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Abstract

Quantum fluids of light in a nonlinear planar microcavity can exhibit antibunched pho-
ton statistics at short distances due to repulsive polariton interactions. We show that,
despite the weakness of the nonlinearity, the antibunching signal can be amplified or-
ders of magnitude with an appropriate free-space optics scheme to select and interfere
output modes. Our results are understood from the unconventional photon blockade
perspective by analyzing the approximate Gaussian output state of the microcavity. In
a second part, we illustrate how the temporal and spatial profile of the density-density
correlation function of a fluid of light can be reconstructed with free-space optics. Also
here the nontrivial (anti)bunching signal can be amplified significantly by shaping the
light emitted by the microcavity.
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1 Introduction

Generation and manipulation of nonclassical states of light has been at the heart of quantum
optics ever since its development in the early days [1]. A widely applied criterion to quantify
the nonclassicality of a state is provided by the intensity correlations of the electromagnetic
field g (0) = (: 12 :)/(I)?, with * denoting normal operator ordering. Whenever g*(0) < 1,
there is no classical analog of the quantum statistics and one is therefore led to conclude that
the state has intrinsic quantum properties.

The photon blockade is one of the most general mechanisms to realize these antibunched
photon states. A strong nonlinear spectrum of the cavity makes it energetically forbidden for a
second photon to enter once there is a first photon inside [2]. To date, a plethora of platforms
exists in which this nonclassical feature of a light field has been demonstrated: by using a
trapped atom in a cavity [3], with quantum dots [4,5] and, more recently, in superconducting
circuits [6,7]. See Refs. [8-11] for recent reviews on these topics.

Exciton-polaritons in planar microcavities, arising from the strong coupling between a cav-
ity photon and a quantum-well exciton, provide a versatile platform to both generate and de-
tect nontrivial photon features (see Refs. [12, 13] for recent reviews). The statistics of the
polaritonic field is directly accessible through the photons that escape from the cavity, making
these systems particularly interesting for measuring photon correlations. Moreover, the prop-
erties of the fluid, such as the density, velocity and phase, can be directly manipulated by the
external laser field.

In spite of these tremendous advantages, the major bottleneck of exciton-polariton sys-
tems has turned out to be the relatively weak interparticle interactions compared to currently
achievable linewidths, ensuring that genuine quantum effects are often hidden by the strong
incident laser field. Translated into the intensity fluctuations of the cavity output photon field,
this means that g®(0) ~ 1, the value for a coherent photon field. Nevertheless, albeit very
small, there is a correction to this trivial value which stems from polariton-polariton interac-
tions [14]. On the first level of approximation, this effect can be understood in terms of the
creation of pairs of quantum fluctuations that propagate through the fluid in opposite direc-
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tions. The statistics of these pairs of fluctuations is described in terms of a two-mode squeezed
Gaussian state.

It was shown in a number of recent studies [15-18] that strongly antibunched photon
statistics is not necessarily a consequence of a strong cavity nonlinearity. Certain setups con-
sisting of two coupled cavities can exhibit a strong suppression of g(¥(0), despite having in-
teractions that are substantially weaker than the typical dissipation rate. Dubbed the uncon-
ventional photon blockade, this remarkable effect was attributed to a destructive interference
between two independent pathways for injecting a second photon in the cavity. In a later
stage all these different ideas were somehow unified and clarified in the framework of op-
timally amplitude-squeezed Gaussian states [19]. Therefore, squeezed coherent states can
display sizeable antibunching, provided the average value of the field and the squeezing are
tuned in an optimal way [20]. The theoretically predicted antibunched signal was recently
observed in an experiment with microwave photons on a superconducting circuit [21].

The crucial point here is the ability of the system to show a significant squeezing without
the coherent part overwhelming the quantum fluctuations. In weakly interacting spatially
extended systems, the main reason why quantum effects are weak is the dominant contribution
of the coherent field over the fluctuations. For a spatially homogeneous system, however, the
coherent field and quantum fluctuations are easily separated in Fourier space. Significant
antibunching can then be achieved after a suitable attenuation of the k = 0 component of
the light field. Previous proposals in the context of the unconventional photon blockade relied
on a setup that consists of two coupled (0D) microcavities. The setup that we introduce in
this work, illustrated in Fig. 1, utilizes the photons generated from quantum fluctuations in a
2D planar microcavity to engineer an interference between two squeezed intracavity modes,
with opposite momentum (k,—k), and the coherent pumping field to produce the desired
antibunched statistics.

The proposed setup consists of engineering an appropriate filtering scheme that exactly
tailors single-mode states of the form discussed in Ref. [19]. With the introduction of a few
linear optical elements, like beam splitters, phase shifters and attenuators, the optimal con-
ditions for maximal suppression of g(*(0) can be closely approached. We also compute the
temporal profile g®(7) of delayed correlations to illustrate the expected sustain times of the
antibunched signal, which is essentially limited by the photon lifetime.

While the cavity output field in the unconventional photon blockade is Gaussian within
good approximation, it can still display highly nonclassical features due to the severely reduced
intensity fluctuations. Consequently, the UPB provides an attractive mechanism for generating
sizeable single photon sources, which can then be used as input for a computation scheme
based on linear optics. However, the downside of the original proposal of two coupled cavities
is the required fine tuning of system parameters like cavity coupling, photon nonlinearity and
laser detuning [20]. In our scheme, this is in part circumvented by placing the interference and
selection scheme after the microcavity, thus separating the squeezing and interference stage
for increased control.

Since the antibunching in this setup originates from genuine particle interactions inside a
planar microcavity, we devote the second part of this manuscript to investigating the spatial
profile of correlations in the quantum fluid of light itself. By collecting and interfering all modes
that escape from the microcavity, rather than isolating a single one, the real-space image of
correlations can be reconstructed. Moreover, by carefully shaping the bundle of light before
interference, it is possible to manipulate the (anti)bunched features in the spatial-temporal
correlation pattern. Recently, the profile of density fluctuations has proven its importance in
the context of analog gravity, as it encodes information about Hawking pair emission at a sonic
hole horizon [22,23], as was recently investigated in a cold-atom experiment [24].

The structure of our paper is as follows. We start by giving in Sec.2 an overview of photon
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correlations in quantum fluids of lights in ideal planar geometries. We then continue with ex-
plaining how to implement the unconventional photon blockade by filtering out specific modes
in Sec. 3. Finally, in Sec. 4, we illustrate how the spatial-temporal profile of density-density
correlations can be reconstructed with free-space optics. Technical details on the Bogoliubov
approximation and on the time-dependence of operators are given in Appendices A and B,
while Appendix C is devoted to a brief discussion of the principal imperfections and noise
sources that may disturb the unconventional blockade effect in realistic planar microcavity
devices.

