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Abstract

We study continuum quantum field theories in 2+1 dimensions with time-reversal sym-
metry T . The standard relation T 2 = (−1)F is satisfied on all the “perturbative operators”
i.e. polynomials in the fundamental fields and their derivatives. However, we find that
it is often the case that acting on more complicated operators T 2 = (−1)FM with M
a non-trivial global symmetry. For example, acting on monopole operators, M could
be ±1 depending on the magnetic charge. We study in detail U(1) gauge theories with
fermions of various charges. Such a modification of the time-reversal algebra happens
when the number of odd charge fermions is 2 mod 4, e.g. in QED with two fermions. Our
work also clarifies the dynamics of QED with fermions of higher charges. In particular,
we argue that the long-distance behavior of QED with a single fermion of charge 2 is
a free theory consisting of a Dirac fermion and a decoupled topological quantum field
theory. The extension to an arbitrary even charge is straightforward. The generaliza-
tion of these abelian theories to SO(N) gauge theories with fermions in the vector or in
two-index tensor representations leads to new results and new consistency conditions
on previously suggested scenarios for the dynamics of these theories. Among these new
results is a surprising non-abelian symmetry involving time-reversal.
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1 Introduction

Time-reversal symmetry is an important property of a variety of systems relevant to both high-
energy and condensed matter physics. In this paper we clarify some aspects of time-reversal
symmetry in gauge theories. Our methodology here is that most natural in continuum field
theory. We will start with a continuum Lagrangian defining our model at short distances and
try to ascertain its long-distance behavior. A first step in this analysis is a precise determination
of the global symmetry of the model. This includes the ordinary unitary global symmetries,
as well as spacetime symmetries such a time-reversal. As we describe below, in general these
symmetries are linked in a non-trivial algebra.

We will focus here on three-dimensional systems based on some gauge group and fermions
transforming in some representation. We will mostly study U(1) and SO(N) gauge theories
(U(1) is a special case of SO(N) with N = 2, but with many special features) and fermions
in the vector or the two index tensor of SO(N) (in U(1) these are fermions of charge 1 or
2). In order to determine the IR behavior of the system we need to understand in detail its
symmetries and in particular its time-reversal symmetry.

1.1 T

Time-reversal symmetry T is an antiunitary transformation that acts on the time coordinate
as t → −t combined with some action on the fields in the theory. In Euclidean spacetime it
reverses the orientation of spacetime. In general, the T symmetry of the theory is not unique.
We can redefine T by combining it with a global symmetry transformation. For example, many
systems have a unitary symmetry that acts as an outer automorphism of the gauge group, which
is called charge conjugation C. Then we can say that the basic time-reversal symmetry is T or
CT .

Neither of these choices is universally natural. For instance, the standard definition of
time-reversal in four-dimensional free Maxwell theory acts on the electric and magnetic fields
as E → E and B → −B, while charge conjugation reverses the sign of both. However, elec-
tromagnetic duality exchanges E and B and therefore maps T to CT . In this paper we will
follow [1, 2] and define the symmetry T to act on a gauge field a as T (a(t)) = a(−t). In
components this reads

T (a0(t)) = −a0(−t) , T (ai(t)) = ai(−t) . (1.1)

One advantage of the above is that it makes sense even for systems where there is no natural
notion of charge conjugation. (Note that if the U(1) gauge field is that of ordinary electro-
magnetism, this symmetry is usually called CT .) In the condensed matter literature on models
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with a global U(1) our convention (1.1) is known as U(1)×ZT2 as opposed to U(1)oZT2 (see
e.g. [2–5]). Notice that as a consequence of these definitions, the electric charge Q is odd
under T , while the magnetic charge M is even.

T QT −1 = −Q , T MT −1 = M . (1.2)

In particular, this means that on a charged fermion field ψ in an abelian gauge theory, we
have:

T (ψ) = γ0ψ(−t)∗ , CT (ψ) = γ0ψ(−t) . (1.3)

Although time-reversal is an antiunitary symmetry, the operator T 2 is a unitary symmetry.
In systems that depend on spin structure (like the models with fermions of interest here) there
is also a fermion number symmetry (−1)F , and this leads to several elementary possibilities
for the unitary symmetry T 2.

• Non-spin theories with T 2 = 1. We refer to this as ZT2 . In Euclidean signature this sym-
metry algebra means that the theory may be formulated on any unorientable manifold.
These systems can have an ’t Hooft anomaly for the time-reversal symmetry valued in
Z2 ×Z2 [6–9].

• Spin theories with T 2 = (−1)F . We refer to this as ZT4 . This is also the algebra realized
on the charged fermions in (1.3). In Euclidean signature this symmetry algebra means
that the theory may be formulated on unorientable manifolds with a Pin+ structure. Any
system with this symmetry has an ’t Hooft anomaly ν ∈ Z16 characterizing its behavior
on such manifolds [1,3,4,10,11].

• Spin theories with T 2 = 1. We refer to this as ZT2 × Z
F
2 . In Euclidean signature this

symmetry algebra means that the theory may be formulated on unorientable manifolds
with a Pin− structure. Unlike the cases above, there are no possible ’ t Hooft anomalies
for this symmetry algebra [12].

As we describe below, the possibilities listed above are by no means exhaustive, and we give
examples of time-reversal invariant gauge theories where T 2 is a more general unitary sym-
metry. Similar phenomena have been observed in [4,10].

One particularly interesting class of time-reversal invariant theories are certain spin topo-
logical field theories defined by Chern-Simons gauge theories at specific non-zero values of
the level. These models are not classically time-reversal invariant but they enjoy level-rank
duality that changes the sign of the level and hence defines a T symmetry of quantum theory
satisfying T 2 = (−1)F [13–15].1 A summary of these theories and their associated value of ν
is given in table 1.

1.2 What is the Global Symmetry?

As discussed above, the models of interest to us in this paper all admit an ultraviolet definition
as a gauge theory with gauge group H. To analyze their global symmetry group G, it is often
useful to discuss the related model defined by restricting the dynamical gauge fields to be
classical.

In this theory we have a set of fields with a global symmetry K . The global symmetry action
is characterized by some ’t Hooft anomaly. This means that in the presence of background K
gauge fields, the system is not gauge invariant and this lack of gauge invariance cannot be

1Certain special cases of the level also define bosonic TQFTs. However, in general the dualities below only hold
when the theories are promoted to spin theories [13,14].
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T -invariant spin-TQFT Anomaly ν (mod 16)
U(n)n,2n 2
Sp(n)n 2n
SO(n)n n

O(n)1n,n+3 n
O(n)1n,n−1 n

Table 1: Time-reversal invariant spin TQFTs and their associated anomaly ν. These
anomalies have been computed by various methods [8, 16–20]. The notation for
the levels in the O(n) Chern-Simons theory is explained in [15]. The anomaly for
the O(n)1 theories is determined based on the consistency of the conjectured phase
diagrams of [15, 20]. Note that in general redefining the orientation of spacetime
changes ν → −ν [1]. For a given theory the sign is convention dependent, but the
relative sign between theories is meaningful. For instance, in the U(n)n,2n sequence
it is natural to fix the sign to be (−1)n−1 [20]. Some of the TQFTs above also admit
unitary global symmetries of order two and these can be combined with T to produce
other antiunitary symmetries of the model with a different value of ν. An example
that will occur below is the T-Pfaffian theory vs. the CT-Pfaffian theory [3–5]. In
addition, the value of ν can depend on other choices like the eigenvalue of T 2 on
the anyons. Several special cases of these theories have been previously considered.
The example SO(2)2 ↔ U(1)1,2 is known as the semion-fermion [3]. Meanwhile
SO(3)3 was analyzed in [3], and SO(4)4 was studied in [18, 19, 21]. The theory
O(2)2,1 is equivalent to the T-Pfaffian theory [15, 22, 23], and we have the duality
O(2)2,5↔ U(2)2,4 [15].

fixed by adjusting any local term. Instead, the anomaly is characterized by a local term in one
higher dimension.

