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Abstract

In this work we consider colour-ordered correlation functions of the fields in integrable
planar gauge theories such as N = 4 supersymmetric Yang–Mills theory with the aim
to establish Ward–Takahashi identities corresponding to Yangian symmetries. To this
end, we discuss the Yangian algebra relations and discover a novel set of bi-local gauge
symmetries for planar gauge theories. We fix the gauge, introduce local and bi-local
BRST symmetries and propose Slavnov–Taylor identities corresponding to the various
bi-local symmetries. We then verify the validity of these identities for several correlation
functions at tree and loop level. Finally, we comment on the possibility of quantum
anomalies for Yangian symmetry.
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1 Introduction

Integrability is a tremendously useful feature of selected theoretical physics models that makes
these models much more amenable to exact calculations. At a technical level, integrability is
often viewed as a (more or less hidden) enhancement of the model’s symmetries, and the ex-
tended symmetries eventually explain the efficiency of the integrability-based methods. An
exciting class of integrable models of recent interest consists of certain quantum gauge field
theories featuring prominently in the AdS/CFT correspondence, namelyN = 4 supersymmet-
ric Yang–Mills (sYM) theory and several other related models. Investigating and exploiting the
integrable structures in these models has led to many novel insights about them and about the
AdS/CFT correspondence in the past 15 years; see [1] for a review. The relationship between
integrability of planar gauge theories and the enhancement of the spacetime symmetries to a
Yangian algebra has been known for a long time [2], see also [3–7]. Only much more recently,
it has been shown that the model’s action is in fact perfectly invariant under this Yangian
symmetry, at least classically [8,9].

Within field theories, symmetries typically imply the existence of conserved currents by
means of Noether’s theorem. In this case, however, the extra symmetries are in some sense
non-local whereas Noether’s theorem assumes a local symmetry action. Nonetheless Yangian
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symmetry has been demonstrated to lead to non-trivial relationships for several types of ob-
servables. Most prominently, so-called dual conformal symmetry [10] as a part of Yangian
symmetry [11] has been essential for constraining and constructing planar colour-ordered
gluon scattering amplitudes, see e.g. [12–16]. Unfortunately, the Yangian symmetries are
somewhat obscured beyond tree level due to the appearance of infra-red divergences related
to the presence of massless particles. Therefore, the enhanced symmetries have largely been
used either at the level of loop integrands or in a modified form for finite remainder functions.
In the former approach, divergences are avoided and therefore Yangian symmetry applies fully.
However, the results are of questionable use because of the need to regularise before integrat-
ing. In the latter approach, the divergent part is subtracted according to some scheme, and
the effect of the symmetries acting on it is summarised by some effective contribution com-
plementing the action on the finite part. While the approach leads to useful results [17–20],
the construction of the effective contributions to the symmetries is scheme-dependent and
sometimes appears ad hoc.

In this work our aim is to establish an opposite approach and derive Ward–Takahashi iden-
tities for planar colour-ordered correlation functions based on the recently established Yangian
symmetries of the action. Correlation functions of individual fields at distinct spacetime points
are perfectly finite observables of a renormalised quantum field theory. Therefore they are
also perfectly suited for symmetry considerations. Unfortunately, correlation functions of in-
dividual fields are not gauge-invariant and therefore they are not, by themselves, well-defined
observables of a gauge theory. However, they do contain gauge-invariant information, and
their unphysical contributions can be computed unambiguously after having fixed a particu-
lar gauge.1 Gauge fixing typically adds extra unphysical degrees of freedom, such as ghost
fields, to the system which are in no way bound to follow the representation theory of Yangian
symmetry. Nevertheless, we can set up Ward–Takahashi identities which take the gauge-fixing
procedure into account and which merely constrain the gauge-invariant information contained
in the gauge-fixed correlation functions. Another complication is that the formulation of Yan-
gian symmetry [8, 9] is intertwined with gauge symmetry and breaking the latter has some
impact on the former. We will thus have to understand aspects of the Yangian algebraic rela-
tions in detail, and we shall find that curiously the ordinary gauge symmetries are enhanced to
non-local symmetries in the planar gauge theory. These symmetries as well as the correspond-
ing BRST symmetries after gauge fixing play a crucial role in the Yangian Ward–Takahashi
identities for correlation functions.

The present article is organised as follows: In the following Sec. 2 we review the formu-
lation of bi-local symmetries for planar gauge theories put forward in [8, 9]. The next Sec. 3
discusses the relations of the Yangian algebra and how they give rise to non-local enhance-
ments of gauge symmetries. Subsequently, we fix the gauge by the Faddeev–Popov method
and introduce BRST symmetry in Sec. 4. We also show how to formulate an invariance state-
ment for the gauge-fixed action which in fact requires a non-local generalisation of BRST
symmetry. In Sec. 5 we propose a set of Slavnov–Taylor identities to formulate Yangian sym-
metry for quantum correlators. In order to derive the latter, we introduce a notion of bi-local
total variations within the planar path integral. Such a notion is by no means established, nor
is it clear whether it can be defined in a meaningful way at all. Nevertheless, we arrive at a
set of identities which can be formulated and tested in the ordinary framework. Verifying the
identities is the subject of Sec. 6 where we apply them to planar colour-ordered correlation
functions of the fields. This gives rise to Ward–Takahashi identities which we demonstrate to
hold for correlators of three and four fields at tree level. Properly taking all effects of gauge
fixing into account leads to a flurry of extra terms which all cancel eventually in all considered

1Evidently, the results depend on the choice of gauge, on how to represent the symmetries on the unphysical
degrees of freedom, on how the latter are renormalised and so on.
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cases. We delegate a full treatment of gauge-fixed correlation function to App. A. Finally in
Sec. 7, we shall discuss Yangian symmetry at the loop level in order to understand whether
quantum effects may break the symmetry. In particular, we will lay out an argument against
the existence of a quantum anomaly of Yangian symmetry in planarN = 4 sYM. We conclude
in Sec. 8 and give an outlook on open questions.

2 Bi-local symmetries in planar gauge theory

We start by introducing some of the basic concepts of gauge theory and Yangian algebras
which will be relevant to the present article. Subsequently, we will review the results of [8,9]
on Yangian invariance in planar gauge theory.

2.1 Planar gauge theory

In this work we will be concerned with gauge theory models which become integrable in the
planar limit, see [1]. Along the lines of [8, 9] we will consider the feature of integrability
as a manifestation of Yangian symmetry. We will base our analysis largely on the extended
algebraic properties of these models proposed and discussed in [8, 9] to be reviewed in the
later parts of this section. There will be no need to introduce and discuss specifics such as field
content or action, we will merely make reference to elementary concepts of these models.
Instead, we will discuss some relevant subtleties in more detail than usual in order to make
the subsequent investigations more accessible.

The gauge theory has a number of fields which we will collectively denote by Z I with
I , J , . . . some multi-index enumerating the different kinds of fields. Among these, we will
only need the gauge field Aµ explicitly. For concreteness, we shall assume the gauge group
to be U(Nc) and all (real) fields to be Nc × Nc (hermitian) matrices as in N = 4 sYM theory.2

Importantly, in all of these models, the fields can be composed by the matrix product to field
monomials

X = Z I Z J ZK . . . . (2.1)

The sequence of the individual matrix fields matters, and at sufficiently large Nc there are
no identities to relate different orderings. This means that in the planar limit Nc → ∞ all
monomials are independent and form a basis for polynomials. The above open monomialX is
an Nc ×Nc matrix, and therefore it inevitably transforms non-trivially under the gauge group.
Singlet combinations of the fields are obtained by taking the trace over colour space

O = tr(Z I Z J ZK . . .). (2.2)

Apart from relating the last and first fields, the trace implies a cyclic relationship

tr(Z I Z J ZK . . . Z P ZQ) = tr(Z J ZK . . . Z P ZQZ I), (2.3)

therefore we call O a cyclic monomial. In addition to cyclic polynomials, we will also require
the notion of closed polynomials at intermediate stages of calculations. Closed polynomials are
defined analogously to open polynomials (2.1), but there is an additional implicit neighbouring
relationship between the last and the first site, so that the sites form a periodic sequence. We
shall view cyclic polynomials as the subspace of closed polynomials invariant under cyclic
permutations, and the cyclic equivalence relation will be denoted by the symbol ‘'’

(Z I Z J ZK . . . Z P ZQ)' (Z J ZK . . . Z P ZQZ I). (2.4)

2Other relevant models such as ABJM theory have somewhat different gauge groups and fields, which can be
viewed as restrictions of bigger matrices to some subset.
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We assume that the Lagrangian L and the action S are given by cyclic polynomials3

S =
∫

dxdL , L = tr(Z I Z J ZK . . .) + . . . . (2.5)

In the case of cyclic polynomials integrated over spacetime, such as the action S , the equiva-
lence relationship ‘'’ is meant to also include integration by parts.

Note that for notational simplicity we consider all fields Z I to be bosonic. The discussion
will equally apply in the presence of fermions when the appropriate signs due to statistics are
inserted; we will only make such signs explicit when discussing particular fields, in particular
the Faddeev–Popov ghost fields C , C̄ to be introduced later.

Gauge transformations will be denoted by the generator G[Λ] where Λ is some Nc × Nc
matrix of fields. It acts on the fields of the model as

G[Λ]·Z := [Λ, Z], G[Λ]·Aµ := i∂µΛ+ [Λ, Aµ]. (2.6)

Consequently, the generators obey an algebra [G[Λ1], G[Λ2]] = G[Λ3] with
Λ3 = G[Λ1]·Λ2 − G[Λ2]·Λ1 − [Λ1,Λ2]. The resulting expression Λ3 can be simplified
depending on the type of gauge parameter fields Λ1 and Λ2. In particular, for an external
field Λ2, the gauge transformation G[Λ1] will act trivially by construction, G[Λ1]·Λ2 = 0. In
our article, we will almost exclusively consider the gauge parameters to be internal fields of
the theory or covariant combinations X thereof for which G[Λ]·X = [Λ,X ]. We thus get
a simplified algebra for covariant internal transformation parameters X1 and X2 which are
open polynomials

�

G[X1], G[X2]
�

= G
�

[X1,X2]
�

. (2.7)

The gauge field serves as the connection for a gauge-covariant derivative ∇ which is de-
fined on a covariant field Z as

∇µZ := ∂µZ + i[Aµ, Z]. (2.8)

Acting on another gauge field, the covariant derivative shall be defined as the field strength

∇µAν = −∇νAµ = Fµν := ∂µAν − ∂νAµ + i[Aµ, Aν]. (2.9)

The commutator of covariant derivatives reads

[∇µ,∇ν]Z = iG[Fµν]·Z . (2.10)

2.2 Yangian symmetry

The gauge theory model has some ordinary spacetime symmetries which form a Lie algebra g.
The latter is spanned by the generators Ja, a = 1, . . . , dimg, and their algebra is given by the
structure constants f

[Ja, Jb] = i f ab
cJ

c . (2.11)

For notational simplicity we shall again pretend that all generators Ja are bosonic; however,
the discussion will equally apply to Lie superalgebras when appropriate signs due to statistics
are inserted.

3It is conceivable that the discussion can be extended to field theory models with fundamental matter fields and
open polynomial contributions to the Lagrangian. However, this will require substantial modifications.
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For concreteness, we shall assume the underlying spacetime to be commutative and flat,
so that translations will be among the spacetime symmetries.4 Translations are represented
by the momentum generator Pµ, and commutativity of spacetime implies that the momentum
generators commute, [Pµ, Pν] = 0.

For integrable planar gauge theory models as discussed in [8, 9], the ordinary spacetime
symmetries extend to a Yangian quantum algebra Y[g]. The ordinary symmetries of the algebra
g form the zeroth level of the Yangian algebra, and they are required to have an invertible
invariant quadratic form. In addition, there is one level-one generator bJa corresponding to
each level-zero generator Ja. These generators transform in the adjoint representation of g

[Ja,bJb] = i f ab
cbJ

c , (2.12)

and they obey the so-called Serre relation
�

bJa, [bJb, Jc]
�

+ cyclic= f ad
e f b f

h f cg
i fd f g J(e Jh Ji), (2.13)

where the indices of the last structure constant fd f g have been lowered by means of the inverse
quadratic invariant form. Furthermore, the Yangian algebra contains infinitely many higher-
level generators. However, we can ignore these because their algebraic relations are fully
determined by the above relations involving only level-zero and level-one generators.

The Yangian algebra is a Hopf algebra, and it has a non-trivial coproduct which implies the
following representations on a tensor product of n factors

Ja =
n
∑

j=1

Ja
j , bJa =

n
∑

j=1

bJa
j + f a

bc

n−1
∑

j=1

n
∑

k= j+1

Jb
j Jc

k. (2.14)

Here Ja
j and bJa

j denote the representations of Ja and bJa, respectively, on site j of the tensor
product, and f a

bc is another version of the structure constants with one index lowered. Fol-
lowing the structure of the tensor product representations, the level-zero generators Ja are
called local because they act locally on the tensor product. Conversely, the level-one gener-
ators bJa are called bi-local because they act on all pairs of tensor factors, even at a distance.
The level-one generators additionally act by local contributions. Note that the bi-local contri-
butions in the second term are completely determined by the level-zero generators whereas
the freedom in specifying the level-one representation lies in tuning the local contributions in
the first term.

One helpful tool to avoid writing out indices and structure constants is Sweedler’s notation:
for a level-one generator bJ = bJa, we define the bi-local combination of level-zero generators
appearing in the tensor product representation (2.14) as

J(1) ⊗ J(2) := f a
bcJ

b ⊗ Jc . (2.15)

It allows us to write the above tensor product representation at level one compactly as
bJ =

∑

j
bJ j +

∑

j<k J(1)j J(2)k . Note that anti-symmetry of the structure constants implies anti-
symmetry of Sweedler’s notation

J(1) ⊗ J(2) = −J(2) ⊗ J(1). (2.16)

4This assumption may not be essential for the overall applicability of the article, but a concrete momentum
generator will help to illustrate some features.
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2.3 Non-linear representations

A complication in formulating Yangian symmetries for planar gauge theory models is that
the action of Yangian generators should be formulated in a way that is compatible with gauge
transformations. Therefore it is advisable to work with gauge-covariant representations which
map all covariant fields to some covariant combination of the fields. This necessarily implies
that the representation is non-linear in the fields. So-called non-linear representations5 appear
naturally in the context of interacting (quantum) field theory, but usually only for local genera-
tors J. The generalisation from local to bi-local generators bJ has some rather non-trivial issues,
some of which were addressed in [8,9]. Here we will review non-linear local representations
and present some tools to work with them. Later on we shall generalise to non-linear bi-local
actions.

Ideal of gauge transformations. To understand the necessity and implications of non-linear
representations in a gauge theory, let us consider translations. Translations are represented by
the momentum generator Pµ which acts on any field Z by the covariant derivative6

Pµ·Z = i∇µZ . (2.17)

Due to the presence of the gauge field Aµ within the covariant derivative, this representation
is clearly non-linear in the fields.

Covariance of the representations also has implications on the algebraic structure. Due
to commutativity of spacetime, one would expect the momentum generators to commute.
However, commutativity is mildly violated by a gauge transformation sourced by the gauge
field strength F

[Pµ, Pν] = −iG[Fµν]. (2.18)

Happily, the gauge transformations G form an ideal of the complete symmetry algebra accord-
ing to the algebraic relation

�

G[X ], J
�

= −G[J·X ] (2.19)

along with the closure (2.7) of gauge transformations. Therefore, it is possible to isolate the
spacetime transformations by quotienting out gauge transformations. In other words, the
algebra reduces to spacetime transformations when acting on gauge-invariant states.

