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Abstract

We compute the bulk entanglement entropy across the Ryu-Takayanagi surface for a one-
particle state in a scalar field theory in AdS;. We work directly within the bulk Hilbert
space and include the spatial spread of the scalar wavefunction. We give closed form
expressions in the limit of small interval sizes and compare the result to a CFT com-
putation of entanglement entropy in an excited primary state at large c. Including the
contribution from the backreacted minimal area, we find agreement between the CFT
result and the FLM and JLMS formulas for quantum corrections to holographic entan-
glement entropy. This provides a non-trivial check in a state where the answer is not
dictated by symmetry. Along the way, we provide closed-form expressions for the scalar
field Bogoliubov coefficients that relate the global and Rindler slicings of AdS;.
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1 Introduction

Large N and strong/weak dualities typically map quantum features of a given theory to clas-
sical structures in its dual. A particularly dramatic example of this phenomenon is given by
holography and the AdS/CFT correspondence. At infinite N, holography maps quantum en-
tanglement in a field theory — perhaps the most intrinsically quantum-mechanical property that
one might imagine - to something as simple as the classical area of a minimal surface y, in its
gravitational dual [1]:
S = Aya)
EE = 260
N

The simplicity and universality of this relationship, which relates two very primitive ideas on
each side of the duality, has led to many practical applications as well as considerable insight
into the inner workings of holography.

If we now move away from strictly infinite N, the situation is slightly more complicated.
The gravitational theory is no longer strictly classical, and the first quantum correction to
equation (1) in the bulk has been argued by Faulkner, Lewkowycz and Maldacena (FLM) to
be [2]:

(1

Alra)
Sgp=—""+S8 2 2
EE 4Gy puk(Z4) 5 2)

where >3, is a bulk spatial region contained between y, and the boundary, and Sy,;;xK(Z,) is the
bulk entanglement entropy of low energy perturbative degrees of freedom in the bulk, viewed
as an effective quantum field theory. In other words, at finite N boundary entanglement splits
apart into a classical area term and a bulk entanglement term. The generalization of this
formula to all orders in N~! was discussed in [3,4].

Jafferis, Lewkowycz, Maldacena and Suh (JLMS) extended equation (2) to an operator
equation in [5] which reads

A

A
Kepr = —— + Kok 3
ot = g T Kok (3)
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where K is the modular Hamiltonian and A should now be understood as an area operator.
This formula is valid as an operator equation on a subset of the full Hilbert space usually
called the code subspace. The code subspace is the set of all states that can be accessed in the
bulk perturbative quantum field theory around a fixed classical background.

The appearance of a bulk entanglement term (or a bulk modular Hamiltonian) means
that the holographic dictionary is now sensitive to the bulk perturbative Hilbert space, and
equation (2) is thus a key tool in understanding how quantum degrees of freedom in the
bulk can be encoded in the boundary [6, 7]. It also uncovered a deep connection between
quantum gravity and quantum error correction [8,9]. It is intriguing to speculate that the
possibility of splitting the CFT entanglement entropy into a classical geometric piece and a
bulk matter entanglement piece is a key feature for the emergence of (what we conventionally
call) geometry from microscopic field-theoretical degrees of freedom.

However, despite the conceptual importance of equation (2), to our knowledge it has been
used in relatively few explicit computations of quantum corrections to entanglement entropy
(see however [10,11]). Many direct calculations of quantum corrections to entanglement
entropy instead study states that can be prepared by a path integral and proceed using a
partition function approach [12] (see also [13-17] for CFT calculations) rather than directly
tracing out states in the bulk Hilbert space. We believe this is largely due to the difficulty of
explicitly computing bulk entanglement entropies.

Thus motivated, in this work we develop the tools required to directly apply the FLM
relation in a non-trivial setting. In particular, we study a scalar field ¢ in the bulk of AdS,,
with a mass m that is @(1) in units of the AdS radius. We consider the lowest-energy excited
state with a single ¢ quantum sitting in the center of global AdS;. This state has an extended
wave-function that fills the bulk of AdS; the energy of this wavefunction backreacts on the
bulk geometry to create a conical deficit-like geometry, where the singularity at the center is
smoothened out by the Compton wavelength of the particle. On the boundary, this state is
simply the primary operator O dual to ¢.

We then compute both sides of equation (2) for a (small) interval of length 6 in this excited
state, subtracting the contribution from the vacuum. We thus obtain the leading quantum cor-
rection which is @(1) in the large c limit. On the boundary this is done using CFT, techniques
and large c-factorization. In the bulk, we compute both the shift in the minimal area due to the
backreaction of the particle as well as the bulk entanglement entropy. The latter turns out to
be a non-trivial exercise in bulk quantum field theory, as the spatial spread of the ¢p wavefunc-
tion polarizes the entanglement already present in the vacuum, creating extra entanglement
across the bulk of AdS;.