Next, we try to gauge a subgroup H ⊂ K . This can be done only when the anomaly vanishes
when restricted to H gauge fields. What is the global symmetry after this gauging? In many
cases it is given by the group

G ∼= N(H, K)/H , (1.4)

where N(H, K) is the normalizer of H in K , and we mod out by the gauged subgroup H.
As an example of this construction that will occur below, we can start with 2N f real Majo-

rana fermions and then K ∼= O(2N f ). The subgroup H ∼= U(1) that acts on the fields as Dirac
fermions of unit charge is anomaly free and can be gauged. The resulting global symmetry
group G is then PSU(N f )oZC2 , where C is a charge conjugation symmetry.

There are two phenomena that can make the answer (1.4) wrong:

• The anomaly might mean that if the gauge fields of H are dynamical, then the some of
the elements in N(H, K) are no longer a symmetry. This means that only a subgroup of
G is the true global symmetry.

• When the gauge fields of H are dynamical, we can have a new emergent symmetry ÒH.
Examples that we will see below are that in 2+1d when H ∼= U(1) we have an emer-
gent magnetic symmetry ÒH ∼= U(1). Similarly, when H ∼= SO(N) we have an emergent
magnetic symmetry ÒH ∼= Z2.

These two phenomena often mix with each other. One aspect of this is that the symmetries
ÒH and G can form a nontrivial algebra. We refer to this possibility by saying that G is deformed
by ÒH (examples were studied in [15, 21, 24]). For instance, we will describe systems with a
time-reversal symmetry T ∈ G where the unitary symmetry T 2 is neither of the two elementary
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possibilities discussed above (i.e. T 2 = (−1)F or T 2 = 1), but instead is an element of the
emergent magnetic symmetry T 2 ∈ ÒH. These symmetry algebras have been explored in [4,10].
We will also see examples where the time-reversal symmetry T participates in a non-abelian
algebra with elements of ÒH and G.

1.3 Monopole Operators and Their Quantum Numbers

Many of our results follow from a careful analysis of monopole operators in abelian gauge
theory and their quantum numbers under various global symmetries.

Consider a U(1) gauge theory with gauge field b coupled to Dirac fermionsψi of charge qi .
We follow standard conventions and label theories by an effective level k defined for massless
fermions. The effective level is partitioned into two parts. The first is the integral bare level
kbare ∈ Z, which controls the level in the UV Lagrangian. The second piece is in general
half-integral and encodes the contribution from the fermions. The level shifts under mass
deformation as shown below.

mψ < 0 mψ = 0 mψ > 0

kbare k ≡ kbare +
1
2

∑

i q2
i kbare +

∑

i q2
i

(1.5)

Note that when the fermions are massive, the level is always an integer.
In addition to the dynamical gauge field b, it is also instructive to introduce a background

gauge field A, which couples to all fermions with charge one. As in [25], A can be viewed as
a spinc connection, and we can include a mixed Chern-Simons term for A and b in the theory
with bare level Q. Thus Lagrangian of interest is

L= Q
2π

bdA+
kbare

4π
bd b+ iψ

i
(/∂ + /A+ qi/b)ψ

i . (1.6)

Our focus is on time-reversal invariant theories, which must have vanishing effective levels
and hence we adjust the counterterms to

Q = −
1
2

∑

i

qi , kbare = −
1
2

∑

i

q2
i . (1.7)

Since Q and kbare must be integers this means that T symmetry requires that the number Nodd
of fermions with odd charge qi must be even [26–28].

The fact that all the elementary fermions carry charge one under the background field A
and all the elementary bosons are neutral means that all of these models superficially sat-
isfy the spin/charge relation stating that all the fermions carry odd charge under A and all
the bosons have even charge. More mathematically, this is the statement that if A is a spinc

connection, we can formulate the theory without a choice of a spin structure (or even on a
non-spin manifold), but with a choice of a spinc structure. However, although this is true for
all the perturbative states, we should also examine monopole operators. The condition that
the spin/charge relation is satisfied for them is [25]

Q = kbare mod 2 . (1.8)

Now let us turn to the action of time-reversal. On operators constructed from the elemen-
tary fields, we have the standard relation T 2 = (−1)F . However on states carrying magnetic
charge this relation can be modified. In [2,4,10] our dynamical gauge field b was interpreted
as a classical background field and a mixed anomaly was found between time-reversal sym-
metry T and the U(1) global symmetry coupling to b. When the field b is instead dynamical
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we interpret this result to mean that the symmetry algebra is modified as in the discussion of
section 1.2. Specifically we find:

T 2 =

¨

(−1)FM Nodd = 2 mod 4 ,

(−1)F Nodd = 0 mod 4 ,
(1.9)

where in the above,
M≡ (−1)M (1.10)

generates the Z2 subgroup of the U(1) magnetic global symmetry. Notice also that
Nodd/2 = kbare mod 2, and thus the above relation can also be expressed by saying that T 2

contains the magnetic symmetry whenever kbare is odd. We review aspects of this result as
they arise below.

1.4 Summary of Models

Our first class of examples is three-dimensional quantum electrodynamics U(1)0 with N f
fermionic flavors of unit charge, where as described above we choose N f to be even to en-
sure time-reversal symmetry.

The global symmetries of these models are easily diagnosed. The continuous part is
(SU(N f ) × U(1)M )/ZN f

, where the U(1)M factor is the magnetic global symmetry that acts
on monopole operators. Additionally we have charge conjugation C and time-reversal T .

Following the discussion around (1.9), the unitary symmetry T 2 depends on the number
of flavors. Specifically we find that

N f = 0 mod 4 =⇒ T 2 = (−1)F , N f = 2 mod 4 =⇒ T 2 = (−1)FM . (1.11)

In the latter case time-reversal is an order four symmetry (denoted ZT4 ) and is mixed with the
magnetic symmetry as (U(1)M oZT4 )/Z2. We also observe that, although there are fermions
in the ultraviolet Lagrangian, these models do not have any gauge invariant local fermionic
operators.

The special case N f = 2 is worthy of separate analysis. For this theory there is a conjectured
self-duality [13,29] which implies that the IR limit has enhanced global symmetry [13,21,29,
30]. Including both C and T the pattern of enhancement is

UV :
SU(2)× Pin−(2)oZT4

Z2 ×Z2
−→ IR :

O(4)oZT4
Z2

. (1.12)

Some aspects of these models have been investigated in [2] and in related analysis in the
condensed matter literature [4, 10]. Note that compared to these works we do not say that
time-reversal symmetry is anomalous. Indeed in all of these theories, T is a global symme-
try of the model and the spectrum is organized into associated representations. However, if
N f = 2 mod 4, the symmetry T satisfies the non-standard algebra stated in (1.11). Thus in
this case it is not meaningful to compute the quantity ν. Instead we must separately classify
and compute anomalies for the correct symmetry (U(1)M oZT4 )/Z2.

Our next class of time-reversal invariant gauge theories is QED with a single fermion of
even charge q. These theories have a U(1)M magnetic symmetry as well as charge conjugation
C and time-reversal T , which obey a familiar symmetry algebra. In particular:

T 2 = (−1)F , C2 = 1 , T CT −1 = C , T exp(iαM)T −1 = exp(−iαM) .
(1.13)

Taking as input the dualities in [5, 31–33] we derive new fermionic particle-vortex dualities
which determine the long-distance behavior of these models. For instance, in the simplest
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case of a charge two fermion, the infrared is a free Dirac fermion together with a decoupled
topological field theory U(1)2.

