-
lation of a system of N = 16 XY spins, Nq = N with the original coupling network
(x-axis, Jtrue) and with an inferred coupling network (y-axis, Jinter). Blue points are
correlations measured on networks reconstructed by `1-regularized PLM, red points
corresponds to correlations on networks inferred by decimation PLM.

For T ∼ 2.6, closer to Tc ' 2.3, the correlations depart from zero and for both the `1-
regularization and decimation schemes are spread along the reference line.

For even lower temperature, T = 0.8, we see that the correlations are separated into two
groups: those distinctly different from zero and those close to zero. The decimation scheme
yields correlation values nearby the reference line for small M and with increasing M data
eventually collapse on the reference line. On the contrary, with `1 regularization correlation
points turn out to be distributed below and above the reference line but not along it. As M
increases the distance from the reference line tends to zero but much slower than with the
decimation method.

4.4 Decimation results

We will now focus on the decimation procedure and display further results obtained through
it.

4.4.1 Coupling values histogram

In Fig. 10, we plot the histogram of the inferred couplings for a system with N = 32
XY spins, Nq = 192 quadruplets on an ER graph. The couplings are generated randomly
from a bimodal distribution. Three different sample sizes, M = 8192, 16384 and 65536, at
T = 3.3 are considered. The first row shows the histograms as obtained at the zeroth step of
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decimation. For low number of samples the distributions of the non-zero inferred couplings
are not centered on the true values. As we increase M this distance lowers. In Fig. 11, we
show the histograms as obtained when the decimation procedure stops. In these cases, the
network of interactions is correctly inferred. Moreover, the non-zero couplings are distributed
around the true values for any M . As expected, by increasing M , the variance of the non-zero
distributions decreases.

For the case of the complex spherical model, Eq. (1), we show an example of results in
Fig. 12. Here the system is composed of N = 32 phasors with Nq = 2360, couplings follow a
bimodal distribution. Results are at T = 7.1> Tc . The figure on the left reports the couplings
obtained at zeroth step of decimation. In this case for M < 65536 the distributions of zero and
non-zero couplings overlap. When the decimation stops, figure on the right, we can see that
the network of interactions is clearly reconstructed for M > 8192. For M = 8192 the algorithm
is not able to correctly identify the zero couplings, i. e., TNR < 1: the distribution of the non-
zero couplings cannot be clearly identified since a strong overlap with the distribution of zero
couplings remains.

Figure 10: Histograms of the coupling constants J at zeroth step of decimation. Here
the system is composed of N = 32 XY spin; the original network has Nq = 192.
Results are show at T = 3.3 for increasing sample size M = 8192,16384 and 65536
(from left to right).

Figure 11: Histograms of the coupling constants J as obtained when decimation stops
for the system of Fig. 10.

Figure 12: (Left) Histograms of the coupling constants J at zero step of decimation
for the complex SM. The system is composed of N = 32 phasors and Nq = 2360.
T = 7.1> Tc . (Right) Histograms of the same system of Figure right at the stopping
point of decimation. For M = 8192 the zero and non-zero distributions still overlap.
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4.4.2 Estimating decimation halt criterion

In PLM with decimation, the criterion to stop the decimation is to reach the maximum point
of the tPLF. It has been reported earlier [15, 29, 50], however, that when M is not enough or
T is too far from Tc , the peak of tPLF is not always sharp enough [50] to be unambiguously
identified numerically. We have established an alternative halt criterion for these complicated
cases. We consider the relative difference ∆i in the tPLF as one passes from the network at
decimation step i to the one at step i + 1:

∆i =
tP LFi+1 − tP LFi

tP LFi
. (36)

In Fig. 13 we plot ∆i as a function of x . During the decimation procedure, as we proceed
further in the iteration, we find that there is a discontinuity in the ∆i function. This discon-
tinuity appears at the step at which a true coupling is decimated from the system. This point
is chosen as new stopping point. The corresponding fraction of non decimated couplings is
termed x∆. This new stopping criterion comes with its own limitation: if there are not enough
data samples available and we are in a very high temperature range, we cannot find any dis-
continuity in the ∆ function.
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Figure 13: ∆ vs x for two different temperatures at low M (512) and at a high M
(1024) in the 4-XY model. At low number of samples and high temperature, we
cannot find a discontinuity in the ∆ value.