We compute this shift in entanglement entropy by explicitly constructing the perturba-
tive reduced density matrix in the excited state, decomposing the action of the single-particle
creation operator a' across the entangling region %, and its complement. This requires the
construction of the appropriate Bogoliubov coefficients, which we present in closed form. To
the best of our knowledge, this is the first computation of these coefficients. The computa-
tion of the entanglement entropy is technically difficult, and the particular techniques that we
use are feasible due to the symmetries of the conformal vacuum, which is tied to the vacuum
modular Hamiltonian being a local operator in the bulk. In principle our techniques allow an
explicit computation for all 8, but in practice we were unable to perform the required ana-
lytic continuations away from the small 6 limit, and so we express our final answers as an
expansion in interval size.

Both from the bulk and boundary, we find the leading difference in entanglement entropy
between the vacuum and the excited state to be:

2 shT(2)r(4h+1
asu =12~ (2) r)ren s
2 F(4h+§)

5 +o 4)
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where 0 is the length of the interval and h the holomorphic conformal dimension of O. We
have kept both the leading analytic and non-analytic dependence on 6. In the bulk and the
boundary, the two types of terms above have a different physical origin, as we explain. This
provides a non-trivial test of the FLM relation in a state where nothing is protected by symme-
try. Interestingly, this agreement requires a non-trivial cancellation between the two terms in
equation (2), which is a manifestation of a bulk first law of entanglement.

While this agreement is satisfying, we anticipate that the machinery that we develop in
performing this computation will have further concrete applications in an understanding of
how information is encoded in the bulk and the boundary. We note that from the point of
view of quantum field theory in the bulk, we are studying how the presence of a localized
and perturbative quantum excitation shifts the entanglement pattern of the vacuum; we are
not aware of much previous work in this regard (see however [18] where similar ideas were
explored in the context of a local quench). We would also like to emphasize that we are
focussing on quantum low-energy excitations of the bulk, which is different from the heavy
state computation [ 19] or the coherent states [20,21].

This paper is organized as follows. In Section 2 we begin by presenting the CFT computa-
tion of the entanglement entropy using large-c factorization. In Section 3 we explain in detail
the bulk setup, constructing the single-particle state and computing its backreaction on the
geometry. We also explain the different coordinate systems that will be used and compute the
Bogoliubov coefficients used to express the scalar field in each of them. In Section 4 we study
the vacuum modular Hamiltonian in the single particle state; this is an instructive application
of some of the technology and it provides intermediate results that are necessary for the fi-
nal calculation. Finally in Section 5 we explicitly compute the reduced density matrix of the
single-particle state and compute the entanglement entropy. We conclude with some direc-
tions for future work. Details of the computation of the Bogoliubov coefficients are relegated
to an Appendix.

2 CFT Calculation

2.1 Entanglement Preliminaries

Consider a quantum system in a state |¢) with Hilbert space #. Now imagine dividing the
Hilbert space into two subsystems, A and its complement A. To characterise the entanglement
between A and its complement, we define the reduced density matrix

pa=Tril) (Yl . (5)

There are several measures of entanglement and perhaps the most famous of them all is the
entanglement entropy, which is the Von Neumann entropy of the reduced density matrix

SEE = —TrpA log Pa- (6)

There are other measures of entanglement, such as for example the Rényi entropies

1
S, = log Trp” . 7
n=1_, glrp,
The use of the Rényi entropies is twofold. First, the set of all Rényi entropies is the most com-
plete basis-independent description of the reduced density matrix p, since the Rényi entropies
are the moments of its eigenvalue distribution. Second, a direct computation of the entangle-
ment entropy is usually difficult in quantum field theory but one can circumvent this problem
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by the replica trick [22,23]. One computes the Rényi entropies for all n and then analytically
continues in n to obtain the entanglement entropy:

SEE - hm Sn . (8)
n—1

In this paper, we will be interested in calculating entanglement entropies in two-dimensional
conformal field theories, which we now describe in more detail.

2.2 Entanglement in CFT,

We start by describing the general machinery for computing the entanglement entropy of ex-
cited states in arbitrary two-dimensional CFTs, and only later specialize to holographic theo-
ries. We will review the important points of [23,24]. Consider a two dimensional CFT % in a
state [1)). We take the CFT to live on a circle of unit radius parameterized by a coordinate ¢,
and we define subsytem A to be the spatial interval

A:p€[0,0]. 9)

We would like to understand the entanglement between the region A and its complement for
a class of states |1). The states we will consider are those obtained by acting with a primary
operator on the vacuum, namely

ly) =0(0)]0), (10

for a Virasoro primary operator O with dimensions (h, k). The dual state is given by'
(| = lim (0]O(z)z%z%" . (11)
Z—>00