U(1)0 +ψ with charge two ←→ free Dirac fermion χ + U(1)2 , (1.14)

where the time-reversal symmetry in the UV acts on the topological sector in the IR via level-
rank duality as in table 1.

We deform the theory (1.14) by adding monopole operators to the Lagrangian, which
breaks the magnetic symmetry toZ2 generated by (−1)M =M and preserves a new antiunitary
time-reversal symmetry T ′. The algebra of these symmetries is non-abelian. In particular:

T ′CT ′−1 = CM , T ′2 = (−1)F , (CT ′)2 = (−1)FM . (1.15)

Both the models described above admit extensions to higher rank gauge theories. One
possible such extension is to consider U(N) gauge theory. Instead here we will examine SO(N).
In this case for N > 2 the magnetic symmetry is Z2 with generator M.

In the case of QED3 with N f flavors the natural generalization is to SO(N) Chern-Simons
theory coupled to N f fermions in the vector representation. These theories have been recently
studied in [14, 15, 34] and participate in many dualities. These models have an O(N f ) flavor
symmetry with flavor charge conjugation symmetry C f as well as the Z2 magnetic symmetry
M, and we demonstrate that their algebra with time-reversal is non-abelian

T C f T −1 = C f M . (1.16)

Analogously, QED3 with a charge two fermion naturally generalizes to SO(N)0 coupled to
a fermion in the symmetric tensor representation. These models have global symmetries C,
M, and T and we demonstrate that the algebra is non-abelian

T CT −1 = CM . (1.17)

As we describe below, this algebra is intimately related to the jump across tensor transitions
of certain discrete θ -parameters in these models [15]. We study the algebra (1.17) in the
context of the phase diagram of these theories determined in [34], and compute the time-
reversal anomaly ν using both the UV and IR descriptions.

We also briefly discuss similar theories of SO(N)0 coupled to adjoint fermions, which also
enjoy the algebra (1.17).

The outline of this paper is as follows. In section 2 we analyze QED3 with N f fermions of
unit charge and derive the algebra (1.9) by analyzing the monopole operators. In section 3,
we consider QED3 with a single fermion of general even charge, and we determine its long-
distance behavior both with and without monopole operator deformations. In section 4 we
consider SO(N)0 coupled to N f vector fermions and derive the non-abelian algebra (1.16).
Finally, in section 5 we analyze SO(N)0 theories with tensor fermions. We demonstrate the
algebra (1.17), and elucidate its interplay with the IR phase diagram.

2 QED3 with N f Fermions of Charge One

In this section we study U(1) gauge theories with time-reversal symmetry. We consider models
with N f species of fermionsψi of charge one, where i is a flavor index. We will be interested in
the global symmetry group, including the interplay of unitary symmetries and time-reversal.
As reviewed in the introduction, we must have N f ∈ 2Z to have T symmetry.
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The unitary global symmetries of this model have been analyzed in detail in [21]. They
form the group

SU(N f )× U(1)M
ZN f

oZC2 , (2.1)

where the SU(N f ) subgroup acts on the fundamental fields, the U(1)M factor is the monopole
symmetry, and ZC2 is the charge conjugation symmetry. Finally the ZN f

subgroup defining the
quotient is generated by:

(e2πi/N f IN f
,−1) ∈ SU(N f )× U(1)M , (2.2)

where IN f
is the identity matrix. Note that this quotient does not lead to the group U(N f ).

Let us review the derivation of (2.1). On the elementary fields the magnetic symmetry does
not act and the PSU(N f )oZC2 symmetry is given by the construction described around (1.4).
Meanwhile, the precise global form of the group including the magnetic symmetry U(1)M can
be determined by a careful analysis of the monopole operators. It is instructive to first view
the gauge field as classical, and to work out the spectrum including charged operators. We
then restore the fact that the gauge field is dynamical, and select the gauge invariant local
operator.

In the background of a minimally charged monopole, each fermion ψi and ψi has a single
zero mode with spatial wavefunction ρ(x). Considering only the zero modes, we expand the
fields as

ψi = αiρ(x) , ψi = α
†
i γ0(ρ(x))

∗ , (2.3)

where αi and α†
i are creation and annihilation operators that have equal time commutation

relations {αi ,α†
j}= δ

i
j . Since the fields have charge ±1, these creation and annihilation oper-

ators have no spin.
We now quantize this spectrum of zero modes. Let |0〉 denote the bare monopole state

defined to be annihilated by α†
i for all i. It has zero spin, and electric charge kbare = −N f /2.

Quantizing the Clifford algebra of zero modes leads to the state space

|0〉 , αi1 |0〉 , αi1αi2 |0〉 , · · · αi1αi2 · · ·αiNf |0〉 . (2.4)

We then define monopole operators Mi1 i2···i` via the associated state

|Mi1 i2···i`〉 ≡ αi1αi2 · · ·αi` |0〉 . (2.5)

These operators transform in totally antisymmetric representations of SU(N f ) with ` indices,
and they are all bosonic. The gauge invariant monopole operator has ` = N f /2. Note that
under the center of SU(N f ), this has N f -ality N f /2, which leads to the quotient (2.2).

Having understood the monopole operators, we continue our investigation of the symme-
tries. Observe that gauge invariant operators constructed out of the elementary fermions or
gauge field strengths must have an even number of fermions and are therefore bosons. As our
analysis of the monopole operators illustrates they are also bosons. Therefore we conclude
that all gauge invariant local operators in this theory are bosons. Another way to see this is
that the theory satisfies the spin/charge relation where the dynamical gauge field is a spinc

connection, and thus gauge invariant local operators must have integral spin [25].
We now turn to our main focus which is the time-reversal symmetry T of these models.

On the elementary gauge non-invariant fermion fields this symmetry acts as stated in (1.3).
This shows that on operators built from fundamental fermions we have a standard algebra
T 2 = (−1)F .

To determine the action of T in sectors with non-vanishing monopole number we observe
that the sum of the operators Mi1 i2···i` for general ` form a Clifford algebra representation
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for Spin(2N f ), and the operator T is an anti-linear involution on this spinor representation.
The operator T 2 is then either +1 or −1 depending on whether the representation is real or
pseudoreal. Combining this with the discussion of the spin above we deduce

T 2 =

¨

(−1)FM N f = 2 mod 4 ,

(−1)F N f = 0 mod 4 ,
(2.6)

where M= (−1)M .
More explicitly, time-reversal symmetry organizes the spectrum of fermion zero-modes

into singlets and Kramers doublets. Using the mode expansion (2.3) we see that the creation
and annihilation operators are related as T αiT −1 = α†

i . From this it follows that the bare
monopole |0〉 is mapped by T to the top state in (2.4). More generally, time-reversal acts on
the monopole operators as

T Mi1 i2···i`T −1 =
(−1)

`(`−1)
2

(N f − `)!
εi1 i2···i` j1 j2··· jNf −`

M
j1 j2··· jNf −` . (2.7)

Notice that time-reversal changes fundamental indices of SU(N f ) into antifundamental in-
dices. The gauge invariant monopole operator is in a representation of SU(N f ) that is isomor-
phic to its complex conjugate and therefore (2.7) maps the monopole operator to itself. Using
this formula it is straightforward to reproduce (2.6).

