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Anomalies for Galilean fields
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Abstract

We initiate a systematic study of ‘t Hooft anomalies in Galilean field theories, focusing
on two questions therein. In the first, we consider the non-relativistic theories obtained
from a discrete light-cone quantization (DLCQ) of a relativistic theory with flavor or grav-
itational anomalies. We find that these anomalies survive the DLCQ, becoming mixed
flavor/boost or gravitational/boost anomalies. We also classify the pure Weyl anoma-
lies of Schrödinger theories, which are Galilean conformal field theories (CFTs) with
z = 2. There are no pure Weyl anomalies in even spacetime dimension, and the lowest-
derivative anomalies in odd dimension are in one-to-one correspondence with those of
a relativistic CFT in one dimension higher. These results classify many of the anomalies
that arise in the field theories dual to string theory on Schrödinger spacetimes.
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1 Introduction

Anomalous global symmetries provide one of the most useful handles on non-perturbative field
theory. Their utility stems largely from being simultaneously exact, calculable, and a universal
feature across the space of field theories. Anomalies must be matched across scales, and so
give stringent checks on renormalization group flows and dualities. Furthermore, the language
of anomalies and anomaly inflow is the natural one to discuss and classify topologically non-
trivial phases of matter.

For all of these reasons, we would like to better understand anomalies in non-relativistic
(NR) field theories, for which little is presently known.1 Indeed, the role of anomalies in topo-
logically non-trivial phases is almost entirely discussed in terms of the anomalies of relativistic
field theory. This seems at best dubious to us.

In this note we begin a proper classification of anomalies in Galilean field theories.2 We
focus entirely on Galilean theories, as they possess more symmetry than a generic NR sys-
tem and moreover the potentially anomalous symmetries are completely understood. The end
result [5] after much history [6–11] is that Galilean theories couple to a version of Newton-
Cartan (NC) geometry, and the symmetries one demands are invariance under coordinate
reparameterizations, gauge transformations for the particle number and any other global sym-
metries, and a shift known in the NC literature (see e.g. [6]) as a Milne boost. The latter is the
difference between Galilean theories and NR theories without a boost symmetry.3 This suite
of background geometry and symmetries satisfies a number of checks as summarized in [5],
and moreover can be obtained by carefully taking the NR limit of relativistic theories [17].

Rather than performing a complete analysis, we elect to answer two basic questions. First,
one natural route to an anomalous Galilean theory is to start with a relativistic theory with
flavor and/or gravitational anomalies and perform a discrete light-cone quantization (DLCQ),
i.e. to put the relativistic theory on a background with a lightlike circle. The dimensionally
reduced theory is Galilean-invariant. Does it also have an anomaly? We find that the answer
is “yes,” insofar as there is no local counterterm which can render the NR theory invariant
under all symmetries. Moreover, we show that the anomalies descend to mixed flavor/Milne
or gravitational/Milne anomalies. They are “mixed” in the sense that one can arrange for the
NR theory to be invariant under one symmetry or the other, but not both simultaneously.

Second, we consider Schrödinger theories, that is Galilean CFTs whose global symmetries
in flat space comprise the Schrödinger group. We classify the pure Weyl anomalies of these
theories, in analogy with the Weyl or trace anomaly of relativistic CFT, using consistency prop-
erties of field theory. The easiest way to perform this analysis is to lift the NC data to an
ordinary Lorentzian metric in one more dimension with a null circle. We find that the NR
Weyl anomaly takes the same form as the ordinary relativistic Weyl anomaly built from this
higher-dimensional metric. For example, 2 + 1-dimensional Schrödinger theories have two
central charges, one which is formally analogous to a in four-dimensional CFT, and the other
to c.

Our analysis has one caveat: we only classify anomalous variations with at most d + 1
derivatives. We expect that there are Weyl anomalies with more derivatives, and we conjecture
below that they are all Weyl-covariant.

A corollary of this result is the following. The DLCQ of a relativistic CFT is a Schrödinger
theory, and the Weyl anomaly of the relativistic parent survives the DLCQ to become the NR

1For example, consider a Hall system in two spatial dimensions for which a gravitational Chern-Simons term
for a SO(2) spin connection appears in the low-energy effective action. Despite much ink spilled, it is not known if
the boundary field theory has a corresponding anomaly, or if a boundary counterterm cancels the variation of the
Chern-Simons term.

2There has been some work classifying pure Weyl [1–3] and axial anomalies [4] in Lifshitz theories.
3See [12–16] for other perspectives on the local symmetries of Galilean theories.
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Weyl anomaly. This in turn gives a prediction for the Weyl anomaly of Schrödinger theories
holographically dual to string theory on so-called Schrödinger spacetimes [18,19] with z = 2.
It would be nice to see this directly in holography using the dictionary (see [20, 21]) which
allows for the field theory to couple to a curved geometry.

Similarly, our results for flavor and gravitational anomalies hold for the string theory em-
beddings of Schrödinger holography [22–24], wherein the NR field theory is obtained by DLCQ
together with a holonomy for a global symmetry around the null circle.

The rest of this note is organized as follows. In the next Section, we summarize the details
of Newton-Cartan geometry we require, and its relation to null reductions. We go on in Sec-
tion 3 to show that flavor and gravitational anomalies survive DLCQ. Finally, we classify pure
Weyl anomalies in Schrödinger theories in Section 4.

Note: Since this note appeared on the arXiv there have been a number of other papers
regarding anomalies in Galilean field theories. We would like to highlight two developments.
First, the authors of [25,26] independently classified the potential Weyl anomalies of Galilean
theories and their findings reproduced our findings in Section 4, in particular that z = 2
Schrödinger theories in odd spacetime dimension have a single A-type Weyl anomaly. Second,
there have been several attempts [27–29] to compute the Weyl anomaly of a non-relativistic
free field in 2+ 1-dimensions. This anomaly should satisfy a sort of sum rule. Compactifying
a free 3+ 1-dimensional relativistic scalar on a spacetime with a lightlike circle of coordinate
periodicity 2π, one obtains a tower of decoupled non-relativistic scalars of masses m = n for
all n ∈ Z. Summing up the anomalies of this tower, one must recover the anomaly of the
relativistic parent. Of the various computations in the literature, only that of [28] passes this
test. Those authors find that only a massless non-relativistic scalar has an anomaly, and go on
to demonstrate that this result remains true to all orders in perturbation theory.