In Fig. 14 we analyze the performance of this new criterion in respect to the maximum
point of tP LF : xM indicates the maximum of tPLF and xm the minimum of the reconstruction
error. α is defined as:

α=
M
Nq

. (37)

In Fig. 15, we plot these results for a system of N = 32 spins: in this case we are far from
Tc and the new criterion outperforms the previous one also for small α.

In Fig. 16, we show how the position x M of the tPLF peak varies varying T and M . The
discontinuity of ∆, on the other hand, though it smoothens and eventually disappears as T
increases, always stays at the same x∆ value when it is observabel. In the figure we consider
two different temperatures, T = 2.84 and 5.95 both bigger than Tc .
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Figure 16: tPLF (green), ∆ (purple) and errJ (blue) versus x . Left: whole range of
x . Right: zoom in the range of x close to xm, i.e., the minimum of reconstruction
error.

In the left hand side we show the results for the entire range of x ∈ [0, 1]. In the right
hand side there is a zoom in the x region of interest. Around Tc and/or for high enough M ,
the ideal condition, x M = xm = x∆, is achieved but x M shifts to higher values for small M and
large T . On the other hand, x∆ = xm until we do not find any discontinuity in the∆ function.
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Figure 17: Reconstruction error obtained assuming a 2− X Y model hypothesis for a
system of N = 16 XY spins and N4 = 32 quadruplets on an ER-like graph (left) and
with N4 = 47 on a ML-like graph (right).

5 Pairwise model inference of multi-body systems

What happens when we carry out statistical inference by means of pseudolikelihood maxi-
mization if our hypothesis is wrong, i. e., if we maximize with respect to parameters of a wrong
model? Are the techniques proposed so far able to identify a wrong theoretical hypothesis? To
answer these questions we will analyze some of the previous data, generated by a non-linear
- multi-body interacting - system under the hypothesis of pairwise interactions. Hence we will
consider an Hamiltonian of the form:

H =
∑

i< j

Ji j cos
�

φi −φ j

�

. (38)

On the other hand, we take data from Monte-Carlo simulations of the 4 − X Y model with
N = 16 spins on a ER graphs. For this system there are initially

�

N
4

�

=
N !

4!(N − 4)!
= 1820

quadruplets in total, among which only N4 = Nc/2 = 32 are actually non-zero. The non-zero
coupling values are distributed according to a bimodal distribution.

A few words on how we are going to analyze the results of the inference procedure in
this case. Indeed, some of the techniques so far exposed rely on the comparison between the
inferred network and the original network (TPR, TNR, errJ , . . . ). Some others do not imply
any knowledge of the original network (no-match parameter, tPLF(x) and its maximum in
decimation, ∆ function). To use the techniques that rely on the knowledge of the real graph,
we convert the system of quadruplets to a system of pairs by converting each quadruplet to
6 pairs. The so generated 6 pairwise bonds will take the same value of the related coupling
Ji jkl . Notice that the same pairwise bond, Ji j , can pertain to different quadruplets and might
thus display different values if the values of the quadruplet couplings are different. As a rule
we allow up to 2 pair couplings, out of the 6 related to a single quadruplet, to take a different
value. This is enough to build a related pairwise interacting network.

5.1 Data analysis

The results are shown for both PLM with `1-regularization and with decimation. In Fig.
17 we show the reconstruction error as a function of T for various M for the regularization
case. For small M we find a similar pattern as in the previous study and a minimum for T ∼ Tc
is clearly identified. On the other hand, for high M , errJ remains constant above a given T .
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Figure 18: Sorted couplings obtained with the 2 − X Y model hypothesis through
PLM-`1. Left: N = 16, Nq = 32 on a ER-like graph. Right: N = 16, N4 = 47 on a
ML-like graph.