A direct computation of entanglement entropy is often too difficult so one generally proceeds
with the replica trick. For two-dimensional CFTs, this is done by considering the orbifold
CFTs 6€®"/Z,, in which case the Rényi entropies are defined as correlation functions of local
operators (twist operators) [22,23,25]:

1

Sn=1_,108 (0% ,(0,0)5,(0,6)|0%") . (12)

It is important to note that the operator O that created the state is now raised to the n-th
power [24]. This occurred because the replica trick instructs us to prepare n copies of the state.
In quantum field theory, the entanglement and Rényi entropies are UV-divergent quantities.
We will be interested in computing UV-finite quantities, and for this reason we will compute
the difference of entanglement entropies between the excited state and the vacuum. We have

1 Trpp 1 (0%"]0,(0,0)5,(0,6)|0°")

AS, = S — §¥ac — lo - o
nEn T T T % pr T 1m0 08T (00,4(0,0)5,(0,0)0)

(13)

It is possible to analyse this correlation function directly in the orbifold theory using known
properties of the twist operators [25] but we will proceed in a slightly different manner. We
will perform a uniformization map that takes us to the covering space. In the process, we
get rid of the twist operators and will only have a correlation function in the original CFT %.
Consider the transformation from w on the cylinders to z on the plane

1
w 1
e’ —1 \n
(=Y "
ew — eif
!n this paper, we will consider uncharged and therefore Hermitian operators but it would be straightforward
to generalize to charged operators.
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This first maps the correlation function to the plane through the exponential map, and then
uniformizes the twist operators. The 2n operators O are now inserted on the complex plane
at the positions

% = e~i(O=2mk)/n % = e2mik/n k=0,..,n—1. (15)

The difference of Rényi entropies therefore becomes

AS = log | e 10Ch—h) gsin Q it (nl_ll 0(2,)0(2)) (16)
" 1—n & n 2 k i
k=0

The twist operators have disappeared, and we are left with a 2n-point correlation function
in 6. Furthermore, the conformal factors due to the twist operators (which are responsible
for the UV-divergence) are cancelled between the numerator and denominator, yielding a UV-
finite answer.

In general CFTs, the computation of this correlation function is difficult as it involves knowl-
edge of all the CFT data of the theory. We will now specialize to large ¢ CFTs with holographic
duals where things will simplify.

2.3 Holographic CFTs

As we have seen, the Rényi entropies of certain excited states are given by 2n-point correlation
functions which in general are hard to compute. Fortunately, we are interested in holographic
large ¢ CFTs in which case the problem drastically simplifies. The reason for this is large ¢
factorization [26]. In large ¢ CFTs, one distinguishes between two classes of operators: first,
there are single-trace operators, whose dual is a propagating field in the bulk. Then, there are
multi-trace operators which are not dual to new bulk fields, but rather to multiparticle states
in the bulk.

Large c factorization in such theories is a statement about OPE coefficients. It states that

1

Co,0,0, ™ % ) 17)

for O, , 5 three single trace operators. On the other hand, multi-trace operators may have an
OPE coefficient that is order one. In the large c limit, the different single-trace operators don’t
talk to each other and are just generalized free fields. In this paper, we will consider single
particle states in the bulk and we will therefore take the primary operator O to be single-trace.
Due to large ¢ factorization, the leading order contribution to the 2n-point function (16) is
simply given by all the Wick contractions

n—1 n
(l_[ O(£)0(z)) = Z l_[ (O(2g(2j-1))0(24(2))) + ﬁ(l) : (18)
k=0 3E5,, j=1 ¢

Note that the leading contribution is &(1), as expected since it is the first correction and the
leading term of the entanglement entropy scales like c. We will not discuss the subleading
terms in equation (18), but they are very interesting since they probe beyond the generalized
free field regime. Some progress in understanding them from the bulk was made in [27]. From
now on, we will restrict to the order one correction so AS,, should be thought of as AS,|5(1).
Using the expression for the z;, we have

1 . _ 2 9 2n(h+l_1) 1 n 1
AS, = log | e 0= [ Zgin| = E | | - ,
1—n n 2 2nn! . 2h 52h
—1 2 . 4 . .
8€5an =1 2¢(2j-1),8(2j) " g(2j—1),8(2j)

(19)
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where we have defined

( (21 [n=2mi(j+k)/n)(h—h)

(2| sin ZU=R) ya(uiy
eliw/n=2mi(j+k)/n)(h—h)

j,k<n

j<n, k>n

(2| Sin(@_%)l)ﬂhﬂ}) 5

n

oh =2h e(iw/ﬂf2ﬂi(j+k)/ﬂ)(hf}_l) )

i k*i - 2(h+h) ?
7,k"j,k (2|sin( n(j k)+i)|) (h+h)

n 2n
e(—2mi(j+k)/n)(h—h)

A

(20)

k<n

— >

j>n

j,k>n.