2 Preliminaries

We presently review the machinery which we require for the rest of this note.

2.1 Newton-Cartan geometry

The version of Newton-Cartan geometry which will be useful for us is the following. A Newton-
Cartan structure (see e.g. [7,30]) on a d-dimensional spacetimeMd is comprised of a one-form
nµ, a symmetric, positive-semi-definite rank d − 1 tensor hµν, and a U(1) connection Aµ. The
tensors (nµ, hµν) are almost arbitrary: we require that

γµν = nµnν + hµν , (1)

is positive-definite. These tensors algebraically determine the upper-index data vµ and hµν

satisfying

vµnµ = 1 , hµνvν = 0 , hµνnν = 0 , hµρhνρ = δ
µ
ν − vµnν . (2)

The “velocity vector” vµ defines a local time direction, and hµν gives a metric on spatial slices.
(NC geometry with general n not closed was only studied recently [5,31].)

We can define a covariant derivative using the tensors that make up the NC structure.
Unlike in Riemannian geometry where there is essentially one derivative that can be defined
with a metric, there are many possible derivatives that can be defined from the NC data. One
choice of connection is [5]

Γµνρ = vµ∂ρnν +
1
2

hµσ
�

∂νhρσ + ∂σhνρ − ∂σhνρ
�

+ hµσn(νFρ)σ , (3)
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where the brackets indicate symmetrization with weight 1/2 and F is the field strength of Aµ.
The corresponding derivative Dµ has the nice feature that

Dµnν = 0 , Dµhνρ = 0 . (4)

Galilean field theories naturally couple to this sort of NC geometry [5, 10, 11], where Aµ
is the gauge field which couples to particle number. For instance, the action of a free Galilean
scalar ϕ carrying charge m under particle number is

S f ree =

∫

dd x
p
γ

§

ivµ

2

�

ϕ†Dµϕ − (Dµϕ†)ϕ
�

−
hµν

2m
ϕ†ϕ

ª

, (5)

with Dµϕ = (∂µ − imAµ)ϕ. Note that we have used γµν defined in (1) to define an invariant
measure dd x

p
γ. In coupling a Galilean theory to NC geometry, one demands invariance

under (i.) reparameterization of coordinates, (ii.) U(1) gauge transformations, and (iii.) shift
transformations known in the NC literature [6] as Milne boosts. Under the boost, the tensors
(nµ, hµν) are invariant and (vµ, hµν, Aµ) shift as

vµ→ vµ +ψµ , hµν→ hµν − (nµψν + nνψµ) + nµnνψ
2 , Aµ→ Aµ +ψµ −

1
2

nµψ
2 , (6)

Here, ψµ is spatial, meaning vµψµ = 0, and we have used the shorthand ψµ = hµνψν,
ψ2 =ψµψµ. One can easily verify that (5) is invariant under the Milne boosts.

The boosts are crucial: they impose a covariant version of the Galilean boost invariance.
However, it is troublesome to obtain tensors which are invariant under both the boosts and
U(1) gauge invariance. For example, the connection we defined above (3) is gauge-invariant,
but not Milne-invariant [5]. One can define another connection which is Milne-invariant, but
the resulting derivative is not gauge-invariant. There is no connection which is invariant under
both symmetries.4 As a result, the covariant derivative of an boost and gauge-invariant tensor
is not a boost and gauge-invariant tensor. C‘est la vie, but this fact complicates the classification
of potential anomalies.

In the absence of any anomalies, W is invariant under infinitesimal coordinate transforma-
tions, gauge transformations, and Milne boosts. These symmetries lead to (potentially anoma-
lous) Ward identities [5,11]. From the generating functional W of correlation functions, one
defines a sort of stress tensor complex. Letting W depend on an overcomplete parameteriza-
tion of the background, W =W [nµ, vµ, hµν, Aµ], we define the number current Jµ, momentum
current Pµ, energy current Eµ, and spatial stress tensor Tµν via

δW =

∫

dd x
p
γ

�

δAµJµ −δv̄µPµ −δnµEµ −
δh̄µν

2
Tµν

�

. (7)

Here we let the variations of nµ be completely arbitrary, in which case some of the variations
of vµ and hµν are fixed in terms of δnµ, e.g.

δvµ = −vµvνδnν + Pµν δv̄ν , (8)

where δv̄µ is arbitrary, and similarly for δh̄µν. The U(1) gauge invariance implies that Jµ

is conserved, the Milne invariance equates momentum with the spatial part of the particle
number current, Pµ = hµνJν, and the coordinate reparameterization invariance leads to con-
servation equations for the energy current and spatial stress tensor.

4If one has a gauge and Milne-invariant vector vµ satisfying vµnµ > 0 everywhere, then one can use this vector
to build a boost and gauge-invariant derivative [32].
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When the theory has “local” anomalies, W has an infinitesimal variation under at least one
of these transformations, and the anomaly may be characterized by the variation δχW 6= 0.
Equivalently, the anomaly may be characterized by the modified, anomalous Ward identities.