In Fig. 18, we sort all couplings in descending order. The left plots refer to a system with
N = 16 XY spins on an ER graph with N4 = 32. In the right, N = 16 XY spins interact through
Nq = 47 quadruplets on a ML graph. In both cases couplings are extracted from a bimodal
distribution. The inferred couplings are compared with those of the 2-XY graphs created as
described in the previous section (black continuous line in the picture).

Beginning with the top left, we see that at low temperatures the inferred couplings are
compatible with a bimodal distribution. Moving to the next panel below, for a higher temper-
ature we see that for larger M the inferred couplings tend to shift more towards zero. This
effect is even enhanced in the lowest panel. This trend is observed also in the right column,
for the case of ML graph and, once again, it is more evident as the temperature is increased to
respect to the critical temperature.

In Fig. 19, we report the results for three values of temperature obtained with PLM with
decimation. The tPLF is plotted as a function of the number of non-decimated couplings.
We see that at low temperature tPLF curves are overlapping and show a peak at about 100
decimated couplings. Increasing the temperature, the maximum point shifts to lower values.
In this case we expect a peak around 20. Increasing the temperature even further, we can
see that a clear peak is not even visible and, for high values of M , the tPLF does not show an
increment remaining around zero: as M increases the tP LF shows that the degrees of freedom
used to parametrize the probability of the system configurations are actually irrelevant. In Fig.
20, we show the reconstruction error. In Fig. 21, we show the comparison between the inferred
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Figure 19: tPLF obtained using data of the dynamics of a 4X Y model with N = 16
spins and (left) Nq = 32 quadruplets on a ER graph, (right) Nq = 47 quadruplets on
a ML graph. The PLM algorithm assumes a 2X Y model: contrary to the results show
in previous sections, as M increases the tPLF peak smooths down until the function
becomes almost independent of the number on decimated couplings.
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Figure 20: Reconstruction error obtained from `1-regularization PLM through PLM
with decimation for the systems of Fig. 19.

and the original couplings sorted in ascending order. We find a similar result as with PLM with
`1-regularization.

From the above observations we have the evidence that if we use a wrong Hamiltonian
model as a base for our learning analysis the parameters of the wrong model are simply inferred
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Figure 21: Inferred couplings as obtained from PLM with decimation for the systems
of Fig. 19 sorted in ascending order.

to be zero. In other words, the inference procedure is able to find that the wrong model is
wrong, that it is not there. The method does not adjust things to adapt to the wrong model
yielding some set of non-zero effective pairwise interactions. This discrimination is effective
when the external tuning variable T is above the critical point and its quality increases with
the number of data series M employed in the procedure.

6 Conclusions and future perspectives

In this work, we have presented a deep analysis of the algorithms developed and the results
obtained in [50] to solve inverse problems for non-linear continuous spin models. We are mo-
tivated by optics: in studying the non-linear interactions among the electromagnetic modes,
but the techniques here presented can be applied to a large class of models. In the specific case
of non-linear photonic systems, knowledge about the interaction among the modes would give
us a proxy to estimate the non-linear optical susceptibility χ(3) [60]. Further, knowing the fre-
quency associated with each mode we could use statistical inference to probe the existence of
phase-locking in random lasers or random media with amplified spontaneous emission (ASE).

In a previous work [15], the Pseudolikelihood algorithm proved to give much better perfor-
mances with respect to mean field methods for continuous spin models. We have concentrated
then on different possible approaches and implementations of the PLM estimator. The results
showed that the algorithms are able to reconstruct the network of interactions, with higher
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accuracy close to the critical region, as well as the distributions of the couplings.
We also compared the results of the Pseudolikelihood maximization with decimation and

with `1-regularization. We propose a new criterion to determine the value of the regularizer λ
for the `1 regularization without any a priori knowledge of the system. We analyze the perfor-
mances of the methods on data generated through Monte-Carlo simulations. We compare the
two methods by: i) analyzing the True Positive Rate and the True Negative Rate that provide
information on the correctness of the reconstructed interaction graph, ii) studying the recon-
struction error that gives information on the relative differences among the inferred and the
true couplings, iii) analyzing how good the inferred couplings are in predicting the dynamics
of the system, i. e., comparing the true 4-point correlations with those obtained from the dy-
namics generated with the reconstructed graph. Further, we proposed and verified a new halt
criterion for the decimation procedure that allows to achieve better performance for high T
and low M when the tilted PLF does not display a clear maximum.