Non-linear actions. Let us now understand how non-linear representations act on field poly-
nomials. To that end, it is instructive to expand an open polynomialX in terms of the number
of fields n as X[n]

X =
∑

n

X[n]. (2.20)

Likewise, we shall denote the contribution to a non-linear representation J that adds m fields
to the object it is acting upon by J[m]. The expansions reads

J =
∑

m

J[m]. (2.21)

Altogether we can write the non-linear action of J on X as

J·X =
∑

n,m

J[m]·X[n] =
∑

n

n
∑

m=0

J[m]·X[n−m] =
∑

n

(J·X )[n] (2.22)

5Non-linear representations merely act non-linearly on single fields, but they act linearly on the vector space of
field polynomials.

6The corresponding non-covariant representation Pµ·Z = i∂µZ merely uses the partial derivative; consequently,
it is linear in the fields, but it produces undesirable non-covariant expressions within the gauge theory context.

7

https://scipost.org
https://scipost.org/SciPostPhys.5.2.018


SciPost Phys. 5, 018 (2018)

with the expansion coefficients

(J·X )[n] =
n
∑

m=0

n−m
∑

k=1

J[m],kX[n−m]. (2.23)

Here J[m],kX[n] is an operator which replaces a field Z at site k of the polynomial X[n] by
the sequence J[m]·Z of length m + 1. All the sites j = 1, . . . , k − 1 of the polynomial are left
untouched, while the sites j = k+ 1, . . . , n are shifted by m sites to j = k+m+ 1, . . . , n+m.

· · · · · ·

· · · · · · · · ·

1 k
−

1

k k
+

1

n

1

k
−

1 k

k
+

m

k
+

m
+

1

n
+

m

X[n]

J[m],kX[n]

id J[m],k id
(2.24)

Based on the above construction, it is straight-forward to determine the commutator of
two non-linear actions Ja and Jb in the expansion

[Ja, Jb] =
∑

n

[Ja, Jb][n]. (2.25)

The expansion coefficients read

[Ja, Jb][n], j =
n
∑

m=0

m+1
∑

k=1

Ja
[n−m],k+ j−1Jb

[m], j −
n
∑

m=0

m+1
∑

k=1

Jb
[n−m],k+ j−1Ja

[m], j . (2.26)

Note that the non-overlapping terms drop out from the commutator as usual due to the non-
linear commutation relation

Ja
[l], jJ

b
[m],k = Jb

[m],k+lJ
a
[l], j if j < k. (2.27)

In the diagrammatical notation of (2.24) this relation has the following form:

= (2.28)

Action on cyclic polynomials. Now let us continue with cyclic polynomials. Here we will
meet some issues in the non-linear local action that are worth paying attention to, as they will
come back as actual problems for the non-linear bi-local action.

We start by introducing the cyclic shift operator U which cyclically shifts all fields by one
site to the left. In other words, in a monomial of length n, it maps site k to site k − 1 for
k = 2, . . . , n and site 1 to site n,

U . (2.29)
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The shift operator allows us to define a cyclic polynomial O as a closed polynomial that is
invariant under cyclic shifts

UO = O . (2.30)

Due to cyclic symmetry, it makes sense to define the expansion of a cyclic polynomial O with
non-trivial symmetry factors7

O =
∑

n

1
n
O[n]. (2.31)

Next, we consider the action of a local generator J on a cyclic polynomial O , i.e. a closed
polynomial obeying UO = O . The above symmetry factors produce some curious prefactors
for the resulting expansion

J·O =
∑

n

1
n
(J·O )[n] with (J·O )[n] =

n
∑

m=0

n
n−m

J[m]·O[n−m]. (2.32)

To determine the coefficients (J·O )[n], we might treat cyclic polynomials as if they were open
polynomials because the local action does not pay attention to ordering

(J·O )[n]
?
=

n
∑

m=0

n−m
∑

k=1

n
n−m

J[m],kO[n−m]. (2.33)

However, this assignment is problematic because the resulting expansion coefficients are not
cyclic even though O is. One can easily show this by considering the commutation relations
for the shift operator

J[m],kUO[n] =

¨

UJ[m],k+1O[n] for k 6= n,

Um+1J[m],1O[n] for k = n.
(2.34)

The special case k = n requires an adjustment due to the change of length of the non-linear
operator:

= . (2.35)

To resolve cyclicity violation, note that field polynomials in a gauge theory maintain their trace
structure when acted upon by a local operator. Therefore we should project the result to the
cyclic component, let us do this by introducing an operator ‘tr’ as the cyclic projection

trO[n] :=
n
∑

k=1

1
n

UkO[n]. (2.36)

Then the expansion coefficients of the local action are given by the manifestly cyclic expression

(J·O )[n] = tr
n
∑

m=0

n−m
∑

k=1

n
n−m

J[m],kO[n−m] =
n
∑

m=0

n
∑

k=1

UkJ[m],1O[n−m]

=
n
∑

m=0

�n−m
∑

k=1

J[m],kO[n−m] +
m
∑

k=1

UkJ[m],1O[n−m]

�

.

(2.37)

7The symmetry factors are useful as they naturally cancel many factors due to combinatorics, but one has to
pay attention that O[n] merely represents the n-field contribution of a cyclic polynomial O up to a factor of n.
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The second expression on the first line is manifestly cyclic, and the prefactor has been cancelled
by the factor 1/n due to cyclic symmetrisation in (2.36) and due to the equivalence of all n−m
summands under cyclic projection. The second line is an alternative presentation where we
have a separated the n−m naive actions on the individual fields from terms where the result
of the action on a field extends past the closure at sites n and 1,

n−m
∑

k=1

Jk +
m
∑

k=1 J1

Uk

. (2.38)

The latter is a somewhat unintuitive effect of non-linear representations on cyclic polynomials.
Calculations can become somewhat cumbersome when we handle cyclic projections ex-

plicitly. It therefore makes sense to work modulo cyclic identifications using the equivalence
relation ‘'’. In that case we readily find

(J·O )[n] '
n
∑

m=0

n J[m],1O[n−m]. (2.39)

The prefactor even cancels upon reassembling all expansion coefficients

J·O '
∑

n

n
∑

m=0

J[m],1O[n−m] '
∑

n,m

J[m],1O[n]. (2.40)

When acting with further local operators, one has to pay attention to proper prefactors and
cyclic symmetrisations at intermediate stages. For example, one finds

Ja·Jb·O '
∑

n,m,p

n+m
∑

j=1

Ja
[p],1U jJb

[m],1O[n] '
∑

n,m,p

n+m
∑

j=1

Ja
[p], jJ

b
[m],1O[n]. (2.41)

From here it is straight-forward to see that the action on cyclic polynomials obeys the same
commutation relations (2.25,2.26) as for open polynomials, and therefore also forms a proper
representation of the symmetry algebra.

2.4 Non-linear bi-local actions

Let us now turn our attention to bi-local generators. We shall denote a bi-local combination
of two generators Ja and Jb by the composition ‘⊗’ as Ja⊗Jb. Qualitatively, Ja⊗Jb describes a
bi-local action where Ja acts only on sites to the left of the location where Jb acts. According
to (2.14), the appropriate notation for the level-one generator bJ therefore reads

bJ = J(1) ⊗ J(2). (2.42)

As explained earlier, the bi-local action is accompanied by some local action which is needed
to complete the definition in the limit of coincident insertions. Here we assume that for every
bi-local action Ja ⊗ Jb there will be a suitable choice for the local part.8 The local action can
be isolated as the action on a single field, (Ja ⊗ Jb)·Z .

Noting that the product of two local operators Ja and Jb has a bi-local structure, it is natural
to demand the relationship

Ja ⊗ Jb + Jb ⊗ Ja = 1
2JaJb + 1

2JbJa. (2.43)

8Note that the choice of local part may not be unique, but by construction the difference between two choices
Ja ⊗ Jb and (Ja ⊗ Jb)′ is a local operator which we know how to handle.
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In particular, the local parts should be defined in consistency with this relationship. This
implies that a symmetric combination of generators Ja and Jb is equivalent to a product of
two local generators. Therefore, we may restrict to anti-symmetric combinations, which is
enforced by the anti-symmetric composition ‘∧’

Ja ∧ Jb := Ja ⊗ Jb − Jb ⊗ Ja. (2.44)

However, for the level-one generator bJ = J(1) ⊗ J(2) anti-symmetry is implied by Sweedler’s
notation, and there is no need for explicit anti-symmetrisation (note that J(1) ∧ J(2) = 2bJ).

Open polynomials. As the constituent generators Ja and Jb of Ja ⊗ Jb will typically be non-
linear representations, the bi-local action Ja ⊗ Jb should also be non-linear. The generalisa-
tion of the non-linear action to bi-local generators was proposed in [8], and it reads straight-
forwardly

(Ja ⊗ Jb)·X :=
∑

n,m

n
∑

k=1

(Ja ⊗ Jb)[m],kX[n] +
∑

n,m,p

n
∑

k=2

k−1
∑

j=1

Ja
[p], jJ

b
[m],kX[n]. (2.45)

The first term is a local action while the second term is the bi-local action.
Note that we chose to keep the bi-local terms in our definition (2.45) well-separated. One

might just as well include terms where Ja acts on the output of Jb or vice versa. However
these contributions would amount to local terms, and they could be compensated by a change
of the local term (Ja ⊗ Jb)loc. In that sense one may view the local term as a regulator for the
short-distance limit of the bi-local terms.

Cyclic polynomials. In [9] the action of a bi-local generator on a cyclic polynomial was
proposed that is suitable to express invariance of the action

(Ja ∧ Jb)·O :'
∑

n,m

(Ja ∧ Jb)[m],1O[n]

+
∑

n,m,l

n
∑

k=2

2k− n− 2
n+m+ l

Ja
[m],k+lJ

b
[l],1O[n]

+
∑

n,m,l

l+1
∑

k=1

2k− l − 2
n+m+ l

Ja
[m],kJb

[l],1O[n]

−
∑

n,m,l

m+1
∑

k=1

2k−m− 2
n+m+ l

Jb
[l],kJa

[m],1O[n].

(2.46)

Here, the first line contains local terms and the second line describes the non-overlapping bi-
local contributions. The last two lines consist of overlapping bi-local terms which turned out to
be essential for making the action properly invariant. They can be viewed as the appropriate
short-distance regulator for cyclic polynomials. Even though the overlapping terms act in a
local fashion, we shall lump them together with the bi-local terms in the restriction (Ja∧Jb)biloc;
the local part (Ja ∧ Jb)loc will consist of the terms in the first line of (2.46) only.

Curiously, the bi-local terms have a set of unusual prefactors. In particular, they depend
explicitly on the length n of the cyclic polynomial they act upon. In fact, the denominator
n+m+ l (which equals the length of the resulting polynomial) will turn out to be troublesome
when commuting operators because the relevant length is measured at different stages of the
calculation and the corresponding denominators will not match up. This is a purely non-linear
effect of which we will see some examples further below; fortunately, the mismatching terms
can be eliminated by suitable restrictions.

11

https://scipost.org
https://scipost.org/SciPostPhys.5.2.018


SciPost Phys. 5, 018 (2018)

A related concern is gauge covariance: while the above action on open polynomials (2.45)
is manifestly gauge-covariant (provided that the local contributions are), this is not the case
for the expression (2.46) because the non-linear combinations needed for gauge covariance
are apparently upset by different prefactors for different terms. We shall return to and resolve
this issue in Sec. 3.3.

The above bi-local action (2.46) was derived in [9] under three conditions: manifest anti-
symmetry of Ja and Jb, invariance of the cyclic polynomial O under Ja and Jb as well as
commutativity of Ja and Jb. The superconformal symmetries Ja and the action S of integrable
planar gauge theories such asN = 4 sYM satisfy these requirements. Let us comment on these
conditions.

The first condition is reflected by the fact that the definition (2.46) only makes reference
to the anti-symmetric bi-local operator Ja ∧ Jb. As mentioned earlier, this is not actually a
restriction because the symmetric part merely corresponds to the subsequent action of two
local generators, (2.43). Nevertheless, the symmetric and anti-symmetric parts do not mix well
for cyclic polynomials, and we shall restrict to manifestly anti-symmetric bi-local operators.

The second condition reads
Ja·O = Jb·O = 0. (2.47)

In this work, we will also act on operators O other than the action S such that the constituent
generators do not annihilate O . In that case, it may seem natural to supplement (2.46) with
terms proportional to J(1)·O or J(2)·O . Further admissible terms are of the form

∑

n,m,l

an+l,m

n+l
∑

k=1

Ja
[m],kJb

[l],1O[n] −
∑

n,m,l

an+m,l

n+m
∑

k=1

Jb
[l],kJa

[m],1O[n], (2.48)

with some arbitrary coefficients an,m. However, they clearly cannot change the form of the
action significantly, and we will stick to the expression (2.46) to enable us to formulate concrete
statements. Allowing for an,m 6= 0 will turn out unnecessary in our analysis.

Third, we have also assumed that the constituent operators Ja and Jb commute exactly

[Ja, Jb] = 0. (2.49)

Literally, this statement will hold only for very specific choices of Ja and Jb. In fact, it suffices
that a linear combination J(1) ⊗ J(2) of bi-local terms using Sweedler’s notation satisfies the
requirement

[J(1), J(2)] = 0. (2.50)

While this requirement might in principle be relaxed as the other two, this would typically have
direr consequences. For the purposes of this article, we shall only consider bi-local operators
satisfying (2.50).

3 Issues of bi-local algebra

In this section we will comment on issues related to the commutation algebra of bi-local gen-
erators with local generators, and the role of gauge transformations. We will see that closure
of the Yangian algebra requires to introduce novel bi-local gauge transformations which serve
as additional symmetries of the planar gauge theory action.
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3.1 Bi-local commutators

In the following we consider the commutator of a generic bi-local generator Ja ⊗ Jb with an-
other local generator Jc . We will derive the expression by acting on an open polynomial X .
Subsequently, we will discuss the algebra for cyclic polynomials which bears some complica-
tions.

Open polynomials. We first act with the commutator of bi-local and local operators on a
generic open polynomial X using the expressions (2.22,2.23) and (2.45). The calculation
is straight-forward but it requires some patience due to the various non-linear terms. By
considering the bi-local terms we find that all non-linear contributions combine nicely into
commutators of local generators (2.25,2.26). We find the unsurprising result

�

Jc , Ja ⊗ Jb
�

·X =
�

[Jc , Ja]⊗ Jb
�

·X +
�

Ja ⊗ [Jc , Jb]
�

·X + local. (3.1)

The remaining local contributions to the relation depend on the precise definition of the local
terms in the three bi-local operators. The local terms from the commutator can be expressed
as

�

Jc , Ja ⊗ Jb
�

[n], j =
n
∑

m=0

m+1
∑

k=1

Jc
[n−m],k+ j−1(J

a ⊗ Jb)[m], j −
n
∑

m=0

m+1
∑

k=1

(Ja ⊗ Jb)[n−m],k+ j−1Jc
[m], j

−
n
∑

m=1

n−m
∑

l=0

m+1
∑

k=2

k−1
∑

i=1

Ja
[n−m−l],i+ j−1Jb

[l],k+ j−1Jc
[m], j .

(3.2)

The terms on the first line correspond to the ordinary commutator of the local parts, cf. (2.26),
whereas the second term originates from both components of the bi-local generator acting on
the non-linear result of the local generator.