2 Quantum fluctuations in fluids of light

In this section, we give an overview of the main features of the photon dynamics in nonlinear
planar cavities under a coherent and monochromatic illumination. While our model is fully
general, our discussion will be focused on the experimentally most relevant case of semicon-
ductor microcavities with strong light-matter coupling, where the elementary luminous parti-
cles, the so-called exciton-polaritons, have a mixed light-matter character. For these systems,
a wide theoretical and experimental literature has appeared that investigates the photon dy-
namics from the many-body perspective of the quantum fluids of light [12,13]. The interested
reader should not find any difficulty in transferring our results to different material platforms
and to different frequency domains.

We first set the stage by introducing the model that will be used in the following sections,
we then review the dynamics of small collective excitations around the steady state as intro-
duced in [25] and finally we summarize the main features of quantum correlations within a
linearized approximation, as they were first presented in Ref. [26].

2.1 The model

We consider quasi-resonantly driven photons in a planar microcavity irradiated by a monochro-
matic and spatially plane-wave laser with frequency «; at normal incidence, as depicted in
Fig. 1(a). After performing a unitary transformation to remove the time-dependence of the
drive, the Hamiltonian in terms of the polariton field operator ¥(r), with r = (x, y), is found
as (we set i = 1 throughout)

A= J x| ¥ (ep(-i9) = 0, )0 + £ 00+ R0+ 7)) M
The polaritonic modes have a dispersion €;p(k) with a cut-off frequency at €;p(0) and a low-
energy behavior of the form e;p(k) ~ €;p(0) + k?/2m with an effective mass m. Photons are
quasiresonantly injected into the cavity at a constant rate by the coherent laser, represented
by the drive term with amplitude F.

The third-order optical nonlinearity is assumed to be defocusing and is described in the
model as a contact potential with interaction constant g > 0. In the polariton case, this rep-
resents the repulsive interactions between quantum-well excitons. With typical values of the
interaction constant of g ~ 1ueV - um? and polariton masses of m ~ 10~*—10"°m, (with m,
the electron rest mass), we find that the dimensionless interaction constant mg ~ 10~* < 1,
so that the polariton system is clearly in the weakly interacting regime. This legitimates a lin-
earized treatment of quantum fluctuations within a Bogoliubov approximation, as performed
in the following.

Photons inside the cavity have a finite lifetime before they escape by tunneling through
the cavity mirrors. The photonic losses can be described in the Born-Markov approximation
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by introducing them into the master equation for the density matrix

0.0 =—i[H,p1+ D[] 2

in the form of a dissipator of the Lindblad form

D[p]= gfdr(z\f/ﬁ\iﬁ—ﬁﬁ—ﬁﬁ). (3)

Here, T = 1/y is the polariton lifetime (typically of the order of 10— 100 ps) and i = ¥,

Equivalently, the system dynamics can be formulated in terms of a quantum Langevin equa-
tion [27,28] for the polariton field operator ¥(r, t) . In this framework, the equation of motion
reads [12]

2
i0,4(r,t) = (—Z—m —65+g¥(r, O)¥(r, 0)— lg) B(r,0) +F + J7E(r, 1), 4)

where we have defined the detuning of the laser frequency from the bottom of the bare LP
dispersion 6 = w; — €1p(0).

The non-unitary time evolution due to Markovian photon losses is represented by the imag-
inary loss term inside the brackets and by the noise operators &(r, t), which assume Gaussian
statistics. In the low-temperature regime (kg T < w;) under consideration here, their variance
is given by

(€ 0)é, 1)) = (£ é, ")) =0, (5)
(e, i, t)) = s@x—r)5(t—1t). (6)

The quantum Langevin equation (4) will be the starting point of our analysis.

2.2 The linearized equations of motion

In the spatially uniform configuration considered here, we can conveniently parametrize the
photon field operator as

Br, 0) = o) + S5, ) = o(0) + %V;qﬁk(r)ei“, @)

where the classical field v, represents the coherent component and the quantum field qg(r, t)
describes the fluctuations around it.

From a many-body perspective, the classical field v, can be seen as a condensate coher-
ently created in the k = 0 mode of the cavity by the incident laser beam. Owing to polariton-
polariton interactions, the condensate is slightly depleted and a fraction of the condensate
particles is converted into photons with nonzero momentum Kk, as reflected by the fluctuation
operators qgk. In the many-body language, this corresponds to the so-called quantum depletion
of the condensate [29].

As a first step to solve the quantun Langevin equation (4), we can perform a mean-field
approximation where the creation of these quantum fluctuations is neglected and only the
condensate mode is assumed to be populated. In the steady state, the condensate density
ny = |[o|? can then be found as the solution of the polynomial equation

2
no(A2+y2/4) = |F[’, ®)
with the interaction-renormalized detuning
A =6 —gny. 9
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Figure 1: A schematic image of the selection and interference scheme that we pro-
pose. (a) A sketch of a planar semiconductor microcavity in the strong light-matter
coupling regime. A quantum well (QW) is placed between two distributed Bragg mir-
rors (DB) and is pumped with a coherent laser beam. Photon interactions, mediated
by the optical nonlinearity of the QW, lead to a small depletion of the condensate in
terms of quantum fluctuations with nonzero momentum. The excitations are formed
in pairs with opposite momentum and form a two-mode squeezed Gaussian state.
A fluctuation with momentum k can leave the cavity as propagating radiation at an
angle 7, with sint, = ck/w;, from the perpendicular axis. (b) A schematic image
of the setup, consisting of linear optical building blocks, that we propose to engineer
squeezed coherent states as output. The coherent field of the pumping laser is at-
tenuated and interfered with the two-mode squeezed Gaussian state of the quantum
fluctuations to construct the photon field 6. (c) The output state & can be approx-
imately parametrized as a squeezed coherent state. The squeezing parameter r. is
momentum dependent and can be found through (29). The phase between squeez-
ing (6;) and displacement ({) can be varied with the phase shifters from (b), as
given in (30), allowing the output field to go from an amplitude to a phase squeezed
state. (d) A HBT setup to measure photon correlations of the output state. Detecting
simultaneous clicks of detectors 1 and 2 allows for the measurement of the delayed
intensity fluctuations of the photon field &, and gives access to quantity (31). ‘BS’
stands for a (50:50) beam splitter and ‘PS’ for phase shifter.
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Figure 2: The quasiparticle spectrum from (12) for different mean-field configura-
tions. (a) When A < 0 the spectrum is gapped and there are no additional imaginary
contributions. (b) When 0 < A < 2u, there is a disk of diffusive-like modes centred
around k = 0. These modes are characterized by having Rw; = 0, while having a
nonzero imaginary contribution. (c) If A > 2u, the diffusive modes shift to higher
momentum and form a ring in momentum space. The diffusive regions are marked
with blue shades. For clarity, we plot Jw; — y/2, which represents the total decay
rate of a Bogoliubov mode with momentum k.

