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Abstract

Relativistic fluids are Lorentz invariant, and a non-relativistic limit of such fluids leads
to the well-known Navier–Stokes equation. However, for fluids moving with respect
to a reference system, or in critical systems with generic dynamical exponent z, the
assumption of Lorentz invariance (or its non-relativistic version) does not hold. We are
thus led to consider the most general fluid assuming only homogeneity and isotropy and
study its hydrodynamics and transport behaviour. Remarkably, such systems have not
been treated in full generality in the literature so far. Here we study these equations
at the linearized level. We find new expressions for the speed of sound, corrections to
the Navier–Stokes equation and determine all dissipative and non-dissipative first order
transport coefficients. Dispersion relations for the sound, shear and diffusion modes are
determined to second order in momenta. In the presence of a scaling symmetry with
dynamical exponent z, we show that the sound attenuation constant depends on both
shear viscosity and thermal conductivity.
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1 Introduction

Fluids and gasses are all around us. Their descriptions arise as a universal limit of finite
temperature systems when we consider these on sufficiently long length and time scales so
that they relax to an approximate thermal equilibrium. The universality of fluid dynamics is
what makes it a very powerful and useful framework, providing an effective description based
on symmetry principles for wide classes of systems.

Often, one is dealing with a system in which the fluid particles move in a certain medium,
for instance electrons in an atomic lattice, or particles swimming collectively in another fluid,
birds flocking through the air, etc. The existence of such a medium defines a preferred frame,
and this becomes important when the interaction between the fluid particles and the medium
cannot be ignored. To get an effective hydrodynamic description for the fluid particles, one
should integrate out the degrees of freedom of the medium. Doing so, the dynamics of the
fluid particles will in general not have any relativistic symmetry, the Lorentz symmetry, or its
non-relativistic version, the Galilei symmetry. In particular, this means that the effective fluid
description will not have a boost symmetry relating all inertial frames.

These considerations motivated us to formulate a new effective theory of hydrodynam-
ics in the absence of boost symmetry. The first steps at the level of perfect fluids were taken
in [1]. In this paper we take the next important step and develop a linearized theory of hy-
drodynamic modes for homogeneous and isotropic systems, i.e. systems with only time and
space translation symmetries, and spatial rotation symmetry respectively1. The extension to
the full non-linear level will appear in Ref. [4].

The nature of a boost symmetry or lack thereof has profound implications for the dynamics
of fluids2. Indeed, as shown in [1], already at the perfect fluid level there are novel expressions
for the speed of sound, which were furthermore illustrated in that paper by considering the
thermodynamics of a gas of free Lifshitz particles (both classical and quantum). As we will
show in the present work by considering the hydrodynamic modes, there will also be new
first-order transport coefficients, both dissipative and non-dissipative. They contribute to the
transport properties such as sound attenuation and therefore leave an observable imprint on
transport phenomena, which can potentially be measured. Also, the effect of broken boost
symmetry produces corrections to the Navier-Stokes equation, which we derive at linearized
order.

Fluid dynamics studies global conservation laws in a large wavelength approximation.
These conservation laws are energy and momentum conservation and possibly a set of U(1)

1The study of hydrodynamics for anisotropic systems has been studied in several places, e.g. in [2,3].
2Hydrodynamics of systems without boosts has been addressed previously (see e.g. [5, 6] and [7–9]) but our

starting point, the perfect fluid thermodynamics [1], differs from these works.
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charge conservation laws such as particle number, electric charge, baryon number etc.. Such
conservation laws are a consequence of time and space translational symmetries (and possibly
some global U(1) symmetries) of the underlying theory of which we are making a fluid approx-
imation. To apply the rules of fluid dynamics we thus do not need to impose any additional
symmetries such as boost invariance.

In [1] it was shown that whenever a scale invariant system admits a fluid description with
a dynamical exponent z 6= 1, 2 it cannot be boost invariant. When z = 1 the fluid can have
Lorentz boost symmetries and when z = 2 the fluid can have Galilean boost symmetries34.
Since values of z 6= 1,2 are commonplace in condensed matter systems such fluids can thus
not be described in terms of the standard Navier–Stokes equation or its relativistic counterpart
because these are both boost invariant. This is of relevance to both critical and quantum critical
systems, and our new theory is suitable to study the hydrodynamic behavior of (quantum)
critical systems as well. We will here not attempt to classify all systems of this nature but
it includes such vastly different phenomena as dynamic scaling in biology, see e.g. [19] for
a recent example, quantum critical transport in strange metals, see e.g. [20], and viscous
electron fluids [21].

2 Perfect fluids revisited

The equation of state of a perfect fluid with one conserved U(1) current is of the form
P = P(T,µ, v2) where T is the temperature, µ the chemical potential for the conserved charge
density n and where v2 = v i v i with i = 1, . . . , d is the velocity squared [1]. By charge we mean
either electric charge, mass, baryon number or any other conserved particle species. The veloc-
ity is treated as a chemical potential conjugate to the momentum densityPi . Since we assume
rotational symmetries the momentum density must be proportional to v i , i.e. Pi = ρv i , where
ρ will be called the ‘kinetic mass density’. When there is boost invariance one can define a
rest frame temperature and chemical potential such that the equation of state for P no longer
depends on v2. Otherwise there is an absolute frame with respect to which we measure v2.
From the equation of state one can determine the entropy density s, the charge density n
and the kinetic mass density ρ via the Gibbs–Duhem relation δP = sδT + nδµ + 1

2ρδv2.
Notice that Piδv i = 1

2ρδv2. The total energy density E is then given by the Euler relation
E = Ts − P + v iPi + µn. We will frequently work with the internal energy Ẽ = E −ρv2. The
first law is given by δẼ = Tδs+µδn− 1

2ρδv2.
The perfect fluid energy-momentum tensor and U(1) current in the laboratory (LAB) frame

in which the fluid has velocity v i is given by [1]

T0
0 = −E , T0

j = ρv j , T i
0 = − (E + P) v i , (1)

T i
j = Pδi

j +ρv i v j , J0 = n , J i = nv i . (2)

We note that this is not the most general form for these currents compatible with the sym-
metries. In general one can have five scalar quantities appearing in the energy-momentum
tensor and two distinct scalars in the U(1) current. However, in thermodynamic equilibrium
all charges move with the same average velocity, which gives rise to the expression above. The
energy momentum tensor (1) has the property that, using a coordinate transformation that
takes the form of a Galilean boost, one can go to a moving coordinate system in which all the
fluxes are zero and in which the charges are: E − v iPi (the internal energy Ẽ) for the energy
density, Pi for momentum, n for charge density and furthermore T i

j = Pδ j
i in terms of the

pressure.
3More precisely the no-go theorem tells us that fluids cannot have Galilean symmetries with z 6= 2.
4Hydrodynamics for z = 2 Schrödinger systems was considered from a modern perspective in e.g. Refs. [10–18].
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Using (1), (2), the conservation equations ∂µTµν = 0 and ∂µJµ = 0 take the form

0 =
�

∂t + v i∂i

�

E + (E + P)∂i v
i + v i∂i P , (3)

0 = ρ
�

∂t + v i∂i

�

v j + ∂ j P + v j
�

(∂t + v i∂i)ρ +ρ∂i v
i
�

, (4)

0 =
�

∂t + v i∂i

�

n+ n∂i v
i , (5)

where the second equation is the generalized Euler equation. Using these perfect fluid equa-
tions of motion together with the first law for δE it can be shown that entropy is conserved,
i.e.