Cyclic polynomials. The commutator algebra for the bi-local action on a cyclic polynomial
O is hardly as straight-forward as the open polynomial counterpart. According to (3.1) one
would expect

�

Jc , Ja ∧ Jb
�

·O '
�

[Jc , Ja]∧ Jb
�

·O +
�

Ja ∧ [Jc , Jb]
�

·O + local. (3.3)

Unfortunately, this relationship is very hard to evaluate for a variety of reasons: The interme-
diate expressions involve three generators Ja, Jb and Jc which can act on different positions
within the polynomial. The insertion of generators commutes with each other unless they
overlap. Due to cyclic symmetry, only the relative insertion points matter and cyclic symmetry
allows to cyclically permute (non-overlapping) generators. In addition, each of the three gen-
erators as well as the polynomial consists of terms of different length. Altogether this amounts
a six-fold sum with non-trivial boundary conditions for each term. Moreover, the validity of
the statement depends on certain algebraic constraints, which are equally hard to spot in the
residual terms. In fact, almost all cancellations between terms are due to these constraints.

In order to streamline the calculation, we shall address a bi-local generator Q⊗Q composed
from two equal fermionic generators Q. Anti-symmetry of the expression is then manifest. The
action (2.46) on a cyclic polynomial O reduces somewhat to

(Q⊗Q)·O '
∑

n,m

(Q⊗Q)[m],1O[n]

+
∑

n,m,l

n
∑

k=2

2k− n− 2
2(n+m+ l)

Q[m],k+lQ[l],1O[n]

+
∑

n,m,l

l+1
∑

k=1

2k− l − 2
n+m+ l

Q[m],kQ[l],1O[n].

(3.4)
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Note that the specialisation to Q⊗Q is in fact not a restriction. Due to linearity of all expressions
in each generator Ja and Jb, we can recover a corresponding relationship for Ja ∧ Jb by means
of a replacement

. . . Q . . .Q . . .→ . . . Ja . . . Jb . . .− . . . Jb . . . Ja . . . . (3.5)

This replacement is to be understood for every line and every term of the calculation when
read from left to right. Any signs due to exchange statistics of the fermionic generators Q is
reflected by the explicit anti-symmetry of Ja and Jb. Moreover, we can now denote the third
generator Jc by J and avoid some of the index structure while paying attention to the fermionic
nature of the generators Q.

The statement we need to show thus reduces (3.3) to

[J, Q⊗Q]·O '
�

[J,Q]∧Q
�

·O . (3.6)

Here we have assumed that the local terms in (3.3) have been absorbed into the definition of
the resulting bi-local generator [J,Q]∧Q which is defined by the corresponding relation (3.1)
on open polynomials X without local term

[J,Q⊗Q]·X =
�

[J,Q]∧Q
�

·X . (3.7)

Hence, the local contributions to [J,Q] ∧ Q are completely defined by (3.2). By means of a
lengthy calculation, we find9 10

[J, Q⊗Q]·O ' J·(Q⊗Q)·O − (Q⊗Q)·J·O

'
�

[J,Q]∧Q
�

·O

+
∑

n,m,p

n
∑

k=2

�

2k− n− 2
n+m+ p

−
2k− n− 2

n+m

�

J[p],k+m

�

Q[m],1(Q·O )[n] −
1
2{Q,Q}[m],1O[n]

�

+
∑

n,m,p

m+1
∑

k=1

�

2k−m− 2
n+m+ p

−
2k−m− 2

n+m

�

J[p],k
�

Q[m],1(Q·O )[n] −
1
2{Q,Q}[m],1O[n]

�

−
∑

n,m,p

p+1
∑

k=1

2k− p− 2
n+m+ p

�

Q[m],kJ[p],1(Q·O )[n] −
1
2{Q, Q}[m],kJ[p],1O[n]

�

.

(3.8)

We have arranged all residual terms as combinations of generators acting on Q·O and as com-
binations of generators involving {Q, Q} acting on O . If we impose the restrictions (2.47,2.49)
used in deriving the form of the non-linear bi-local action on cyclic polynomials (3.3), namely
Q·O ' 0 and {Q,Q}= 0, we find that the commutator algebra comes out as expected for cyclic
polynomials. In other words, (2.46) indeed defines a proper algebraic representation of the
bi-local operator Ja ∧ Jb on cyclic polynomials O which is compatible with the corresponding
relation (3.1) on open polynomials provided that the constraints (2.47,2.49) hold.

3.2 Yangian algebra

As already discussed in Sec. 2.3, the level-zero algebra closes only modulo field-dependent
gauge transformations. Consider for example the momentum generator Pµ for which we can
express the resulting gauge transformations in generality as

[Pµ, J] = [Pµ, J]g +G[J·Aµ]. (3.9)

9Note that all remaining terms vanish if J has a purely linear action, i.e. for p = 0, hence they are clearly effects
of non-linear actions.

10The remaining terms are somewhat reminiscent of the terms in (J ∧Q)·Q·O .
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Here, the first term represents the result of the straight level-zero algebra g with the ideal of
gauge transformations quotiented out. The second term in the algebra relations specifying a
gauge transformation is largely unproblematic on its own because it clearly disappears when
acting on gauge-invariant objects. For instance, if both Pµ and J are symmetries of the ac-
tion, so is their commutator. The additional gauge transformation term then does not make a
difference as the action is gauge-invariant by construction.

The appearance of gauge transformations in the level-zero algebra naturally has an impact
on the algebra involving level-one generators (2.12) and (2.13). At the very least, one would
expect gauge transformations to appear there as well, however, the situation turns out to be
more involved. Let us consider the bi-local part of the level-one momentum generator

bP = P(1) ⊗ P(2). (3.10)

A commutator with the level-zero momentum generator Pµ yields (3.1)

[Pµ,bP] = G[P(1)·Aµ]∧ P(2) + local. (3.11)

All the regular non-gauge terms cancel as they should within the Yangian algebra, see (2.12),
but the contributions from gauge transformations remain. However, the resulting bi-local ac-
tion is not a gauge transformation as such; it merely involves gauge transformations alongside
level-zero transformations. Consequently, the action of the commutator cannot be expected
to vanish simply on gauge-invariant objects, and we need to understand in what sense it can
be considered trivial. Conveniently, some substantial simplifications come about due to the
partial gauge transformation, and we will show in the following Sec. 3.3 in more generality
that the resulting bi-local term annihilates gauge-invariant objects which are invariant under
level-zero transformations at the same time. As the latter properties apply to the action S by
construction (irrespectively of whether the complete Yangian algebra is a symmetry or not) the
resulting bi-local term must be part of an algebraic ideal, which can be discarded to recover
the plain Yangian algebra.

This property puts us in a good position to argue that the adjoint property (2.12) holds
modulo (bi-local) gauge transformations, and that the non-gauge level-one generators trans-
form in the adjoint representation of the non-gauge level-zero generators. The same should
apply to the Serre relations (2.13): modulo (multi-local) gauge transformations, one can ex-
pect to find precisely the Yangian relations (2.13) because the non-gauge terms follow (2.13).
Nevertheless it would be desirable to confirm explicitly all the Yangian commutation relations
(2.12) and (2.13) and to derive the concrete decorations due to gauge transformations.

3.3 Bi-local gauge symmetries

We have seen above that commutators at level one yield terms of the kind G[X ]⊗ J, where
G[X ] is a gauge transformation with gauge parameter X and J is some level-zero transfor-
mation.

Definition. We will now discuss how such a bi-local generator based on a sequence of fields
X acts on a generic sequence Z1 · · · Zn of n fields without derivatives. Using the special form
of a gauge transformation, we can immediately write the (purely bi-local) action as

(G[X ]⊗ J)biloc·(Z1 · · · Zn) =
n
∑

k=1

X Z1 · · · Zk−1(J·Zk)Zk+1 · · · Zn

−
n
∑

k=1

Z1 · · · Zk−1X (J·Zk)Zk+1 · · · Zn.

(3.12)
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Here the first term is a bi-local bulk-boundary term while the second one is purely local. In-
terestingly, we can remove the latter completely by defining the local action of G[X ] ⊗ J as

(G[X ]⊗ J)·Z :=X J·Z . (3.13)

The combined bi-local and local action can then be written as the action of J dressed by the
sequence X

(G[X ]⊗ J)·(Z1 · · · Zn) =X J·(Z1 · · · Zn). (3.14)

So far, we have ignored derivative terms. It turns out that the local and bi-local terms neatly
conspire to yield a consistent expression on (non-linear) covariant derivatives

(G[X ]⊗ J)·(∇µZ) =X J·(∇µZ). (3.15)

Therefore the form of the action on polynomials (3.14) also holds in the presence of covariant
derivatives.

Evidently, the bi-local generator J ⊗G[X ] with the opposite ordering of constituent gen-
erators behaves analogously:

(J⊗G[X ])·Z := −J·ZX =⇒ (J⊗G[X ])·(Z1 · · · Zn) = −J·(Z1 · · · Zn)X . (3.16)

For the anti-symmetric combinations G[X ]∧ J appearing within level-one commutators, one
thus obtains

(G[X ]∧ J)·(Z1 · · · Zn) =
�

X , J·(Z1 · · · Zn)
	

. (3.17)

With this form, the remaining local term in (3.11) can now be fixed by a direct computation
as

[Pµ,bP] = G[P(1)·Aµ]∧ P(2) +G[bP·Aµ]. (3.18)

Symmetry. A relevant observation is that the above bi-local generators preserve the form of
the polynomial on which they act. If we apply one of them to the equations of motion Z̆ ≈ 0
corresponding to some field Z , we find

(G[X ]∧ J)·Z̆ =
�

X , J·Z̆
	

. (3.19)

Supposing that J is a symmetry of the equations of motion, we know that J·Z̆ ≈ 0 and conse-
quently (G[X ]∧ J)·Z̆ ≈ 0. This is a necessary requirement for G[X ]∧ J being a symmetry, cf.
the discussion in [9].

Let us therefore check whether any gauge-invariant action S invariant under a local gen-
erator J is also invariant under the bi-local transformation G[X ]∧ J by means of the bi-local
action (2.46) on S . Expanding the gauge transformations in terms of an operator I[X ] to
insert a sequence of fields X between any two fields of the polynomials and collapsing some
telescoping sums, we find

(G[X ]∧ J)·S ' 2I[X ]·(J·S ) + 2I[J·X ]·S . (3.20)

Here the first term is analogous to (3.17), and it vanishes if J is a symmetry of the action. The
second term inserts the expression J·X at all places in the action, and one can hardly expect
it to be a symmetry. To make it vanish, J·X must be zero, and according to (2.19) this is the
case if the two constituent operators G[X ] and J commute as they should according to the
constraint (2.49). Interestingly, this term vanishes for the residual bi-local transformations
G[P(1)·Aµ] ∧ P(2) arising from the level-one Yangian algebra (3.11) because P(2)·P(1)·Aµ = 0.
Therefore the bi-local gauge transformation is a symmetry of our model.
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Gauge covariance. Another relevant question which we have not yet addressed is gauge
covariance of the bi-local action (2.46) of Ja ⊗ Jb on a cyclic polynomial O . By specialising
(3.3) to Jc = G[X ] we find

�

G[X ], Ja ∧ Jb
�

·O '
�

[G[X ], Ja]∧ Jb
�

·O +
�

Ja ∧ [G[X ], Jb]
�

·O , (3.21)

provided that the constraints (2.47,2.49) hold as they should, namely
Ja·O = Jb·O = [Ja, Jb] = 0. We transform further using the commutators of gauge
transformations (2.19,3.20),

�

G[X ], Ja ∧ Jb
�

·O ' −2I[Ja·X ]·(Jb·O ) + 2I[Jb·X ]·(Ja·O ) + 2I
�

[Ja, Jb]·X
�

·O . (3.22)

All resulting terms vanish due to the prerequisites for Ja, Jb and O . This shows that the bi-
local action (2.46) is gauge-covariant in the sense that its result on a gauge-invariant cyclic
polynomial is again gauge-invariant subject to the constraints (2.47,2.49).

4 Gauge fixing

In order to consistently quantise a gauge theory it is necessary to fix a gauge such that the
kinetic terms in the action become invertible. In many cases, gauge fixing breaks some sym-
metries of the theory, e.g. conformal symmetry, because the gauge-fixing terms or constraints
transform non-trivially under the symmetry. The challenge is thus to show that the violations
of symmetry do not affect physical quantities.

4.1 Ghosts and BRST symmetry

We will use the Faddeev–Popov procedure to fix the gauge which introduces some additional
propagating ghost fields. In this framework, BRST symmetry is typically used to select physical
processes and to show that the unphysical degrees of freedom do not contribute to them.

Towards establishing the Yangian as a symmetry of the quantum theory and of quantum
observables, it is important to show that the gauge-fixing procedure does not spoil the invari-
ance of the action. We thus need to specify how the Yangian is represented on the ghost fields
and whether the representation on physical terms receives additional contributions from the
ghost fields. We should then show that the gauge-fixed action remains Yangian-invariant in a
suitable sense.

We choose to work in the standard Lorentz-invariant family of gauges given by the gauge-
fixing terms11

Sgf =

∫

dxd tr
�

∇µC ∂ µC̄ − B ∂ µAµ +
1
2ξB2

�

. (4.1)

The fields C̄ and C are the Faddeev–Popov ghosts (anti-commuting scalars), and B is an aux-
iliary bosonic scalar field. As all the other fields of the theory, the new fields are Nc × Nc
matrices. The action S of the gauge-fixed model is the sum of the original action S0 and the
gauge-fixing terms in Sgf

S = S0[Z] +Sgf[Z , C , C̄ , B]. (4.2)

11This gauge-fixing term should be applicable to arbitrary gauge theories in any number of spacetime dimensions
d. Note that the constant ξ carries mass dimension d−4, so it is dimensionless only for d = 4 and the term should
be renormalisable for d < 4. One can drop the B2 term altogether such that the auxiliary field B will become a
Lagrange multiplier enforcing the Lorenz gauge ∂ µAµ = 0 tightly. In any case, the term plays a minor role for our
investigations as it will drop out from almost all calculations at the very beginning.
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Due to the appearance of the bare gauge field A and non-covariant partial derivatives ∂ ,
the terms Sgf break the gauge invariance of the theory. A remnant thereof however survives;
it is known as the BRST symmetry and it is generated by the action of a fermionic generator
Q 12 on the fields of the theory

Q·Z = G[C]·Z , Q·C = CC , Q·C̄ = iB, Q·B = 0, (4.3)

where Z denotes any of the fields of the original model. For ξ 6= 0, one might integrate out the
auxiliary field B whose equation of motion is algebraic, B ≈ ξ−1∂ µAµ, but this would obscure
some statements about irrelevant contributions.

BRST symmetry has the special property that it squares to zero

QQ = 1
2{Q, Q}= 0, (4.4)

and therefore it defines a cohomology. The latter is useful in specifying physical objects which
have to be closed and carry ghost number zero. In particular the action is BRST-closed. For
the original action S0 this follows from gauge symmetry,

Q·S0 = G[C]·S0 = 0, (4.5)

and for the gauge-fixing terms Sgf it follows from BRST-exactness

Sgf = −Q·Kgf, Kgf =

∫

dxd tr
�

iAµ ∂
µC̄ + i

2ξBC̄
�

. (4.6)

In fact, the latter feature is important because BRST-exactness indicates that the gauge-fixing
terms effectively do not contribute to physical processes.