For given pumping conditions (defined by the detuning & and the amplitude F), Equation (8)
can have either one or two stable solutions for the mean-field density n,. When & < +/3y/2
the resonator is in the optical-limiter regime. Alternatively, when & > +/3y/2 the system will
exhibit a bistable behavior with a corresponding hysteresis curve [12]. For the analysis that
follows, we will always implicitly determine F by fixing a value of ny,.

Making use of the decomposition (7), an equation of motion for the fluctuation operators
¢;k can then be derived out of the quantum Langevin equation (4). We will restrict to the
lowest-order approximation of the interaction term in (4), which yields a set of linear equations
for the zero-mean fluctuations ql;k. Effects of higher-order interaction terms were recently
studied in the context of Beliaev-Landau-type scatterings in the quantum fluid [30].

At our level of approximation, the motion of the linearized quantum fluctuations is deter-
mined by

. i )_ .y (fi’k) (ék) _(€k+M u )
18( e | = (B —isl A +{ & |, Bk= , (10)
‘ lk ( ) 2 ) 11( —k K - T U

where the Bogoliubov matrix By, involves the usual interaction-induced off-diagonal coupling
u = gng but a shifted single-particle dispersion
k2 k2
€k=__A=ng0+€Lp(0)+_—C()L. (11)
2m 2m
The eigenvalues +w) of By governing the dispersion relation of the linearized fluctuations
have the same analytical form as the collective Bogoliubov excitations of a dilute Bose gas at

equilibrium
wi = v/ ex(ex +2u), (12)

but an important difference arises from the modified single-particle dispersion (11), which
can either be gapped and strictly positive for A < 0 or display regions of negative values for
A>0.

Restricting to the most straightforward cases, a negative effective detuning A < 0 is found
in the 6 < O optical-limiter regime or on the high-density branch of the hysteresis loop in
the 5 > +/3y/2 bistable regime. A positive effective detuning A > 0 is instead found on the
low-density branch of the hysteresis loop and is characterized by the Bogoliubov dispersion
being purely imaginary in some regions, so that the dynamics of the elementary excitations is
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diffusive-like (see Appendix A). Note that this regime is only parametrically stable when 2u < 7,
as we explain in Appendix B. In contrast to the equilibrium case where general arguments
impose that the Bogoliubov dispersion is gapless [29], here the ¢, = O condition is only
recovered in the special case A = 0, i.e. at the end-point of the high-density branch. For
clarification, we show the quasiparticle dispersion for different mean-field regimes in Fig. 2.

As a consequence of the photonic losses, the usual time-dependent Bogoliubov transforma-
tion, employed to diagonalize the equations of motion (10), acquires a damped exponential
time dependence

$i(6) = e (i) hi(0) + L (£)$ 1, (0)) + noise (13)

The expressions for the time-dependent Bogoliubov coefficients 1 (t) and {;(t) in the various
mean-field regimes are presented in Appendix B. It should be noted, though, that the usual
interpretation of the Bogoliubov operators as bosonic quasiparticles breaks down for the case
of a diffusive dispersion. This is discussed in detail in Appendix A.

The freedom to tune A in the setup (by merely changing the pump frequency w; ) allows us
to explore parameter regimes, inaccessible to the conservative dynamics of dilute Bose gases at
equilibrium, that can lead to novel, exotic physics. Previous work in this context has addressed
superfluidity features [25] and the related drag force of a driven-dissipative fluid flowing past
a defect [31]. Remarkably, it was pointed out in [32] that the diffusive modes for A > 0 can
even give rise to a negative effective drag force.

2.3 Correlations in the steady state

From the stochastic equations of motion for the quantum fluctuations, presented in (10), we
can derive equations for the evolution of the quadratic correlation functions. For this we define
the momentum distribution ny = (¢, ¢) and the pair correlation ¢, = (¢xP_y) to find

one = —yn+23[gyicr] (14)
idic = (26 +2gIYol* —iv)e + gYi(2n + 1), (15)

The steady state of these equations is readily evaluated by setting the left-hand side to zero
and leads to the equal-time correlation functions in the stationary regime [26]

_1 (gno)* c __g¢88k+gno+iy/2
2 w2 +72/4 k 2 wl+y2/4

Ny ) (16)

The nonequal-time correlations can also be found by making use of the Bogoliubov trans-
formation (13). Thanks to the stationarity of the state, only the relative time difference
T = t—t’ matters for the quantities n;(7) = ((ﬁi(t)(ﬁk(t/)) and ¢ (7) = (¢ () Py (t")). Based
on the quantum regression theorem [27], the delayed correlation functions can be obtained
by evolving the later operator over a time T > 0 with (13), which gives

(1) = e (O + G (M), (1) =e T (e + (D), (A7)

in terms of the equal-time correlations n; and ¢; from (16).

3 Antibunched emission from squeezed quantum fluctuations

After introducing the general theoretical framework, we can start discussing how strongly an-
tibunched light can be obtained by shaping the output of a weakly nonlinear coherently driven

8
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planar microcavity. We start this section by reviewing the basic concepts of squeezed coher-
ent states and derive theoretical bounds on the maximal amount of antibunching that can
be obtained in the family of Gaussian states that we can engineer as output from the cavity.
Following the lines of Ref. [19], we then propose a first example of a selection and interfer-
ence scheme that is able to manipulate the output of a many-mode planar cavity and obtain
antibunched light by letting three k modes symmetrically located at £k and 0 to mutually
interfere. We finally characterize the intensity fluctuations and the level of antibunching that
this scheme is able to produce.

3.1 Basics of Gaussian states

In the most general case, a single-mode squeezed state of the mode @ is represented by the
density matrix

Py = S(E)Pn, ST(E), (18)

where (&) = exp[%(i*d2 —£4™)] is the squeezing operator with & = re'?.

assumed to be a thermal density matrix with mean population ny, = tr[pnthc“z"fd].

Conversely, a Gaussian state is entirely characterized by its mean value and second mo-
ments and there exists a one-to-one map [1] that allows to extract squeezing parameters &
and ny, from them,

Here, p,, Is

4 1 1
n = t[pg,,a'dl= (nth + E)costh —3 (19)
1\ .
c = tr[pg,,aal=— (nth + 5) e sinh 2r. (20)

Additionally, the mode @ can be displaced with a coherent field a = @e'¢, which leads to
the new density matrix

ﬁa,g,nth = ﬁ(a)ﬁg’nthf)_f(a), (21)

where D(a) = exp[ad’ —a*d] is the displacement operator. The displacement field is then
found back from p, ¢ ,, by relating

a=tr[pqyrn, al- (22)

A genuine signature of the non-classical nature of a state of light is provided by the intensity
fluctuations of the photon field. The correlation function

(: %)
(1)
with A = 47@ can be shown to obey g®)(0) > 1 for any classical state of light. Consequently,
a violation of this inequality is a manifest indication of quantum correlations in the photon
state. It was shown in Ref. [19] how optimally amplitude-squeezed Gaussian states of type
(21) can strongly violate the inequality. Specific relations were derived between displacement

a, squeezing & and thermal density ng, to attain the theoretical lower bound on g (0).