Other interesting questions are still to be addressed. An interesting deep analysis, requiring
a work on its own, concerns the robustness against non-equilibrium. Indeed, all the analysis
done here is on thermalized data. Future work will analyze the under-sampling regime and
the issue of extracting extract useful insights from an under-sampled data set.
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A Mode-Locking-like dilution of Erdös-Rényi graphs

Our interest in studying the X Y and the complex spherical models resides in optics, with the
aim of describing the dynamics of interacting electromagnetic modes in lasers. Previous mean-
field studies on fully connected models assume narrow-band for the spectrum, [58, 59, 77, 78]
that is, all modes practically have the same frequency and, in this way, the frequencies do not
play any role in the system behavior. In this section, we will show that non-fully connected
graphs can indeed describe the effects of the frequency matching condition intrinsic in mode-
locking lasers once the existence of finite-band spectra and gain frequency profiles enter in the
description. In particular, if the frequency distribution of the modes is known, we will see how
it is possible to derive the remaining interacting quadruplets once the FMC is applied.

In general, we could consider diluted graphs obtained from fully-connected graphs with
any kind of dilution. In [22, 23], the authors compared a homogeneous dilution (HD), in which
the quadruplets are eliminated with some probability that is independent on the mode proper-
ties, with a correlated dilution (CD), in which the remaining couplings are those among mode
quadruplets satisfying the FMC. Firstly, they noticed how to impose the FMC is analogous to
introduce a metrics in the problem. Consider the analogy with a random network: the way
to construct a graph with a metric is to introduce a distance between different nodes, e.g.
di j = |i− j|, and to choose bonds with a probability depending on such a distance. In the case
of four-body interactions, one needs a four index function that can be taken as the FMC. In
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this way, the mode frequencies play the role of coordinates. Indeed, in Refs. [22, 23] it was
quantitatively derived that the closest the modes are in frequency, the highest the probability
to be neighbors of the same function node, i.e., to participate to the same quadruplet.

As a starting point, let us consider the case of a Fabry-Pérot cavity laser with a flat gain
curve4. In this case, the longitudinal resonant frequencies are equispaced with dω = 2π/TR,
being TR the cavity round trip. We indicate with N in

quad the number of initial quadruplets.

We will consider cases in which N in
quad is smaller than the total number of possible quadru-

plets,
�N

4

�

, but the results here derived can be applied also starting from a fully connected
graph. Considering the optical system we have in mind, a first dilution is related to the spa-
tial overlap of the modes: in order to interact the modes have to compete for the same gain
medium. For a Fabry-Pérot resonator we expect N in

quad =
�N

4

�

, since all modes fill the entire

cavity. For more complicated geometries we would expect N in
quad <

�N
4

�

. In general we may

have O
�

N in
quad

�

<O(N4). Starting from N in , the quadruplets whose mode frequencies do not
satisfy the FMC are erased from the graph. We will term the resulting graphs “Mode-Locking”
(ML) graphs.