4.2 Local symmetries

Our investigations are based on the assumption that the original action is invariant under some
symmetries J

J·S0 = 0. (4.7)

It is clear that gauge fixing breaks some of these symmetries, J·Sgf 6= 0, so that altogether
J·S 6= 0. In particular, we have argued that the level-zero algebra closes onto gauge transfor-
mations which are no longer exact symmetries of the full system. In order to let gauge fixing
preserve a symmetry J we need to show at least that the variation of the action is BRST-exact,13

14

J·S = −Q·K [J]. (4.8)

In order to determine the precise form of K [J] we need to fix the action of the level-zero
generators J on the additional fields C , C̄ and B. A seeming complication is that these fields
typically do not form proper multiplets under the level-zero algebra.15 This complication could

12We will make signs due to the fermionic statistics of Q explicit. However, we will keep assuming that the
generators J are bosonic, so that any signs for fermionic generators J and bJ (e.g. in commutators with Q) are
implicit and need to be inserted manually.

13In this definition, the natural sign assignment due to statistics reads J·Sgf = −(−1)|J|Q·K [J]. It follows by
substitution of Sgf = −Q·Kgf. and by the assumption that (qualitatively) K [J] ∼ JKgf. Then this matches with
the natural sign due to permutation of Q and J: −JQ·Kgf ∼ −(−1)|J|QJ·Kgf.

14Note that the additional term on the r.h.s. spoils the on-shell invariance of the equations of motion Z̆ ≈ 0
such that J·Z̆ 6≈ 0. However, there will be some well-prescribed terms involving K [J] and Q to compensate the
remaining terms.

15In particular, this is rather evident in a supersymmetric theory when the level-zero algebra includes supersym-
metry.
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perhaps be resolved in particular situations by adding further unphysical fields to complete the
multiplets, but it would inevitably be a rather complicated solution. The convenient alternative
is to declare all these fields singlets under all level-zero generators. In other words, we declare
the level-zero representation on the unphysical fields to be trivial,16 17

J·C = J·C̄ = J·B = 0. (4.9)

Furthermore, we do not modify the level-zero representation of the original fields of the model
so that the original part of the action S0 remains invariant according to (4.7). It also nicely
ensures that BRST symmetry commutes with the level-zero symmetry

[Q,J] = 0. (4.10)

In this case, it is straight-forward to show using (4.6) that (4.8) holds

J·Sgf = −Q·K [J], (4.11)

with the compensator K [J] given by acting with the level-zero generator J on Kgf

K [J] = J·Kgf = i

∫

dxd tr
�

J·Aµ ∂ µC̄
�

. (4.12)

By construction, gauge fixing breaks gauge symmetry. However, gauge transformations
arise from the level-zero algebra, and the full amount of gauge symmetry must be preserved in
the same sense as the level-zero symmetries. By extending the action of gauge transformations
to the ghost fields as18

G[X ]·C = G[X ]·C̄ = G[X ]·B = 0, (4.13)

the gauge generator G[X ] commutes with the BRST generator Q. The corresponding com-
pensator for gauge invariance of the action G[X ]·Sgf = −Q·K [G[X ]] reads

K
�

G[X ]
�

= G[X ]·Kgf = i

∫

dxd tr
�

G[X ]·Aµ ∂ µC̄
�

= −
∫

dxd tr
�

∇µX ∂ µC̄
�

. (4.14)

4.3 Bi-local symmetries

Before discussing the level-one Yangian symmetries, let us introduce a new class of bi-local
generators involving BRST generators Q. This case will be instructive as these generators are
considerably simpler than the full level-one Yangian generators. Furthermore, they introduce
some additional terms in the gauge-fixed invariance statement. They will also be needed for
the level-one Yangian generators and later they will be relevant in formulating identities for
quantum correlators due to the level-one symmetries.

16This includes the curious statement that the unphysical fields carry no momentum, no energy and no angular
momentum. However, the assignment is formal and counts only towards the notion and representation of level-
zero symmetry. Of course, the fields still depend non-trivially on x .

17There may be other permissible representations as it should not matter much how the unphysical fields trans-
form in the end.

18We assume the gauge transformation parameterX to be an internal field of the theory (or an open polynomial).
For an external field Λ the action on the ghost would have to be replaced by G[Λ]·C = [Λ, C].
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Bi-local BRST symmetry. We start by recalling that we have introduced bi-local transforma-
tions based on gauge transformations in Sec. 3.3. Noting that BRST transformations can be
viewed as gauge transformations Q ∼ G[C] using the ghost field C as gauge transformation
parameter, it is conceivable that Q∧J and Q⊗Q will be further symmetries of the planar gauge
theory.19 We shall call them bi-local BRST symmetries.

We first derive their action on single fields by the condition that the bi-local generators
commute with plain BRST symmetry Q. This is compatible with the absence of bi-local terms
due to the bi-local algebra relations (3.1)

[Q, Q⊗Q] = {Q, Q} ∧Q = 0,

{Q,Q ∧ J}= {Q,Q} ∧ J−Q ∧ [Q,J] = 0,
(4.15)

which follow from nilpotency of Q and from commutation with J. We find the following local
contributions,20

(Q⊗Q)·Z = 1
2[C ,Q·Z], (Q ∧ J)·Z = {C , J·Z},

(Q⊗Q)·C = CCC , (Q ∧ J)·C = 0,

(Q⊗Q)·B = 0, (Q ∧ J)·B = 0,

(Q⊗Q)·C̄ = 0, (Q ∧ J)·C̄ = 0.

It turns out that Q ⊗ Q annihilates any ghost-free gauge-invariant cyclic polynomial via the
representation (2.46). For invariance under Q∧J, the cyclic polynomial must also be invariant
under J. These statements follow in analogy to (3.20).21 In particular, the original action is
invariant under the bi-local BRST symmetries

(Q⊗Q)·S0 ' 0, (Q ∧ J)·S0 ' 0. (4.16)

Gauge-fixed invariance statements. To compensate for the broken invariance of the gauge-
fixing termSgf, the procedure from level zero turns out to be insufficient for bi-local generators
for the following reason: We need to compensate (Ja ∧ Jb)·Sgf = −(Ja ∧ Jb)·Q·Kgf. Supposing
that Q commutes with Ja ∧ Jb we could rewrite this term as−Q·(Ja ∧ Jb)·Kgf = −Q·K [Ja ∧ Jb]
and declare the compensator to read K [Ja ∧ Jb] = (Ja ∧ Jb)·Kgf. Unfortunately, the commu-
tator algebra (3.3) on cyclic polynomials cannot be trusted becauseKgf is not invariant under
Ja and Jb. For a similar reason, we cannot even be sure that (Ja ∧ Jb)·Sgf is BRST-exact.

We address the above issue by computing the action of Q⊗Q on Sgf = −Q·Kgf. To under-
stand the result better, we shall make no assumptions on the fermionic generator Q and on
the precise form of cyclic polynomial Kgf at first. In a calculation analogous to (3.8) we find

(Q⊗Q)·Q·Kgf ' Q·(Q⊗Q)loc·Kgf +
1
2

�

Q ∧ {Q,Q}
�

·Kgf +
1
2

�

Q ∧ {Q,Q}
�

loc·Kgf

−
1
3

∑

n,m,l,p

n
∑

k=3

k−1
∑

j=2

Q[m],k+p+lQ[l], j+pQ[p],1Kgf,[n].
(4.17)

Among the resulting terms we find the commutator of Q with Q ⊗Q, see (4.15), albeit with
a prefactor 1/2. Two other terms represent the purely local contributions from bi-local gener-
ators, and there is a tri-local term without overlapping contributions in the second line. Now

19Note that the BRST generator Q commutes with the level-zero generator J as well as with itself, {Q, Q} = 0,
and thus makes the bi-local generators compatible with cyclicity. Furthermore, the BRST generator Q is fermionic,
and thus the bi-local combination Q⊗Q is anti-symmetric on its own.

20There is some freedom in assigning the action on the ghosts B and C̄ . Such a freedom is related to adding a
local generator and thus not interesting. We fix these degrees of freedom to a convenient choice.

21The expression (3.20) applied to Q ⊗ Q may seem to suggest a non-zero result proportional to I[Q·C]·S0.
However, here one has to pay attention to the action Q·C = CC in the overlapping terms, which is almost a gauge
transformation, but only up to a factor of 1/2. An explicit calculation then shows that all terms I[CC]·S0 vanish.
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we have constructed Q ⊗ Q such that it commutes with Q; this eliminates the two terms in-
volving {Q, Q} ∧Q. Furthermore, the tri-local term requires polynomials of length 3 or more,
but the compensatorKgf in (4.6) is purely quadratic. Therefore in our case, the above relation
reduces to

(Q⊗Q)·Q·Kgf ' Q·(Q⊗Q)loc·Kgf. (4.18)

This shows that the usual form (4.8) of gauge-fixed symmetry relationship holds,

(Q⊗Q)·Sgf ' −Q·K [Q⊗Q], (4.19)

where the compensator is given by merely the local part of the bi-local generator Q⊗Q acting
on K

K [Q⊗Q]' (Q⊗Q)loc·K ' i

∫

dxd tr
�

(Q⊗Q)·Aµ ∂ µC̄
�

. (4.20)

The symmetry statement for the mixed bi-local BRST generator Q∧J turns out to be some-
what more involved. We first need to generalise the identity (4.17) to (Q ∧ J)·Q·Kgf. We do
this by the same trick employed in Sec. 3.1, and replace all triplets of Q in every term of (4.17)
(in their order of appearance) by the following linear combinations,

(Q,Q, Q)→ (J,Q, Q)− (Q,J, Q) + (Q, Q, J). (4.21)

Again, we eliminate terms due to {Q,Q} = [Q,J] = 0 as well as tri-local contributions on Kgf
and find

−(Q ∧ J)·Q·Kgf + (Q⊗Q)·J·Kgf ' J·(Q⊗Q)loc·Kgf +Q·(Q ∧ J)loc·Kgf. (4.22)

By rearranging the terms, we can express the relationship as Q ∧ J acting on Sgf,

(Q ∧ J)·Sgf ' Q·K [Q ∧ J]− (Q⊗Q)·K [J] + J·K [Q⊗Q], (4.23)

with the additional compensator defined as before as the action of the local part of Q ∧ J

K [Q ∧ J]' (Q ∧ J)loc·K ' i

∫

dxd tr
�

(Q ∧ J)·Aµ ∂ µC̄
�

. (4.24)

The physical meaning of the two additional terms in (4.23) as compared to (4.8) remains
somewhat obscure at this point. One may argue that it is sufficient that these terms, just
like the regular term, are based on the ‘lesser’ generators J and Q ⊗Q in the hierarchy of all
symmetries. Moreover these terms are fully determined in terms of other relations, so they do
not introduce any additional degrees of freedom. Most importantly, there exists a compensator
K [Q∧ J] to formulate an exact symmetry relationship. Later in the investigation of identities
for quantum correlation functions we shall find a different justification for the above particular
combination of terms.

In conclusion, the bi-local BRST generators are curious additional symmetries of gauge-
fixed planar gauge theories with invariance of the gauge-fixed action S expressed as
(4.19,4.23)

0' (Q⊗Q)·S +Q·K [Q⊗Q],

0' (Q ∧ J)·S −Q·K [Q ∧ J] + (Q⊗Q)·K [J]− J·K [Q⊗Q].
(4.25)

We have explicitly checked validity of these relations in gauge-fixed planarN = 4 sYM. More-
over, they can be expected to be present in other non-integrable planar gauge symmetries after
BRST gauge fixing.
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Yangian symmetry. Let us now turn our attention to the level-one Yangian generators bJ. We
will not change the definition of the local terms in bJ, therefore the assumption of Yangian
symmetry of the original action remains valid,

bJ·S0 ' 0. (4.26)

As before, we define the single-field action on ghosts to be trivial,

bJ·C = bJ·C̄ = bJ·B = 0. (4.27)

This assignment ensures that the generator commutes with BRST transformations,

[Q,bJ] = 0. (4.28)

Towards obtaining a symmetry statement for the gauge-fixed action, we can again gener-
alise the relationship (4.17) using the trick of Sec. 3.1 for the replacement

(Q,Q, Q)→ (J(1), J(2),Q)− (J(1), Q, J(2)) + (Q, J(1), J(2)). (4.29)

The resulting gauge-fixed invariance relationship turns out to have the form

bJ·Sgf ' −Q·K [bJ]− (Q ∧ J(2))·K [J(1)] + J(1)·K [Q ∧ J(2)], (4.30)

with the compensator taking the established form

K [bJ]' bJloc·Kgf ' i

∫

dxd tr
�

bJ·Aµ ∂ µC̄
�

. (4.31)

The invariance property of the gauge-fixed action S therefore reads22

0' bJ·S +Q·K [bJ] + (Q ∧ J(2))·K [J(1)]− J(1)·K [Q ∧ J(2)]. (4.32)

This proves that the gauge-fixing procedure does not spoil the Yangian invariance of planar
gauge theories. The same should hold for the bi-local generators involving gauge transforma-
tions discussed in Sec. 3.3, whose gauge fixing proceeds completely analogously.

5 Slavnov–Taylor identities

After having fixed the gauge and formulated statements for Yangian symmetries in the gauge-
fixed theory, our next goal is to formulate corresponding identities for quantum correlators, so
called Slavnov–Taylor identities. These will eventually reduce to unambiguous identities on
the physical contributions, but they may also constrain the unphysical degrees of freedom to
some extent.

In the following we will derive and propose the Slavnov–Taylor identities for the various
symmetries we have encountered so far. As the level-one generators heavily rely on level-zero
and (extended) gauge symmetries, we should start with the simpler kinds of symmetries. Un-
fortunately, we have no firmly established tools to perform all the required transformations for
bi-local generators.23 Therefore we shall test the proposed identities for correlation functions
in the following Sec. 6.

22The necessity of additional terms in the invariance statement for gauge-fixed ABJM theory was pointed out by
Matteo Rosso.

23These tools would have to make reference to the planar limit which is essential for the bi-local symmetries to
work. We are not aware of a suitable set of tools which specifically address the planar path integral.
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5.1 Local symmetries

We start with the identities for local symmetries which can be derived as usual from the path
integral. We act with a local generator J onto the integrand of the path integral and obtain
the identity




J·O + iJ·S O
�

= 0. (5.1)

This identity is due to the fact that J acts as a total variation within the path integral, and it
can either hit the operator O or the implicit phase factor exp(iS ). If we specialise this identity
to a BRST generator J = Q we find that




Q·O
�

= 0, (5.2)

because the action itself is BRST-closed, Q·S = 0. For the other local generators, however,
further terms are needed because the gauge-fixed action is not exactly invariant, but only up
to a BRST-exact term (4.8). We can cancel the latter term by adding the identity (5.2) applied
to the composite operator iK [J]O .




J·O − iK [J]Q·O + i(J·S +Q·K [J])O
�

= 0. (5.3)

Here we have combined the two terms constituting the gauge-fixed invariance condition (4.8)
for J. By dropping them we arrive at the Slavnov–Taylor identity corresponding to the gener-
ator J




J·O − iK [J]Q·O
�

= 0. (5.4)

This identity also holds for gauge symmetries J = G[X ] when supplemented by the corre-
sponding BRST compensators K [G[X ]].

5.2 Bi-local total variations

The goal is to formulate a Slavnov–Taylor identity corresponding to the level-one Yangian
generator bJ. However, we cannot proceed as above because it is not evident how to derive
the equivalent of (5.1) for a bi-local generator consisting of two field variations ordered in a
particular way involving the planar limit. Hence we need to find the equivalent of (5.1) for
bi-local generators.