In general, the equal-time second-order correlation function of a displaced, squeezed Gaus-
sian state of form (21) reads

g(0) = (23)

2a?(n—¢)+n%+¢?

(d2 + n)2

g(2)(0) =1+ (24)

Here ¢ = ¢e'? and we have set 6 = 2, so that the squeezing takes place exactly in the ampli-
tude quadrature, thus obtaining optimal antibunching conditions.

9
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When the second moments n and ¢ of the fluctuations are fixed, we can vary the displace-
ment field a to find optimal antibunching conditions from (24). After straightforward algebra
we find that setting

(c+n)e

- (25)
c—n

dopt =
establishes optimal antibunching. The intensity fluctuations of this particular displacement
field are then given by
(€—n)’

@
0)=1-— "
8op(0) 2+ 2tn—n2

(26)

3.2 Engineering squeezed coherent output states

In the squeezing language of this section, the non-trivial quadratic correlations found in (16)
reflect the fact that the two modes at +k are in a two-mode squeezed state. Similar to the
single-mode case, the two-mode squeezing operator is defined as $,(&) = exp[—& ab+&*ath'y,
with in our case d = ¢k and b = (,i) k- The main idea of this section is to illustrate that the
intrinsic squeezing of the quantum fluctuations in the oppositely propagating modes can be
utilized to construct a strongly antibunched output beam.

Our proposal is based on the fact that the emission angle ¥, of photons escaping a planar
cavity is directly related to their cavity in-plane momentum k via sin;, = ck/w;, where c
is the speed of light in vacuum and «w;, is the laser angular frequency. Quantum fluctuations
with in-plane momentum k will therefore lead to emission of pairs of photons at angles £,
which can conveniently be isolated and later interfered to obtain a single-mode squeezed state
as show in Fig. 1a). We illustrate in a schematic way (see Fig. 1b), the setup we propose to
achieve this goal. We create a coherent population of polaritons by shining laser light onto
the sample. The laser is tuned to the k = 0 lower polariton energy so as to only excite reso-
nantly k ~ 0 polaritons. Quantum fluctuations with momentum k > 0 will lead to emission of
pairs of photons at angles +1,. The proposed experiment consists of combining the photons
originating from the £k modes onto a 50:50 beam splitter. One simple way of realizing this
interference uses lenses to image the Fourier plane on two pinholes (or equivalently on the
cores of two single-mode fibers) that only transmit the desired Fourier components, and to
recombine them on a free-space (or fiber) beam splitter. We also suggest that imaging the
Fourier space directly on an optical fiber bundle or on a spatial light modulator that selectively
transmits the chosen modes would provide a more compact and elegant experimental imple-
mentation of this interference. After recombining these two modes, the light is interfered with
a coherent field obtained by suitably attenuating and phase-shifting the pumping laser. Photon
correlations are finally measured in a standard Hanbury Brown and Twiss (HBT) setup.

The final output state after selection and interference is then found to be of the form

. 1 /. . .
&= ae's + —( el + p_relf-), 27)
K ﬁ(d)k i)

with ¢ and ¢ the accumulated relative phases in the arms. By evaluating its expectation value
ae'¢ and its quadratic correlation functions,

+rg, (640k) = @2e?C 4 cpellorte), (28)

where n; and ¢, are given in (16), it is straightforward to see that the mode & can be regarded
as a squeezed coherent state of form (21). Thanks to the k — —k symmetry of the setup, the
two-mode nature of the squeezing results here in exactly the same statistics as expected for a
single-mode squeezed state.

10
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We can next determine the effective squeezing parameter re'% and thermal density Mh k
for the output mode &. After straightforward algebra, we find from expressions (19, 20) the
thermal density and squeezing of output state &; (27)

|ck |
le+%

2
Ny g = \/(nk + %) + |ci | — %, tanh2r, = (29)

with n;, and ¢; found within the Bogoliubov framework and given in (16). Additionally, we
see that the squeezing phase is found as

O =argc+ o, +p_. (30)

Therefore, the difference between 6, and the displacement phase { can be tuned by varying
¢4, w_ and ¢ with the phase shifters in the setup from Fig. 1b). In the schematic image of
the squeezed state shown in Fig. 1c), this corresponds to rotating the ellipse, which allows to
switch between an amplitude and a phase squeezed state.

In Fig. 3(a-b) we show how the parameters r; and ny, from expression (29) depend
on the selected momentum k in the two cases of respectively negative (Fig. 3b) and positive
(Fig. 3a) values of the interaction-renormalized detuning A defined in (9). Since excitations
become generally more particle-like and have a larger frequency at large k, we expect the
squeezing parameter 1y to drop to zero in this limit. However, also their number ny, ; goes to
zero in the same limit as it is generally less likely to excite fluctuations with higher momenta.
We can anticipate at this point that the decay of ny,  leads, in principle, to an asymptotic
perfect antibunching of the photon statistics in the output state.

While both ng, and r monotonously drop to zero in the A < 0 case (as can be observed
in Fig. 3b), the presence of a set of diffusive modes in the A > 0 case from Fig. 3a (see
Appendix B) leads to a more versatile behavior. As is reflected by the peak in ny, at nonzero
momentum, these diffusive modes are parametrically amplified. In addition, these modes are
also strongly squeezed, which we conclude from the enhanced squeezing parameter r for the
same momentum values as the peak in ny,.

3.3 Optimizing the antibunching

The freedom to vary at will the attenuation level and the phase shift experienced by the coher-
ent laser field in the setup from Fig. 1b) permits to approach the condition (25) for optimal
antibunching. A measurement of the temporal correlation of the intensity fluctuations of the
output state & (27) gives access to the quantity

o (61(0)6 ()64(7)61(0)) 1+zazm{nk(f)ﬂk(r)ein}+n§(r)+c,§(f)

(6164)2 (a2 + nk(o))z

g , BD)

where n;(7) and ¢, (7) are given in (17) and the total phase n = ¢, + ¢_ — 2. In Fig. 1d
we provide a schematic image of a Hanbury-Brown-Twist (HBT) setup to illustrate how this
quantity is typically measured.