It is also instructive to consider a deformation of this theory that reduces the global sym-
metry. We add to the Lagrangian an operator of monopole number two:

δL= δi1 j1δi2 j2 · · ·δiNf /2
jNf /2

M
i1 i2···iNf /2M

j1 j2··· jNf /2 + c.c. . (2.8)

This deformation breaks the U(1)M symmetry down to a Z2 subgroup generated by M. It
also breaks the flavor symmetry (2.1) down to the subgroup that preserves δi j , which is the
orthogonal group O(N f ). In particular, it preserves a Z2 charge conjugation element C f that
acts by reflection on one of the flavor indices. Of course, there are other ways to contract
the indices in the double monopole (2.8). For example, for N f = 0 mod 4 we can replace all
δi j → Ji j with the standard antisymmetric Ji j to break SU(N f )→ Sp(N f /2). We will focus on
(2.8) with the breaking to O(N f ) because it exists for all even N f and it fits the discussion of
SO(N) in section 4 below.

Let us investigate the algebra formed by time-reversal T and the symmetry C f . Clearly on
local operators constructed by polynomials in fields these operators commute. However, on
monopole operators we find a more interesting result. Since T acts as (2.7), the C f charge of
a monopole operator (i.e. ±1) is changed by the action of T . Thus T and C f do not commute
in a sector with monopole charge, but instead they obey the algebra

T C f T −1 = C f M . (2.9)

One implication of this symmetry algebra is that

(C f T )2 = T 2M . (2.10)

The operator C f T is another antiunitary symmetry that reverses the orientation of time and
hence gives another time-reversal symmetry of this theory. What we see from (2.9) is that one
or the other of T 2 or (C f T )2 must always involve the magnetic symmetry M.
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2.1 Nf = 2: O(4) Unitary Symmetry

The simplest model that exhibits T 2 =M is the case N f = 2. This model is special because
it has been conjectured to flow to an infrared fixed point with unitary O(4) symmetry [13,21,
29,30]. Here we will discuss the interplay between the enhanced symmetry and time-reversal.

The basis for the claim that the theory has enhanced global symmetry in the IR is a conjec-
tural self-duality [13, 29], which acts on the (SU(2)× U(1)M )/Z2 global symmetry discussed
in the previous section. Specifically, the duality exchanges a U(1) subgroup of the SU(2) sym-
metry that acts on the fundamental fermions with the U(1)M magnetic symmetry. Since the
former is part of an SU(2) the latter must be as well.

More precisely, the duality in question states the equivalence of long-distance limits of the
following two Lagrangians [13]2

iψ
1
/Da+Xψ1 + iψ

2
/Da−Xψ2 −

1
4π

ada+
1

2π
adY +

1
4π

Y dY

←→ iχ1 /D
ea+Yχ1 + iχ2 /D

ea−Yχ2 −
1

4π
eadea+

1
2π
eadX +

1
4π

X dX . (2.11)

In the above a, ea are dynamical U(1) gauge fields,3 and ψ,χ are Dirac fermions. The fields X
and Y are background U(1) gauge fields coupling to the global symmetries that are exchanged
under the duality. In the first line Y couples to the magnetic symmetry and X couples to the
charged fields, while in the dual Lagrangian on the second line their roles are reversed.

In order to determine the enhanced IR symmetry and the properties of the time-reversal
symmetry T in this model, we must first describe the complete UV symmetries. We use the
language of the first line in (2.11). In addition to the (SU(2)×U(1)M )/Z2 symmetry described
in general in the previous section, there is also an order two charge conjugation symmetry C
that acts as

C(ψ) =ψ , C(a) = −a , C(X ) = −X , C(Y ) = −Y . (2.12)

The theory also has time-reversal symmetry T with T (a) = a,T (Y ) = −Y. We also define

εX be the order four element in SU(2) given by the matrix εX =

�

0 1
−1 0

�

. These discrete

symmetries of the UV theory are summarized in table 2.

Symmetry a X Y ea
C −1 −1 −1 −1
εX +1 −1 +1 −1

CY ≡ CεX −1 +1 −1 +1
T +1 +1 −1 −1

Table 2: Symmetries and their eigenvalues in U(1)0 with two fermions of charge
one. Note that Y is charged under T , and that CYT commutes with the unitary
global symmetry. Under the duality (2.11), X ↔ Y and a↔ ea.

Consider in particular the element CY defined above. This stabilizes the SU(2), but acts on
the U(1)M magnetic symmetry as reflection. Moreover, using the quotient described in (2.2),
we see that (CY )2 = (−1)M . It follows that including charge conjugation extends U(1)M to the
group Pin−(2)M . Thus the unitary global symmetry in the ultraviolet is [30]4

SU(2)× Pin−(2)
Z2

. (2.13)

2Below and in the following we omit gravitational Chern-Simons terms in our description of dualities.
3More precisely they are spinc connections [25].
4This corrects a small misidentification of the global symmetry group in [21].
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Now let us consider the implication of the self-duality (2.11). Since the duality exchanges
the Cartan subgroup of the SU(2) with the U(1)M magnetic symmetry, it is clear that (2.13)
must be enhanced in the IR to a group where the two factors in the numerator are on equal
footing. The simplest possibility is O(4)

UV :
SU(2)× Pin−(2)

Z2
−→ IR : O(4) . (2.14)

Note that the exchange of the two SU(2) subgroups is now implemented by the duality which
acts as a global symmetry.

The group O(4) has a Z2 center subgroup with non-trivial element z. From the point of
view of the first duality frame in (2.11) we recognize that z = (−1)M . Using our analysis of
monopole operators in the previous section we therefore have:

T 2 = (CT )2 = z . (2.15)

This is consistent with the duality, which acts on the discrete symmetries in table 2 as

C ←→ C , T ←→ CT , εX ←→ CεY , CεX ←→ εY . (2.16)

3 QED3 with Fermions of Even Charge

In this section we consider quantum electrodynamics with a single fermion ψ of general even
charge q. Since the charge is even, we can adjust the bare Chern-Simons level to achieve a
time-reversal invariant theory U(1)0. These theories have unitary symmetry U(1)M oZC2 .

As in our analysis in section 2, our goal is to elucidate the properties of T . On the local
operators built from polynomials in the fields we find as usual T 2 = (−1)F . (In fact all the
elementary gauge invariant local operators are bosons.) Thus we now turn to the monopole
operators. The analysis is similar to that of the previous section, and hence we will be brief.
For a complete treatment see [2].

In the background of a monopole of unit charge, the field ψ now has q zero modes, which
form an irreducible representation under the Lorentz group of spin j = (q − 1)/2. Notice
that since q is even, the modes carry half-integral spin. These zero modes act on the bare
monopole state, |0〉, which has zero spin and electric charge kbare = −q2/2. The gauge invari-
ant monopole operator M is dressed by q/2 zero modes and hence we deduce that its statistics
is correlated with the electric charge as

M is

¨

fermionic q = 2 mod 4 ,

bosonic q = 0 mod 4 .
(3.1)

Meanwhile, we can also compute the sign produced by T 2 acting on monopole operators.
In this case, the modes fill out a Dirac spinor of Spin(2q), and T 2 on these states is +1 if the
spinor is real, and −1 if the spinor is pseudoreal. We can compare this to the statistics of the
monopole and we find, for all charge q, the expected relation T 2 = (−1)F . Thus the algebra
of symmetries involving time-reversal is simple

T 2 = (−1)F , T CT −1 = C , T exp(iαM)T −1 = exp(−iαM) . (3.2)

Notice also that for q = 2 mod 4 the only fermionic operators are those with odd monopole
number and hence (−1)F = (−1)M , while for q = 0 mod 4 all gauge invariant local operators
are bosons.
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Let us also discuss the possible anomalies of the time-reversal symmetry T . We can com-
pute the time-reversal anomaly ν valued in Z16 by counting Majorana fermions λ in the UV
lagrangian. In this calculation, a given fermion can have a sign σ that appears in the formula
T (λ) = σγ0λ, and the contribution to ν of λ is σ. This leads to the formulas

νT = 2 , νCT = 0 . (3.3)

3.1 Infrared Behavior

The models discussed above have simple long-distance description that can be derived assum-
ing the particle-vortex dualities studied in [5,31–33]. This duality states that the following two
Lagrangians describe the same IR physics (note the carefully normalized coefficients [33]):

iψ /DAψ−
1

4π
AdA ←→ iχ /Daχ −

1
2π

ad b+
2

4π
bd b−

1
2π

bdA . (3.4)

In the above, our conventions are such that lower case letters (such as a, b) indicate dynamical
abelian gauge fields, while capital letters (such as A) indicate classical background fields that
couple to global symmetry currents.