The central idea underlying the identity (5.1) is that the generator J is a variational oper-
ator which can act either on the operator O or on the action within the phase factor exp(iS ).
For some bi-local generator Ja∧Jb we have two variations which should individually act either
on the operator or on the phase factor. When both of them act on the same object O , the result
should be given by the bi-local action denoted by (Ja ∧ Jb)·O . Note that this makes proper
sense only if the planar topology of O is a circle. When they act on two objects O1 and O2
which are disconnected in the planar topology, the result should be a product of the actions of
the individual generators Ja and Jb which we shall denote by (Ja·O1)∧(Jb·O2). This product of
operators will somehow incorporate the planar ordering of the bi-local generator Ja∧Jb when
acting on two independent objects O1 and O2. It is not evident how to define this combination,
not even whether there is a proper definition in the first place, so the notation (Ja·O1)∧(Jb·O2)
shall serve as a placeholder and we shall use it for book-keeping purposes only.24

24The idea behind book-keeping by means of a bi-local combination of the kind O1 ∧ (O2 −O3) is that a certain
contribution to O2 would always appear in the same place within a planar correlator as does a structurally equiv-
alent contribution to O3. Now, if a symmetry implies that O2 = O3, the above bi-local combination, independently
of how it may be defined, is zero due to linearity. If we can make all bi-local terms O1 ∧O2 cancel, there will be no
need for a precise definition.
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More concretely, we propose the bi-local generalisation of (5.1) as



(Ja ∧ Jb)·O + i(Ja ∧ Jb)·S O
�

+



i(Ja·S )∧ (Jb·O ) + i(Ja·O )∧ (Jb·S )− (Ja·S )∧ (Jb·S )O
�

= 0.
(5.5)

Here we suppose that Ja∧Jb induces a total variation of the path integral,25 so that the sum of
all these variations is zero. Note that the last term originates from the constituents of Ja ∧ Jb

acting on different actions within the exponential factor exp(iS ). The above conjecture is
our best guess for a total variational identity involving bi-local generators. Conceivably, it is
not entirely correct or correct only under certain conditions. In particular, we do not claim to
understand how to define the terms on the second line. It would be very desirable to better
understand and/or formally derive the above variational identity (5.5). For the time being, it
will help us setting up Slavnov–Taylor identities for the bi-local generators. In the following
Sec. 6 we will test the predicted equations for tree-level correlation functions involving up to
four external fields in order to justify our proposal a posteriori.

5.3 Bi-local symmetries

Armed with the variational identities (5.1,5.5) for local and bi-local generators, we can now
try construct identities for bi-local generators Ja ∧ Jb to predict their action on some operator
O within a correlator




(Ja ∧ Jb)·O
�

= . . . . (5.6)

Here O must be some operator of circular topology in the planar sense, i.e. it must consist of
a single trace of fields.

Bi-local BRST symmetry. It will be easiest to start with the additional bi-local symmetries
based on BRST transformations introduced in Sec. 4.3. This is because the constituent BRST
transformations are exact symmetries which do not require compensating terms. We propose
that the above form of Slavnov–Taylor identity (5.4) equivalently applies to the bi-local trans-
formation Q⊗Q




(Q⊗Q)·O
�

− i



K [Q⊗Q]Q·O
�

= 0. (5.7)

This is consistent with the proposed variational identity (5.5) because all terms on the second
line vanish due to the fact that the action is BRST-closed, Q·S = 0.26 The remainder of the
derivation works precisely as in the case of a generic local generator J, and it uses the symmetry
statement (4.19) for the gauge-fixed action.

We will later test the identity for tree-level correlators involving up to four external fields,
and find that it successfully predicts all the arising terms. However, it is conceivable that
further terms are needed to accommodate for a larger number of fields in O .

For the mixed bi-local generator Q∧J, we have to bear in mind that the constituent J does
not annihilate the action right away, but it requires a BRST compensator K [J]. In order to
cancel the arising terms, we will need a cascade of further compensating terms. Altogether we
need to add up five variational identities (5.1) and (5.5) for various pairs of generators and

25It would be helpful to understand under which conditions on Ja and Jb this assumption holds and how far
violations could break symmetries.

26Even though we do not understand the nature of such terms, we hope that we can apply symmetry statements
to eliminate them.
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operators to cancel all undesired terms,

0=



(Q ∧ J)·O + i(Q ∧ J)·S O − i(J·S )∧ (Q·O )
�

+



iK [J] (Q⊗Q)·O + i(Q⊗Q)·K [J]O − (Q⊗Q)·S K [J]O − i(Q·K [J])∧ (Q·O )
�

+



−iQ·K [Q ∧ J]O − iK [Q ∧ J]Q·O
�

+



Q·K [J]K [Q⊗Q]O −K [J]Q·K [Q⊗Q]O +K [J]K [Q⊗Q]Q·O
�

+



J·S K [Q⊗Q]O − iJ·K [Q⊗Q]O − iK [Q⊗Q] J·O
�

=



(Q ∧ J)·O + iK [J] (Q⊗Q)·O
�

+



−iK [Q ∧ J]Q·O +K [J]K [Q⊗Q]Q·O − iK [Q⊗Q] J·O
�

+ i

�

(Q ∧ J)·S −Q·K [Q ∧ J] + (Q⊗Q)·K [J]− J·K [Q⊗Q]
�

O
�

− i

�

J·S +Q·K [J]
�

∧ (Q·O )
�

−

�

(Q⊗Q)·S +Q·K [Q⊗Q]
�

K [J]O
�

+

�

J·S +Q·K [J]
�

K [Q⊗Q]O
�

.

(5.8)

Here we have immediately dropped terms Q·S which vanish exactly by BRST symmetry. The
last four lines after rearrangements of terms all vanish by level-zero and bi-local BRST sym-
metries of the action. The first of these is the symmetry statement (4.23) for the gauge-fixed
action, and the desirable cancellation of structurally similar terms in the above formula serves
as another justification for the extra terms (4.23). We are thus left with a Slavnov–Taylor
identity for mixed bi-local BRST symmetries,




(Q ∧ J)·O + iK [J] (Q⊗Q)·O
�

+

�

−iK [Q ∧ J]−K [Q⊗Q]K [J]
�

Q·O − iK [Q⊗Q] J·O
�

= 0.
(5.9)

So we see that we need a number of terms to cancel off the effects of the gauge-fixing terms.
However, it can be argued that all these terms are based on simpler symmetries acting on the
operator O . Importantly, all bi-local generators act on the operator O itself or are used for the
BRST compensators. None of the bi-local combinations of operators O1 ∧O2 remain, so there
is no need to define them in practice because we can evaluate the Slavnov–Taylor identity for
any single-trace operator O . In App. A.3 we will demonstrate in an example that the above
identity holds indeed.

Level-one Yangian symmetry. We are now well-prepared to compose the Slavnov–Taylor
identity for the level-one Yangian generators bJ. It is obtained by iteratively cancelling terms
arising due to partial integration via (5.1) and (5.5). We find that we can cancel all terms of
the kind O1∧O2 and all terms with a bare O not acted upon by some symmetry. The remaining
terms form the Slavnov–Taylor identity27




bJ·O − iK [J(1)] (Q ∧ J(2))·O − 1
2K [J

(2)]K [J(1)] (Q⊗Q)·O
�

+

�

−iK [bJ]−K [Q ∧ J(2)]K [J(1)] + i
2K [Q⊗Q]K [J(2)]K [J(1)]

�

Q·O
�

+

�

−iK [Q ∧ J(2)]−K [Q⊗Q]K [J(2)]
�

J(1)·O
�

= 0.

(5.10)

Again, a large number of extra terms are needed to compensate for the effects of gauge fixing.
However, they are all based on simpler types of symmetries (bi-local BRST transformation or
local generators).

27Note thatK [J] is fermionic, so the combinationK [J(1)]K [J(2)] is non-zero despite its implicit anti-symmetry
in the Sweedler notation for the generators.
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In conclusion, we have proposed Slavnov–Taylor identities corresponding to all bi-local
generators. These identities are all conjectural and they should be tested thoroughly until a
proper justification for (5.5) can be found. We now proceed to test them by applying them to
some elementary correlation functions.

6 Correlation functions

For correlation functions, symmetries manifest as Ward–Takahashi identities. In the gauge-
fixed quantum theory, they follow by applying the Slavnov–Taylor identities to operators O
consisting of a number of fields Zk(xk) at different spacetime points. Our goal in this section
is mainly to check whether the predictions due to the proposed Slavnov–Taylor identity are
correct. With some gained confidence, one could later use the Ward–Takahashi identities
towards constraining correlation functions in integrable planar gauge theories.

We would like to point out that analogous invariance results have been obtained in the con-
text of scattering amplitudes starting with [10,11]. Apart from the different kind of considered
observables, the main difference between our analysis and previous studies lies in the under-
lying methods. Previous studies relied on existing expressions for scattering amplitudes or
argued that constructions of scattering amplitudes preserve Yangian (dual conformal) symme-
try. Further investigations used representations of scattering amplitudes in terms of advanced
geometric concepts such as twistors, Graßmannians, etc. [13–16]. In our analysis we merely
rely on invariance of the action and the structure of planar Feynman diagrams.

Note that analogous conclusions on Yangian invariance of planar correlation functions have
been drawn in [21] within an integrable bi-scalar theory [22]. The main difference w.r.t. this
analysis is that the bi-scalar theory is not a gauge theory and the representation of level-zero
(conformal) symmetry is purely linear. Therefore almost all of the complications related to
planar gauge theories that we shall encounter do not apply in the simplified bi-scalar field
theory model.

6.1 Propagators

The simplest non-trivial correlation functions involve two fields; at tree level they are the
propagators. It is essential to understand the Ward–Takahashi identities corresponding to
both, local and bi-local generators because they will be needed for showing the identities for
correlators with more than two legs.

Local symmetries. A first identity relating the ghost and auxiliary propagators comes from
the Slavnov–Taylor identity (5.2) for BRST symmetry. We apply it to two fields O = Z1Z2 at
tree level, and thus restrict to linear contributions to obtain




Q[0]·Z1 Z2

�

+



Z1 Q[0]·Z2

�

= 0. (6.1)

Now the only linear contributions to BRST variations are

Q[0]·Aµ = ∂µC and Q[0]·C̄ = B. (6.2)

Considering that a correlator can be non-zero only if the overall ghost number is zero, a non-
trivial statement follows only for O = C̄(x)Aµ(y). It amounts to




B(x)Aµ(y)
�

=



C̄(x)∂µC(y)
�

=
∂

∂ yµ



C̄(x)C(y)
�

. (6.3)
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Apart from relating the auxiliary to the ghost propagator, the relationship states that the aux-
iliary field contracts only to the gauge degrees of freedom within the gauge field Aµ. A simple
corollary is that 〈B Fµν〉= 0 at tree level due to incompatible symmetrisations of the spacetime
indices.

For a level-zero symmetry J we apply the Slavnov–Taylor identity (5.4) to two fields
O = Z1Z2 and expand to tree level




J[0]·Z1 Z2

�

+



Z1 J[0]·Z2

�

= i

1

2K [J][2]Q[0]·Z1 Z2

�

+ i

1

2K [J][2] Z1 Q[0]·Z2

�

. (6.4)

The l.h.s. of this equation is the symmetry variation of a propagator. The equation shows that
the propagator respects the symmetry manifestly up to terms involving linear BRST variations
of the fields. One can convince oneself that all terms in (6.4) are trivially zero when one of
the fields is C̄ .28 A non-vanishing r.h.s. for (6.4) thus requires one of the fields to be a gauge
potential. Explicitly, if the other field is a gauge potential as well, we find with (4.12)




J[0]·Aµ(x)Aν(y)
�

+



Aµ(x) J[0]·Aν(y)
�

= i
∂

∂ xµ

∫

dzd



C(x)∂ ρ C̄(z)
�


J[0]·Aρ(z)Aν(y)
�

+ i
∂

∂ yν

∫

dzd



C(y)∂ ρ C̄(z)
�


Aµ(x) J[0]·Aρ(z)
�

.

(6.5)

and otherwise for a generic gauge-covariant field Z




J[0]·Aµ(x) Z(y)
�

+



Aµ(x) J[0]·Z(y)
�

= i
∂

∂ xµ

∫

dzd



C(x)∂ ρ C̄(z)
�


J[0]·Aρ(z) Z(y)
�

. (6.6)

We note that the extra terms are total derivatives and as such constitute gauge variations.

Bi-local symmetries. For the corresponding level-one Ward–Takahashi identity we recall
from [9] that level-one invariance of the quadratic part of the action follows from the corre-
sponding level-zero invariance together with the vanishing of the dual Coxeter number of the
level-zero symmetries. Indeed, we can derive a relationship from the level-zero identity (5.4)
for the generator J = J(1) and the operator O = Aµ(x) J(2)·Aν(y). Since Z = J[0]·Aν is gauge
covariant, we can read off the result from (6.6) as




bJ·
�

Aµ(x)Aν(y)
��

=



J(1)[0]·Aµ(x) J
(2)
[0]·Aν(y)

�

= i
∂

∂ xµ

∫

dzd



C(x)∂ ρ C̄(z)
�


J(1)[0]·Aρ(z) J
(2)
[0]·Aν(y)

�

= i
∂

∂ yν

∫

dzd



C(y)∂ ρ C̄(z)
�


J(1)[0]·Aµ(x) J
(2)
[0]·Aρ(z)

�

.

(6.7)

The second form follows in a similar fashion by exchanging the role of the two fields. Together
the two identities imply that the correlator is a total derivative in both points




J(1)[0]·Aµ(x) J
(2)
[0]·Aν(y)

�

= −
∂

∂ xµ
∂

∂ yν
, R[bJ](x , y), (6.8)

with the remainder function R[bJ] taking the form

R[bJ](x , y) =

∫

dzd
1 dzd

2




J(1)[0]·Aρ(z1) J
(2)
[0]·Aσ(z2)

�


C(x)∂ ρ C̄(z1)
�


C(y)∂ σC̄(z2)
�

. (6.9)

28The generator J[0] never produces the ghost C , so C̄ cannot contract with any other field. Furthermore, J[0]
produces a gauge-covariant field, so it will not contract with B ∼ Q[0]·C̄ .
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This function has been evaluated explicitly for bJ = bP in N = 4 sYM in [23] with a very simple
structure as R[bPµ]∼ (x − y)µ/(x − y)2.

Let us point out one curiosity regarding the function R: On the one hand, the expression
(6.9) heavily depends on ghost field propagators and therefore manifestly depends on the
gauge-fixing procedure. On the other hand, the function must be independent of the chosen
gauge because the underlying correlator on the l.h.s. of (6.8) involves gauge-covariant fields
only.

Considering more general gauge theories, we can speculate that the function R may be
even more universal. This is based on the fact that gauge fields have mass dimension 1 and
in (6.8) their vector index is used up for formulating the total derivatives. Consequently, the
function R[bJ] has the same mass dimension as the level-one generator bJ. If we furthermore
expect it transform analogously to bJ, the only reasonable form appears to be

R[bJ]∼ (Jx − J y) log(x − y)2, (6.10)

where Jx is the level-zero generator corresponding to bJ acting on a spacetime point x (rather
than on fields), see also [24]. In the following we will not need the precise form for R[bJ],
but it would be desirable to understand better the above form (6.10) and whether there is a
manifestly gauge-invariant way to derive it.

Let us finish by checking the bi-local Slavnov–Taylor identity (5.10) applied to two fields
Aµ(x)Aν(y) at tree level. Note that all compensators for bi-local operators are cubic at least,
and consequently do not contribute at this level. For the remaining terms we find




bJ[0]·
�

Aµ(x)Aν(y)
��

= −
∂

∂ xµ
∂

∂ yν
R[bJ](x , y),

−i

1

2K [J
(1)][2] (Q ∧ J(2))[0]·

�

Aµ(x)Aν(y)
��

= 2
∂

∂ xµ
∂

∂ yν
R[bJ](x , y),

1
2


1
2K [J

(2)][2]
1
2K [J

(1)][2] (Q⊗Q)[0]·
�

Aµ(x)Aν(y)
��

= −
∂

∂ xµ
∂

∂ yν
R[bJ](x , y).