Let us first start by analyzing g®(0) (i.e at zero time delay) for the case where the phases
are tuned such that squeezing is exactly in the amplitude quadrature, as realized by setting

M = Nope = T —arg c(0). (32)

This condition amounts to rotating the major axis of the ellipse in Fig. 1c) into the direction
perpendicular to the displacement vector.
In Fig. 3(c,d) we show how the optimal displacement field Aopt (se€ (25)) and the minimal

value of g(z)(O) (see (26)) depend upon the selected momentum Kk in the setup from Fig. 1b).
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Figure 3: (a,b) The squeezing parameter r and the thermal occupation ny as a
function of momentum k for a steady state with a positive (a) and a negative (b)
interaction-renormalized detuning (8). (c,d) The optimal displacement amplitude
Aope (21) and corresponding g(()f,{ = g (0)|,n (26) as a function of momentum for

the same parameters as above. (e,f) The temporal profile of g®)(7) after selecting
various momenta as indicated below. The displacement amplitude @ and phase 7
have been chosen to fulfil the optimal antibunching conditions (as derived from (c,d))
at T = 0. The insets show g®(0) upon varying the total phase between squeezing
and displacement (corresponding to rotating the ellipse in Fig. 1c)) for the showed
momenta.

At high momenta g (0)|,,,;, always drops to zero, meaning that we can, in principle, approach
a perfect antibunching by selecting higher momenta. This can be understood by noticing that
gD(0)|in ~ 8,/My for small ny, in the case of optimal squeezing and displacement, as was
explained in Ref. [19]. While we have experimental control to tune « to its optimal value, the
squeezing parameter r is set by the nature of the nonlinear processes inside the cavity. We can
verify that r # rp, in general, but, interestingly, we still find that g@(0)|pin, — O in the limit
ng, — 0. Note also that, unfortunately, a,, approaches zero in this limit as well, such that the
total photon flux is expected to become vanishingly small.

For intermediate values of k, the behavior is different according to the sign of A. While
in the A <0 case, a monotonously decaying behavior is observed in Fig 3d) for both a,,; and
g@(0)|,uin as a function of selected momentum k, the presence of parametrically amplified
modes results in a strong increase of ny, ; and ry in the A > 0 case, shown in Fig 3c) . The
overall effect on g®(0)|,,i, is, however, detrimental, as this quantity is pushed back towards
its value g2)(0)| i, ~ 1 for a classical coherent field.

Let us now move to the full temporal dependence of g®(7), as expressed in (31). In
Fig. 3(e-f) we analyze the delayed second-order correlations g (1) for the displacement
amplitude a = Aopt that optimizes g(z)(O) (see expression (25)) for different values of k/ ,/my.
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In general we see from Fig. 3(e,) that g (t) shows a damped oscillatory behavior with
an oscillation frequency set by Rw; (i.e. the Bogoliubov frequency of the selected Fourier
component), and a damping equal to y/2—Jw; (i.e. the lifetime of the associated Bogoliubov
mode). Moreover, we can shift the offset of the oscillation by varying the phase 1, which we
illustrate in the insets of Fig. 3(e-f). In the main panels (a,b), the offset of g(z)(r) has been
chosen such that maximal antibunching is achieved at T = 0, corresponding to setting ) = Mgy
from (32) to realize the result presented in Fig. 3(c,d). The opposite choice of the relative
phase would instead give the typical enhanced intensity fluctuations of a phase-squeezed state.

As already mentioned, a stronger T = 0 antibunching can in principle be obtained by
selecting higher momentum modes with the setup from Fig. 1b), but in Fig.3(e,f) we see that
the oscillation frequency increases as well: the rapid fluctuations of g®(7) between low and
high values mean that the initial antibunching signal can be easily washed away by the finite
response time of a realistic detector, typically on the order or even longer than the photon
lifetime in the cavity.

Another experimental difficulty may arise from the requirement of a spatially homogeneous
fluid inside the microcavity. Disorder along the cavity plane may lead to unwanted scattering
that could spoil the signatures of the coherent pair-creation processes, as we investigate in
Appendix C.1. Additionally, the interaction with a thermal phonon bath may lead to dephasing
and a reduced squeezing of the output photons; this is discussed in Appendix C.2. Finally,
various sorts of uncontrolled relaxation mechanisms could lead to the building up of a thermal
polariton population, see Appendix C.3.

4 Manipulating and probing the photon statistics with a wide-
aperture lens

In the previous section we have introduced a first example of an optical interference scheme
that is able to convert the (weak) squeezing of in-cavity modes into a (sizeably) antibunched
single-mode output beam. The proposed setup required the isolation of three k components
and the subsequent manipulation by a series of linear optical elements.

The present section exploits in-cavity interference between all k modes in real space to
enhance the antibunching statistics of the output beam while keeping its qualitative spatial
profile. The proposed configuration is depicted in Fig. 4a): A spatial image of the cavity field
can be reconstructed by placing a system of two wide-aperture lenses in a confocal configura-
tion in front of the microcavity. In the focal plane between the two lenses, a space-dependent
attenuation element, e.g. based on a Spatial Light Modulator (SLM) sketched in Fig. 4b),
provides the required k selection mechanism that is necessary to reduce the amplitude of the
k = 0 mode with a factor F, while keeping other k components intact.

A most remarkable feature of this alternative scheme is that the antibunching statistics
results here from the sum of contributions of all k modes. In the following, we will illustrate
how the present setup, providing the freedom to vary the coherent amplitude, offers a wide
flexibility in the design of the spatio-temporal pattern of photon statistics.

4.1 Intensity correlations in position space

From ansatz (7), it is immediate to see that the real-space two-point correlation functions of
fluctuations in a spatially uniform setup can be obtained from (17) as the Fourier transforms
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of the quantities n;(7) and ¢, (1)

A1) = ($1 080 ) =1 > m(2el ), (33)
k

o) = (08, 00) = o D)), (39
k

with x = |[r—1/|, reflecting the homogeneity of the setup.

From equations (16), one sees that at large k the quadratic correlation functions behave
as n, ~ k* and ¢, ~ k=2, which are universal scaling laws for gases interacting with a contact
potential [29]. While this poses no issues for the first-order correlation function n(x, 7), the
pair correlation c(x, 7) suffers from an ultraviolet divergence in two or more spatial dimensions
in the limit of vanishing separation x. In other words, the convenient introduction of a zero-
ranged contact interaction has the inconvenient consequence that pair correlations are only
reproduced correctly for separations x much larger than the true range of the interaction
potential. Interpolation between the two-body problem with the correct scattering potential
at short distances and the many-body result at large distances has proven to be a way out of
this issue [33]. In our specific case, the unavoidable finite aperture of all optical elements
naturally imposes an ultraviolet cut-off in k.

4.2 The density-density correlation function

In general, the density-density correlation function at nonzero spatial separation and time
delay is equal to

-

(xif' (r, O (¢, YO, )b, t)>
(e, b (r, 0 ) F1(, )b, 1))

Under the assumption of Gaussian fluctuations for the photon field, the density correlation
function can be expressed by Wick theorem in terms of the two-point correlation functions
and a coherent displacement field,

St(h/)f 1’n(x, )+ wj;zc(x, T)) + |n(x, T)? + |c(x, T)I?
(Iy¢l?+6n)? ’

where 6n = n(0,0) is the density of noncondensed particles and vy = F1), (see Expr. 7) is
the attenuated condensate mode.