(2sin| @ P2t *

We can now perform the product over j in equation (19). Regardless of the permutation g,
the phase factors will cancel out exactly and we obtain

1 1 9 2n(h+l_1)
AS, = log (—sin[—]) Hf(M;;) | , (21)
1 n 2

—n

where Hf(M) is the Haffnian of a matrix M defined by

1 n
HEM) = o 2 | [Meeiveen (22)

" g€Sy, j=1

and
1

(I'sin 200 ya(h+h)?

(I sin(@_i)l)z(hﬂa) >

M;; = A mo 23)
J . .
= <n 1>n
. . 2(h+h) 2 J — 5
(Isin “(i*f)|)2(h+iz)’ 1,]>n.
0

This is the exact expression for the Rényi entropy of primary single-trace states to order c".
Unfortunately, it is hard to perform the analytic continuation to obtain the entanglement en-
tropy for general h and h. We salute the courage of the authors of [28-31], who managed to
analytically continue the answer for h + h = 1. The answer reads

1 -
ASgp =—2 10g(251n9)+\11 5 +sin€ h+h=1, (24)
2 2sin 3 2

where W is the digamma function. We were not able to extend these results to general confor-
mal dimension since the relation between the Hafnian and the determinant used in [28] only
appears to work for h +h = 1. For this reason, we will now consider the small interval limit
so that we can perform the analytic continuation and obtain expressions for the entanglement
entropy.

2.4 The Small Interval Limit

The small interval limit 8 < 1 corresponds to the OPE limit in the 2n-point correlation func-
tion, as the n pairs of operator see the two coming close together. In this limit, the calculation
of the entanglement entropy was first obtained in [32] and we review the main steps of the
computation in what follows?. For the remainder of the paper, we will also set h = h and

2Note that the authors computed the relative entropy between the vacuum and the ground state but it is straight-
forward to obtain the change in the entanglement entropy from there by adding in the change in the modular
hamiltonian (26)
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consider only scalar excitations. The leading term is given by the identity contribution to all
OPE contractions in equation (16)°. It reads

. 9 4nh
AS, ~ ! log (ﬁﬂ]) . (25)

The analytic continuation of this can easily be computed and gives

ASgg ~ 2h (2—0cot(g)) . (26)

The right-hand side of this expression is fixed by conformal invariance and is therefore uni-
versal for all CFTs. In fact, it is exactly equal to the expectation value of the vacuum modular
hamiltonian in the excited state we considered [32]. We wish to go beyond this order and
probe the generalized free fields as we discussed in the previous subsection. From the OPE
point of view, all the other Wick contractions we were summing over in equation (19) come
from the contribution of multi-trace operators. These are the only contributions of order @(c°)
in the large c expansion. For an example of how they can account for the other Wick contrac-
tions in four-point functions, see [33].

The lightest operator that can appear in the O x O OPE is the operator : O? : with conformal
dimension 4h. The OPE coefficient is given by [17]

Cooo2 = V2. 27)
The exchange of O? by any two pairs of the 2n-point function gives a contribution
. 0 4nh n—1
sin| 5 g \8h —k
2 ng] (sin —) S (28)
nsin| £ | 2n/) 4= (sin ZX)sh

Using the periodicity of the sine function, this can be rewritten as

sin[%] anh ( 0 )Sh = 1
22 in— — . 29
(nsin[i]) " on n; (sin"Tk)Sh (29)

2n

The analytic continuation of this expression was obtained (again with a lot of courage) in [34].
It reads

L r(3)r@4h+1)

), —TE

———=(n— _ 12
£ (sin 2k ysh (n—1) r(4h+2) +0((n—1)7). (30)

We can then obtain the expression for the entanglement entropy

shT(2)T(4h+1
ASEE:2h(2_9C0t(9))—(81n9) L:j) R (31)
2 2 r(4h+3)

This is the result we will reproduce in the bulk. Note that there are higher-order terms in 0 that
we have neglected, arising from the exchange of higher dimension operators; thus technically
speaking the above expression should only be viewed as determining the leading analytic and
non-analytic terms in a series expansion.

3Note that the there might be leading contributions, depending on the lowest dimension operator that & couples
to, which gives a contribution §%2exh, In particular, for the tricritical Ising model a term coming from the exchange
of another operator than the identity would dominate (if the excited operator is o, it can exchange an € operator
with A =1/5).
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o |
PN

Figure 1: The t = 0 slice of the bulk and boundary. The boundary is separated into two regions
Aand A. The bulk is also separated into two regions %, and X4, split by the geodesic v, that
hangs from the boundary entangling surface.