Let us briefly summarize several aspects of this duality. The right-hand-side above is an
interacting Chern-Simons matter theory with χ a Dirac fermion of charge one. In particular it
defines a non-trivial RG flow. Meanwhile, the left-hand-side is free theory of a Dirac fermionψ,
which can therefore be viewed as the long-distance limit of the interacting theory. Under the
duality, the magnetic global symmetry of the interacting theory is exchanged with the flavor
symmetry in the dual free Dirac description. Thus, the operator ψ is dual to the monopole
operator in the interacting description.

3.1.1 Duality for a Charge Two Fermion

We now assume (3.4) and use it to derive the IR behavior of U(1)0 coupled to an even charge
fermion beginning with the case q = 2.

We substitute A→ 2U and add classical terms 2
4πUdU + 1

2πUdB on both sides of (3.4),
where U and B are new background fields. We then set U → u and promote u to be dynamical.
On the right-hand-side, if we change variables to bu= u−b then the field b becomes a Lagrange
multiplier that can be integrated out. This results in the fermion-fermion duality5

iψ /D2uψ−
2

4π
udu+

1
2π

udB ←→ iχ /DBχ +
2

4π
budbu+

1
2π
budB . (3.5)

The left-hand side above is QED with charge-two Dirac fermion ψ. In this duality frame, the
classical field B couples to the U(1)M magnetic global symmetry. The dual description on the
right-hand side is a free Dirac fermion and the TQFT U(1)2, which we can view as the IR limit
of the interacting theory. In this frame B couples to the χ flavor symmetry and to the U(1)2
sector. Thus, as in the particle-vortex duality (3.4), the monopole operator becomes a free
field at long distances.

Notice that both sides of the duality have T symmetry. On the left-hand side this is simply
because the bare Chern-Simons level for the dynamical gauge field u has been adjusted to
make the theory time-reversal invariant. On the right-hand side the time-reversal symmetry
exists because level-rank duality U(1)2 ↔ U(1)−2 (see table 1). Although both theories are
time-reversal invariant, their two antiunitary symmetries are exchanged under the duality

T ←→ CT . (3.6)
5We can repeat this analysis with the substitution A → A+ 2U and then make U dynamical, while keeping

a nontrivial background spinc connection A. Then we have a duality similar to (3.5), which is valid on a spinc

manifold. However, if we do that the time-reversal symmetry is modified to T (A) = A, T (B) = −B + 2A.
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This can be seen by comparing the transformation properties of the various gauge fields. For
instance on the left-hand side T (u) = u and hence T (B) = −B. Therefore the dual description
of this symmetry must act with a minus sign on bu and hence is CT .

We can also compare the time-reversal anomalies for these theories across the duality.
In the description as U(1)0 with a charge two fermion the anomalies are read off from the
Lagrangian resulting in (3.3). This matches with the free Dirac description if we use the fact
that the anomaly for the semion-fermion spin TQFT U(1)2 is

νT (U(1)2) = −2 , νCT (U(1)2) = 2 , (3.7)

where T and CT denote two distinct ways that the time-reversal anyon permutation symmetry
can couple to the theory (they are also called SF− and SF+ in the literature) [4,8,16].

One way to check the duality (3.5) is to deform both sides by relevant operators. Assuming
that the RG flow is smooth, the resulting theories after deformation must still be dual. Across
the duality (3.5) the fermion mass terms map to each other with a relative sign ψψ↔−χχ.
For positive coefficient of ψψ, the two sides of the duality flow to U(1)2 coupled to a back-
ground magnetic gauge field. For negative coefficient of ψψ the duality becomes:

−
2

4π
udu+

1
2π

udB ←→
2

4π
budbu+

1
2π
budB +

1
4π

BdB . (3.8)

Again, these two theories are equivalent via level-rank duality.
It is useful to explore how this theory and its long-distance behavior are modified when

we add monopole operators to the Lagrangian. These results will also enable us to anticipate
many features of the higher rank SO(N)+ tensor gauge theories described in section 5.

We perturb the theory by a bosonic operator of monopole charge two [20]:6

δL = iM2 + h.c.. This interaction breaks the U(1)M magnetic symmetry down to Z2 gen-
erated by (−1)M ≡M. This interaction also breaks the symmetry T . However it preserves a
new symmetry

T ′ ≡ T eiπM/2 . (3.9)

It is straightforward to determine the algebra of the unbroken symmetries C,M,T ′ using
their embedding in the algebra (3.2). We have

T ′CT ′−1 = T eiπM/2Ce−iπM/2T −1 = (T eiπM/2T −1)(T CT −1)(T e−iπM/2T −1) = CM . (3.10)

Thus the algebra of symmetries is now non-abelian. By similar manipulations we can also
determine that

(T ′)2 = (−1)F , (CT ′)2 = (−1)FM . (3.11)

Note also that the time-reversal anomaly νT ′ is simply equal to νT since the operators only
differ by a magnetic symmetry in the UV. Meanwhile for the antiunitary symmetry CT ′ the
anomaly ν is no longer meaningful.

We can also find the same result using the infrared description (3.5). The UV monopole
operator interaction maps to a mass term (χ1)2 − (χ2)2, where we have written the complex
fermion in terms of Majorana components. This mass term breaks the flavor symmetry down
to a Z2 subgroup. Each mass term χ2

i is odd under T , and hence time-reversal is also broken.
However, the combination of T with a flavor rotation by π/2 is preserved and is identified
with T ′.

The effect of this mass term is to split the Dirac point into two distinct Majorana points.
The phase in the middle is U(1)2 ∼= SO(2)2 as illustrated in figure 1.

6In general we can add the operator αM2+h.c. for complex coefficient α. Here we consider the C-even monopole
perturbation. If instead we add a C-odd deformation, then we find equivalent physics. Specifically, the perturbed
theory preserves C′ = CeπiM/2 and T , and the two symmetries again do not commute: T −1C′T = C′M.
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 𝑈(1)0 with charge 2 + double monopole 

Free Majorana 𝜒1 + 𝑆𝑂(2)2  

𝑆𝑂(2)2 

↕ 

𝑆𝑂(2)−2 

𝑚𝜓 ≫ 0 𝑚𝜓 ≪ 0 

Free Majorana 𝜒2 + 𝑆𝑂(2)−2  

𝑆𝑂(2)2 

 

𝑆𝑂(2)−2 

 

Figure 1: The phase diagram of U(1) gauge theory coupled to a Dirac fermion with
charge two, together with a double monopole perturbation. The monopole perturba-
tion splits the free Dirac point into two Majorana points. These transitions separate
TQFTs.

3.1.2 Duality for General Even Charge

We now extend our analysis to theories with a general even charge q. Starting from (3.5) we
add the classical terms − q/2

2π BdX + 1
2πX dbB to both sides. We then set B→ b and X → x with

x , b dynamical (on the right we also rename x as bx). On the left-hand side, the integral over
b is trivial leading to the duality

iψ /Dqxψ−
q2/2
4π

xd x +
1

2π
xdbB ←→ iχ /Dbχ +

2
4π
budbu+

1
2π
bud b−

q/2
2π

bdbx +
1

2π
bxdbB .