�

∂t + v i∂i

�

s+ s∂i v
i = 0.

In general there are two a priori different notions of mass density, namely the ‘kinetic mass
density’ which is the proportionality between the momentum density and the velocity that
we call ρ and the ‘substance mass density’ which is the number of particles per unit volume
that we denote by n (assuming that we are dealing with a system that has a conserved particle
number). We will see that for fluids with Galilean symmetry these two notions are equal to each
other, ρ = n5. It is well known that in a relativistic theory ρ is no longer conserved because
the faster particles move the more massive they become. Whenever ρ 6= n, the Euler equation
contains an extra force term −v j

�

(∂t + v i∂i)ρ +ρ∂i v
i
�

which is due to the non-conservation
of ρ. We see here that in a general non-boost invariant setting we need to sharply distinguish
between these two different notions of mass.

We will briefly investigate the role of scale symmetries. The most general scale symmetry,
compatible with rotations, is of the form t → λz t, x i → λx i for time and space coordinates t
and x i , where z is the dynamical exponent. This implies the Ward identity −zT0

0 + T i
i = 0

which for a perfect fluid leads to the thermodynamic condition: dP = zẼ + (z − 1)ρv2.
In appendix A we briefly review how standard relativistic and non-relativistic fluids are

recovered from the general description. In [1] it was shown that only z = 1 is compatible
with Lorentz boost symmetry and that only z = 2 is compatible with Galilean boost symmetry,
while for z 6= 1,2, as shown in [1], we cannot have any boost symmetry which thus requires
one to use the general formalism developed here and in [1,4].

To set the stage for the main analysis we start by studying the hydrodynamic modes associ-
ated with perturbations around a global thermal equilibrium where the fluctuations obey the
perfect fluid equations. For simplicity we consider throughout this paper a global equilibrium
at rest, i.e. with v i

0 = 0 where the 0 subscript refers to the unperturbed equilibrium configura-
tion. We thus consider Ẽ = Ẽ0 +δẼ , P = P0 +δP and v i = δv i with Ẽ0 and P0 constants. The
fluctuation equations that follow from (3)–(5) are

0 = ∂tδẼ +
�

Ẽ0 + P0

�

∂iδv i , (6)

0 = ρ0∂tδv i + ∂iδP , (7)

0 = ∂tδn+ n0∂iδv i . (8)

There are as many hydrodynamic modes as there are conservation equations. We will now
first discuss these modes at the perfect fluid level. By going to Fourier space it follows that
there are two propagating sound modes δP and δv‖ =

ki

k δv i where ki is the momentum of
the mode and d non-propagating modes with dispersion relation ω = 0. These are the d − 1
shear modes δv i

⊥ =
�

δi
j −

ki k j

k2

�

δv j and the diffusion mode δ s
n . This latter fact is easily seen

by eliminating ∂iδv i from (6) and (8) and using the first law δẼ = T0n0δ
s
n +

Ẽ0+P0
n0
δn with

v i
0 = 0.

5In the Galilean case, on dimensional grounds, we should have ρ = mn where m is the mass of the identical
particles. We will absorb the constant m into n.
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The dispersion relation for the sound mode δv‖ is ω= ±vsk and likewise for δP, where

v2
s =
Ẽ0 + P0

ρ0

�

∂ P0

∂ Ẽ0

�

n0

+
n0

ρ0

�

∂ P0

∂ n0

�

Ẽ0

=
n0

ρ0

�

∂ P0

∂ n0

�

s0
n0

(9)

is the speed of sound. The second equality follows from (49) by writing δ s
n in terms of varia-

tions of P and n and isolating δP. When the system is scale invariant with a generic dynamical
exponent z, which from now on we will refer to as a Lifshitz fluid, and when v i

0 = 0, we have
dP0 = zẼ0, so that the speed of sound is given by

v2
s =

z
d
Ẽ0 + P0

ρ0
. (10)

The speed of sound for perturbations around a moving global equilibrium, i.e. with v i
0 6= 0 is

discussed in [1]. In the following we will compute the corrections to all hydrodynamic modes
that originate when going away from perfect fluid behaviour. For definiteness we will assume
the presence of a U(1) current and associated thermodynamic variable n, but the case without
U(1) is easily obtained by ignoring the n-dependence in our results.

3 Hydrodynamic frame choice

Perfect fluids describe systems in local thermodynamic equilibrium. We will now assume that
there is no local equilibrium anymore. We will do so in the usual sense of performing a deriva-
tive expansion around the perfect fluid. We will work to first order in derivatives and restrict
to small fluctuations in the fluid variables, deferring a more general study to [4]. When we
move away from local equilibrium we need to specify what we mean by the local fluid variables
such as temperature and velocity. This is commonly known as a hydrodynamic frame choice.
Once such a choice has been made one writes down the most general constitutive relations for
the conserved currents as well as the entropy current. The free functions in the constitutive
relations are restricted by demanding local positivity of entropy production, which requires a
detailed study of the entropy current. We will perform this procedure below and consequently
derive the allowed transport coefficients. We will subsequently study the effect of the new
transport coefficients on the dispersion relations of the hydrodynamic modes.