From expression (36) one sees that the density correlation function suffers from the same
ultraviolet divergence as the pair-correlations when a zero-ranged contact interaction is used.
In our discussion, we therefore focus on nonzero separations x, significantly larger than the
true potential range, such that our results do not suffer from this issue. In practice, we see
that for each non-zero point (x, 1), the spatial-temporal profile of g(®(x,7) converges to a
well-defined value for a sufficiently large cutoffand solely the point (0, 0) is suffers from the ul-
traviolet divergence. For this analysis, we choose the cutoff high enough such that the profiles
are converged. In any practical experiment, a cutoff in momentum space is always introduced
by the finite aperture of the lenses used in the imaging system.

The analysis of our numerical calculation for g(z)(x, 7) as a function of x and 7 is discussed
in the next sections for the physically most remarkable cases. We will show the results for a
polariton system with dimensionless interaction constant mg = 10—, but we emphasize that
our results stand regardless of the value of the interaction constant g. A lower g merely
requires a stronger attenuation F of the k = 0 mode, provided the mean-field interaction
energy u = gn,, with n, the density of particles in the condensate, remains invariant.

g3, t;v,t) = (35)

gPx,1)=1+ (36)
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4.3 Lightcone-like correlations in the high-density regime

We first analyze the A < 0 case, which is obtained in the optical-limiter regime under the
additional condition u > y,|A|. Except for the energy gap in the very low-k range, the quasi-
particles that arise in this case share similar features with the familiar phononic modes in an
equilibrium condensate because interactions (quantified by u) dominate over losses (quan-
tified by y). We therefore expect that the elementary excitations, once created, can travel
through the fluid at the speed of sound during a time roughly corresponding to the average
photon lifetime 7 = y~!. The spatial-temporal profile of the density-density fluctuations is
then expected to exhibit features that we can relate to a lightcone-like propagation of the
quasiparticles. In Fig. 4d) we show the profiles of a fluid pumped with y = 5y and A = —y
for different attenuation levels F of the k ~ 0 modes, which give different amplitudes of the
displacement fields ).

It is illuminating to first discuss the case with F = 0, i.e the situation with a completely
attenuated coherent field. In that case we are only looking at the photon statistics that originate
from the quantum fluctuations, without interference of the coherent field. As the quasiparticles
are created in pairs with opposite momenta, we expect to observe bunched photon statistics
in the spatial-temporal profile of g®(x, 7). We see in Fig. 4d that for F = 0 (upper panel) all
statistics in the profile exhibits bunching, with higher values at (x, 7)-points that can be related
to creation processes of quasiparticle pairs. Most notably, an oscillation with a frequency |A|
in time is seen, which is the frequency of low-momentum quasiparticles.

By varying the attenuation F of the k = 0 mode with the SLM (see Fig. 4b)) to add
a coherent field ¢y, to the signal, we can drastically change the appearance of the spatial-
temporal profile of g (x, 7). Upon increasing F (i.e. transmitting a fraction of the condensate
mode with the SLM, rather than blocking everything) we observe how the bunching of the
quasiparticle pairs turns into antibunching in a sound-like band due to interference with the
condensate mode (see the middle panel with / = 0.009). For a larger fraction of ¢ ¢ (see
panel in (d) with F = 0.018) the profile of g®?(x, 7) remains largely the same in shape, but
the variation from g(z) = 1, the statistics of a fully coherent state, reduces.

The expected antibunched statistics at short times and distances, stemming from inter-
particle repulsion, is apparent for sufficiently high displacement fields 1 ¢ (including the stan-
dard case of no attenuation). At later times we see how the same-point antibunching quickly
disappears on a time-scale of the order of a fraction of 1/u and transforms into a propagating
antibunching feature that travels through the fluid (see blue band) at a velocity close to 2c,
with ¢ = 4/ u/m being the speed of sound (white dashed lines).

Taking inspiration from well-known results on quantum quenches and correlation func-
tions in conservative systems [34-37], a (somewhat hand-waving) physical interpretation of
this result is the following. Detection of a photon at the initial time and position creates a
Bogoliubov quasiparticle in the photon fluid, which then travels away with the group velocity
of the mode it is emitted into. In turn, the presence of this Bogoliubov quasiparticle modifies
the probability of detecting a second photon at space-time points located along its world-line.
Correlations are peaked on the lightcone, but the fact that they display a sizeable intensity
both inside and outside the lightcones is due to the strong k-dependence of the Bogoliubov
group velocity, that increases in a faster-than-linear way at large k because of the quadratic
cavity dispersion, and tends to zero for small k because of the energy gap characteristic of the
driven-dissipative condition.

4.4 Spatial pattern formation with diffusive modes

When the fluid is pumped on the lower-intensity branch of a bistable regime, a range of
diffusive-like Bogoliubov modes is present. Provided losses still dominate over interactions
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Figure 4: (a) The confocal two-lens setup to measure density-density correlations
of a fluid of light. A spatial light modulator (SLM) is placed in the common Fourier
plane of the two lenses to perform the desired k-space selection. Delayed correlations
between photon detections separated by a time interval T allow to measure the g(®
intensity correlation function defined in (35). (b) The spatial profile of the SLM that
is used for the shaping of the beam. All modes in the 2D plane are transmitted,
except a small disk centered around k = 0, where the coherent field is situated.
White corresponds to transmission, black to full blocking and gray to attenuating
with a factor F, in order to transmit a coherent field ¢y = F1),. (c-d) Spatial-
temporal profiles of the density-density correlation function g®(x, ) for varying
(top to bottom) filtering fraction F (see (36)) and different (left/right) pumping
parameters. Red shades correspond to bunching and blue to antibunching. For the
parameters of (c), the parametrically amplified modes give rise to a spatial pattern
of alternating bunching and antibunching, which turns into complete bunching for
F — 0. The quasiparticle dispersion of this mean-field configuration is plotted in Fig.
2(c). For the parameters of (d) We notice the appearance of an approximate sound
cone x = 7/2c (white dashed lines) of antibunched correlations. Also here, when
F — 0, the antibunching turns into bunching. The quasiparticle dispersion for this
case is plotted in Fig. 2(a).
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(2u < 1), the homogeneous state remains dynamically stable and quasiparticles generated by
quantum fluctuations eventually decay. In the most interesting case 2u < A, shown in Fig.
4c), the set of diffusive modes (indicated by a blue band) has a disk shape in k space around
a nonzero momentum. Since the lifetime 7, = 1/(y — 2I}) (with I}, = Jw;) of these modes
can be substantially longer than non-amplified modes for which 7; = 1/y, we expect that they
may leave an important imprint on the photon statistics.