A Galilean CFT is also invariant (up to anomalies) under “Weyl” rescalings which are char-
acterized by a critical exponent z, under which the background fields rescale as

nµ→ ezΩnµ , hµν→ e2Ωhµν , Aµ→ e(2−z)ΩAµ . (9)

The case z = 2 is special, and in that case the CFT is called a “Schrödinger” theory, as its
global symmetries in flat space form the Schrödinger group. In Section 4 we will consider
Weyl anomalies for Schrödinger theories. In that case, denoting the Weyl variation of W as

δΩW =

∫

dd x
p
γδΩA , (10)

the anomalous Weyl Ward identity is

2nµEµ − hµνTµν =A . (11)

2.2 Null reduction

This geometric structure could have been (and perhaps should have been) anticipated from
DLCQ. Recall that one way to construct a d-dimensional Galilean-invariant theory is to start
with a relativistic theory in d + 1 dimensional Minkowski space in light-cone coordinates,

g = 2d x0 d x− + d ~x2 ,

and compactify the null coordinate x− with some radius R. On purely algebraic grounds – the
Poincaré generators which commute with P− generate the Galilean algebra, with P− playing the
role of particle number – the d-dimensional theory one obtains on (x0, ~x) is Galilean-invariant.
Similarly, if one starts with a relativistic CFT, the lower-dimensional theory is invariant under
the Schrödinger group [22], which is generated by the Galilean algebra in addition to a dilata-
tion and special conformal generator.

It is well known that DLCQ is subtle (see e.g. [22, 23] and references therein). The zero-
modes of the null reduction have to be treated carefully, and this is not always understood.
However we are only interested in the symmetries of the problem, rather than a careful defi-
nition of the ensuing Galilean theory, and so these subtleties are irrelevant for us.

It is worth noting that the string theoretic realizations of Schrödinger field theories in
holography either arise from DLCQ, or from DLCQ in addition to a holonomy for a global
symmetry around the null circle [22–24].

Of course, we could consider the most general DLCQ. That is, we could put a relativistic
theory on the most general d + 1-dimensional spacetime with a null isometry,

g = 2nµd xµ(d x− + A) + hµνd xµd xν , (12)

where the component functions depend on the xµ but not x− and hµν is a rank d −1 positive-
semi-definite tensor. The null isometry is

nM∂M = ∂− . (13)

After reducing on x−, the lower-dimensional theory is a Galilean theory which couples to
(nµ, hµν, Aµ), which we recognize as the defining data of a NC structure. Moreover, all of the
symmetries we outlined in the previous Subsection are manifest here. The gauge field Aµ is just
the graviphoton of the reduction, and its U(1) gauge invariance just corresponds to additive
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reparameterizations of x−. The Milne boosts correspond to an ambiguity in the extraction of
(hµν, Aµ) from g, as discussed in [5]. One can redefine A and h as

Aµ→ Aµ +Ψµ , hµν→ hµν − (nµΨν + nνΨµ) , (14)

for any one-form Ψµ(xν), which leaves g unchanged. In order for hµν to remain rank d − 1,
however, we must have

Ψµ =ψµ −
1
2

nµψ
2 , vµψµ = 0 . (15)

But these are just the Milne boosts (6). And of course d-dimensional reparameterizations are
just d + 1-dimensional reparameterizations along fibers of constant x−.

So DLCQ automatically gives NR theories coupled to NC geometry, invariant under the
symmetries above.

Later, it will be important that there is no one-form d x− + Vµ(xν)d xµ which is invariant
under both the U(1) particle number symmetry and the Milne boosts: d x− is boost-invariant,
but not U(1)-invariant, while d x− + A is U(1)-invariant but not boost-invariant.

Historically, some of these results were known some time ago, although from a very dif-
ferent perspective. It was first recognized in [7] (see also [33]) that a NC structure can be
obtained via null reduction of a Lorentzian d + 1 dimensional manifold, although these au-
thors restricted n to be closed. Of course this reduction still works if dn 6= 0 [5,31]. The role
of the Milne boosts in d + 1 dimensions was only realized in [5].

Aside from its obvious importance in DLCQ, the null reduction (12) will be very useful in
what follows, even for NR theories which do not follow from DLCQ. Its primary virtue for us
is that all of the NC symmetries are manifest therein. So we can efficiently construct tensors
under the NC symmetries by constructing tensors on an auxiliary d+1-dimensional spacetime
with metric (12). For instance, using the Levi-Civita connection

(Γg)
M

N P =
1
2

gMQ
�

∂N gPQ + ∂P gNQ − ∂Q gN P

�

, (16)

obtained from gMN to define the d + 1-dimensional covariant derivative DM , we can define
the Riemann tensor

RM
N PQ = ∂P(Γg)

M
NQ − ∂Q(Γg)

M
N P + (Γg)

M
SP(Γg)

S
NQ − (Γg)M SQ(Γg)

S
N P , (17)

and so R = gMNR P
M PN . Because R is invariant under all of the higher-dimensional symme-

tries, it gives an invariant d-dimensional scalar under all of the NC symmetries.
As we mentioned above, the flat-space DLCQ of a relativistic CFT gives a Schrödinger

theory. So it should not be a surprise that the Weyl symmetry of a Schrödinger theory nicely
fits into the null reduction (12). Note that the Weyl rescaling of g

g → e2Ωg (18)

is equivalent to the NR z = 2 Weyl rescaling of nµ and hµν in (9). This will be useful for us
when we consider pure Weyl anomalies in Schrödinger theories in Section 4.

As a simple example, consider the DLCQ of a conformally coupled complex scalar Φ

SR = −
1

4π

∫

dd+1 x
p

−g
�

gMN∂MΦ
†∂NΦ+ ξRΦ†Φ

	

, ξ=
d − 1
4d

, (19)

and compactify x− with periodicity 2π. This theory is Weyl-invariant provided that Φ trans-
forms with weight 1−d

2 . Expanding Φ in Fourier modes of x−, Φ =
∑

nϕn(xµ)einx− , the rela-
tivistic action SR becomes (using that

p
−g =pγ)

SR =
∑

n

∫

dd x
p
γ

§

invµ

2

�

ϕ†
nDµϕn − (Dµϕ†

n)ϕn

�

−
hµν

2
Dµϕ

†
nDνϕn −

ξR
2
ϕ†

nϕn

ª

, (20)
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with Dµϕn = (∂µ − inAµ)ϕn. The term for each n 6= 0 is just n times the action of the NR
analogue of a conformally coupled scalar ϕn carrying charge n under particle number [5,34].
The zero-mode action is also invariant under the local Galilean and Weyl symmetries, but it is
obvious that it must be treated carefully when computing observables.