(3.12)

Note that in the special case q = 2, we can also integrate out bx on the right and reproduce the
duality (3.5).

The left-hand side of the duality (3.12) is QED with even charge q fermion ψ. The right-
hand side is a free Dirac fermion χ together with a U(1)2. The field bx is a Lagrange multiplier,
which reduces b to a Zq/2 gauge field which couples to both χ and the topological sector
U(1)2. On local operators the effect of the Zq/2 gauge field is simply to quotient the spectrum.
In particular, the right-hand side is effectively free and hence can be viewed as the IR limit of
the interacting theory on the left-hand side.

Many of the essential features of this duality are similar to the case of charge two.

• The unit charge monopole operator M in the QED description maps across the duality to
the operator χq/2, which is the minimal local operator consistent with the Zq/2 quotient.
Note (via integrating out bx) that both operators couple to the background field bB with
unit charge and that the statistics of these operators agree from our general result (3.1).

• Both theories are time-reversal invariant. Across the duality T and CT are exchanged
and the time-reversal anomalies agree using (3.7).

• The fermion mass terms match again up to a relative sign. Deforming the duality by
these relevant operators we find that both theories flow to the TQFT U(1)±q2/2.

As a further consistency check of the general charge q duality, we can match the one-form
symmetry and its ‘t Hooft anomaly. Both theories in (3.12) have Zq one-form symmetry [35]:
on the left it is generated by x → x + 1

q dθ for periodic scalar θ ∼ θ + 2π, while on the right
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it is generated by bx → bx + 1
q dθ and bu → bu + 1

2 dθ . We can turn on background gauge field
B2 for this one-form symmetry and study its ‘t Hooft anomaly. Since the fermion mass term
is invariant under the one-form symmetry, the anomaly can be computed from the resulting
TQFT U(1)±q2/2 under the mass perturbation mψψ with m positive or negative. This gives
the same Z2 ⊂ Zq valued anomaly on both sides of the duality

π

∫

Y

P(B2)
2

, (3.13)

where Y is a closed four-manifold, P is the Pontryagin square with coefficient in Zq, and B2 is
the background two-form Zq gauge field for the one-form symmetry.

3.1.3 Monopole Deformation of the Charge Four Theory

Let us now specialize from general charge q and consider some aspects of the theory with
q = 4. This is the same theory as Spin(2)0 coupled to a symmetric tensor fermion [15] and
hence our results here anticipate the higher-rank generalizations of section 5.

Again we find it useful to add a monopole operator interaction to break the magnetic
U(1)M symmetry. In the Spin(2)0 theory the unit charge monopole M of the SO(2)0 theory is
absent and instead, the basic allowed monopole operator is the charge two monopole M2 of
SO(2)0. As in the analysis of section 3.1.1, we add the perturbation δL = iM2 + h.c., but in
this case, the U(1)M symmetry is completely broken.

This deformation breaks the time-reversal symmetry T , but preserves the antiunitary sym-
metry T ′ = T eiπM . Therefore after deformation the unbroken symmetries are T ′ and charge
conjugation C. By using the algebra (3.2) we find that after the deformation the symmetry
algebra is standard

T ′CT ′−1 = C , C2 = 1 , T ′2 = (−1)F (3.14)

Moreover, the time-reversal anomalies are unmodified from their values before the symmetry
breaking perturbation, i.e. νT ′ = νT and νCT ′ = νCT .

The long-distance behavior for the theory with q = 4 and the symmetry breaking monopole
perturbation can be obtained by gauging the Z2 magnetic symmetry M in the phase diagram
of the theory with q = 2 presented in figure 1. In the IR, the monopole deformation is a mass
term (χ1)2 − (χ2)2 for the two Majorana fermions, and integrating out these massive fields
generates a non-trivial Lagrangian for the new Z2 gauge theory. Specifically this is the theory
(Z2)1, where the subscript indicates that this is the minimal consistent level in Z2 gauge theory.
(See [15] for additional discussion.)

Taking into account the new topological sector from gauging M we find that in the pres-
ence of the monopole perturbation, the infrared theory is the TQFT

U(1)8 × (Z2)1
Z2

←→ O(2)2,1 , (3.15)

where the quotient on the left-hand side gauges the one-form symmetry generated by the prod-
uct of a charge 4 line in U(1)8 and the Wilson line of the Z2 gauge theory. This is equivalent
to the T-Pfaffian spin TQFT [22,23], and it is also dual to O(2)2,1 [15].

In particular, the time-reversal anomalies νCT = 0,νT = 2 agree with those of T-Pfaffian+
(the subscript indicates a particular definition of the antiunitary symmetry). Note that the
names T ,CT are reversed in the literature, see [4,16] for νCT for T-Pfaffian, and [3,5] for νT .
The latter symmetry of T-Pfaffian is the diagonal subgroup of the conventional time-reversal
symmetry and the magnetic symmetry of O(2). (In the duality U(1)8 ↔ O(2)2 the charge
conjugation symmetry of U(1)8 maps to the magnetic symmetry of O(2)2 [15].)

The resulting phase diagram is illustrated in figure 2
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𝑈(1)0 with charge 4 + monopole 

𝑂(2)2,1 

↕ 

𝑂(2)−2,−1 

𝑈(1)−8 

↕ 

𝑂(2)2,2 

𝑈(1)8 

↕ 

𝑂(2)−2,−2 

𝑂(2)
−2,−

3

2

 + 𝐶- odd Majorana 𝜒2 

 

𝑚𝜓 ≫ 0 𝑚𝜓 ≪ 0 

(T-Pfaffian) 

𝑂(2)
2,
3

2

 + 𝐶- odd Majorana 𝜒1 

Figure 2: The phase diagram of U(1) gauge theory coupled to a Dirac fermion of
charge four, with a minimally charged magnetic monopole perturbation. In the two
dual descriptions the Majorana fermion χ couples to the Z2 gauge field of O(2) by
the transformation χ →−χ. The low energy TQFT is the T-Pfaffian theory.

4 SO(N)0 with Vector Fermions

In this section we consider SO(N)0 with N f fermions in the vector representation, where N f is
even to avoid the standard parity anomaly. These theories have a time-reversal symmetry T ,
whose basic properties we discuss below. In section 2 we analyzed the case N = 2, and many
features of those models are common to the case N > 2.

We first describe the global unitary symmetries. There is a flavor symmetry O(N f ), which
includes a flavor charge conjugation C f that acts on one of the flavor indices as reflection.
There is also charge conjugation C and aZ2 magnetic symmetryM.7 Notice that in comparison
with the abelian gauge theories analyzed in section 2 the magnetic symmetry in SO(N) for
N > 2 is always Z2 (measured by the Z2-valued second Stiefel-Whitney class). Thus the global
symmetries agree with those of U(1)0 with N f flavors after the deformation by a monopole
operator of charge two.

Now let us consider the time-reversal symmetry T . Clearly on local operators constructed
out of the elementary fields we find the standard algebra (i.e. T 2 = (−1)F ). Meanwhile on
monopole operators the analysis of time-reversal symmetry and its square is similar to that of
section 2. The basic monopole can be described by a gauge field configuration with unit flux in
SO(2) ⊂ SO(N), and each of the N f fermions in the vector representation has one zero mode.