The energy-momentum tensor has in general one and exactly one negative eigenvalue. We
can use the associated eigenvector to provide us with a definition of the velocity that is valid at
any order in the derivative expansion. The associated hydrodynamic frame is the well known
Landau frame and it is defined by Tµνu

ν = −Ẽuµ, where the eigenvector is parameterized
as uµ = u0(1, v i) with v i the velocity of the fluid and where the eigenvalue Ẽ is the internal
energy. The prefactor u0 is not fixed by this condition. The Landau frame conditions provide
d + 1 definitions that can be used to fix the hydrodynamic frame. We have in case of a U(1)
symmetry, however, d + 2 fluid variables so we need one more frame condition. This can be
taken to be ūµJµ = −ñ= −(u0)−1n. However this requires a covariant version of uµ which we
have denoted as ūµ. Generally, we do not have a non-degenerate metric at our disposal to raise
and lower indices. In general there seems to be no canonical choice for ūµ. For our purposes
it will be convenient to choose ūµ such that ūµ obeys uµūµ = −1 and that it is parameterized
entirely in terms of v i . This means that it has the general form ūµ = (u0)−1(−1− Bv2, Bv i).
Here, both u0 and B can depend on v2. Again, u0 is not fixed by this condition. For a relativistic
fluid we take B = (1 − v2)−1 and u0 = (1 − v2)−1/2 which is dictated by Lorentz covariance
while for a Galilean fluid we take B = 0 and u0 = 1 as follows from Galilean covariance. At
first order in perturbations the choices for u0 and B are irrelevant. For convenience we set
u0 = 1 and B = 0.
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4 Constitutive relations

In order to compute the hydrodynamic modes we consider a double expansion. We fluctu-
ate around a global equilibrium at rest, i.e. with v i

0 = 0 where the 0 subscript refers to the
unperturbed equilibrium configuration and we restrict to terms that are up to first order in
derivatives.

In the Landau frame the linearized energy-momentum tensor and charge current (assum-
ing the presence of a U(1) current) up to first order in derivatives are given by

T0
0 = −Ẽ0 −δẼ , T i

0 = −
�

Ẽ0 + P0

�

δv i , (11)

T0
j = ρ0δv j + T0

(1) j , T i
j = (P0 +δP)δi

j + T i
(1) j , (12)

J0 = n0 +δn , J i = n0δv i + J i
(1) , (13)

T0
(1) j = −π0∂tδv j + T0 (α0 + γ0)∂ jδ

µ

T
, (14)

T i
(1) j = −ζ0δi j∂kδvk −η0

�

∂iδv j + ∂ jδv i −
2
d
δi j∂kδvk

�

, (15)

J i
(1) = (α0 − γ0)∂tδv i − T0σ0∂iδ

µ

T
, (16)

where ζ0, η0, γ0, π0, α0 and σ0 are first order transport coefficients. We will see in the next
section that there is one more transport coefficient, that we will denote by a, that appears in
the analysis of the entropy current.

The expansion is an on-shell expansion meaning that the first order correction terms are
the most general set of derivatives that are unrelated by the leading order equations of motion
(3)–(5), which take the form

∂tδT = −T0

�

∂ P0

∂ Ẽ0

�

n0

∂iδv i , (17)

∂iδT = −
ρ0T0

Ẽ0 + P0
∂tδv i −

T2
0 n0

Ẽ0 + P0
∂iδ
µ

T
, (18)

∂tδ
µ

T
= −

1
T0

�

∂ P0

∂ n0

�

Ẽ0

∂iδv i . (19)

This way of writing the perfect fluid equations follows from (57) and the real space equivalents
of equations (61) and (62) (obtained by replacing ω by i∂t and ki by −i∂i). Hence, using the
linearized leading order equations of motion we can express the derivatives of δT and the time
derivative of δ µT in terms of derivatives of δv i and the spatial derivative of δ µT . The reason we
choose this set of on-shell independent derivatives is explained in appendix B. Furthermore,
the derivative expansion must be such that we allow for all terms that are consistent with
SO(d) rotational symmetry which means that all derivatives transform as scalars, vectors or
tensors under SO(d) and that the Ward identity T i

j = T j
i is obeyed.

5 Entropy current and Onsager relations

In this section we will define and construct the entropy current. The entropy current Sµ consists
of a canonical piece and a non-canonical piece, i.e. Sµ = Sµcan + Sµnon. The canonical entropy
current is defined as

Sµcan = −
1

T̃
Tµνu

ν +
P
T̃

uµ −
µ̃

T̃
Jµ , (20)

6

https://scipost.org
https://scipost.org/SciPostPhys.5.2.014


SciPost Phys. 5, 014 (2018)

with ūµSµcan = −s̃ = −(u0)−1s, T̃ = u0T and µ̃ = u0µ. Since at the linearized order u0 = 1 the
distinction between T̃ , µ̃ and T , µ disappears so that we drop the tildes from now on.

For a perfect fluid the canonical entropy current is suµ. The non-canonical entropy current
is the most general current constructed from the fluid variables that is at least first order in
derivatives, so that it vanishes for a perfect fluid, and such that ∂µSµ ≥ 0 for all fluid config-
urations. Using the Gibbs–Duhem relation it follows that on-shell and in any hydrodynamic
frame

∂µSµcan = −
�

Tµν − Tµ(0)ν
�

∂µ
uν

T
−
�

Jµ − Jµ(0)
�

∂µ
µ

T
, (21)

where the (0) subscript denotes perfect fluid.
We will split the currents Tµν− Tµ(0)ν and Jµ− Jµ(0) into a dissipative and a non-dissipative

part Tµν − Tµ(0)ν = TµDν + TµNDν and Jµ − Jµ(0) = JµD + JµND, to be defined below, where we
require that the dissipative (D) and non-dissipative (ND) tensors are both symmetric in their
spatial indices. Without this assumption new unphysical parameters that have no origin in the
constitutive relations appear in ∂µSµ. We define this decomposition by requiring

∂µSµ = −TµDν∂µ
uν

T
− JµD∂µ

µ

T
≥ 0 . (22)

This implies that the non-canonical entropy current satisfies

∂µSµnon = TµNDν∂µ
uν

T
+ JµN D∂µ

µ

T
. (23)

For linearized perturbations the divergence of the entropy current is

∂µSµ = −
1
T

T i
(1) j∂iδv j −

1
T

T0
(1) j∂tδv j − J i

(1)∂iδ
µ

T
+ ∂µSµ(1)non , (24)

where we used the linearized version of (21) as well as the constitutive relations (11)–(16)
and where Sµ(1)non is the first order correction to Sµnon.