Knowing the frequency distribution of the modes, we can determine the effect of the FMC
on the expected final number of function nodes, N out

quad . For example, for a multimode Fabry-
Pérot cavity we expect a frequency comb spectrum:

ωn =ω0 + (n− 1)δω with n= 1, . . . , N , (39)

where ω0 is some boundary frequency. We consider the realistic case of δω/ω0� 1, being in
laser ω0 in the visible light frequency range and δω in the radio-frequency range. We assume
a flat gain curve and one mode for each frequency. For each of the N in

quad we have to verify if
the modes belonging to that quadruplet satisfy the FMC. Looking at Eq. (4), i.e.,

|ω j −ωk +ωl −ωm|. γ,

γ being the typical linewidth of the mode frequency. We notice that among the 24 possible
ordering of the indices k1, k2, k3, k4 in the above expression, can be grouped into 3 independent
orderings with 8 equivalent permutations each. Let us consider one ordering among them,
which will be indicated with the subindex 1. For example:

FMC1 :ω1 +ω3 =ω2 +ω4→ n1 + n3 = n2 + n4, (40)

where we have used Eq. (39) in the last step.
In order to determine the probability for FMC1 to be satisfied, P(FMC1), we can evaluate

first the probability distribution of n+i j ≡ ni +n j . Considering the case of uniformly distributed

frequencies, i.e., P(n) = 1
N for n ∈ [1, N], we have, with n+ ∈ [2, 2N]:

P+(n+) =

¨

n+−1
N2 , n+ ∈ [2, N + 1]

2N−(n+−1)
N2 , n+ ∈ [N + 2,2N]

(41)

Then, for the probability that left and right hand side of Eq. (40) be equal we obtain

P(FMC1) =
2N
∑

n+=2

P+(n+)2

=
1+ 2N2

3N3
∼

2
3N

,

4Actually, in Ref. [23], the authors observed that the inclusion of a more complex gain curve affects exclusively
the high temperature phase, while the transition and the low temperature phase are stable under perturbation in
the gain.
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where we are considering the limit N � 1. The same occurs for FMC2,3. Eventually, the
number of quadruplets satisfying at least one FMC reads, for large N :

N end
quad =

2
N

�

1+O
�

1
N

��

N in
quad. (42)

Imposing the FMC dilutes a network of O(N). From this result we learn that in order to obtain
a ML diluted graph, with a number of links increasing with Nα, we need to start with a denser
graph whose number of links scales as Nα+1.

For instance, in Fig. 22, we show the ML graph obtained starting from an Erdös Rényi
graph with N = 8 · 103 and N in

quad = 76.8 · 106 ∼ 1.2N2. After imposing the FMC we have

N end
quad = 2.4N . The dotted red line represents the connectivity as a function of frequency ω.

To show more clearly the behavior inω, the white full line shows an histogram of the red data.
As explained above, before applying the FMC, the frequencies do not play any role, e.g., in fully
connected models. On the other hand, in the ML graph, we see that the modes with central
frequencies have on average higher values for the connectivity. We have analyzed several
cases, with different degrees of dilution in the starting graphs and this frequency dependence
of the connectivity has been repeatedly observed. In App. B, we analyze more in details this
result deriving the connectivity distribution given the frequency of the node.

In Fig. 22, the black line shows the probability distribution of the connectivity, P(c). In
Fig. 23 P(c) is plotted on top of a Poissonian distribution with parameter taken from the mean
connectivity of the ML graph. We can see that P(c) coincides with the Poissonian distribution,
as explained in the next App. B.

B Frequency dependence of connectivity in ML graphs

As anticipated in the previous Appendix, in this section we will show that, even after the
FMC is imposed, the distribution of the node connectivities, Pend (c(ω)), depending now on
the frequency ω of the node, is described by a Poissonian distribution. If we start with an
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Figure 22: The red dotted line shows the connectivity as a function of frequency of
a ML graph. The number of nodes is N = 8 · 103 and the number of initial quadru-
plets is N in

quad = 76.8 ·106 ' 1.2N2. The connectivity distribution of this initial graph

follows a Poissonian distribution. N end
quad = 19219 ' 2N in

quad/N and the mean con-
nectivity is 〈c〉 ' 9.6. We can see that modes with central frequencies have slightly
higher connectivity values. The full white line is an histogram of the red data with
N∆ω/δb = 80, being N∆ω the total frequency range and δb the bin size. The full
black line, P(c), gives the probability distribution of the connectivities; it is plotted
with the c values on the y-axes to visually enlighten the relation with the red data.
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Figure 23: (b): Probability Density Function (PDF) of a Poissonian distribution with
parameter λ = 〈c〉, dotted blue line, on top of P(c), empty blue circles: the connec-
tivity distribution of the ML graph is still not very far from the starting Poissonian
distribution but with mean connectivity decreased by a factor 2/N .