3 Flavor and/or gravitational anomalies from DLCQ

Suppose we study the NR theory that arises from the DLCQ of a relativistic theory with flavor
and/or gravitational anomalies.5 Does the NR theory have anomalies?

We proceed in two steps. First, we efficiently represent the anomalies of the underlying
relativistic theory with anomaly inflow. Then we put the relativistic theory on a background
with a null isometry (12), whereby we express the anomalies in terms of the NC data to which
the NR theory couples. This variation can be cancelled off by adding a counterterm built from
the NC data. However said counterterm is not boost-invariant.

It is easiest to work with this boost-non-invariant description. We find that this boost
variation cannot be removed by a further counterterm, and so is a genuine anomaly which we
then write in terms of an anomaly inflow. So the anomalies of the relativistic parent descend to
mixed flavor/boost or gravitational/boost anomalies in the NR theory, and the counterterm we
construct is a “Bardeen counterterm” which shifts the anomaly from the flavor or gravitational
sector to being a boost anomaly.

3.1 Anomaly inflow

Perhaps the simplest way to describe flavor and gravitational anomalies in relativistic QFT is
via the anomaly inflow mechanism [35]. Given a field theory on a D-dimensional spacetime
MD coupled to a flavor gauge fieldAM and Riemannian metric gMN , the local anomalies are
encoded in a D + 2-form P known as the anomaly polynomial. P is built from the Chern
classes of the field strength FMN of AM and Pontryagin classes of the Riemann curvature
RM

N PQ, and so dP = 0.
P determines the variation of the field theory generating functional W through the descent

equations. P is the exterior derivative of a Chern-Simons D+1-form I , P = dI , whose gauge
and/or coordinate variation is a derivative of the d-form Gχ

δχ I = dGχ . (21)

This determines the anomalous variation of W via

δχW = −
∫

MD

Gχ , (22)

or equivalently, one constructs

Wcov =W +

∫

MD+1

I , (23)

which is invariant under all symmetries, where we have extended the gauge field and metric
onMD to a gauge field and metric on the D+1-dimensional manifoldMD+1 which hasMD as
its boundary. (23) neatly encodes the idea of anomaly inflow: we imagine that our field theory
lives on the boundary of a “Hall” system whose action is the Chern-Simons term

∫

I , and the

5This includes those theories which are dual to string theory on asymptotically Schrödinger backgrounds, where
there are bulk Chern-Simons terms.
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Md

reduce on x−

←−−−−−−−−−Md+1 = ∂Md+2

inflow
←−−−−−−−−−Md+2

descent: I←P
←−−−−−−−−−Md+3

Figure 1: The short sequence which relates the anomalies of a relativistic theory to those
of the d-dimensional NR theory realized by DLCQ. The relativistic parent lives onMd+1, and
its null reduction leads to the NR theory onMd . The anomalies of the parent are described
via inflow by lettingMd+1 be the boundary of a d + 2-manifoldMd+2 which we equip with
a Chern-Simons form I . The anomaly polynomial P is a formal d + 3 form which may be
thought of as living on a formalMd+3.

anomalies of the boundary theory arise because currents or energy-momentum can flow from
the “bulk theory” onMD+1 into the boundary.

The anomaly inflow mechanism is also at play in holography. When an anomalous field
theory has a gravity dual, the metric and gauge field in the field theory are the asymptotic
values of a dynamical bulk metric and gauge field, and the gravitational theory has a Chern-
Simons term I and the field theory anomaly polynomial is P = dI .

3.2 Constructing the counterterm

Now consider the d-dimensional Galilean theory on Md obtained by performing the most
general DLCQ of a relativistic theory on Md+1 with anomaly polynomial P . That is, the
relativistic theory is coupled to a d + 1-dimensional metric gMN and (not necessarily abelian)
flavor gauge fieldAM with a null symmetry along x−,

g = 2nµd xµ(d x− + A) + hµνd xµd xν , A = Âµd xµ +A−(d x− + A) , (24)

where the component fields depend on xµ but not x−, and implicitly x− is compactified with
some radius. The (nµ, hµν, Aµ) become the NC structure to which the d-dimensional NR theory
couples, Âµ becomes a background flavor gauge field which couples to the flavor symmetry of
the NR theory, andA− becomes a scalar source. The anomalies of the d+1-dimensional theory
are most efficiently described in terms of the Chern-Simons form I on a d + 2-dimensional
spacetime Md+2 which has Md+1 as its boundary. Reducing on the null circle leads to the
d-dimensional spacetime Md on which the NR theory lives. This gives the short sequence
represented in Fig. 1.

When one instead reduces a relativistic theory with anomalies on a spatial or thermal circle,
the d-dimensional description is also relativistic. In that case one can construct a local coun-
terterm built out of the d-dimensional background which cancels the anomalous variation.
That such a counterterm exists is a corollary of the fact that there are no flavor or gravitational
anomalies in odd-dimensional relativistic theories. It turns out that we can construct such a
counterterm in the null case, although we lack an a priori argument that this should be so.
However, said counterterm is not invariant under Milne boosts.

If one is interested just in the lower-dimensional theory obtained from a spatial circle re-
duction, the precise form of this counterterm is uninteresting. However, for thermal circles,
this counterterm is physical: it is intimately related to non-renormalized anomaly-induced
transport. See [36] (as well as [37]) for details. For an arbitrary anomaly polynomial, the
requisite counterterm was constructed in [38] (see also [39]) using the technology of trans-
gression forms, which will also be useful here.