Therefore, we similarly find that the time-reversal symmetry T does not commute with C f
on operators carrying magnetic charge

T C f T −1 = C f M . (4.1)

In addition we have

T 2 =

¨

(−1)FM N f = 2 mod 4 ,

(−1)F N f = 0 mod 4 ,
(C f T )2 =

¨

(−1)F N f = 2 mod 4 ,

(−1)FM N f = 0 mod 4 .
(4.2)

7Depending on Nf and N , there can be discrete identifications on these global symmetries when acting on gauge
invariant local operators.
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We can also compute the time-reversal anomaly ν of these theories. For an antiunitary
symmetry that squares to (−1)F , ν is given by the number of Majorana fermions ψ that trans-
form as ψ(x , t)→ γ0ψ(x ,−t) minus the number of Majorana fermions ψ′ that transform as
ψ′(x , t)→−γ0ψ′(x ,−t). Therefore

νT = NN f , νC f T = NN f − 2N . (4.3)

Notice that it is not obvious that the answer (4.3) is gauge invariant since the sign in the
time-reversal transformation of a fermion can be changed by a gauge symmetry. Consider for
instance combining T or C f T with the Z2 ⊂ SO(N) gauge transformation diag(1, · · · − 1, · · · )
with 2p total minus signs. The time-reversal anomalies (4.3) change to

∆νT = 4N f p , ∆νC f T = 4(N f − 2)p . (4.4)

However as emphasized above, the anomaly ν of an antiunitary symmetry is only meaning-
ful when that symmetry squares to fermion parity. According to (4.2) when this is so, the
ambiguity above vanishes in Z16, and the anomaly ν is well-defined.

As a final remark on these models, let us consider gauging the magnetic symmetry M.
This changes the gauge group from SO(N) to Spin(N) [15]. From (4.2), we conclude that in
the Spin(N)0 gauge theory coupled to vector fermions both T and C f T square to (−1)F . In
particular, the anomaly ν is meaningful for both symmetries.8 This is also compatible with the
calculation (4.4). The group Spin(N) is a double covering of SO(N), and the gauge transfor-
mation used in (4.4) is an Z2 element only if p is even.

5 SO(N)0 with Two-Index Symmetric Tensor Fermion

For our final class of models, we consider SO(N)0 with one fermion in the two-index symmetric
tensor representation. Across the transition where the fermion becomes massless the Chern-
Simons level jumps from −(N + 2)/2 to +(N + 2)/2. Therefore, N must be even to achieve a
time-reversal invariant theory at zero fermion mass. Aspects of these theories were discussed
in [15,20]. The special case N = 2 is U(1) gauge theory coupled to a charge two fermion and
was analyzed in section 3.

These models have unitary global symmetry C and M which form Z2×Z2, as well as time-
reversal symmetry T . Notice that these are the symmetries present in U(1) plus a charge two
fermion, after deformation by a monopole operator of magnetic charge two. Therefore many
of aspects of these models are similar.

5.1 Time-Reversal Symmetry and its Anomaly

As in all our previous analysis, on elementary fields the time-reversal symmetry T satisfies
T 2 = (−1)F and hence we turn to the sector with non-trivial monopole charge. The bare
classical monopole operator transforms in the (N+2)/2-index symmetric tensor representation
of SO(N). This can be derived, for instance, by giving the fermions mass and using

kbare = −
N + 2

2
. (5.1)

8More generally, whenever we have the algebra T 2 = (−1)F X with some X we could try to gauge the symmetry
generated by X to find a new theory with T 2 = (−1)F . However, there is a subtlety in doing it. A mixed anomaly
between T and X in the original theory can mean that after gauging T is no longer a symmetry. More precisely, as
we said in the introduction, the gauging of X leads to a one-form global symmetry generated by bX and the mixed
anomaly can lead to a new symmetry, a 2-group, which mixes T and bX [36]. We will not analyze it in detail here.
We simply point out that in the example above and in section 5.3 this phenomenon does not happen.
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If N = 0 mod 4, this representation is charged under the center of SO(N) and cannot be
screened by any elementary fermion field. Thus in this case, there is no local monopole oper-
ator. By contrast when N = 2 mod 4, the bare monopole is neutral under the center of SO(N)
and hence can be dressed by fermions to form a gauge invariant local operator.

Regardless of whether the charge of the monopole can be screened by fundamental fields,
we can always produce sectors with monopole charge by attaching an appropriate Wilson line
to classical configuration. The resulting object is gauge invariant, but nonlocal since it now
contains the line.

The algebra of global symmetries in sectors with magnetic charge can again be understood
by analyzing zero modes in a monopole background. To be specific, we consider a unit mag-
netic flux in the N , N − 1 direction of the gauge group which breaks SO(N) to
(O(2)×O(N − 2))/Z2. The symmetric tensor fermion decomposes in this background into
the following fields:

• A Dirac fermion of charge 2 under O(2) which is neutral under O(N − 2). This field has
two zero modes which form a spin 1/2 doublet. We indicate them by ψa for a = 1,2.
There are also complex conjugate fields.

• A Dirac fermion of charge 1 under the O(2) which transforms as a vector of O(N − 2).
This field has N − 2 zero modes which are Lorentz scalars. We denote them via their
embedding in the symmetric tensor as (ψ(N ,N− j) + iψ(N−1,N− j)), where j = 1, · · ·N − 2.
There are also complex conjugate fields.

• (N2 − 3N + 2)/2 fermions which are neutral under the O(2). These fields have no zero
modes in the monopole background and hence decouple from our analysis.

Let |0〉 indicate the bare monopole described above. Quantizing the zero-modes leads to
a Hilbert space of states

|0〉 , · · · , ψ1ψ2

N−1
∏

j=2

(ψ(N ,N− j) + iψ(N−1,N− j))|0〉 , (5.2)

any of which can be made gauge invariant by attaching a suitable Wilson line. The action of
time-reversal symmetry T exchanges the top and bottom states listed in (5.2). Notice that
charge conjugation C acts by a sign on fields with gauge index one. Therefore, the bottom and
top states above have opposite charge under C, and we see that the algebra of symmetries is
non-abelian

T CT −1 = CM . (5.3)

The non-abelian algebra above is closely related to the behavior of discrete θ -parameters
discussed in [15]. Specifically, for any level k we can consider the SO(N)k+tensor fermion
theory coupled to a background Z2 gauge field BC for the charge conjugation global symmetry.
As the mass of the tensor is transitioned from negative to positive the effective action shifts by
the coupling π

∫

X BC ∪ w2 where w2 is the second Stiefel-Whitney class of the SO(N) bundle,
which measures the charge M. This means that across such a tensor transition the symmetry
C is exchanged with CM. In the specific case of a time-reversal invariant theory this implies
(5.3) since the fermion mass is odd under T .

We can also compute the action of T 2 and (CT )2. Since the monopole is effectively abelian
T 2 is fixed by the parity of the bare Chern-Simons level as described in section 1.3. Using the
formula (5.1) we conclude that

T 2 =

¨

(−1)F N = 2 mod 4 ,

(−1)FM N = 0 mod 4 ,
(CT )2 =

¨

(−1)FM N = 2 mod 4 ,

(−1)F N = 0 mod 4 .
(5.4)
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Figure 3: The phase diagram of SO(N) gauge theory coupled a symmetric tensor
fermion S. The infrared TQFTs, together with relevant level-rank duals are shown
along the bottom. The blue dots indicate the transitions from the semiclassical phase
to the quantum phase. Each of these transitions can be described by a dual theory
with adjoint fermions, in which the transition can be seen at weak coupling. These
dual theories cover part of the phase diagram. These figures are identical to those
in [20], with the map of the Z2×Z2 unitary global symmetry determined from [15].