In appendix B we show that the divergence of the non-canonical entropy current is

∂µSµ(1)non = −

�

T0aT

�

∂ P0

∂ Ẽ0

�

n0

+
a µ

T

T0

�

∂ P0

∂ n0

�

Ẽ0

�

�

∂iδv i
�2

+
ρ0T0

Ẽ0 + P0
aT

�

∂tδv i
�2
+

�

T2
0 n0

Ẽ0 + P0
aT − a µ

T

�

∂iδ
µ

T
∂tδv i , (25)

where aT =
�

∂ a
∂ T0

�

µ0
T0

and a µ
T
=
�

∂ a
∂
µ0
T0

�

T0

are derivatives of a single transport coefficient a that

appears in Sµ(1)non.
Combining (25) with (24) in which we substitute the constitutive relations (15)–(16) we

can now impose positive entropy production. The expression ∂µSµ ≥ 0 is a quadratic form on
the space of derivatives ∂tδv j , ∂iδv j and ∂iδ

µ
T . Demanding that the quadratic form is positive

semi-definite for all fluid configurations leads to

ζ̄0 ≥ 0 , η0 ≥ 0 , π̄0 ≥ 0 , σ0 ≥ 0 , ᾱ2
0 ≤ π̄0σ0 , (26)

where we defined

ζ0 = ζ̄0 + aT T2
0

�

∂ P0

∂ Ẽ0

�

n0

+ a µ
T

�

∂ P0

∂ n0

�

Ẽ0

, (27)

π0 = π̄0 − aT
ρ0T2

0

Ẽ0 + P0
, (28)

α0 = ᾱ0 +
aT

2

n0T2
0

Ẽ0 + P0
−

a µ
T

2
. (29)
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We have split the coefficients into a dissipative part (the non-negative barred coefficients) and
a non-dissipative part depending on a. Notice in particular that there is no constraint on γ0,
appearing in (14) and (16), which hence does not produce entropy.

We can recover the known Lorentzian and Galilean boost invariant cases. In the Lorentzian
case the momentum current is equal to the energy flux, T0

i = −T i
0. Equating these currents

at first order in derivatives for the dissipative and non-dissipative parts separately tells us that
a = 0 and that π̄0 = 0 as well as ᾱ0 = −γ0. From the last inequality in (26) we then find
ᾱ0 = γ0 = 0. Likewise for a Galilean invariant fluid we have that the momentum density
equals the particle flux, T0

i = J i . Following a similar argument we end up with a = 0,
π̄0 = −α0 + γ0 and σ0 = −ᾱ0 − γ0, so that the last inequality of (26) sets γ0 = 0. This latter
result agrees with the linearized Landau frame expressions given in [15]. We conclude that
the two coefficients γ0 and a vanish in the Lorentz and Galilean boost invariant cases.

The nature of two non-dissipative coefficients γ0 and a is rather different as we now dis-
cuss. Also it may appear puzzling that we end up with 6 transport coefficients even though we
started with 5 in the constitutive relations. However in all known cases the coefficients in the
non-canonical entropy current can be obtained from a hydrostatic partition function [22, 23]
and therefore also appear in new terms in the constitutive relations once we turn on non-trivial
background fields. A preliminary analysis suggest that the same will happen here but we defer
further details to [4]. The nature of γ0 can be made more precise by invoking the Onsager
theorem which holds when the underlying theory of which we are making a fluid approxima-
tion is time reversal symmetric [24]. The Onsager theorem states that in this case the currents
and the derivatives ∂tδv j , ∂iδv j and ∂iδ

µ
T appearing in ∂µSµ at the linearized level are related

via a constant symmetric matrix. Different tensor structures do not mix and in our case the
only tensors that do not automatically obey the Onsager theorem are the vectors. Hence we
can focus on the 2 currents T0

D(1)i and J i
D(1) appearing on the right hand side of (22). Their

constitutive relations can be expressed as

�

T0
D(1)i

J i
D(1)

�

=

�

−π̄0 ᾱ0 + γ0
ᾱ0 − γ0 −σ0

��

∂tδv i

T0∂iδ
µ
T

�

. (30)

By the Onsager theorem this 2 by 2 matrix must be symmetric. This tells us that γ0 = 0 for
systems with time reversal symmetry. The coefficient γ0 is an example of what is called Berry
transport in [25] which describes non-dissipative out of equilibrium transport6.

We thus find 5 dissipative transport coefficients, which, as we will see, can be split into
two viscosities ζ̄0 and η0 and three conductivities π̄0, ᾱ0 and σ0. On top of that there is 1
non-dissipative transport coefficient a. Next we will study their effect on the hydrodynamic
modes.

6 Hydrodynamic modes

In order to study the dispersion relation for the hydrodynamic modes we analyzed the equa-
tions of motion ∂µTµν = 0 and ∂µJµ = 0 coming from (11)–(16) in appendix D (using results
from appendix C). Equation (57) generalizes the linearized perturbations of the Navier–Stokes
equations to the case without any boost symmetry. The main result relevant here is expressed
in equations (67)–(69) together with (60) which describe the fluctuations of δv i

⊥, δv‖, δP and
δ s

n .
Since we work up to first order in derivatives we can solve for the eigenfrequencies of these

equations using a dispersion relation of the form ω= c1k− ic2k2 +O (k3) with c1 and c2 real.

6We thank Kristan Jensen for pointing this out to us.
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The eigenfrequencies of the equations for δv i
⊥, δv‖, δP and δ s

n are commonly referred to as
the shear, sound and diffusion modes and their dispersion relations and multiplicities up to
first order for general non-boost invariant hydrodynamicsx are given by

ωshear = −i
η0

ρ0
k2 , with multiplicity d − 1 , (31)

ωsound = ±vsk− iΓ k2 , with multiplicity 2 , (32)

ωdiff = −i
(Ẽ0 + P0)2

n3
0T0cP

σ0k2 , with multiplicity 1 , (33)

where cP is the specific heat at constant pressure defined in the second equation of (51). One
sound mode and the diffusion mode are each one particular linear combination of δv‖ and
δ s

n . Furthermore Γ is the sound attenuation constant given by

Γ =
1

2ρ0v2
s

�

�

ζ̄0 +
2
d
(d − 1)η0

�

v2
s + π̄0v4

s +σ0

�

�

∂ P0

∂ n0

�

Ẽ0

�2

+ 2ᾱ0v2
s

�

∂ P0

∂ n0

�

Ẽ0

�

. (34)

This expression follows from (70) where we used that

ζ0 +π0v2
s + 2α0

�

∂ P0

∂ Ẽ0

�

n0

= ζ̄0 + π̄0v2
s + 2ᾱ0

�

∂ P0

∂ Ẽ0

�

n0

. (35)

This equation tells us, as expected, that the non-dissipative coefficient a appearing in Sµ(1)non
does not contribute to the attenuation of the sound mode.