(6.11)

Indeed, they sum to zero, which serves as a first confirmation for the identity (5.10).

6.2 Level-zero symmetries of three-point functions

Next, we will discuss Ward–Takahashi identities for planar correlators of three fields. As before,
we start with a level-zero generator J to gain some experience in the occurring structures and
required transformations. The Slavnov–Taylor identity (5.4) for three fields reads




J·(Z1Z2Z3)
�

− i



K [J]Q·(Z1Z2Z3)
�

= 0. (6.12)

When expanding out in the number of fields, we find the following contributions

0=



J[0]·(Z1Z2Z3)
�

[1] +



J[1]·(Z1Z2Z3)
�

[0]

− i

1

2K [J][2]Q[0]·(Z1Z2Z3)
�

[1] − i

1

3K [J][3]Q[0]·(Z1Z2Z3)
�

[0]

− i

1

2K [J][2]Q[1]·(Z1Z2Z3)
�

[0],

(6.13)

where 〈. . .〉[n] represents a correlator with n three-vertices inserted (we may suppress this
notation for correlators without vertices). The former two terms represent the ordinary (non-
linear) variation of the three-point function, while the latter three compensate for effects due
to gauge fixing. As before, terms involving Q[0] produce total derivatives when acting on exter-
nal gauge fields and nothing otherwise. Terms involving Q[1] yield a new kind of contribution
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which is not a total derivative, but which is implied by proper non-linear gauge transforma-
tions.

By formally writing this expression in terms of propagators and vertices and by using the
symmetry of propagators derived in Sec. 6.1, one can rewrite the above expression as

0= −i

1

3J[0]·S[3] Z1Z2Z3

�

− i

1

2J[1]·S[2] Z1Z2Z3

�

− i

1

3Q[0]·K [J][3] Z1Z2Z3

�

− i

1

2Q[1]·K [J][2] Z1Z2Z3

�

+

1

3Q[0]·S[3]
1
2K [J][2] Z1Z2Z3

�

+

1

2Q[1]·S[2]
1
2K [J][2] Z1Z2Z3

�

.

(6.14)

These terms are easily combined to

−i

1

3(J·S +Q·K [J])[3] Z1Z2Z3

�

+

1

3(Q·S )[3]
1
2K [J][2] Z1Z2Z3

�

, (6.15)

both of which are zero due to level-zero and BRST symmetry of the action, respectively, see
Sec. 4.2. This confirms that the above Ward–Takahashi identity (6.12) holds at tree level by
means of elementary transformations and symmetries of the action.

Unfortunately, the above transformation requires a lot of patience and care. Let us there-
fore present some useful identities and walk through a simplified transformation where we
ignore all terms due to gauge fixing. We will also introduce a diagrammatical representation
for the arising terms which helps to visually understand the conformation of the identity.

Some useful identities in transforming the expressions are as follows: First, the insertion
of the quadratic part of the action between two propagators cancels one of the propagators




Z1S[2],1
�


Z2S[2],2
�

= i



Z1Z2

�

. (6.16)

Here we use a shorthand notationXk for the k-th field within a polynomialX with an implicit
sum over all monomials contributing to X . In particular, the notation allows us to write the
quadratic part of the action as

S[2],1S[2],2 :=
∑

monomials

S[2],1S[2],2 = S[2], (6.17)

with some similarity to Sweedler’s notation introduced in (2.15). A diagrammatical represen-
tation of the above identity is simply

= i . (6.18)

The lines correspond to propagators and the disc to the quadratic part of the action.
Second, a correlator of three fields at tree level requires the insertion of a cubic vertex




Z1Z2Z3

�

[1] = i



Z1S[3],2
�

[0]




Z2S[3],1
�

[0]




Z3S[3],3
�

[0] = i
12

3

. (6.19)

The central vertex in the diagram corresponds to the cubic part S[3] of the action. Note that its
symmetry factor 1/3 is compensated by three sets of contractions which are equivalent due to
the cyclic symmetry of the action. Here we have restricted to planar contributions which allows
contractions between the external fields and the fields of the vertex in opposite ordering.
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Third, the non-linear contribution of a symmetry generator on an external field at tree
level requires no further vertex and it splits up into two propagators




J[1]·Z1 Z2Z3

�

=



(J[1]·Z1)2 Z2

�


(J[1]·Z1)1 Z3

�

=
12

3

. (6.20)

The (blue) semi-circle in the diagram represents the level-zero symmetry generator J. It acts
on the (single) field which in on the straight side, and yields (one or several) fields on the
circular side.

Using the above rules, the symmetry variation of the three-field correlator can be trans-
formed step-by-step as follows (we suppress all gauge-fixing terms; a complete derivation can
be found in App. A.2):29




J·(Z1Z2Z3)
�

' 3



J[0]·Z1Z2Z3

�

+ 3



J[1]·Z1Z2Z3

�

' 3i



J[0]·Z1S[3],2
�


Z2S[3],1
�


Z3S[3],3
�

+ 3



(J[1]·Z1)2Z2

�


(J[1]·Z1)1Z3

�

' −3i



Z1J[0]·S[3],2
�


Z2S[3],1
�


Z3S[3],3
�

− 3i



S[2],1Z1

�


(J[1]·S[2],2)2Z2

�


(J[1]·S[2],2)1Z3

�

' −i



Z1Z2Z3
1
3J[0]·S[3]

�

− i



Z1Z2Z3
1
2J[1]·S[2]

�

= −i



Z1Z2Z3
1
3(J·S )[3]

�

= 0.

(6.21)

The sign ‘'’ here and in the following implies to equivalence modulo cyclic permutations of
the three external fields. Using diagrams we can write the first class of terms as




J[0]·(Z1Z2Z3)
�

= i
12

3

+ i
12

3

+ i
12

3

= −i
12

3

− i
12

3

− i
12

3

.

(6.22)

The transformation towards the second line makes use of the linearised symmetry of the prop-
agators discussed in Sec. 6.1

= − . (6.23)

The second class of terms corresponds to the diagrams




J[1]·(Z1Z2Z3)
�

=
12

3

+
12

3

+
12

3

= −i
12

3

− i
12

3

− i
12

3

.

(6.24)

29The reduction of prefactors from 3 to 1/3 and 1/2 in the second but last line is due to two effects: J[3−n]·S[n]
produces n equivalent terms and there are 3 equivalent contractions with the external fields up to cyclic permuta-
tions.
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The diagrams on the second line are obtained by inserting the kinetic part of the action as in
(6.18). Combining all terms, we find




J[0]·(Z1Z2Z3)
�

[1] +



J[1]·(Z1Z2Z3)
�

[0] = −i
12

3

= −i

1

3(J·S )[3] Z1Z2Z3

�

[0] = 0,

(6.25)

where the (green) vertex with embedded symmetry generator represents the variation of the
action w.r.t. this symmetry. Such vertices represent a sum of terms which is zero by invariance
of the action under this symmetry, J·S = 0. This proves the level-zero Ward–Takahashi iden-
tity modulo gauge-fixing terms at the level of diagrams, see App. A.2 for a complete treatment.

6.3 Level-one symmetries of three-point functions

Now we are in a good position to discuss the level-one Ward–Takahashi identity. In order to
streamline the calculation, we first define a manifestly cyclic variant (Ja ∧ Jb)′ of the bi-local
generator Ja ∧ Jb on the external fields O[n] := Z1 · · · Zn

30

(Ja ∧ Jb)′·O[n] := (Ja ∧ Jb)·O[n] +
n
∑

k=1

n+ 1− 2k
n

�

Ja·(Jb
kO[n])− Jb·(Ja

kO[n])− [J
a
k, Jb

k]O[n]
�

=
n
∑

k=1

(Ja ∧ Jb)kO[n] +
n
∑

k=1

n−1
∑

j=1

2 j − n
n

Ja
k+ jJ

b
kO[n].

(6.26)

It differs from the original definition by terms which contain the commutator of two local
generators [Ja, Jb] = 0 as well as terms which are local transformations of some combinations
of fields. It will be consistent to use the above definition of bi-local actions on fields within
the Slavnov–Taylor identity (5.10). The additional terms cancel against each other upon use
of the corresponding local identity (5.4).31 Due to manifest cyclicity it now makes sense to
compare modulo cyclic permutations

(J(1) ⊗ J(2))′·O[n] ' n(J(1) ⊗ J(2))1O[n] +
n−1
∑

j=1

( j − 1
2 n)J(1)j+1J(2)1 O[n]. (6.27)

For three external fields this expression reduces to



bJ′·(Z1Z2Z3)
�

' 3



Z1Z2bJ·Z3

�

+



J(1)·Z1 J(2)·Z2 Z3

�

. (6.28)

Upon evaluation of the correlators at tree level, we find the following diagrams




bJ′·(Z1Z2Z3)
�

' 3 + i + + . (6.29)

The double semi-circle represents the local contribution to the level-one generator bJ (with no
linear contribution), while the single semi-circles without and with decoration (dot) corre-
spond to the level-zero generators J(1) and J(2), respectively.

30Here, Jk is the generator J acting on the field(s) at the k-th site of the correlator (rather than the k-th field
with in the polynomial). It is the fully non-linear generator which may change the length of the polynomial.

31This perfect cancellation can be viewed as a mild verification of the form (5.10) of the bi-local Slavnov–Taylor
identity.
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By using the transformations introduced above and by discarding all gauge-fixing contri-
butions we can make all the symmetry generators act on a central vertex

bJ〈Z1Z2Z3〉 ' −3i + i + i − i

' −i = −i

1

3(bJ·S )[3] Z1Z2Z3

�

.

(6.30)

The combination of insertions is proportional to the cubic combination of local terms which
arises in Yangian invariance of the action (2.46),

(bJ·S )[3] ' 3bJ[1],1S[2] + J(2)[0],2J(1)[0],1S[3] +
�

J(2)[0],1 − J(2)[0],2
�

J(1)[1],1S[2] ' 0. (6.31)

Note that the natural ordering for the fields on the insertion is opposite to the ordering of
external fields. In fact, this reversal of ordering is necessary to make the signs match up:
Shifting a local term from the external legs to the internal vertices typically flips the sign.
Shifting a bi-local term, however, induces one sign flip for each propagator. Hence, an extra
sign flip is needed to match the sign of the transformation of local terms. It arises due to
changing the order in combination with the anti-symmetry of the bi-local terms. The latter
anti-symmetry also implies that the interchange of J(1) and J(2) is equivalent to a flip of sign.

In conclusion, the level-one Ward–Takahashi identity for correlators of three fields is equiv-
alent to the cubic contribution to the level-one symmetry of the action (modulo gauge fixing).
We will redo a similar calculation with all gauge-fixing terms in App. A.3.

Finally, we would like to point out the structural difference between the bi-local action
on a collection of external fields (6.26) and the one on cyclic polynomials (2.46) such as the
action S . Both expressions have similar terms with similar coefficients, but their details differ.
In particular, the former derives directly from the bi-local action on open polynomials (2.45),
and consequently there are no overlapping terms. We have seen above that both types of
expressions are indeed related by the Slavnov–Taylor identity (5.10), and it seems natural
to apply these particular actions for each of the objects that are acted upon. Curiously, the
conjectured bi-local variational identity (5.5) which was used to derive the identity (5.10)
seems to implicitly translate between the two forms without making direct reference to either.
It would be good to understand this issue better.32

6.4 Level-one symmetries of four-point functions

Finally, let us investigate the level-one Ward–Takahashi identity for four external fields. The
new element of this calculation is that the four-point correlation function has an internal prop-
agator. It will be interesting to see how the non-linear contributions conspire to relate the
different topologies of Feynman graphs for this correlator, and it will be reassuring to see that
the identity works out in this more elaborate case. For conciseness we will again drop all terms
due to gauge fixing.

32The different forms of applicable bi-local actions may be related to the different quantum field theory func-
tionals underlying the different objects: Correlation functions are based on the partition function (or its connected
component in view of the planar limit) which is a functional of field sources. Conversely, the action (and likewise
the effective action) is a functional of the fields themselves. It is conceivable that the Legendre transformation,
which translates between these two types of objects, naturally maps one type of bi-local representation on cyclic
objects to the other (while there is no qualitative change for local representations).
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Again, we start with the level-one generator acting on four fields modulo cyclic permuta-
tions (6.27)




bJ′·(Z1Z2Z3Z4)
�

' 4



bJ·Z1 Z2Z3Z4

�

+ 2



J(1)·Z1 J(2)·Z2 Z3Z4

�

. (6.32)

Expanding in terms of planar diagrams, we find the following terms at tree level




bJ′·(Z1Z2Z3Z4)
�

' −2 − 2 + 2i

+ 2i − 2i − 2i + 2i

+ 2 + 4i + 4i .

(6.33)

Here we have used the level-zero symmetry of the propagator to bring the individual terms to
some standard form which makes them easier to compare (see Sec. 6.2)

We add a carefully balanced sum of terms which all involve a composite cubic interaction
vertex which is zero by means of level-zero or level-one symmetry (see Sec. 6.2 and 6.3) or
the composite operator representing the commutator J(1)J(2) = 0

+ ' + − + i + i − i ,

− ' + + − i − i + i ,

+
1
3

' +
1
3

+
1
3

−
i
3

+
i
3

−
i
3

,

−
1
3

' +
1
3

−
1
3

−
i
3

+
i
3

+
i
3

,

+i ' −i − i − i − − ,

−i ' +i + i + i − + ,

−4 ' +
4
3

−
4
3

+
4
3

− 4i − 4i − 4i

−
4i
3

−
4i
3

−
4i
3
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+
4i
3

+
4i
3

+
4i
3

,

+
i
3

' +
i
3

+
i
3

−
i
3

,

−
i
3

' −
i
3

−
i
3

+
i
3

. (6.34)

In writing these terms, we have again made use of simple identities introduced in Sec. 6.2
and 6.3, such as level-zero symmetry of propagators, removal of quadratic vertices, vanishing
of the dual Coxeter number, implicit anti-symmetry of the level-zero generators and cyclic
permutations. By summing up all terms, we find that almost all diagrams cancel.

We arrive at a collection of terms with a central quartic vertex which match precisely with
the quartic term in the invariance of the action (2.46),

(bJ·S )[4] ' 4bJ[1],1S[3] + 2J(2)[0],2J(1)[0],1S[4] +
�

J(2)[1],1 − J(2)[1],2
�

J(1)[1],1S[2]

+
�

J(2)[0],1 − J(2)[0],2 + J(2)[0],3 − J(2)[0],4
�

J(1)[1],1S[3] ' 0.
(6.35)

We can subtract these terms,

0= i = i

1

4(bJ·S )[4] Z1Z2Z3Z4

�

' 4i − 2i + −

+ i − i − i + i ,

(6.36)

and find that all terms cancel,



bJ′·(Z1Z2Z3Z4)
�

= 0. (6.37)

This proves the level-one Ward–Takahashi identity for four external fields modulo gauge-fixing
terms.

7 Yangian symmetry in the quantum theory

So far we have discussed Yangian symmetry for correlation functions only at tree level. Tree
level is equivalent to the classical (non-linear) theory,33 so we have established implications of
Yangian symmetry for classical planar gauge theories based on [8,9]. It will thus be interesting
to understand how Yangian symmetry extends to the quantum theory. Due to the various
technical challenges, we shall only perform one test in a simplified setting and provide basic
and qualitative arguments in this article.