The basic idea can be illustrated with a pure flavor anomaly. From the point of view of
the NR theory, A− is a scalar source which transforms in the adjoint representation of the
flavor symmetry, rather than as a component of a connection. So we can define a new flavor
connection Ā by simply subtracting off the A− component. To do this in a U(1)-invariant
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way, we subtract off a term proportional to d x− + A,6

Ā ≡A −A−(d x− + A) = Âµd xµ , (25)

which we recognize as just the hatted connection from (24). This hatted connection is almost
a good flavor connection under the d-dimensional symmetries: while A is Milne-invariant,
d x− + A varies under the Milne boosts, and so Â varies as

Â → Â −A−Ψ , Ψµ =ψµ −
1
2

nµψ
2 , (26)

which still has no leg along d x−. In any case, it is clear that both Â and the field strength of
Â , F̂ , have no legs along d x−. (The covariant statement is that F̂MN nN = 0 and ÂM nM can
be set to zero by a gauge transformation.) Consequently, the Chern-Simons form I evaluated
on the hatted connection and field strength has no leg along d x−, and so its integral onMd+2
vanishes. Denoting I[Â , F̂ ] = Î , we trivially have

∫

Md+2

I =

∫

Md+2

I −
∫

Md+2

Î , (27)

which is where transgression forms become useful.
We refer the reader who is unfamiliar with the transgression machinery to the Appendix

of [38] for a concise and modern discussion. Essentially, this technology is the natural way
to describe the way characteristic classes, and objects like Chern-Simons forms constructed
from them, depend on the connection. The result we require here is that a Chern-Simons form
I evaluated for two different connections A1 and A2, which we denote as In = I[An,Fn],
obeys

I1 − I2 = V12 + dW12 , (28)

where

A (τ) =A2 +τ(A1 −A2) , F (τ) = dA (τ) +A (τ)∧A (τ) ,

V12 =

∫ 1

0

dτ (A1 −A2)∧ ·
∂P (τ)
∂F (τ)

, W12 =

∫ 1

0

dτ (A1 −A2)∧ ·
∂ I(τ)
∂F (τ)

.
(29)

HereA (τ) interpolates betweenA2 andA1, P (τ) and I(τ) refer to the anomaly polynomial
and Chern-Simons form evaluated on it, and · refers to a trace over flavor indices. When A1
and A2 differ by an adjoint tensor, V12 is a gauge-invariant form and the variations of I1 and
I2 are carried by the boundary term W12.

Combining this with (23) and (27), takingA2 = Â andA1 =A , and denoting

I − Î = V̂ + dŴ , (30)

then we can rewrite the covariant field theory generating functional (23) as

Wcov =W +

∫

Md+2

I =

�

W +

∫

Md+1

Ŵ

�

+

∫

Md+2

V̂ =W ′ +

∫

Md+2

V̂ , (31)

where we have redefined W by the local counterterm Ŵ as W → W +
∫

Md+1
Ŵ . Because

A −Â =A−(d x−+A) is an adjoint tensor, V̂ is gauge-invariant and so W ′ is too. That is, the

6There is a fully d + 1-dimensionally covariant version of this construction along the lines of that presented
in [38] for thermal circles. The generalization to the null case is straightforward: the covariant version of A− is
nMAM +ΛK where ΛK is the flavor gauge transformation which together with nM generates the symmetry, and the
covariant version of d x−+A is any one-form u which obeys nM uM = 1. However any such choice breaks the Milne
redundancy, and so the redefined connection varies under the Milne boosts.
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local counterterm
∫

Ŵ renders the NR theory invariant under flavor gauge transformations.
However, becauseA −Â =A−(d x−+A) varies under Milne boosts, the redefined W ′ is now
non-invariant under Milne boosts.

Before going on, we observe that (31) now looks like anomaly inflow for boosts, where V̂
plays the role of a Chern-Simons form for Milne boosts. That is,

dV̂ =P − P̂ , (32)

which is boost-invariant, but the boost variation of V̂ is a total derivative,7

δψV̂ = dGψ , (33)

so that W ′ varies under Milne boosts as

δψW ′ = −
∫

Md+1

Gψ . (34)

In fact, this demonstrates that the Milne variation is a genuine anomaly. That is, there is
no local d + 1-dimensional counterterm which can remove (34).8 To see this, suppose that
such a counterterm exists, which we denote as

∫

Md+1
C . Then V̂ ′ ≡ V̂ + dC is invariant under

all symmetries, and dV̂ ′ = P − P̂ . So we must be able to “transgress” the difference P − P̂
in a flavor/gravitational/boost-invariant way. The most general such transgression from P̂ to
P is to consider the most general flow A (τ) which interpolates from Â at τ = 0 and flows
toA at τ= 1. In terms of that flow one has

P − P̂ = dV̂ ′ , V̂ ′ =

∫ 1

0

dτ∂τA (τ)∧ ·
∂P (τ)
∂F (τ)

. (35)

In order for V̂ ′ to be invariant, we require that each of the terms in the integral expression (35)
for V̂ ′ to be covariant under the symmetries. However, it is easy to see that no such A (τ)
exists so that ∂τA (τ) is covariant: the only zero-derivative covariant one-form available is
n= nM d x M , and one cannot reach Â by adding a scalar times n toA .

So far, we have shown that the DLCQ of a theory with a pure flavor anomaly leads to a NR
theory with a mixed flavor/boost anomaly. The term “mixed” refers to the fact that one can
use a local counterterm to make the NR theory invariant under one symmetry or the other,
but not both simultaneously. Now we consider the DLCQ of a theory with arbitrary anomalies.
This is only an upgraded version of the analysis above, so we just mention the highlights.