From (68) we see that (Ẽ0+P0)2

n3
0T0cP

σ0 is a diffusion constant for the diffusion of δ s
n , the entropy

per particle (or charge). The constant σ0 is the associated charge or particle conductivity
depending on whether the U(1) current Jµ describes charge or particle conservation. From
the condition of positive entropy production (26) we see that order k2 terms in ωshear and
ωdiff have a negative imaginary part so these are damping terms. In appendix E we show that
this is also true for the sound attenuation constant Γ .

Equation (74) allows us to define the thermal conductivity κ0 via

∂µSµ = κ0
1

T2
0

(∂iδT )2 + . . . , (36)

where the dots contain terms with spatial derivatives of δ µT and δv i . It then follows from (74)
that the thermal conductivity is proportional to the transport coefficient π̄0 via

κ0 =
(Ẽ0 + P0)2

ρ2
0 T0

π̄0 . (37)

We have thus established that π̄0 and σ0 are thermal and charge/particle conductivity, respec-
tively. Since ᾱ0 appears in the same conductivity matrix (73) and since, due to the inequality
ᾱ2

0 ≤ π̄0σ0, it is nonzero only when π̄0 and σ0 are both nonzero we will refer to it as the
thermo-charge or thermo-particle conductivity.

In both the Lorentzian and Galilean cases the expressions forωshear,ωsound andωdiff agree
with textbook results [26, 27]. In the case of a Lorentz invariant system we have, due to the
equality of momentum density and energy flux, that π̄0 = ᾱ0 = a = 0 and ρ0 = Ẽ0 + P0, so
that

ΓLor =
1

2(Ẽ0 + P0)

�

ζ0 +
1
d
(d − 1)η0

�

+
σ0

2(Ẽ0 + P0)v2
s

�

�

∂ P0

∂ n0

�

Ẽ0

�2

. (38)
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In the case of a Galilean invariant system we have that the momentum density equals the mass
flux from which we conclude that π̄0 = −ᾱ0 = σ0, a = 0 and of course ρ0 = n0. In this case,
with the help of (55), we can write Γ (for any arbitrary equation of state P0 = P0(Ẽ0, n0)) as
the well-known result

ΓGal =
1
2
ζ0

n0
+

1
d
(d − 1)

η0

n0
+

1
2
κ0

n0

�

1
cV
−

1
cP

�

. (39)

An important application of our results concerns Lifshitz hydrodynamics in which we
have a Lifshitz scale symmetry with a dynamical exponent z. We have seen that fluids with
z 6= 1, 2 cannot be boost invariant. When there is a scale symmetry we have (for v i

0 = 0) that

P0 = P0(Ẽ0) so that
�

∂ P0
∂ n0

�

Ẽ0
= 0. Furthermore, scale invariance implies that the bulk viscosity

ζ̄0 vanishes as well as the non-dissipative coefficient a (which follows from demanding that
T i

D j and T i
ND j are both traceless), so that the expression for Γ for a Lifshitz invariant system

with or without a U(1) current simplifies to the novel expression

ΓLif =
1
d
(d − 1)

η0

ρ0
+

1
2
π̄0

ρ0
v2

s =
1
d
(d − 1)

η0

ρ0
+

z
2d
Ẽ0 + P0

ρ2
0

π̄0 , (40)

where in the second equality we used (10). By measuring the speed of sound vs and the
attenuation of the shear mode (31) we can determine π̄0

ρ0
by measuring the attenuation Γ of

the sound mode.

7 Discussion

In a Galilean fluid the thermal conductivity κ0 is proportional to σ0 and is thus related to
the diffusion of δ s

n , the entropy per unit mass or particle. In a relativistic fluid the thermal
conductivity κ0 vanishes. What we have shown is that in general, when there are no boosts
present, the thermal conductivity can be any positive number independent of the diffusion
constant (which is proportional to σ0). In fact even when there is no U(1) current, so that
n= µ= 0, the fluid can still have a non-vanishing κ0.

It is well known that sound attenuation in a conformal fluid is entirely controlled by the
shear viscosity. An important difference between conformal and Lifshitz fluids is that in the
latter case we see an additional contribution to the sound attenuation due to the non-vanishing
of κ0.

We have seen that for a generic non-boost invariant fluid there are 5 dissipative and 1 non-
dissipative transport coefficients7. The 5 dissipative coefficients are ζ̄0 (bulk viscosity), η0
(shear viscosity), π̄0 ∝ κ0 (thermal conductivity), σ0 (charge or particle conductivity which
is proportional to the charge or particle diffusion constant), ᾱ0 (thermo-charge or thermo-
particle conductivity which is nonzero only when π̄0 and σ0 are nonzero since ᾱ2

0 ≤ π̄0σ0)
and the non-dissipative coefficient a. It would be interesting to see if we can understand the
presence of a by constructing the hydrostatic partition function [22, 23] up to first order in
derivatives.8 After imposing scale invariance the 5+1 coefficients get reduced to 4 dissipative
and 0 non-dissipative transport coefficients because scale invariance requires ζ̄0 = a = 0. In
the absence of a U(1) current this is further reduced to 2 dissipative transport coefficients (η0
and π̄0).

In [4] we will study the general properties of all first order transport coefficients and not
just those that survive after restricting ourselves to small fluctuations around a fluid at rest.

7When the theory of which we are making a fluid approximation is not time reversal invariant there is a second
non-dissipative transport coefficient that we denoted by γ0.

8The leading order hydrostatic partition function for general perfect fluids is given in [1].
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This will give rise to a generalization of the Navier–Stokes equation for systems without boost
symmetries. For applications to systems with spontaneous symmetry breaking without boost
symmetries it would be very worthwhile to generalize our discussion to include superfluids.
It would furthermore be interesting to consider non-boost invariant analogues of the fluid
approach to magnetohydrodynamics developed in [28,29].

Finally, it would be interesting to study the properties of the first order transport terms in
holographic realizations of systems with Lifshitz thermodynamics such as in [30–34] and to
see if they obey any universal properties such as the η/s bound derived for holographic systems
dual to strongly coupled conformal fluids in [35] (in this connection see also [16,17,36,37]).
More generally, it would be important to develop a full-fledged fluid/gravity correspondence
for Lifshitz systems, in analogy with the conformal relativistic [38, 39] and non-relativistic
(z = 2 Schrödinger) case [10–13].
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A Boost invariant perfect fluids

We briefly discuss how standard Lorentz and Galilean invariant situations are recovered from
the general perfect fluid defined in section 2. For relativistic fluids we have the Lorentz boost
Ward identity T i

0 = −T0
i , so that ρ = E+P = γ2(Ẽ+P), where γ= (1−v2)−1/2 is the Lorentz

contraction factor. We redefine T = γ−1 T̃ , s = γs̃, µ = γ−1µ̃ and n = γñ, so that we recover
the standard thermodynamic relations Ẽ + P = T̃ s̃+ µ̃ñ and δẼ = T̃δs̃+ µ̃δñ. In other words
we have succeeded in removing the dependence of the equation of state P = P(T̃ , µ̃) on v2, as
expected in a boost invariant setting. This independence of P on v2 is only compatible with
scale invariance if we set z = 1 in agreement with the known fact that we can only add scale
symmetries to the Poincaré algebra for z = 1.