Erdös Rényi graph, like in Fig. 22, the distribution of the connectivities of the initial graph will
also be Poissonian, with an average λ larger of a factor N with respect to the ML graph built
from it, cf. Eq. (42). The parameter λ of the Poisson distribution is decreased by a factor equal
to the probability that, given ω, at least one FMC is satisfied. We indicate the probability with
Psat(ω); Punsat(ω) = 1− Psat(ω) is, on the other hand, the probability that given ω no FMC is
satisfied, i.e., that quadruplet is erased from the graph.
As a first step, let us evaluate the probability that in a ML graph a node does not participate in
any quadruplet, i.e., c(ω) = 0. As before, we indicate with Pin(c) the probability distribution
of the node connectivity before the FMC is applied. We take the ER Poisson case:

Pin(c) =
e−λ

c!
λc , (43)

with λ= 〈c〉, independently ofω. For simplicity, we will omit to explicitly write the frequency
dependence of Psat(ω) and Punsat(ω)

Pend (0) = Pin(0) + Pin(1)Punsat

+ Pin(2)P
2
unsat + . . .

=
∞
∑

c=0

Pin(c)P
c
unsat =

∞
∑

c=0

e−λ

c!
λc P c

unsat

= e−λeλPunsat = e−λPsat .

(44)

Moving on, the probability that a node in a ML graph will have connectivity one, Pend (1) is:

Pend (1) = Pin(1)Psat + 2Pin(2)PunsatPsat

+ 3Pin(3)P
2
unsatPsat + . . .

= Psat

∞
∑

c=0

Pin(c)c P c−1
unsat = Psatλ

∞
∑

c=1

e−λ

(c − 1)!
λc−1P c−1

unsat

= Psatλe−λe−λPunsat

= e−λPsat Psatλ.

(45)
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Analogously for Pend (l) we obtain:

Pend(l) = P l
sat

∞
∑

c=0

Pin(c)
�

c
l

�

P c−l
unsat

=
(λPsat)

l

l!
e−λPsat .

(46)

As we can see, we have again a Poissonian distribution with λ→ λPsat .
The next step is, then, to determine the probability that at least one of the three FMC1,2,3 is
satisfied, Psat, i.e.,

Psat ≡ P
�

|ω−ω j1 +ω j2 −ω j3 |= 0
�

= P
�

|n− n j1 + n j2 − n j3 |= 0
�

,

where we have indicated with j1,2,3 three possible modes linked to the node with frequency
ω=ω0 + (n− 1)δω.
As we did in the previous Appendix, we start by evaluating the probability distribution of
P̃(ñ j1,2,3

= n j1 − n j2 + n j3). Knowing P(n+i j ≡ ni + n j) from Eq. (48), we have to evaluate:

P̃(ñ) =
N
∑

n=1

P(n)P+(ñ+ n), (47)

where we used ñ= n+ − n. We obtain:

P̃(ñ) =











1
N3
(ñ+N)(ñ+N−1)

2 , ñ ∈ [2− N , 1]
1

N3

�

(ñ− 1) (N − ñ) + N(N+1)
2

�

, ñ ∈ [2, N]
1

N3
(2N−ñ)(2N−ñ+1)

2 , ñ ∈ [N + 1, 2N − 1]

(48)

Then, taking into account the three independent ways for n to be equal to ñ in the argument
of Psat, we obtain:

Psat(ω=ω0 + (n− 1)∆ω) = 3P̃(n), n ∈ [1, N] (49)

P̃(n) =
1

N3

�

(n− 1) (N − n) +
N (N + 1)

2

�

.

As we expect, Psat(ω) is centered around the central frequency ωc = ω0 + δω(N − 1)/2, but
it becomes more and more uniform as N increases.
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