3 Bulk Kinematics

We now turn to the bulk. The previous section described the calculation of the left hand-side
of the FLM formula (2) for the entanglement entropy of an interval A of angle 6 in an excited
state. In the following three sections, we will describe the right-hand side of that formula, i.e.
the bulk computation. Recall that in the classical gravity limit this is simply given by the length
of a geodesic 4 that hangs down into the bulk dividing space into two regions, the entangling
region %, and its complement. This is represented in Fig. 1.

By the normal rules of AdS/CFT the scalar operator & of the previous section is dual to
a scalar field ¢ propagating in AdS;, and in particular the CFT state corresponding to the
primary (10) is dual to a single-particle state in global AdS;.
The combined action of the scalar field and gravitational sector is

1
167Gy

Szfdgx\/—_g(

(R+2)—%(V¢)2—%m2¢2). (32)

Here we have set the AdS; radius to 1. The boundary scalar has equal holomorphic and anti-
holomorphic scaling dimension h = h, and the relation between the bulk mass and boundary
dimension is the usual

m? = 4h(h—1). (33)

The equation of motion of the scalar field is
(VZ2—m?)¢p(x)=0. (34)

3.1 Global Coordinates

We begin by discussing the mode expansion of the bulk scalar field and the properties of the
single-particle state. In this section we work in global AdS;, whose metric is

2
ds?> =—(r’+1)dt* + % +r2dp?. (35)
r

9
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where ¢ ~ ¢ +2m. We will denote the bulk state with this metric and with the scalar field
(and all boundary gravitons) in their ground state by |0); this is dual to the vacuum of the CFT
on S! xR.

3.1.1 Mode Expansion of the Scalar Field

We turn now to the scalar field, which we canonically quantize in modes on this background
as

$(6,1,0) = D (apne o (r, @)+l el fE (1,0)) (36)

m,n

We expand the spatial wavefunctions f;, ,(r, ¢) in Fourier modes labeled by m € Z along the
¢ circle as

fan(r, @) =M f (1), (37)

where the remaining quantum number n labels the modes in the radial direction. The mode
functions f,, ,(r) are solutions to the bulk wave equation that are smooth at the origin of AdS;
at r = 0 and are normalizable as r — 00. These two conditions result in a discrete spectrum
for the frequency 2 [35]

Qmn=2h+|m|+n, neN. (38)

The ladder operators obey the usual relations

[am,n: a;/,n/] = 5n,n’5m,m’ . (39)

As usual, this is equivalent to the canonical commutation relations between ¢ (x) and its con-
jugate momentum provided that the spatial wavefunctions are orthogonal with the following
normalization®*:

ZQm,nf drdeg V _gg“(r)fn,m(r) (P) rf/’m/(r: (P) = 5n,n’5m,m’ . (40)

3.1.2 Excited State and Backreaction

We will focus on the bulk state that is dual to the boundary CFT primary; this is the lowest-
energy scalar excitation in the bulk, and so has m = n = 0. The wavefunction for this mode
can be easily found by demanding that it be annihilated by the bulk isometries corresponding
to L1, L, [36], and is simply:

1 1
V2r (L +r2)h

States with nonzero m,n are global conformal descendants of this primary state. The bulk
excited state |v) is now defined to be:

fo,o(r) = 41

) = ag,10) . (42)

This corresponds to a single ¢ particle sitting in the center of global AdS; with spatial wave-
function given by equation (41).

We note however that the definition of the bulk state as equation (42) is only complete at
strictly Gy = 0. At finite Gy the backreaction of this particle will distort the geometry in the
bulk; and so more properly the creation operator in equation (42) should also include this
correction to the gravitational degrees of freedom.

“The left-hand side of this expression is the usual Klein-Gordon inner product.

10
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At first order in Gy this is captured by the classical shift in the metric sourced by the expec-
tation value of the stress tensor in the 1-particle state on pure AdSs. In other words we will
solve the classical Einstein equation

1
Ruv_aguvR_g,uv = 87TGN<¢|TPW|¢>: (43)

to first order in Gy, treating the right-hand side as a small perturbation. The stress tensor T,
for the scalar field is given by the usual expression,

T =1 8,086 — 3 8,0 (VO +m29%) (44)

We have defined the stress tensor to be normal ordered with respect to the ladder operators
in equation (39), and thus in the AdS; vacuum we have

(OlTuv(x)l()) =0. (45)

We briefly digress to discuss the significance of this choice. In general, the scalar field will
present a UV-divergent zero-point energy, which will renormalize the bulk cosmological con-
stant; the choice (45) means that we have added a counter-term to the bulk action to precisely
cancel this infinite shift. Furthermore loops of the scalar will also renormalize the bulk New-
ton’s constant (see e.g. [37] for explicit computations in a similar context). Note however
that none of these considerations will affect our calculation, as all such UV-sensitive effects are
state-independent and will cancel when we consider the difference in entanglement entropy
between |¢) and the vacuum.