For non-relativistic Galilean fluids the boost Ward identity reads T0
i = J i which implies

ρ = n. If we define Ê = Ẽ + 1
2 nv2 and µ̂ = µ + 1

2 v2, it follows that Ê = Ts − P + µ̂n and
δÊ = Tδs + µ̂δn, where Ê is the internal energy. In this case the scale Ward identity can be
written as dP = zÊ + z−2

2 nv2. Since P is a function of only T and µ̂ and since s =
�

∂ P
∂ T

�

µ̂
and

n =
�

∂ P
∂ µ̂

�

T
and because Ê = Ê (s, n) it follows that the combination (dP − zÊ )/n is a function

of only T and µ̂ and not of v2. We conclude that this is compatible with scale symmetries
only for z = 2. On an algebraic level, in the case of the Bargmann algebra, we can add scale
symmetries with general z leading to the Schrödinger algebra with general z. We thus see
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that we cannot form a perfect fluid with z 6= 2. Conversely, this means that whenever we are
dealing with a physical system that is scale invariant with a dynamical exponent z 6= 1,2, and
that allows for a fluid description, we need to use the formalism of non-boost invariant fluid
dynamics developed here and in [1,4].

B Non-canonical entropy current

In this appendix we will consider the constitutive relation for the non-canonical entropy cur-
rent. We see that the first three terms on the right hand side of (24) are second order in
perturbations. The ansatz for the non-canonical entropy current must therefore be written up
to first order in derivatives and up to second order in fluctuations and is parameterized by

S0
(1)non = a1∂iδv i + a2δv i∂tδv i + a3δv i∂iδ

µ

T
, (41)

S i
(1)non = b1∂tδv i + b2δv j∂iδv j + b3δv j∂ jδv i + b4δv i∂ jδv j + b5∂iδ

µ

T
, (42)

where the coefficients depend at most linearly on the fluctuations δT and δ µT .
When writing down the constitutive relations for the conserved current we chose to work

with the on-shell independent set of derivatives ∂tδv j , ∂iδv j and ∂iδ
µ
T . The reason for this par-

ticular choice of derivatives is because these are the derivatives that appear in the divergence
of the canonical part of the entropy current (24). In this way when expanding the conserved
currents in derivatives of ∂tδv j , ∂iδv j and ∂iδ

µ
T we do not have to explicitly use the leading

order equations of motion to convert from one set of derivatives to another. This is particularly
advantageous when going beyond leading order perturbations [4]. This advantage does not
apply to the non-canonical part of the entropy current ∂µSµ(1)non (24) because it involves the

derivatives ∂tδT , ∂iδT and ∂tδ
µ
T that need to be converted into the set ∂tδv j , ∂iδv j and ∂iδ

µ
T

with the help of the leading order equations of motion.
The divergence ∂µSµ(1)non contains terms that are of the form O (∂ 2) that can never be

non-negative and terms that are of the form O (∂ )O (∂ ). Since the first three terms in (24)
only contain terms of the latter form we must demand that ∂µSµ(1)non only contains products
of first order derivatives and no genuine second order derivatives. This leads to a1 = −b1,
a2 = a3 = b2 = b5 = 0 and b3 = −b4, so that

∂µSµ(1)non = ∂t a1∂iδv i − ∂ia1∂tδv i + b3

�

∂iδv j∂ jδv i − ∂iδv i∂ jδv j
�

. (43)

The coefficient b3 must be zero because otherwise we cannot fulfil (23) with TµNDν symmetric
in its spatial indices. We will rename a1 = a and to first order in fluctuations it is expanded as

a = a0 + aTδT + a µ
T
δ
µ
T where aT =

�

∂ a
∂ T0

�

µ0
T0

and a µ
T
=
�

∂ a
∂
µ0
T0

�

T0

and where the constant a0 is

unphysical because it does not appear in ∂µSµ(1)non. Using (17) to eliminate derivatives of δT

and time derivatives of δ µT we obtain

∂µSµ(1)non = −

�

T0aT

�

∂ P0

∂ Ẽ0

�

n0

+
a µ

T

T0

�

∂ P0

∂ n0

�

Ẽ0

�

�

∂iδv i
�2

+
ρ0T0

Ẽ0 + P0
aT

�

∂tδv i
�2
+

�

T2
0 n0

Ẽ0 + P0
aT − a µ

T

�

∂iδ
µ

T
∂tδv i . (44)

This is used in the main text to derive (25).
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C Thermodynamic relations

We collect here a set of useful thermodynamic relations among derivatives of various thermo-
dynamic quantities. For notational convenience we drop here the subscript 0. Throughout we
set v i = 0.

Consider the transformation from (T, µT ) to (Ẽ , n):

�

δẼ
δn

�

= J

�

δT
δ
µ
T

�

, where J is the

Jacobian. From inverting the Jacobian we learn that




�

∂ T
∂ Ẽ

�

n

�

∂ T
∂ n

�

Ẽ
�

∂
µ
T
∂ Ẽ

�

n

�

∂
µ
T
∂ n

�

Ẽ



= (det J)−1





�

∂ n
∂
µ
T

�

T
−
�

∂ Ẽ
∂
µ
T

�

T

−
�

∂ n
∂ T

�

µ
T

�

∂ Ẽ
∂ T

�

µ
T



 , (45)

where

det J =

�

∂ Ẽ
∂ T

�

µ
T

�

∂ n
∂
µ
T

�

T

−
�

∂ Ẽ
∂
µ
T

�

T

�

∂ n
∂ T

�

µ
T

. (46)

By writing P as a function of (Ẽ , n) and varying (Ẽ , n) and by writing P as a function of (T, µT )
again varying (Ẽ , n), using the inverse J−1 Jacobian, we find

�

∂
µ
T

∂ Ẽ

�

n
=

1
nT

�

∂ P
∂ Ẽ

�

n
−
Ẽ + P
nT2

�

∂ T
∂ Ẽ

�

n
, (47)