In addition to extending the flavor connectionA and symmetry data to higher dimensions,
we also extend the metric g and so the Levi-Civita connection Γg .9 It is convenient to represent
Γg as a matrix-valued connection one-form,

(Γg)
M

N = (Γg)
M

N P d x P , (36)

and the Riemann curvature RM
N PQ as a curvature two-form,

RM
N =

1
2
RM

N PQ d x P ∧ d xQ = d(Γg)
M

N + (Γg)
M

P ∧ (Γg)P N . (37)

7We will justify both of these assertions and compute the Milne variation of V̂ in the next Subsection.
8In this statement we implicitly require d > 1 in order to have a Milne symmetry in the first place.
9To ensure that the gravitational anomaly inflow is completely intrinsic, we require that the extrinsic curvature

ofMd+1 = ∂Md+2 vanishes. In these coordinates that means (Γg)⊥M = (Γg)M⊥ = 0. Alternatively, one can allow
for extrinsic curvature and add a local counterterm which depends on it in such a way as to obtain the correct
gravitational anomaly onMd+1.
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In the coordinates in which we expressed gMN (24), the − component of Γg is a tensor

(Γg)
M

N− = DN nM , (38)

which we can use to define a “hatted” connection Γ̂g along the same lines as Â in (25),

(Γ̂g)
M

N = (Γg)
M

N −DN nM (d x− + A) . (39)

Both Γ̂g and the corresponding curvature R̂ have no leg along d x−. (The covariant statement
is that d x− + A is a one-form u obeying nM uM = 1, R̂M

N PQnQ = 0, and (Γ̂g)M N P nP can be set
to zero by a coordinate reparameterization.) Γ̂g transforms as a connection under coordinate
reparameterizations, but inherits a non-trivial transformation law under Milne boosts owing
to the transformation of d x− + A,

(Γ̂g)
M

N → (Γ̂g)M N −DN nM Ψ , Ψµ =ψµ −
1
2

nµψ
2 . (40)

As above, the Chern-Simons form I evaluated for the hatted connections,
Î = I[Â , F̂ , Γ̂g , R̂], has no leg along d x− and so its integral vanishes onMd+2, giving

∫

Md+2

I =

∫

Md+2

I −
∫

Md+2

Î .

In analogy with (29), the difference between I evaluated for two sets of connections {A1, Γ1}
and {A2, Γ2} may be represented as

I1 − I2 = V12 + dW12 ,

where V12 and W12 are transgression forms. Flowing in the space of connections as

A (τ) =A2 +τ(A1 −A2) , ΓM
N (τ) = (Γ2)

M
N +τ

�

(Γ1)
M

N − (Γ2)M N

�

, (41)

we have

V12 =

∫ 1

0

dτ
§

(A1 −A2)∧ ·
∂P (τ)
∂F (τ)

+
�

(Γ1)
M

N − (Γ2)M N

�

∧
∂P (τ)
∂RM

N

ª

,

W12 =

∫ 1

0

dτ
§

(A1 −A2)∧ ·
∂ I(τ)
∂F (τ)

+
�

(Γ1)
M

N − (Γ2)M N

�

∧
∂ I(τ)
∂RM

N

ª

.

(42)

When A1 − A2 and Γ1 − Γ2 are covariant tensors, V12 is a gauge and reparameterization-
invariant form and W12 carries the variations of I1 and I2. This is indeed the case when

A2 = Â , A1 =A , Γ2 = Γ̂g , Γ1 = Γg ,

and as before we denote
I − Î = V̂ + dŴ .

Putting this together with (23) we can rewrite Wcov in the same form as (31),

Wcov =W ′ +

∫

Md+2

V̂ , W ′ =W +

∫

Md+1

Ŵ .

As before Ŵ is a local counterterm which renders the NR theory invariant under flavor gauge
transformations and coordinate reparameterizations, but leaves it anomalous under Milne
boosts.

11

https://scipost.org
https://scipost.org/SciPostPhys.5.1.005


SciPost Phys. 5, 005 (2018)

We conclude this Subsection with some simplified formulae for V̂ and Ŵ .
First, we simplify the hatted curvatures. We denote u ≡ d x− + A so du = F , and let D be

the exterior covariant derivative. We also decompose the ordinary curvatures into components
which are longitudinal and transverse to nM ,

F = E ∧ u+B , RM
N = (ER)

M
N ∧ u+ (BR)

M
N , (43)

where

EM =FMN nN , BMN nN = 0 , (ER)
M

N P =RM
N PQnQ , (BR)

M
N PQnQ = 0 . (44)

The fact that n generates a symmetry fixes the longitudinal parts E and ER as

DA− = E , D
�

DN nM
�

= (ER)
M

N . (45)

Then the hatted curvatures are

F̂ =B −A−F , R̂M
N = (BR)

M
N −DN nM F . (46)

As a result, u∧ F̂ and u∧ R̂ differ from u∧F and u∧R by a term proportional to F .
Consequently, the formal d + 4 form

u∧
�

P − P̂
�

,

can be expanded as a formal power series in F where each term has at least one F ,

u∧
�

P − P̂
�

=
∑

i=0

Vi ∧ F i+1 , (47)

and the Vi are d +2(1− i) forms. Similarly, the formal d +3 form u∧ (I − Î) can be written as
a power series in F ,

u∧
�

I − Î
�

=
∑

i=0

Wi ∧ F i+1 , (48)

where the Wi are d + 1− 2i forms. Then we define the formal objects

u
F
∧
�

P − P̂
�

≡
∑

i=0

Vi ∧ F i ,
u
F
∧
�

I − Î
�

≡
∑

i=0

Wi ∧ F i , (49)

and in terms of these we find the compact expressions

V̂ =
u
F
∧
�

P − P̂
�

, Ŵ =
u
F
∧
�

I − Î
�

. (50)

One can also obtain these from the direct integration of (42).

3.3 The anomalous boost Ward identity

We presently justify the assertions we made in (32) and (33) by explicitly computing the Milne
variation of V̂ .