The stress tensor is quadratic in ¢; thus generically it depends on a double sum over modes.
However we will evaluate it only in a particle-number eigenstate; in this case it depends only
on the terms that have a product of a creation and an annihilation operator. It is then straight-
forward to calculate the expectation value of the stress tensor in the state (42)

2h(2h—1) 1
i (1+r2)2h-1°
2h 1
2hr? (1—2h)r2+1
n (1+r2)2htl
The one particle state thus creates a lump of energy at the center of AdS of width given by the
weight h. This is shown in Fig. 2

We now solve the Einstein equations (43) to first order in Gy. We pick the following gauge
for the metric:

(PITe (P)1)

(W17 ()

(YIT,p ) (46)

dr?
2 _ (2 2942 29,2
ds® =—(r +G1(T) )dt +m+r de*, 47)
From here it is straightforward to calculate the first order corrections to the metric to be
Gi(r) = 1-8Gyh+0((Gyh)"), (48)
1 2

Note that the spatial sections of this metric are smoothened out versions of the well-studied
conical deficit geometries. At infinity the deficit angle of the cone is 8tGyh: as usual in 3d
gravity, the asymptotic deficit angle measures the energy of the particle inside [38]. However
at the origin the metric is completely regular, as the quantum spread of the wavefunction
(41) smears the extra bulk energy over a finite radius. We will see that our calculation of
the quantum corrections to the entanglement entropy will be sensitive to the structure of this
regularization.
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— h=1.3
— h=1.7

r

1 2 3 4 5

Figure 2: The expectation value of T;, in the one-particle state for different conformal weights.

3.2 AdS-Rindler Coordinates

We will now describe a different coordinate system that will be better suited to compute the
entanglement entropy of the bulk scalar field. We divide a spatial slice through global AdS;
into two regions, the entangling region %, and its complement. We will now call these two
regions R and L respectively and the causal development of the right patch is the entanglement
wedge of interest.

We now consider a coordinate system (o, 7, x) that covers only the right entanglement wedge
[39]. We call these AdS-Rindler coordinates, after the analogous coordinate change in flat
space. The explicit coordinate transformation between the global coordinates and (p, 7, x) is

2
ro o= \/pzsinh2x+(\/pz—lcoshncoshr+pcoshxsinhn) ,

( sinht/p2—1 )
arctan ,

p cosh x coshn + 4/ p2—1coshtsinhn

p = arctan( psinhx ) (50)
v/ p2—1cosh T coshn + p coshx sinhn .
In these Rindler coordinates, the metric becomes that of the BTZ black brane
2 2 2 dp? 27,2 .
ds* =—(p“—1)d~t +2—1+p dx x€eR T~ T+ 27, (51)
p —

Here the (Rindler) horizon at p =1 is precisely the minimal surface y,. Note that (unlike the
BTZ black hole) here the range of x is truly infinite. The role of the parameter 1 € [0, c0] is
to describe different Rindler patches that intersect the boundary on intervals of different sizes.
For n = 0, it covers exactly half of AdS. In general, the relation between 1) and the size of the
interval is

1
7

coshn =
sin 3

(52)

We show regions corresponding to different values of 1) in Fig. 3. Note that a set of Rindler
coordinates similar to equation (50) covers the left patch.
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Figure 3: The Rindler regions corresponding to different values of the boost parameter 7.

Such coordinate systems are useful because the vacuum in global coordinates |0) is the
thermofield double state when written with respect to Rindler energies, i.e.

0) =D e ) ), (53)

n

where n here runs over all energy eigenstates of the full many-body system, and |n*); is defined
as the CPT conjugate of the corresponding state on the right side. This will eventually make it
easier to compute the entanglement across the two sides. Note that the frequencies in Rindler
space are actually continuous making the sum (53) really an integral.

3.2.1 Rindler Mode Expansion and Bogoliubov Coefficients

We may globally expand the field in modes that are appropriate to these Rindler coordinates
as

dw dk —iw iwt 1, T *
¢(p,7,x)= — | = (e byrr8uril,x)+eTh L gt (0,Xx)). (54)
27 27 ool TR
w>0

IEL,R

A word about the notation is appropriate. I runs over two discrete values, L and R, and the
mode functions b; z have support only in the L and R patches respectively. k is continuous as
x is an infinite coordinate, and w is continuous as it is conjugate to a time T associated with
a Killing horizon in the bulk®. As usual, we sum only over positive frequencies. For notational
convenience we will sometimes write fw>0 ‘;—‘T“[’ % => ok

The mode functions g, x ;(o, x) can be written in terms of hypergeometric functions; we pro-
vide explicit expressions in Appendix A. The creation and annihilation operators are normal-

ized to obey the commutation relations
[bw,k,la bl/ K I’] = (27-[)25((") - 0)/)6(1( - k/)anx. (55)