�

∂
µ
T

∂ n

�

Ẽ
=

1
nT

�

∂ P
∂ n

�

Ẽ
−
Ẽ + P
nT2

�

∂ T
∂ n

�

Ẽ
. (48)

By rewriting the first law we obtain for the entropy per unit charge s/n,

δ
� s

n

�

=
1

T n
δẼ −

Ẽ + P
T n2

δn . (49)

Using the equality of mixed second order derivatives of s/n under interchanging the order and
after using (47) we obtain the Maxwell relation

�

∂
µ
T

∂ Ẽ

�

n
=

1
T2

�

∂ T
∂ n

�

Ẽ
=

1
nT

�

∂ P
∂ Ẽ

�

n
−
Ẽ + P
nT2

�

∂ T
∂ Ẽ

�

n
. (50)

For fluids that have a conserved particle number it is possible to define a specific heat. In
the following we denote by n the number of particles per unit volume. We define the specific
heats cV and cP as

cV =
1
n

�

∂ Ẽ
∂ T

�

n
= T

�

∂ s
n

∂ T

�

n
, cP = T

�

∂ s
n

∂ T

�

P
. (51)

In order to derive a few useful relations involving cV and cP consider the change of variables

from (Ẽ , n) to (P, T ):

�

δP
δT

�

= J ′
�

δẼ
δn

�

, where J ′ is the Jacobian. We can use the inverse

Jacobian J ′−1 to rewrite (49) as a variation with respect to δP and δT . Using the expression for
the components of J ′−1 in terms of the components of J ′ we then find the following expression
for the specific heat at constant pressure cP ,

cP = −
ρv2

s

n2

�

det J ′
�−1

, (52)
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where we used (9) and where we have

det J ′ =
�

∂ P
∂ Ẽ

�

n

�

∂ T
∂ n

�

Ẽ
−
�

∂ P
∂ n

�

Ẽ

�

∂ T
∂ Ẽ

�

n
. (53)

By computing the determinant of the inverse Jacobian J−1 and using (47) and (48) we obtain

det J = −nT (det J ′)−1 =
n3T
ρv2

s
cP , (54)

where in the second equality we used (52).
Using (53) and (52) we can derive an expression for

�

∂ T
∂ n

�

Ẽ . The second equality in (50)

gives another expression for
�

∂ T
∂ n

�

Ẽ . Eliminating
�

∂ T
∂ n

�

Ẽ from these two expressions leads to

��

∂ P
∂ Ẽ

�

n

�2

=
ρv2

s

T n

�

1
cV
−

1
cP

�

. (55)

From which we derive the usual inequality cP ≥ cV .

D Linearized perturbations

We will consider linearized perturbations that obey the Onsager theorem, i.e. for which γ0 = 0.
The linearized equations of motion ∂µTµν = 0 and ∂µJµ = 0 that follow from (11)–(16) are

0 = ∂tδẼ +
�

Ẽ0 + P0

�

∂iδv i , (56)

0 = ρ0∂tδv j + ∂ jδP −π0∂
2
t δv j + T0α0∂t∂ jδ

µ

T
−
�

ζ0 +
d − 2

d
η0

�

∂ j∂iδv i −η0∂i∂iδv j , (57)

0 = ∂tδn+ n0∂iδv i +α0∂t∂iδv i − T0σ0∂i∂iδ
µ

T
, (58)

where ζ0, η0 are the bulk and shear viscosity respectively. The coefficients π0 and σ0 are
the thermal and charge/particle conductivity respectively. The coefficients π0 and α0 both
multiply terms that describe variations of the fluid’s acceleration ∂tδv i . We note that this term
can be written in terms of gradients of δT and δ µT via the leading order equation of motion
(18).

We perform a Fourier transformation by taking δẼ = e−iωt+i~k·~xδẼ (ω, k) etc. and we define
a velocity δv‖ =

ki

k δv i parallel to k j and a velocity δv i
⊥ =

�

δi
j −

ki k j

k2

�

δv j perpendicular to k j .

The Fourier transform of (57) projected along k j gives

0 = ωρ0δv‖ − kδP + i
�

ζ0 +
2
d
(d − 1)η0

�

k2δv‖ + iω2π0δv‖ + iT0α0ωkδ
µ

T
= 0 , (59)

whereas projected orthogonal to k j we find

ρ0ωδv i
⊥ + iη0k2δv i

⊥ + iπ0ω
2δv i

⊥ = 0 . (60)

For v i
0 = 0 we can consider δẼ , δP and δn as functions of δT and δ µT and derive a set of

equations for the fluid variables δT , δ µT and δv i . We multiply (56) with
�

∂ n0

∂
µ0
T0

�

T0

and multiply

(58) with
�

∂ Ẽ0

∂
µ0
T0

�

T0

and subtract the two equations to obtain (after using (45) and (46) as well

as the second equality in (50)),

0 = ωδT − T0

�

∂ P0

∂ Ẽ0

�

n0

kδv‖ + iα0

�

∂ T0

∂ n0

�

Ẽ0

ωkδv‖ + iT0σ0

�

∂ T0

∂ n0

�

Ẽ0

k2δ
µ

T
. (61)
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Similarly we multiply (56) with
�

∂ n0
∂ T0

�

µ0
T0

and multiply (58) with
�

∂ Ẽ0
∂ T0

�

µ0
T0

and subtract the two

equations leading to (after using (45) and (46)),

0 = ωδ
µ

T
−

1
T0

�

∂ P0

∂ n0

�

Ẽ0

kδv‖ + iα0

�

∂
µ0
T0

∂ n0

�

Ẽ0

ωkδv‖ + iT0σ0

�

∂
µ0
T0

∂ n0

�

Ẽ0

k2δ
µ

T
. (62)

Using the Gibbs–Duhem relation δP = Ẽ0+P0
T0
δT +T0n0δ

µ
T it follows that equations (59), (60),

(61) and (62) form a set of equations for the fluid variables δT , δ µT and δv i .
In order to study the hydrodynamic modes it will be convenient to derive a set of equations

for the alternative set of fluid variables given by δP, δ s
n and δv i . We can express δ s

n in terms
of δT and δ µT as follows

δ
s
n
=

n0cP

T0ρ0v2
s

�

∂ P0

∂ n0

�

Ẽ0

δT −
T0n0cP

ρ0v2
s

�

∂ P0

∂ Ẽ0

�

n0

δ
µ

T

=
n0cP

(Ẽ0 + P0)ρ0v2
s

�

∂ P0

∂ n0

�

Ẽ0

δP −
T0n0cP

Ẽ0 + P0
δ
µ

T
, (63)

where the first equality follows from expressing δ s
n in (49) in terms of variations with respect

to δT and δ µT which can be rewritten using equations (45), (50) and (54) into the above
expression. The second equality follows from the Gibbs–Duhem relation and the expression
for the speed of sound. By using (63) we can eliminate δ µT from equation (59) in favor of δP
and δ s

n leading to

0 = ωρ0δv‖ − kδP + i
�

ζ0 +
2
d
(d − 1)η0

�

k2δv‖ + iω2π0δv‖

−iα0
Ẽ0 + P0

n0cP
ωkδ

s
n
+ iα0

1
ρ0v2

s

�

∂ P0

∂ n0

�

Ẽ0

ωkδP . (64)