33The generating functional of trees is the Legendre transform of the classical action.
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7.1 Loop effects

At loop level many new issues may come into play: Proper treatment of loops in correlation
functions will require renormalisation. Likewise, the symmetry generators need to be regu-
larised and potentially renormalised. At the end of the day, there are three conceivable out-
comes for the Slavnov–Taylor identities (5.10) corresponding to Yangian symmetries at loop
level:

• Yangian symmetry is manifest: the tree-level form of the Slavnov–Taylor identities re-
mains valid without changes at loop level.

• Yangian symmetry is anomalous: the Slavnov–Taylor identities receive anomalous con-
tributions, but they constitute exact statements for the quantum theory.

• Yangian symmetry is broken: conceivably, quantum effects completely spoil the Slavnov–
Taylor identities, and no meaningful conclusions due to Yangian symmetry can be drawn
for quantum observables.

We can speculate that our identities will at least continue to hold as they stand at the level of
loop integrands, i.e. before performing loop integrals. Divergences in the loop integrals and the
ensuing renormalisation procedure in conjunction with gauge fixing and unphysical degrees
of freedom could well render Yangian symmetry anomalous in some sense. Nevertheless it
is also conceivable that the unusual kinds of transformations which came to use will not be
compatible with loop integrands and thus spoil the identities beyond repair. However, the
many successes of integrability in N = 4 sYM, at the loop level and even at finite coupling
strength, see [1], suggest that the identities will remain largely intact in the full quantum
theory. Let us therefore inspect the simplest non-trivial variation of a correlation function at
loop level.

7.2 Three-point function at one loop

The one-loop correction to the two-point function is the simplest quantum correction to a
correlation function. However, we have argued in Sec. 6.1 that two-point functions are more or
less trivially invariant under Yangian level-one symmetries (up to gauge fixing). We therefore
consider the three-point function at one loop as the next-to-simplest correlator.

As can be seen in App. A, a proper treatment of gauge fixing bloats the combinatorics
without altering the conclusions concerning invariance. We shall therefore ignore gauge-fixing
effects in the following analysis. Furthermore, we will disregard regularisation and renormal-
isation which would be needed to properly eliminate divergences at loop level. Effectively, we
will thus consider loop integrands rather than loop integrals. On the one hand, this restricts
the significance of the result. On the other hand, we will demonstrate that the non-linear rep-
resentation of Yangian symmetry is structurally compatible with loop-level planar diagrams.
The many non-trivial cancellations in our example will make it appear likely that Yangian
symmetry does not break in a bad way quantum mechanically. It would thus remain to argue
against quantum anomalies which we shall do later in this section.

We start with the level-one symmetry variation of the three-point function at one loop in
terms of the planar diagrams introduced in Sec. 6.2



bJ′·(Z1Z2Z3)
�

(1)

' −i − 3 − + + i
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− i − i + i − 3 − +

− − + + 3i + i − i

− 3 − − + i

− 3 + + − i . (7.1)

We have already applied several identities to transform the diagrams to equivalent ones with-
out pointing out these transformations explicitly: Quadratic vertices were eliminated by means
of Green’s identity (6.18). Level-zero invariance is used to shift linearised generators across
propagators, see (6.23). Furthermore we consider diagrams modulo cyclic permutations, and
we can exchange the two constituent level-zero generators (with or without dot) at the expense
of a sign flip. Finally, we drop tadpole diagrams (any diagram where a propagator connects a
point to itself).34

We need to show that all these diagrams sum up to zero. We achieve this by adding fur-
ther diagrams which we already know to sum to zero due to invariance of the action under
level-zero and level-one symmetries (green circles) as well as commutativity of the level-zero
constituents of the level-one generators (green boxes):

0' −3i +
i
2

−
i
2

− i +
i
2

−
i
2

−
1
2

+
1
2

− 3i − 3i − 3i

+ i − i + i − i

34The loop integral of this propagator merely amounts to some (potentially divergent) number, which is equiv-
alent to a suitably chosen local counterterm and can therefore be removed.
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+ i − i + i − i

− 3 − 3

+ − + −

+
3
4

−
3
4

+
1
4

−
1
4

−
1
2

−
1
2

+
1
2

+
1
2

− − + +

+
i
8

−
i
8

(7.2)

Each of these terms can be expanded in terms of elementary diagrams as before. They yield
between 2 and 28 individual diagrams which can be transformed and brought to one of 90
standard forms using the transformation rules mentioned above, see App. B for a complete
expansion of all terms. By careful inspection we indeed confirm that all the diagrams cancel




bJ′·(Z1Z2Z3)
�

(1) = 0. (7.3)

In our example, we find no surprises for Yangian symmetry of loop integrands nor does the
invariance require modification of the symmetry representation. However, it remains to be
seen whether gauge fixing or regularisation will change this conclusion.

7.3 Anomalies

Finally, we would like to comment on anomalies, see [25], in the interpretation as a non-
invariance of the quantum mechanical path integral measure [26, 27]. For ordinary symme-
tries, the anomaly could be understood a deformation of the total variational identity (5.1)




J·O + iJ·S O + iA [J]O
�

= 0. (7.4)

Here the additional termA [J] represents the potentially non-trivial variation of the path inte-
gral measure by the generator J. A corresponding deformation of the conjectured variational
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identity (5.5) for a bi-local generator Ja ∧ Jb reads

0=



(Ja ∧ Jb)·O + i(Ja ∧ Jb)·S O + iA [Ja ∧ Jb]O
�

(7.5)

+



i(Ja·S )∧ (Jb·O ) + i(Ja·O )∧ (Jb·S ) + iA [Ja]∧ (Jb·O ) + i(Ja·O )∧A [Jb]
�

+



−(Ja·S )∧ (Jb·S )O −A [Ja]∧ (Jb·S )O − (Ja·S )∧A [Jb]O −A [Ja]∧A [Jb]O
�

.

Now the level-zero symmetry is non-anomalous in the principal examples of Yangian symmetric
planar gauge theories, A [J] = 0. Dropping all terms in the bi-local variation containing
the level-zero anomaly A [J], we are left with the genuine anomaly A [Ja ∧ Jb] of a bi-local
symmetry. So the question of a Yangian anomaly translates to the presence of this latter term.

A key aspect of anomalies is locality and cohomology of the symmetry algebra: In a renor-
malisable quantum field theory, the anomaly termA [J] is local. Moreover, the anomaly typi-
cally joins the variation of the action in the combination J·S +A [J],




J·O + i
�

J·S +A [J]
�

O
�

= 0. (7.6)

So the actual question is whether this combination vanishes or can be made to vanish by
adjusting the action appropriately. Now the action is manifestly local and so is its variation.
However, a local anomaly is not necessarily the variation of a local term, which makes this
question a problem of cohomology. For the bi-local Yangian symmetry we can collect the
terms of the above variational identity as

0=



bJ·O
�

+ i

�

bJ·S +A [bJ]
�

O
�

+ i

�

J(1)·S +A [J(1)]
�

∧ (J(2)·O )
�

−

�

J(1)·S +A [J(1)]
�

⊗
�

J(2)·S +A [J(2)]
�

O
�

.

(7.7)

One should therefore ask whether bJ·S +A [bJ] = 0 together with J·S +A [J] = 0. Impor-
tantly, isA [bJ] local? Is the appropriate cohomology for the Yangian algebra trivial? Can one
construct a local anomaly termA [bJ] consistent with the relations of Yangian symmetry? And
even if so, is the resulting prefactor in A [bJ] zero? Answering these questions should help in
settling Yangian symmetry as a symmetry of a planar quantum gauge theory.

7.4 Anomalies in N = 4 sYM

Ignoring potential subtleties regarding regularisation, gauge fixing, bi-local total variations
and locality of A [bJ], we can consider the anomaly of the level-one momentum generator bP
in N = 4 sYM theory. Such an anomaly should obey a consistency relation along the lines
of [28]

J·A [bP] = bP·A [J] +A
�

[J,bP]
�

, (7.8)

with the level-zero generators J originating from the algebra at level one. Following the ar-
guments in Sec. 3.3 and generalising (3.18) the commutator [J,bP] should be a combination
of level-one generators following from the Yangian algebra as well as bi-local and local gauge
transformations,

[J,bP] = [J,bP]Y +G[P(1)· . . .]∧ P(2) +G[bP· . . .]. (7.9)

According to (3.20) one can expect the anomalies of bi-local gauge transformations to reduce
to anomalies of level-zero symmetries and a term two level-zero generators

A
�

G[P(1)· . . .]∧ P(2)
�

' 2I[P(1)· . . .]·A [P(2)] + 2A
�

I[P(2)·P(1)· . . .]
�

. (7.10)
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InN = 4 sYM there are no anomalies for superconformal and gauge symmetries and more-
over the combination P(2)P(1) vanishes, see (2.49). Hence the above consistency requirement
reduces to

J·A [bP] =A
�

[J,bP]Y
�

, (7.11)

where the commutator is evaluated in the plain Yangian algebra. Since the level-one gen-
erators transform in the adjoint representation of the level-zero algebra, bP has (almost) the
same quantum numbers as the momentum generator P. Effectively, this implies that A [bP] is
a translation-invariant supersymmetric Lorentz-vector SU(4)-singlet gauge-invariant operator
of dimension 1. Furthermore, we can argue that the anomaly term has negative SU(Nc)-parity
just as the level-one Yangian generators.35 Translation-invariant operators are integrals over
local operators, and supersymmetric operators reside at the top of supermultiplets. Before
integration over 4-dimensional spacetime, we therefore consider Lorentz-vector SU(4)-singlet
gauge-invariant local operators of dimension 5 = 4+ 1 and negative SU(Nc)-parity at the top
of some supermultiplet.

Now it is not difficult to argue that no such local operators exist based on the represen-
tation theory of the superconformal algebra psu(2,2|4), see [29]: Long supermultiplets span
a range of conformal dimension 8 = 4N /2, hence supersymmetric local operators at dimen-
sion less than 10 could possibly originate only from short supermultiplets. The only short
supermultiplets relevant in the planar limit are the 1/2-BPS single-trace multiplets. Negative
SU(Nc)-parity restricts to the 1/2-BPS multiplet at dimension 3 which possesses no suitable
supersymmetric state either. For example, it is easy to see that the SU(4) charge of the corre-
sponding superconformal primary operators cannot be eliminated by the application of merely
4 supersymmetry operators which are needed to go from the primary at dimension 3 to a de-
scendant at dimension 5.

We can also argue less abstractly by enumerating local operators with the desired proper-
ties: Dropping the requirement of supersymmetry, there are 15 Lorentz-vector SU(4)-singlet
gauge-invariant local operators of dimension 5 and negative SU(Nc)-parity. Eight of these are
ordinary local operators36

tr
�

{Φm,Φn}[∇µΦm,Φn]
�

, Γαβµ tr
�

[Ψ̄α,Ψβ]ΦmΦm

�

,

Γ
αβ

µ[mn] tr
�

{Ψ̄α,Ψβ}ΦmΦn

�

, Γ
αβ

µ[mn] tr
�

Ψ̄αΦmΨβΦn

�

,

Γαβν tr
�

[Ψ̄α,Ψβ]Fµ
ν
�

, Γαβν tr
�

[Ψ̄α,Ψβ]F̃µ
ν
�

,

Γαβm tr
�

[∇µΨα,Ψβ]Φm

�

, Γαβm tr
�

[∇µΨ̄α, Ψ̄β]Φm

�

,

(7.12)

four are conformal descendants

∂ ν tr
�

{Φm,Φm}Fµν
�

, ∂ ν tr
�

{Φm,Φm}F̃µν
�

,

Γαβmµν∂
ν tr
�

[Ψα,Ψβ]Φm

�

, Γαβmµν∂
ν tr
�

[Ψ̄α, Ψ̄β]Φm

�

,
(7.13)

and three are trivial modulo the equations of motion37

tr
�

ΦmΦm∇νFµν
�

+ . . . ,

(ΓνΓmµ)
αβ tr

�

[∇νΨα,Ψβ]Φm

�

+ . . . ,

(ΓνΓmµ)
αβ tr

�

[∇νΨ̄α, Ψ̄β]Φm

�

+ . . . .

(7.14)

35The SU(Nc)-parity operation is the Z2 outer automorphism of SU(Nc) which maps the adjoint fields Z to their
negative transpose −ZT. Therefore it effectively reverses the order of the trace in the planar limit. The anti-
symmetric combination of the bi-local generators implies a negative parity.

36We merely sketch their form using the fields ofN = 4 sYM in the following convention: Φm denotes the 6 scalar
fields while Ψα, Ψ̄α denote the spinor fields with α a combined spinor index to be acted upon by gamma-matrices
Γµ, Γm in 4+ 6 dimensions.

37It suffices to state the leading term with the largest number of derivatives as the others are linear combinations
of the previously mentioned terms.
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All of these belong to long superconformal multiplets: There are 1,4, 1 relevant long super-
conformal multiplets of primary dimension 3, 4,5, respectively [30]. Furthermore, there are 2
and 1 extra superconformal multiplets of primary dimension 4.5 and 5, respectively, which are
proportional to the equations of motion. In the following table, we list the quantum numbers
of the superconformal primaries in terms of conformal dimension ∆ and Dynkin labels of the
stability subgroups SL(2,C) and SU(4) of the superconformal primary condition. We further-
more sketch the combination of supercharges Q, Q̄ and momentum generators P that turns
the superconformal primaries into descendant operators of the desired type (∆ = 5, [1, 1],
[0,0, 0]):

∆ SL(2,C) SU(4) descendant
3 [0, 0] [0,1, 0] QQ̄3,Q3Q̄,Q2P, Q̄2P
4 [0, 0] [1,0, 1] QQ̄
4 [2, 0] [0,0, 0] QQ̄, P
4 [0, 2] [0,0, 0] QQ̄, P
4 [1, 1] [0,1, 0] Q2, Q̄2

5 [1, 1] [0,0, 0] 1
4.5 [1, 0] [1,0, 0] Q̄
4.5 [0, 1] [0,0, 1] Q
5 [1, 1] [0,0, 0] 1

(7.15)

Altogether these account for 8 conformal primaries, 4 conformal descendants (P) and 3 oper-
ators proportional to the equations of motions. As members of long supermultiplets, they are
clearly not the highest and thus not supersymmetric states.

Therefore, there are no suitable operators A [bP] in planar N = 4 sYM theory, and con-
sequently, Yangian symmetry is non-anomalous (modulo subtleties alluded to above and sup-
posing the superconformal and gauge symmetries are non-anomalous). In fact, the absence
of suitable operators A [bP] not only implies the absence of anomalies, but even better, it im-
plies (without subtleties) that the classical action must be invariant, as was shown explicitly
in [9]. This constitutes an alternative proof of Yangian symmetry of planar N = 4 sYM which
is merely based on the representation content of the theory together with the Yangian algebra
relations.

By the same logic, the level-one bonus symmetry bB [31–33] can be argued to be non-
anomalous: The anomalyA [bB] must be a translation-invariant Lorentz-singlet SU(4)-singlet
gauge-invariant operator of dimension 0 and negative parity. Such an operator does not exist
as one can show by straight-forward enumeration of local operators at dimension 4, see also
(7.15). Even though this argument is much easier than the one for bP, it may also be more fragile
at the quantum level: Namely, the generator bB is based on superconformal boosts as opposed to
bP which merely uses rotations, translations, supersymmetries and scale transformations. The
issue is that special conformal symmetries are typically superficially broken by the quantisation
procedure whereas rotations, translations and supersymmetries are known to hold manifestly.
Therefore, an anomaly of bP is most closely linked to the anomaly of scale transformations,
whereas the anomaly of bB requires understanding of the anomaly of special superconformal
transformations.