The thermofield double state (53) results in a thermal state with temperature T = % when

traced over either the left or right sector; thus the Rindler particles created by b feel that

>Strictly speaking, this is inaccurate: to obtain a finite density of states, one actually needs to impose (e.g. a
brick-wall) cutoff near the horizon at p = p, = 1 + €. This will discretize the spectrum in w. As the cutoff is taken
to approach the horizon, this spectrum will become arbitrarily finely spaced, and any resulting divergences will be
seen to be the usual bulk UV divergences of the entanglement entropy. However, our calculation is not sensitive to
such UV issues, and we thus treat w as continuous from the outset.
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they are in a thermal state and all occupation numbers for the b oscillators will be populated
according to the Bose distribution.

By acting on the state (53) with creation and annihilation operators, we may also derive the
following facts about their action on the vacuum:

_ 21w 21w
bw,k,L|O> =e 2 bl)_k,Rl())s b(',o,k,Ll()) =e 2 bw,—k,R|O>' (56)

The sign flip of the spatial momentum arises from the CPT conjugation. Note that creating
a particle localized outside the entangling region is equivalent to annihilating one inside the
entangling region: this counter-intuitive effect arises from the high degree of entanglement
present in the relativistic vacuum. We would also like to emphasize that the relations (56) are
not true as operator statements, but only when acting on the global vacuum.

Now we note that the creation and annihilation operators in the two coordinate systems are
related by Bogoliubov coefficients a, 3:

_ * T
A = Z (am,n;w,k,l ba)k,I + ﬂm,n;w’k’] bw,k,[) . (57)
I,w,k

The commutation relations (55) lead to the following orthogonality constraint on the Bogoli-
ubov coefficients:

Z (am,n;wk,la:q/n/;w,k,[ - ;,n;w’k,jﬂm’,n’;w,k,l) = 6m,m’5n,n’- (58)

I,w,k
In this work we study only the primary mode (41) with m = n = 0; thus we will henceforth
omit the m, n indices on the Bogoliubov coefficients, i.e. @, ; = &g ., k- These particular
coefficients satisfy extra constraints arising from the fact that the global annihilation operator
a0 annihilates the vacuum a, ¢|0) = 0. Using the mode expansion (57) we find the following
restrictions on the Bogoliubov coefficients

2me _2m0
Ay kL =€ 2 ﬂjo,—k,R’ ﬁ:),k,L =—e 2 A —k,R: (59)

Using these, the normalization condition (58) can be written purely in terms of the right patch
as

D (w1 —e727) = [B oy rl* (1 — ™)) = 1. (60)
w,k

This relation will play an important role in what follows.

Finally, we turn to the description of the excited single-particle state |1)) (42) in Rindler coor-
dinates. Using equations (56) and (59) we see that the action of the creation operator ag,o on
the vacuum can be rewritten entirely in terms of the the right sector as

) =ajyl0) = > ((1—e 2™t 1bl | o+ (1—e¥™ )P rborr)10).  (61)

w,k

We see that adding a single particle to the vacuum in global coordinates can be understood
as a particular superposition of creation and annihilation of particles in the Rindler thermal
bath. While the act of creating a particle can be localized on the right side, it is not a unitary
operation; if it had been unitary on the right side it would not have changed the entanglement
entropy.

The representation (61) will be convenient when we trace out the left sector, and we will use it
extensively in what follows. From now on, we will work entirely on the right patch: thus in the
remainder of this paper we further suppress the R subscript, e.g. a,, x = a,, xz- We note that
a similar technique was used to compute the bulk entanglement entropy of a single-particle
state in [40,41]. Those computations were somewhat simpler due to a judicious choice of
modes. We have no such freedom, as we are interested in finding the entanglement entropy
in the exact state corresponding to the primary operator.
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3.2.2 Explicit Form of the Bogoliubov Coefficients

We now turn to the explicit form of the Bogoliubov coefficients. Obtaining these expressions
is not trivial. In principle, they can be obtained by computing the Klein-Gordon inner product
between the Rindler and global wave-functions; however those integrals are difficult and we
were unable to evaluate them in closed form. Instead we map the problem to a boundary
integral, as explained in detail in Appendix A.

The result is
1 e —i7i@
Ay = F(w,k),
@k (coshn)Zh[e’?+i] (e,K)

1 en i (62)
=— F(w,k).
Pok (coshn)2h [ en—i ] (e, k)
where F(w, k) is the following n-independent function:
22h | 20T(iw)N(—ie)l (h+i275) T (h+i25%) T (h—i%%) T (h—i %)
F(O), k) = . (63)
T'(2h) 8m

As far as we are aware this is the first closed-form presentation of these Bogoliubov coefficients,
and we anticipate that they will have further applications.