From (46) and (50) it is clear that we can regard V̂ as u wedge a functional of
�

B , (BR)M N , F,A−,DN nM
	

. Under an infinitesimal boost u shifts as

δψu=ψ , nMψM = 0 . (51)
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Using (43) and that F and R are boost-invariant, this in turn induces

δψÂ = −A−ψ , δψ(Γ̂g)
M

N = −(DN nM )ψ , δψF = dψ , (52)

δψF̂ = −D̂(A−ψ) , δψR̂M
N = −D̂

�

DN nMψ
�

,

where D̂ is the exterior covariant derivative defined using the hatted connections.
Although it is not obvious at this stage, these ingredients tell us that the computation of

δψV̂ has already appeared in the literature. In the Appendix of [38], we and other authors
computed the variations of a transgression form much like V̂ where the difference between
two connections was a one-form, just as is the case here. Rather than walk through that
computation, let us simply quote the result,

δψV̂ = d

�

ψ∧
∂ V̂
∂ F

�

−δψÂ ∧ ·
∂ P̂
∂ F̂
−δψ(Γ̂g)M N ∧

∂ P̂
∂ R̂M

N
, (53)

where the partial derivative of V̂ is taken at fixed
�

u,A−,DM nN ,B ,BR

	

, and the objects

∂ P̂
∂ F̂

,
∂ P̂
∂ R̂M

N
, (54)

are essentially the Hodge duals of the “Hall currents” that one gets by varying Î with respect
to the hatted connections Â and Γ̂g . However, both δψÂ and δψΓ̂g have no leg along d x−,
nor do the Hall currents in (54). As a result, the boost variation of the integral of V̂ , which is
what actually appears in the anomaly inflow (31), only picks up the boundary term,

δψ

∫

Md+2

V̂ =

∫

Md+1

ψ∧
∂ V̂
∂ F

. (55)

This is what we meant when we made our earlier assertion that the boost variation of V̂ is a
boundary term (33). This also gives

Gψ =ψ∧
∂ V̂
∂ F

, δψW ′ = −
∫

Md+1

Gψ . (56)

Using the epsilon tensor to dualize Q≡ ∂ V̂
∂ F into a vector

qM ≡
1
d!
εM P1...PdQP1...Pd

, (57)

(here we have chosen an orientation such that ε0...d− = 1p
γ) the boost variation of the field

theory generating functional becomes

δψW ′ = −
∫

dd x
p
γψµhµνq

ν , (58)

where ψµ = hµνψν. The anomalous boost Ward identity then reads

Pµ − hµνJν = hµνq
ν . (59)

This has all been rather abstract. Let us see how this machinery works for pure U(1)
anomalies when the relativistic parent is two or four dimensional. In the first case, there is
no Milne symmetry in the first place as there are no spatial directions, but we nevertheless
proceed to illustrate how the machinery works. We have

P = cAF ∧F , (60)
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and we readily find the formal objects

V̂ = cAA−u∧ (2B −A−F) , Gψ = −cAA 2
−ψ∧ u . (61)

But in this case ψ= 0 and so Gψ = 0, so there is no Milne anomaly for the non-existent Milne
symmetry.

In the four-dimensional case, we have

P = cAF ∧F ∧F , (62)

so that

V̂ = cAA−u∧
�

3B ∧B − 3A−F ∧B +A 2
−F ∧ F

�

,

Gψ = −cAA 2
−ψ∧ u∧ (3B − 2A−F) .

(63)

The anomalous boost Ward identity is

Pµ − hµνJν = −
cAA−

2
hµνε

νρσ
�

3Fρσ − 2A−Fρσ
�

. (64)

4 Weyl anomalies for z = 2

4.1 The basic idea

In what follows we will classify pure Weyl anomalies for Schrödinger theories. We do not
presume or employ a Lagrangian description, but will simply use consistency conditions that
all quantum field theories satisfy. We proceed in three steps.

1. First, we parameterize the most general local Weyl variation,

δΩW =

∫

dd x
p
γδΩA ,

whereA is a boost and gauge-invariant scalar built from the NC data (nµ, hµν, Aµ) and
derivatives.

2. Write down the most general set of local gauge/boost-invariant counterterms which may
be added to W . Then compute the Weyl variation of these counterterms, and deduce
which terms inA can be removed by a judicious choice of counterterm.

3. Impose Wess-Zumino (WZ) consistency [40], which in the present instance means that
we demand

[δΩ1
,δΩ2

] = 0 . (65)

It should be clear that we can only perform this algorithm once we know the symmetries
to consider and the background fields out of which we can buildA and counterterms.

After performing this analysis, there are three classes of terms which appear in A . We
refer to terms which can be generated by local counterterms as class C, terms which are Weyl-
covariant with weight −(d+1) as class B, and terms which are not Weyl-covariant yet are WZ
consistent as class A. (This is a different convention than that in [41].)

Because we consider pure Weyl anomalies, we need to efficiently classify boost and gauge-
invariant scalars. As we mentioned in Subsection 2.2, the simplest way to do this is via the null
reduction of a Lorentzian manifold with metric (12). In what follows we write down tensors
in terms of the metric, isometry, and covariant derivative on this auxiliary higher-dimensional
spacetime.
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4.2 Two spatial dimensions

Let us warm up with the simplest non-trivial case, namely theories in 2+ 1 dimensions. The
0 + 1-dimensional case is trivial: in that case there are no tensors that may be formed from
the NC structure, and so no potential Weyl anomaly.

For simplicity, we consider parity-preserving theories. Then the scalars that may contribute
to A are built from the following basis of tensors: the inverse metric gMN , the isometry nM ,
the Riemann curvature RMN PQ, the derivative of n, DM nN , and DM . Because nM generates a
null isometry, we have

D(M nN) = 0 , nNDM nN = 0 , RMN PQnQ = DPDN nM . (66)

Under constant Weyl transformations eΩ = λ, the basic building blocks transform as

gMN → λ−2 gMN , nM → nM , RMN PQ→ λ2RMN PQ , DM nN → λ2DM nN , (67)

and DM does not rescale. The putative Weyl anomaly transforms as A → λ−4A under con-
stant Weyl rescalings, and the local counterterms which can remove terms inA are the space-
time integrals of scalars C which also transform as C → λ−4C .