In Fig. 4c), we show the spatial-temporal profiles of g (x, t) for a fluid pumped with
mean-field parameters u = 0.4y and A = 3y and for varying displacement field v ¢, which we
engineer again from the condensate mode with the SLM (see Fig. (a-b)). For these parameters
we have a disk of diffusive-like modes centred around nonzero momentum k, ~ 2.3,/my (see
the corresponding spectrum in Fig. 2c¢)). Due the parametric amplification of these modes,
we see that a standing-wave-like pattern appears in g®(x, t), with a wavelength correspond-
ing to the parametrically amplified wave vectors. Remarkably, the vanishing real part of the
frequency of these modes implies a zero group velocity v,f = J,wy, so that the spatial pattern
persists in time, practically without moving.

Upon varying F, we can again switch from a profile with alternating bunching and anti-
bunching regions in space (lower panels of Fig. 4c, with 7 = 0.008,0.016) to a profile with
only bunching when the condensate is attenuated completely (panel with F = 0). There is
an optimum at about F ~ 0.008, which stabilizes a temporal band with minimum density
correlations g (x, t) at a separation of x ~ 2(my)~'/2. In all cases, we see that the spatial
structure, as imprinted by the parametrically amplified modes, is well preserved in time. The
temporal duration of the interesting correlations is now substantially longer, thereby facili-
tating measurement with realistic photo-detectors with nonzero photon collection time. On
the other hand, the strong suppression of g(®)(x, t) at nonzero x cannot be used to generate
strongly antibunched photon statistics, since it relates to correlations between two spatially
separated points.

Another interesting feature of Fig. 4c) is the presence, at short times, of small ripples
on top of the otherwise very stable space-time structure, which then quickly propagate away
and disappear. As for the additional features that were visible on top of the lightcones in
Fig. 4d), we attribute these features to the presence of modes with a nonzero group velocity.
Just outside the parametrically amplified disk, we can even verify that the modes exhibit a
diverging group velocity, as can be seen on Fig. 2(b-c).

5 Conclusion

In this work we have theoretically investigated the peculiar nature of quantum fluctuations
displayed by the light field in nonlinear planar microcavities. The fluctuations are generated
as a result of pair-creation processes of quasiparticles with nonzero momentum and we have
proposed free-space optics configuration to manipulate their shape and intensity.

In the first part of this work, we have shown how an appropriately designed selection
and interference scheme allows to translate the intrinsic two-mode squeezing due to optical
nonlinearities into a single-mode squeezed output state with strongly antibunched photon
statistics. Even though our results can be placed within the framework of the Unconventional
Photon Blockade [15-18], the planar microcavity geometry differs from the usual two-cavity
geometry typically considered in this literature.

In the second part we have illustrated how the spatial-temporal structure of the density-
density correlation function can be reconstructed and shaped with free-space optics. By fil-
tering the beam in the far-field, as to attenuate the k = O coherent component, the nontriv-
ial spatial-temporal profile of the correlation function can be manipulated. Upon removing
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the condensate mode completely, the statistics generated by the fluctuations only leads to a
strongly bunched signal. When we interfere an attenuated coherent mode with the fluctu-
ations, we reconstruct a reinforced copy of the spatial profile of density-density correlations
inside the fluid of light. In this framework, we have first discussed the high-density regime,
where the correlation function exhibits an antibunching features at the coincidence point and
then a lightcone-like behavior away from it. We then showed that the presence of a set of
parametrically amplified modes with nonzero momentum leads to an oscillating spatial pat-
tern that is well preserved in time.

From a wide perspective, the results of this manuscript suggest a new avenue to generate
interesting quantum states of light using planar microcavity devices displaying only a weak
nonlinearity.
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A The Bogoliubov transformation revisited

The Bogoliubov approximation provides an approximate description of a quantum field in
terms of a coherent condensate with Gaussian quantum fluctuations on top. Although the
formalism for a driven-dissipative fluid is very similar to the equilibrium case, we would like
to draw the attention to a few notable differences.

For equilibrium atomic condensates the quantity w; from (12) is generally known as the
quasiparticle spectrum and it indicates the frequency at which a particular Bogoliubov mode
Zx oscillates [29]. Caution must be taken when this view is generalized to out of equilibrium
systems. The reason is that, in contrast with an equilibrium condensate, the bare-particle
dispersion g of non-equilibrium ones is not necessarily a positive function of k. In a driven-
dissipative quantum fluid the condensate phase is set by the detuning &, a tunable parameter
in experiment, while at equilibrium it is fixed by the chemical potential u, such that in that
case the gapless phonon condition A = 0 holds exactly (see (9)).

A.1 Evolution of the quasiparticle operators

Following expression (10), the evolution of the particle operators ¢§k can be formulated as

: i _ _ 7 b Ex _[ &tu u
“’f(ak)—@k lz)(éik)+(éik)’ Bk—( —u —ek—u)- 7

We can always write By = Up DU ! with

Dk — Wk 0 Uk — VSI? vg,_k) V(i) — [ V(i) (38)
0 —wy )’ v;;) vé_k) 7oLk e+ Ut wy, 2K
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such that V(i) (vﬁg, Sl:()) are the left eigenvectors of By with eigenvalues £wy. Notice that

By isin general not Hermitian and that therefore left and right eigenvectors do not necessarily
coincide, nor must they form an orthogonal basis.
Without any loss of generality, we can now define new quasiparticle operators Zj = U, 1$,,

with By = ( X1E+)’ )2( k))T and &y, = (¢y, ¢J’;k)T, which evolve in time as
A(+) a (+)
( 5 ) ) (Dk—l—)( ) )+noise (39)

A.2 Regular modes

If we want the )21((*) to be operators that satisfy bosonic commutation relations, they need to
fulfil two conditions. First of all they must be each others Hermitian conjugate, which leads
to

(+) (v ) and v(+) (v%k))* (40)
such that we can choose to write

[ we v
U“‘( ) “

Secondly, the bosonic commutation relation [ X1E+)’ )Z(k)] =1 tells us that

Jug? — Il =1 (42)
After evaluation and making use of (38), the parameters u; and v, are found as,

€k+‘ui1
2(,()k 2

U, Vi — + (43)

At this point we have derived the standard text book definition of the Bogoliubov transforma-
tion without making any assumptions other than the Bogoliubov operators being bosonic [29].

A.3 Diffusive-like modes

Diffusive-like modes are characterized by having &, < 0, such that w; purely imaginary and
we can write w; = i[} with I} real. By making use of relation (38) we can now evaluate

2
) N (e tw?+2\ (ex+ 1) —exler+2u)
gl =" =l 1 = —5— | = | 1 - 3
u u

This clearly contradicts (42), meaning that either condition (40) or condition (42) cannot be

satisfied. Henceforth, the Bogoliubov operators fl(f) of diffusive-like modes cannot be bosonic.