It is also straightforward to compute the time-reversal anomaly ν for these theories [20]

νT =
N2 + N − 2

2
, νCT =

N2 − 3N + 2
2

. (5.5)

As a consistency check, consider mixing T or CT with a Z2 ⊂ SO(N) gauge transformation
diag(1, · · · − 1, · · · ) with 2p minus signs. The change in the anomalies is

∆νT = 8p2 − 4N p , ∆νCT = 8p2 + 8p− 4N p . (5.6)

Exactly when T or CT square to fermion parity, these changes above vanish modulo sixteen
as expected.

5.2 Time-Reversal Symmetry in the IR

The long-distance behavior of these models has been analyzed in [20] leading to the proposed
phase structure summarized in figure 3.

In particular, for small fermion mass the theory is conjectured to flow to a quantum phase
described by the spin TQFT SO(n)n with n= (N +2)/2. This theory is time-reversal invariant
as a spin TQFT by level-rank duality [14] (see table 1)

SO(n)n ←→ SO(n)−n . (5.7)

Let T IR be the time-reversal symmetry of the infrared TQFT that squares to (−1)F . It is
related to the UV symmetries discussed in the previous section via

T IR =

¨

T UV N = 2 mod 4 ,

CUVT UV N = 0 mod 4 .
(5.8)
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The time-reversal anomaly ν for the TQFT SO(n)n is known to be n [19]. Combining this with
the map (5.8) of UV and IR symmetries we can check the phase diagram of figure 3 using
anomaly matching. We have:

N = 2 mod 4 =⇒ νUV − νIR = νT UV − n=
N2 + N − 2

2
−

N + 2
2
=

N2 − 4
2

, (5.9)

N = 0 mod 4 =⇒ νUV − νIR = νCUVT UV − n=
N2 − 3N + 2

2
−

N + 2
2
=

N2 − 4N
2

.

Both expressions vanish modulo sixteen as expected.
The charge conjugation and magnetic symmetries in the UV and IR are related by

MUV = CIRMIR, CUV = CIR . (5.10)

In particular, the algebra (5.3) for CUV,MUV and TUV implies in the infrared the time-reversal
symmetry satisfies

T IRCIR =MIRT IR , (5.11)

which is consistent with the fact that CIR,MIR are exchanged under level-rank duality [14,15].

5.3 Gauging the Magnetic Symmetry: Spin(N)0 + Tensor Fermion

Consider gauging the Z2 magnetic symmetry M. This changes the theory to Spin(N)0 coupled
to a symmetric tensor fermion. These models are a natural generalization of the U(1)0 with
a charge four fermion discussed in section 3.1.3. From (5.4) we immediately see that both
time-reversal symmetries T and CT are standard (see footnote 8)

T CT −1 = C, T 2 = (CT )2 = (−1)F . (5.12)

In particular, the anomaly ν for both T and CT is well-defined for all even N . This is compatible
with the anomaly computation (5.6) since there p is required to be even for the Z2 gauge
transformation to be an element of Spin(N).

The phase diagram of the Spin(N) gauge theory was derived in [15] and is reproduced in
figure 4. This is related to the phase digram in figure 3 by gauging. In particular, for small
fermion mass the theory is conjectured to flow to a quantum phase described by the spin TQFT
O(n)1n,n−1 (the notation as in [15]) with n = (N + 2)/2, which is time-reversal invariant as a
spin TQFT by level-rank duality [15] (see table 1)

O(n)1n,n−1 ←→ O(n)1−n,−n+1 . (5.13)

This theory is a higher rank generalization of the T-Pfaffian theory O(2)2,1 discussed in section
3.1.3 for N = 2. (See also appendix H of [15].)

From the phase diagram in figure 3 we can deduce that the unitary symmetries in the UV
and IR are related as

CUV(Spin(N)) =MIR(O(n)) . (5.14)

Thus from (5.8), the antiunitary symmetries in the UV and IR are related as

T IR =

¨

T UV N = 2 mod 4 ,

CUVT UV N = 0 mod 4 ,
MIRT IR =

¨

CUVT UV N = 2 mod 4 ,

T UV N = 0 mod 4 .
(5.15)

We proceed to match the anomaly ν between the short-distance and long-distance descrip-
tions. The anomaly for T IR always matches the corresponding UV anomaly, since they agreed
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Figure 4: The phase diagram of a Spin(N) gauge theory coupled to a fermion S in the
two-index symmetric tensor representation. It can be obtained from SO(N) gauge
theory by gauging the magnetic symmetry in the UV, which corresponds to gauging
the diagonal CM in the long-distance TQFT. The blue dots indicate the transitions
from the semiclassical phase to the quantum phase. Each of these transitions can be
described by a dual theory with adjoint fermions, in which the transition can be seen
at weak coupling. These dual theories cover part of the phase diagram. These figures
are identical to those in [15].

in the SO(N) theory before gauging MUV [20]. Therefore, we focus on the anomaly for the
antiunitary symmetry MIRT IR.

The UV computation is as in the SO(N) theories (5.5). In the IR we need to compute
νMT (O(n)1n,n−1). This can be done using the formalism in [8, 17]. The answer depends on
choices we do not know how to determine, like the eigenvalue of T 2 on some anyons and on
a choice of orientation (i.e. the sign of ν).

We will split the discussion depending on N mod 4. For N = 0 mod 4, n is odd and we
have (see appendix D of [15]):

O(n)1n,n−1 ←→ SO(n)n × (Z2)2(n−1) . (5.16)

Furthermore, for odd n the magnetic symmetry in O(n)1n,n−1 does not permute the anyons [15],
and thus both T IR and MIRT IR define the same permutation action on the anyons. Therefore,
the anomaly ν can be obtained from that of SO(n)n [19] and that of (Z2)0, (Z2)4 [3,4,8]

ν((Z2)0) = 0 or 8 , ν((Z2)4) = 0 or + 4 or − 4 , (5.17)

where the values depend on the choices mentioned above. With appropriate choices here we
match that anomalies with those of the UV theory!

For N = 2 mod 4, n is even and the magnetic symmetry of O(n)1n,n−1 permutes the anyons.
This makes the computation of the anomaly slightly more involved and we have not carried
it out explicitly. Instead, we use the anomaly matching with the UV theory to conjecture that
for even n we have νMT (O(n)1n,n−1) = ±5(n − 2). Note that for n = 2 this agrees with the
expected answer for the T-Pfaffian+ theory. (This is to be contrasted with the known value
νT = ±n of these theories.)
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Figure 5: The phase diagram of a Spin(N) gauge theory coupled to a fermion λ in the
adjoint representation. The phase transitions are visible at weak coupling in a dual
theory with symmetric tensor fermions. This can be derived from the SO(N) gauge
theory by gauging the UV magnetic symmetry MUV, which corresponds to gauging
the symmetry CIRMIR in the long-distance TQFT [15].

The entire discussion of this section can be repeated with a fermion in the adjoint repre-
sentation. In particular, for gauge group SO(N) these theories also have the non-commutative
algebra of symmetries (5.3). Similar phase diagrams for SO(N) and Spin(N) gauge groups
are conjectured in [15, 20]. Now the infrared theory consists of a massless Goldstino (take
N > 4) and a time-reversal invariant TQFT. For gauge group Spin(N) the TQFT is O(n)1n,n+3
with n = (N − 2)/2 (see figure 5), and we can match both νT and νCT between the UV and
the IR. Again, the matching of νT IR follows from the matching in SO(N) [20]. The matching
of νMIRT IR is a new test of the conjectured phase diagram. In particular, for N = 0 mod 4,
n is odd and we can use the relation O(n)1n,n+3 ↔ SO(n)n × (Z2)2(n+1) [15]. Then, with an
appropriate choice in (5.17) we match the UV and the IR values.
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