8 Conclusions and Outlook

In this work, we have proposed and verified Ward–Takahashi identities for colour-ordered
correlation functions associated to Yangian symmetries in integrable planar gauge theories.
Gauge fixing represented a major complication in formulating these relations and their under-
lying Slavnov–Taylor identities. In order to account for the extraneous ghost fields and gauge
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degrees of freedom, the identities possess a number of auxiliary terms to cancel off contri-
butions from these unphysical degrees of freedom. An exciting side-effect of these terms is
that they involve novel types of non-local gauge and BRST symmetries which extend to arbi-
trary non-integrable planar gauge theories and their gauge-fixed counterparts and may serve
some purpose there. Our derivation of Slavnov–Taylor identities relied on some conjectural
bi-local total variations of the planar path integral involving some form of bi-local quantum
correlators. Fortunately, the resulting Ward–Takahashi identities can be formulated using con-
ventional notions, and we demonstrated that they do indeed hold true for several tree-level
correlation functions with up to four external legs as well as the one-loop correlator of three
fields. Importantly, these identities, tools and verifications crucially rely on the planar limit.
This further justifies the relevance of the planar limit for integrability and Yangian symmetry
to apply for the considered models.

The main open question related to our work is whether the Slavnov–Taylor identities con-
tinue to hold for more legs and in the quantum theory, either perturbatively or non-perturba-
tively. Given the successes in applying integrability to the determination of various observables
at higher loops or even at finite coupling strength, it is hardly conceivable that they will ever
fail. Nevertheless, it remains to be proven that the structure of Feynman diagrams at loop
level is compatible with the Slavnov–Taylor identities. Will the symmetry generators require
correction terms in the renormalised theory? Or will divergences associated to the unphysical
degrees of freedom violate the symmetry? Furthermore, there is the logical possibility that
Yangian symmetry is anomalous in the quantum theory; this option remains to be rigorously
excluded. Nevertheless, we have sketched an argument to achieve the latter for the main
example of planar N = 4 sYM, but it is based on several assumptions which remain to be
substantiated. Altogether, we believe that this work has laid the foundations for addressing
and understanding Yangian symmetry in the quantum theory.

Correlation functions are not just useful in their own right, but they can also be used to
formulate other relevant observables such as scattering amplitudes (via the LSZ reduction) and
Wilson loop expectation values (by integrating over the insertions points). The Slavnov–Taylor
or Ward–Takahashi identities can then be translated to corresponding symmetry statements for
these observables. For Wilson loop expectation values one should be able to make contact to
the results of [23, 34] more or less directly. For scattering amplitudes, this should open up a
path to rigorously derive the Yangian-based differential equations of [20]. Similarly, the Ward–
Takahashi identities can be expected to explain the non-linear representation on scattering
amplitudes with collinear particle momenta [35]. Along the same lines, it may be interesting
to understand whether the identities continue to hold for correlation functions with a singular
configuration of points such as light-like separated external fields. The case of coincident
fields is directly linked to the notion of composite local operators, and the representation of
Yangian symmetry on them [2] should also follow from our framework. Moreover, it would
be interesting to understand violations of Yangian symmetry related to certain observables.
For example, corners and cusps in Wilson loops generate divergences which can render Ward
identities anomalous [17].

This work also raised some technical questions for planar quantum field theories. It would
be highly desirable to understand better the bi-local variational identity (5.5) for the planar
path integral as well as the notion of bi-local quantum correlators 〈O1 ∧O2〉. With a proper
definition of the latter and a proof of the former, all the transformations that led to the Slavnov–
Taylor identities could be carried out rigorously; this would establish Ward–Takahashi identi-
ties for arbitrarily many external legs and at loop level (up to regularisation, renormalisation
and anomalies). Another curious observation pointed out at the end of Sec. 6.3 is that the
Yangian representations on the action and on correlation functions show some structural dif-
ferences w.r.t. overlapping contributions.

41

https://scipost.org
https://scipost.org/SciPostPhys.5.2.018


SciPost Phys. 5, 018 (2018)

Finally, (Yangian) quantum algebras applied to planar gauge theory and non-linear repre-
sentations deserve a deeper mathematical understanding. How to complete the Yangian rela-
tions which are intertwined with gauge transformations and non-local generalisations thereof?
How to formulate the Serre-relations precisely in this case? How can the non-linear action on
cyclic states be interpreted in terms of representation theory of the algebra? How to inter-
pret the overlapping terms and how do they relate to the coalgebra structure? It would also
be interesting to understand whether there is any relationship to the non-ultra-local issues
of the corresponding symmetry algebra for the non-linear sigma model for the string theory
worldsheet theory, see [36, 37]. Last but not least, one may wonder whether there is there a
relationship to the anomaly considerations for the worldsheet theory in [38]?
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A Ward–Takahashi identity with gauge-fixing terms

In this appendix we verify some Ward–Takahashi identities with all gauge-fixing terms made
explicit. The transformations will be performed in terms of diagrams as explained in Sec. 6.2.

A.1 Propagators

We start by summarising the symmetry properties of propagators, see Sec. 6.1, in a diagram-
matical notation. The defining property of propagators (6.18) reads

= i . (A.1)

Invariance of the propagator under BRST transformations takes the form (6.1)

0= = i + i . (A.2)

In these diagrams the (red) triangle represents the BRST generator Q. This will be used to
tacitly shift BRST generators from one end of a propagator to the other

= − . (A.3)

Invariance of the propagator under level-zero transformations receives some extra terms com-
pared to (6.23) due to gauge fixing (6.4)

0= = + − −
= i + i + + .

(A.4)

Here, the (purple) rectangle represents the BRST compensator K [J] associated to the en-
closed generator J. The latter two terms require special attention due to exchange statistics
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of the BRST generator Q and the compensator K [J] which cannot be expressed well in the
diagrams alone: Here we assume that the sign of a diagram is determined relative to the se-
quence . . .K [J] . . .Q . . . in the corresponding mathematical expression. If an expression has
the opposite ordering . . . Q . . .K [J] . . ., its diagram will receive an extra sign. This is in fact the
reason for the negative sign for the terms in the first line which originate from the combination
+Q·K [J]. Their sign in the second line is flipped due to (A.3).

A.2 Local symmetries of three-point functions

Here we discuss the Ward–Takahashi identities corresponding to local symmetries for three
external fields (6.13) using diagrams. The external fields will be summarised in the operator
O := tr(Z1Z2Z3). We will work modulo cyclic permutations of the external fields to collapse
several equivalent terms into one by means of the equivalence relation ‘'’.

BRST symmetry. We first consider the identity for BRST symmetry. As BRST symmetry it-
self does not require compensators, the consideration is equivalent to Sec. 6.2 without gauge
fixing where J is replaced by Q. In short, invariance of the three-point function follows using
invariance of the propagator (6.1) as




Q·O
�

' 3i + 3 = −3i − 3i

' −i = −i

1

3(Q·S )[3]O
�

= 0.

(A.5)

Level-zero symmetry. Next we discuss the level-zero Ward–Takahashi identity for three ex-
ternal fields (6.13) using diagrams. It consists of the following terms (for convenience, we
identify the diagrams with labels a–k)




J[0]·O
�

[1] ' 3i

a

,




J[1]·O
�

[0] ' 3

b

,

−i

1

3K [J][3]Q[0]·O
�

[0] ' 3i

c

,

−i

1

2K [J][2]Q[1]·O
�

[0] ' −3i

d

− 3i

e

,

−i

1

2K [J][2]Q[0]·O
�

[1] ' 3

f

− 3

g

− 3

h

.

(A.6)
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In diagrams c, g, h we have used the linearised BRST symmetry of propagators (A.3) to shift
the BRST generator to the central vertex.

We can transform diagrams a and f by adding the linearised level-zero invariance of the
gauge-fixed propagator (A.4),

0= −3 ' −3i

a

− 3

f

− 3i

i

− 3

j

. (A.7)

This effectively replaces them by diagrams i and j with the opposite sign. Then we add the
BRST invariance of the action in (A.5) together with insertion of a spectator vertexK [J][2] to
cancel most of the terms related to gauge fixing,

0= 3 =

1

2K [J][2]
1
3(Q·S )[3]O

�

' 3

j

+ 3

g

+ 3

h

+ 3i

k

+ 3i

d

+ 3i

e

.

(A.8)

For diagrams d, e and k we have removed a quadratic vertex by means of (A.1). The remaining
4 terms represent the level-zero invariance of the action at three fields with gauge fixing. We
add the corresponding transformation of the action,

0= i = i

1

3(J·S +Q·K [J])[3]O
�

' 3i

i

− 3

b

− 3i

c

− 3i

k

.

(A.9)

For diagram b we have again removed a quadratic vertex. Note that the ordering ofK [J] and
Q in Q·K [J] is opposite to the ordering in all the above expressions, hence the corresponding
diagrams receive an extra sign flip. When adding up all the diagrams, we finally get zero




J·O
�

− i



K [J]Q·O
�

= 0. (A.10)

A.3 Bi-local symmetries of three-point functions

In the following we will discuss the Ward–Takahashi identities corresponding to bi-local sym-
metries for three external fields O := tr(Z1Z2Z3). Again, we will work modulo cyclic permu-
tations of the external fields by means of the equivalence relation ‘'’.
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Bi-local BRST symmetry. We start with the bi-local BRST generator Q ⊗ Q introduced in
Sec. 4.3. Since the BRST component operators Q have no compensatorsK [Q], the derivation
is identical to the one presented in Sec. 6.3 together with a proper treatment of the gauge-fixed
local contributions K [Q ⊗ Q] along the lines of App. A.2. The Ward–Takahashi identity for
Q⊗Q then reads




(Q⊗Q)·O
�

− i



K [Q⊗Q]Q·O
�

= 0. (A.11)

The relevant invariance of the action takes the form

0= =

1

3

�

(Q⊗Q)·S +Q·K [Q⊗Q]
�

[3]O
�

' 3i − − i + i − 3 .

(A.12)

Mixed bi-local symmetry. Now we will verify the mixed symmetry Q ∧ J introduced in
Sec. 4.3 including the gauge-fixing corrections caught by the Slavnov–Taylor identity (5.9)




(Q ∧ J)·O + iK [J] (Q⊗Q)·O
�

+

�

−iK [Q ∧ J] +K [J]K [Q⊗Q]
�

Q·O − iK [Q⊗Q] J·O
�

= 0. (A.13)

This Ward–Takahashi identity consists of five different contributions totalling 22 diagrams. In
order to streamline the presentation, we will tacitly remove quadratic vertices by means of
(A.1) and shift BRST generators Q towards the centre of the diagram by means of (A.3). The
diagrams turn out to be
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' 3
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K [J]K [Q⊗Q]Q·O
�

' −3

o

− 3

p

+ 3

q2

,

−i



K [Q⊗Q] J·O
�

' −3i

q1

. (A.14)

Some remarks are in order: For the first set of diagrams with the regular application of the
generator Q ∧ J (as opposed to the earlier cases of bJ = J(1) ⊗ J(2) and Q⊗Q) we note that the
two underlying generators, Q and J, are of different types and we have to explicitly consider
both orderings.

Another subtlety concerns the signs due to statistics of the operators. Diagrams of the
second term involve several fermionic operators Q and terms K [J] whose ordering matters.
We assume the reference ordering within mathematical expressions to be (K [J],Q, Q̇) where
Q̇ corresponds to the decorated BRST operator (triangle with dot) in the diagrams but oth-
erwise acts as an ordinary BRST operator Q. Likewise, the reference ordering for fermionic
operators Q and terms K [J], K [Q⊗Q] within diagrams in the fourth term is assumed to be
(K [J],K [Q⊗Q],Q).

Next we would like to shift level-zero generators J acting on external fields towards the
centre of the diagrams b1, c1, d1, e1 and q1. To this end we add a couple of terms each of
which is zero using the extended invariance relation (A.4) of the gauge-fixed propagator,

0= −

b

' −i

b1

+

b2

− i

b3

+

b4

,

0= +

c

' +i

c1

−

c2

+ i

c3

−

c4

,

0= i

d

' −

d1

− i

d2

−

d3

− i

d4

,

0= −

e

' +

e1

+ i

e2

+

e3

+ i

e4

,

0= 3

q

' +3i

q1

− 3

q2

+ 3i

q3

− 3

q4

.

Effectively this replaces diagrams bk, ck, dk, ek and qk with k = 1, 2 by the corresponding
diagrams with k = 3, 4. Note that the signs of the diagrams with k = 2, 4 are superficially
different from the underlying relation (A.4). This is because the fermionic operators and terms
are ordered as (Q,K [J], Q̇) and (K [Q⊗Q],K [J],Q). Therefore they require one elementary
permutation to be brought to the assumed ordering corresponding to a sign flip.

Furthermore, we add the following combination of terms to our set of diagrams which is
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zero by means of the invariance of the gauge-fixed action under Q⊗Q (A.12)

0= −3 = −



K [J] 1
3

�
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�
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�
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+ 3

p

+ 3
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(A.15)

Note that we need to explicitly average over all cyclic permutation in (A.12) due to the extra
vertex K [J] which breaks this symmetry.

Finally, we add the invariance of the gauge-fixed action under (4.25)

0= i = i

1

3

�

(Q ∧ J)·S + (Q⊗Q)·K [J]− J·K [Q⊗Q]−Q·K [Q ∧ J]
�
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(A.16)
with the four contributions
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i

1

3((Q⊗Q)·K [J])[3]O
�

' 3i

r

− i

j

− i

s

+ i

t

.

(A.17)

Altogether we find that all terms cancel. More explicitly, every one of the 35 distinct diagrams
is labelled by a letter, and it appears twice with equal but opposite coefficients. This shows
that the Ward–Takahashi identity (A.13) indeed holds in this case.

Even more, all the intermediate terms for the Slavnov–Taylor identity in the last few lines
of (5.8) are produced with the expected coefficients. Among these, the bi-local correlator

−i

�

J·S +Q·K [J]
�

∧ (Q·O )
�

, (A.18)

for which we have merely provided a superficial description in Sec. 5.2, is apparently repre-
sented truthfully by diagrams b, c, d, e in (A.14). All of this gives us some confidence that the
considerations in Sec. 5 apply indeed, and that we can trust the Slavnov–Taylor identities for
bi-local symmetries.

Yangian symmetry. We have also sketched the corresponding calculation for invariance of
the gauge-fixed three-point correlator under a level-one Yangian generator. Unfortunately, it
involves a substantial increase in combinatorics compared to the previous calculations due to
the various types of elements that contribute. For example, the Ward–Takahashi identity (5.10)
expands to 54 diagrammatical terms. An initial analysis shows that all kinds of diagrams may
indeed cancel by using invariances of the action. However, a more careful investigation would
be needed to convincingly demonstrate that the identity holds for three external fields at tree
level. For example, this would be desirable to confirm the combination of terms in (5.10)
including its combinatorial factors of 1/2.

B Level-one invariance of the three-point function at one loop

In this appendix we show the Yangian invariance of the three-point function at one loop explic-
itly (modulo gauge fixing and regularisation). Recall that symmetry variation of the correlator
yields




bJ′·(Z1Z2Z3)
�

(1)

' −i − 3 − + + i

− i − i + i − 3 − +

− − + + 3i + i − i

− 3 − − + i

− 3 + + − i .

(B.1)
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We can cancel all diagrams by adding the following terms, all of which are zero by invariance
of the action and commutativity of the level-zero generators
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