We combine an appropriate linear combination of (61) and (62) to find

0 = ωδP −ρ0v2
s kδv‖ + iα0

�

∂ P0

∂ n0

�

Ẽ0

ωkδv‖

−iσ0
Ẽ0 + P0

n0cP

�

∂ P0

∂ n0

�

Ẽ0

k2δ
s
n
+ i

σ0

ρ0v2
s

�

�

∂ P0

∂ n0

�

Ẽ0

�2

k2δP , (65)

where we used (9) as well as (63). By taking another appropriate linear combination of (61)
and (62) we obtain

0 = ωδ
s
n
+ iσ0

(Ẽ0 + P0)2

T0n3
0cP

k2δ
s
n
− iα0

Ẽ0 + P0

T0n2
0

ωkδv‖ − iσ0
Ẽ0 + P0

T0n2
0ρ0v2

s

�

∂ P0

∂ n0

�

Ẽ0

k2δP , (66)

where we used (48) to remove
�

∂
µ0
T0
∂ n0

�

Ẽ0

from (62), and where equations (50), (53), (54) were

used to simplify the result and finally we used (63) to express δ µT at order k2 in terms of δ s
n

and δP.
We have thus managed to write the Fourier transform of the perturbation equations (56)–

(58) in terms of δv i
⊥, δv‖, δP and δ s

n leading to (60), (63), (64) and (65). Equation (64)
can be simplified by multiplying it with ω

ρ and using equations (65) and (66) keeping only
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terms that are linear in transport coefficients (because that is the order to which our results
are valid). In a similar manner equations (66) and (65) can be simplified. This leads to

0 =
�

ω2 − v2
s k2 + i

π0

ρ0
ω
�

ω2 − v2
s k2

�

+ 2iΓωk2
�

δv‖ − iσ0
Ẽ0 + P0

ρ0n0cP

�

∂ P0

∂ n0

�

Ẽ0

k3δ
s
n

, (67)

0 =

�

ω+ i
(Ẽ0 + P0)2

n3
0T0cP

σ0k2

�

δ
s
n
− i
Ẽ0 + P0

T0n2
0v2

s

�

σ0

�

∂ P0

∂ n0

�

Ẽ0

+α0v2
s

�

ωkδv‖ , (68)

0 =
�

ω2 − v2
s k2 + 2iΓωk2

�

δP , (69)

where Γ is given by

Γ =
1

2ρ0v2
s

�

�

ζ0 +
2
d
(d − 1)η0

�

v2
s +π0v4

s +σ0

�

�

∂ P0

∂ n0

�

Ẽ0

�2

+ 2α0v2
s

�

∂ P0

∂ n0

�

Ẽ0

�

. (70)

We see that the equation for δP is decoupled. Equations (67)–(69) together with (60) are the
main result of this appendix and are used to obtain (31)–(34) in the main text.

E Positivity of the sound attenuation constant

In order to show that Γ given in (34) is non-negative when (26) is obeyed we complete a
square leading to

Γ =
1
2
ζ̄0

ρ0
+

1
d
(d − 1)

η0

ρ0
+

1
ρ0

�

ᾱ0 ±
p

π̄0σ0

�

�

∂ P0

∂ n0

�

Ẽ0

+
1

2ρ0v2
s

�

p

π̄0v2
s ∓

p

σ0

�

∂ P0

∂ n0

�

Ẽ0

�2

. (71)

The upper sign is for when
�

∂ P0
∂ n0

�

Ẽ0
≥ 0 and the lower sign for when

�

∂ P0
∂ n0

�

Ẽ0
≤ 0. Since

−
p

π̄0σ0 ≤ ᾱ0 ≤
p

π̄0σ0 we see that all terms on the right hand side are non-negative.
Another way to see that the π̄0, ᾱ0 and σ0 terms make a non-negative contribution to Γ

for any arbitrary equation of state is to write (34) as

2ρ0v2
s Γ =

�

ζ̄0 +
2
d
(d − 1)η0

�

v2
s

+
(Ẽ0 + P0)2

ρ2
0

�

�

∂ P0

∂ Ẽ0

�

n0

�2

π̄0 + 2
�

π̄0 +
ρ0

n0
ᾱ0

� Ẽ0 + P0

ρ0

�

∂ P0

∂ Ẽ0

�

n0

n0

ρ0

�

∂ P0

∂ n0

�

Ẽ0

+

�

π̄0 + 2
ρ0

n0
ᾱ0 +

ρ2
0

n2
0

σ0

�

n2
0

ρ2
0

�

�

∂ P0

∂ n0

�

Ẽ0

�2

(72)

and to view the last 3 terms as the quadratic form
 

π̄0 π̄0 +
ρ0
n0
ᾱ0

π̄0 +
ρ0
n0
ᾱ0 π̄0 + 2ρ0

n0
ᾱ0 +

ρ2
0

n2
0
σ0

!

(73)

on the space of derivatives of the equation of state, i.e. Ẽ0+P0
ρ0

�

∂ P0

∂ Ẽ0

�

n0

and n0
ρ0

�

∂ P0
∂ n0

�

Ẽ0
. The

quadratic form is positive semi-definite due to (26).
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The same matrix appears in the expression for the divergence of the entropy current when
expressed as a quadratic form on the space of gradients of δT and δ µT , i.e.

T0∂µSµ =

�

Ẽ0 + P0

ρ0T0
∂iδT

n0

ρ0
T0∂iδ

µ

T

�

 

π̄0 π̄0 +
ρ0
n0
ᾱ0

π̄0 +
ρ0
n0
ᾱ0 π̄0 + 2ρ0

n0
ᾱ0 +

ρ2
0

n2
0
σ0

!

×

�

Ẽ0+P0
ρ0T0

∂iδT
n0
ρ0

T0∂iδ
µ
T

�

− T i
(1) j∂iδv j , (74)

where we used (24), (25) as well as (18) to replace ∂tδv i derivatives in terms of gradients of
δT and δ µT .
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