Scalars with weight −4 containing p Riemann’s, q factors of the “twist” DM nN , and r
additional covariant derivatives DM necessarily contain 2+ p+ q factors of the inverse metric
and 2(p− 2) + r factors of nM . In fact, we can only build such scalars if either p ≥ 2 or p = 1
and r ≥ 2. Such a scalar contains 2p+ q+ r derivatives. So the lowest number of derivatives
possible is four, which can be done with either p = 2, q = r = 0 or p = 1, q = 0, and r = 2. In
either case nM does not appear. That is, the scalars of weight −4 with the lowest number of
derivatives are just the ordinary four-derivative scalars which can be built from the Riemann,
the covariant derivative, and the metric. We parameterize them using the basis

E4 =RMN PQRMN PQ − 4RMNRMN +R2 , W MN PQWMN PQ , R2 , DMDMR , (68)

where RMN = R P
M PN is the Ricci curvature, E4 is the four-dimensional Euler density built

fromRMN PQ, andWMN PQ the Weyl tensors. We have also used that DMDNRMN = 1
2DMDMR

by the Bianchi identity.
Due to (66) there are no weight −4 scalars with five derivatives. There are a number of

six-derivative scalars, like
R2RMN nM nN .

At this point, it should be clear that the problem of classifying the four-derivative terms
in the Weyl anomaly is just the same problem as for 3 + 1-dimensional relativistic CFT. The
Euler and W 2 counterterms are Weyl-invariant up to a boundary term, the R2 counterterm
can be used to remove the DMDMR term in A , and the DMDMR counterterm integrates to
a boundary term. The remaining E4 and W 2 terms in A are WZ consistent, but the R2 term
is not. So we have

A = aE4 − cW 2 +O (∂ 6) . (69)

The four-derivative part is just the usual Weyl anomaly of a 3 + 1-dimensional CFT on the
background (12). The Euler term is a class A anomaly, theW 2 term is class B, and theDMDMR
term is class C.

It is worth noting that even though there is an isometry both E4 andWMN PQ can be nonzero.
However, if the isometry has no twist, DM nN = 0, then (66) implies that RMN PQ is effectively
the Riemann tensor of a three-dimensional space, in which case E4 andWMN PQ vanish. In the
coordinates (12), the nonzero components of the twist are

Dµnν =
1
2
(∂µnν − ∂νnµ) . (70)
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So the Weyl anomaly is only visible when dn 6= 0.
What of the potential higher-derivative terms in A ? While we do not rigorously classify

them, we offer some observations which lead to a conjecture forA .
First, by WZ consistency, any scalar which transforms covariantly with weight −4 un-

der inhomogeneous Weyl transformations may appear in A . If n was everywhere timelike
or spacelike rather than null, then we could use it to redefine the covariant derivative in a
Weyl-invariant way. Then the Weyl-covariant tensors would be built from this Weyl-covariant
derivative. However, because n is null no such redefinition of DM exists. So the manifestly
Weyl-covariant tensors are built from WMN PQ along with gMN and nN . We also expect there
to be non-manifest Weyl-covariant tensors which cannot be expressed this way. It seems that
one can build weight −4 scalars with arbitrarily many derivatives from this data by a similar
counting argument to that above. The manifestly Weyl-covariant scalars can be counted as
follows. A 2p-derivative scalar possesses p Weyl tensors along with 2+ p factors of the inverse
metric and 2(p− 2) factors of nM (with p ≥ 2). For example, a six-derivative scalar is

WMN PQW MN P
SWQ

A
S

BnAnB . (71)

We have not found an argument that there are a finite number of such scalars.
Second, the Weyl variation of any local weight −4 counterterm is always of the form (we

can represent the counterterm equivalently as a 4-dimensional integral or as a 3-dimensional
one, since no sources depend on the null circle)

δΩ

∫

d3 x
p
γC =

∫

d3 x
p
γδΩDMC M + (boundary terms) . (72)

With this in mind, experience has taught us that counterterms can be used to remove all terms
inA of the form DMA M , although we lack a proof that this is always the case.

Third, we conjecture that E4 is the unique “exceptional” scalar built from gMN and nM and
derivatives which is not Weyl-covariant, yet is WZ consistent when it appears inA .

Putting all three of these ingredients together, we can make a conjecture for A , namely
that it is of the form

A = aE4 − cW 2 +
∑

i

diW n
i , (73)

where the W n
i are Weyl-covariant scalars with at least six derivatives, built using nM .

4.3 The general result

The general argument proceeds in the same way as that above.
First, consider a Schrödinger theory in even spacetime dimension d. We build an auxiliary

odd-dimensional metric and isometry from the NC structure. The Weyl anomaly A must
transform with weight d+1 under constant Weyl transformations, which in this instance means
it transforms with odd weight. However, there is simply no way to assemble an odd weight
scalar out of the building blocks (67). SoA = 0 in this case.

In odd spacetime dimension d = 2m − 1, we can build weight −(d + 1) scalars with p
Riemanns, q factors of the “twist” DM nN , and r derivatives, provided that we contract indices
with 2+p+q factors of the inverse metric and 2(p−m)+ r factors of nM . Such a scalar possess
2p + q + r derivatives. The terms with the lowest number of derivatives have 2p + r = m
and q = 0, in which case no factors of nM appear. So, as in the 2 + 1-dimensional case,
the lowest-derivative analysis reduces to the relativistic one, for which we can appeal to the
literature [41],

A = aEd+1 +
∑

n

cnWn +O (∂ d+3) , (74)
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where theWn are weight −2m Weyl-covariant scalars, and Ed+1 is the d+1 dimensional Euler
density.

We conjecture that all of the higher-derivative terms are Weyl-covariant scalarsW n
i which

depend on nM , giving
A = aEd+1 +

∑

n

cnWn +
∑

i

diW n
i . (75)

A BRST-inspired analysis [42] should be able to verify or disprove our conjecture.
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