We can choose another parametrization (not unique) for the transformation matrix Uy

) =0 (44

from (38)
e T —U
U, = k| s =—-—r, 45
‘ (Sk Sii) T et pin ¢ (4>)
where we choose the normalization sy, — risy, = i, such that
-1 __ Slt —rlt
U, =1 ( S T . (46)
With this choice of parametrization we derive after straightforward algebra from (38) that
5= Ly = S B 47)
2Fk € +‘U,+lrk 2Fk
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B The time evolution of the particle operators

We focus on the linear part of time evolution of an excitation. In general, we find that equation
(10) can be solved by introducing time-dependent operators of the form

$i(6) = e (i) hi(0) + L (1§, (0)) + noise (48)

Here, 1;(t) and {;(t) are time-dependent Bogoliubov coefficients. When A is tunable, we can
distinguish three different regimes that are separated in momentum space [25,32].

e A < 0: g is positive for any k and the quasiparticle spectrum w, has a gap given by
VIA|(JA| + 2u). In the limiting case A — 0 the gap closes and we retrieve the famil-
iar linear spectrum of an equilibrium condensate. Particle-like (hole-like) excitations
oscillate with a frequency w; (—w;), but are damped by v, reflecting the overall finite
lifetime of particles. The time-dependent Bogoliubov transformation is then found as

Ne(t) = Jug[2e 79kt — |y |2ei@kt ) ¢ (1) = 21w vy sin(ewyt). (49)
e 0 <A <2u: Adisk of modes k < v2mA appears where ¢, < 0. Modes in this region
have a purely imaginary frequency w; = i|w;| so that they are damped or amplified at
a rate [} = |wy|. Therefore one branch of excitations will be strongly damped in time
with a lifetime 1/(y + 2I}), while excitations on the other branch may have a much
longer lifetime 1/(y — 2I}) and are parametrically amplified. Modes in this region are
traditionally called diffusive-like [25]. We derive that their time evolution is governed
by
() = i(skr,ferkt —s,’;rke_rkt), £ (t) = —2i|si | sinh (Ti t), (50)

with s, and ry given in (47). Note that, in order to have only exponentially damped
diffusive modes, we must ensure that y > 2u.

e 2u < A: Same as above, but in this case the diffusive modes are found on a ring
v2m(A—2u) < k < v/2mA, while modes in the inner disk k < /2m(A —2u) os-
cillate with a real frequency wy, like usual. For these modes the time evolution is found
as

|26iwkt

Me(t) = lug — [vilPe k!, £ (t) = —2iu vy sin(wit), (51)

with u; and v given in (43).

C Main noise sources

In this Appendix, we discuss the influence of the dominant noise sources in the setup. First,
we assume a homogeneous distribution of polaritons in the plane of the microcavity; this can
be distorted in the presence of cavity disorder. Second, interaction with a phonon bath may
lead to pure dephasing of polaritons, thus altering the squeezing properties of the light. Even-
tually, this together with other relaxation mechanisms may result in a population of thermal
polaritons in the microcavity.

C.1 Disorder

We may give an estimate for the effects of disorder by considering the Fourier transform V
of a random potential, V(r) = \/LV D Vie'®T, which is applied to the planar microcavity. We
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then find that the random potential enters into the evolution of the mean field in the rotating
frame as

i v? 2 Y
ip(r) = (——=+gp@P+V(E)—5—il Jp)+F. (52)
2m 2
When we restrict to evaluating the linear response of the mean field to disorder, we find that
the non-uniform polariton field can be formulated as Y (r) = ¢ + %Zk S e’®T. After
substitution in (52) and collecting terms up to linear order in 64y and Vy, we find a set of
linear equations for each mode

61k —Vk¥o )
L = ¢ 53
k( OPTy ) ( Vo 3
with the response matrix
ex+8no—i% g2 )
Ly = . , (54)
‘ ( —g¥y?  —ex—gno—ij

and €, = k?/2m— & + Un,. By solving (53) we derive the response of the density distribution
to the disorder potential in the linear regime

ex+7%/4

Sy = |6y |* = szno—2
(w2 +72/4)

(55)

with w;, given in (12).

For this qualitative analysis we consider w; ~ €, such that 6ny ~ szno / ((wi + 72/ 4).
When we compare this with the momentum distribution from coherent pair creation (16), we
conclude that (V2)AV. < g - u/2, where (V?2) is the variation of the disorder potential and
AV, is the correlation volume of disorder. Plugging in numbers, we find that V(r) should not
vary more than ~ 40ueV over a scale of 1 um for an interaction constant g = 10ueV - um?2,
in line with [14], and u = 300ueV. Probably, this is the primary challenge to implement our
proposal in experiment, based on values reported in Ref. [38].

C.2 Pure dephasing

Pure dephasing arises when the polariton fluids interacts with a thermal bath of phonons,
present in the material. In the Markov approximation, we find that this amounts to including
jump operators of the form

n i(k=K)rf 2 A
AV, (1) (r) ~ AV, (ng + \/gz eI + 1)), (56)

kK

where AV, is the correlation volume of the phonons, which we estimate for simplicity as
AV, = Ale, the de Broglie wavelength of phonons. Notice that this may be somehow more
complicated when the full functional form of the phonon distribution is considered. Upon
explicitly evaluating the Lindblad equation with dissipators of form (56) and integrating over
space, we find that

— 2
at ng deph - YdephnOAdB (57)

Therefore, the dominant effect of dephasing will be a scattering with phonons of polaritons
from the condensate, thereby ending up in nonzero momentum modes. This is quantified by
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a (Markovian) rate yqepn. Notice that long-wavelength phonons may not allow for a simpli-
fied Markovian treatment. Still, it is expected that (56), describing a build-up of incoherent
polaritons from scattering out of the condensate, will be the main influence of pure dephasing.

The finite-momentum density resulting from these spurious scattering processes builds up
linearly in time and is damped with photon decay rate y of losses from the cavity. Therefore, we

obtain in the long time limit that ny = Yd;ph
deph

is a number of order 1). Here, no)\ﬁB is the number of condensate particles within a volume
AﬁB and can be a relatively large number for a typical residual temperature of the order of
u = gny, the chemical potential. As such, if y4eph is too large, but still yg4epn < v, We propose
to employ a pulsed excitation scheme to circumvent this issue. Given the complexity of the
dephasing process, it is difficult to obtain an accurate estimate of y4,p, Or to extract it from
the literature. Still, it is clear that the condition ygepn <7/ (nO)L(ZiB) must be satisfied for a CW
pumping scheme to be employed.

nOAgB (we take that the coherent density 16

C.3 Other noise sources

As a consequence of other spurious relaxation processes, an incoherent population of polari-
tons can build up at the bottom of the excitation branch. This may result in an extra density
of polaritons n;,. at nonzero k, not generated by coherent pair-creation, which is to be added
to ny in (16) and therefore reduces the squeezing of the output light. One way to circumvent
this problem is also to employ a pulsed excitation scheme. Then, the polariton population is
expected to build up on the time scale of the polariton lifetime, while thermalization into the
bottom of the lower polariton branch requires some relaxation process, which typically occurs
on a much longer time scale.
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