We now discuss their behavior at large 1), corresponding to small interval sizes. In this limit
the entangling region is a very small part of global AdS, which extends from r — oo up to
r ~a ! ~e". In this region the global wavefunction (41) is of order r=2", and we thus expect
the overlap with the (1) Rindler wavefunction to scale as

a~f~ e 2, (64)

At fixed and finite w, the explicit expressions above do indeed display this scaling. However
the Bogoliubov coefficients cannot uniformly vanish as 7 — 00, as their integral over all w and
k is fixed by the normalization condition (60). In particular, note that in the expression (62)
for 8, the w dependence arising from the bracketed factor is exp(—wﬂo) where the threshold

n « . . . . .
frequency wg ~ 5. Thus as 1) is increased, more and more spectral weight in the normalization
integral is pushed out to larger w such that the integral remains constant.

4 Bulk Modular Hamiltonian

In this section we develop some of the intermediate results that we will require to compute
the bulk entanglement entropy. We will do this by studying the relation between bulk and
boundary modular Hamiltonians. In particular, in [5] Jafferis, Lewkowycz, Maldacena and
Suh (JLMS) postulated that for any state that is a perturbative excitation of the vacuum, and
for any choice of boundary spatial region A, the following equality holds as a relation between
operators on the bulk semi-classical Hilbert space:

A

A
K =K + —. 65
ort = Kouic+ 52 (65)

Here Kcpr is the CFT modular Hamiltonian corresponding to a region on the boundary, A is
the minimal area operator which measures the area of the usual minimal surface, and Ky is
the modular Hamiltonian for perturbative degrees of freedom in the bulk associated with the
entanglement wedge. In our calculation Ky, is the modular Hamiltonian of the scalar field
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o.

We note that this expression is state-dependent, in that the K terms are operators that also
depend on the state in question. We will sometimes denote this with a superscript, e.g. K is
the modular Hamiltonian for a reduced density matrix arising from the vacuum, KV is the one
for the excited state, etc. The A term, on the other hand, is always the same state-independent
operator. Note in particular that the entanglement entropy that we are calculating is

(YIRS 14p) — (O]K S 10) - (66)

We leave evaluation of this to the next section: here we instead study the implementation
of equation (65) in a slightly simpler context. In particular, we consider the modular Hamil-
tonian associated with the vacuum but study the difference in its expectation value between
the one-particle state and the vacuum, i.e. defining the notation for any fixed operator X,
AX = (P|X|p) — (0]X|0), we study

AK?  =AK® .+ &
CFT — bulk 4GN *

(67)
Here the superscript in 0 reminds us that the modular Hamiltonians are those associated with
the vacuum. We will compute both sides of this and demonstrate agreement. The intermediate
steps in this calculation will provide building blocks for the final calculation to follow.

We begin by computing the left-hand side. The modular Hamiltonian of an interval of length
0 in the CFT vacuum on the cylinder is [42]

0 ( 0 0
COS (p—i)—COSE
Kggr = 27 J dy ( = ) T (68)
0 ny

Using 27t(y|T,;|y) = 2h, we find immediately that [32]

AKS =2h (2 — 6 cot (%)) . (69)

We have encountered this precise expression before in equation (26), where it arose as the
identity contribution to all OPE contractions in the CFT replica trick calculation.

4.1 Shift in Minimal Area

We now turn to the gravitational side. We begin with the shift in the minimal area; this arises
due to the gravitational backreaction of the particle. As we have emphasized, in general the
one-particle state is not a small perturbation of the vacuum; however, in the large ¢ (small Gy,
limit), the backreaction of the particle on the metric is small, and we may thus treat this as a
linear perturbation of the classical minimal area. We have

AA= (lAl) —(0IAI0) = 5,Alg0] + O(GR), (70)

where A[g] denotes the classical minimal area functional, g, is the metric of empty AdSs,
and 6, is the perturbation to the metric caused by the backreaction of the bulk particle, as
computed in equation (47).

This computation is entirely straightforward. The area of the minimal surface in empty AdS;
reads

o0 1
= 2 / 2
Al =2 ar\ g o @

min
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where ¢’(r) given by

o'(r) = i , (72)
r\/(r2 — rrznin)(l +1r2)
and where r;, is the deepest point that the surface reaches in the bulk. It is related to the
size of the interval 8 through

6=2 arctan[ ] . (73)

T'min
We may now correct this minimal area by taking into account the shift in the metric in equation
(47). To leading order the location of the minimal surface does not change. The correction to
the area is then simply

2

5,Algo] 2JOO dr 8G h(l L ) 3 (74)
g = r - — b)
g-ils0 . N (r2 +1)2h-1 (1+r2)%

=T'min
which gives

A

_:2h(2—9C0t|:€:|)
4Gy 2
r(3)r2h+1 4h 2
_Mtan[g] 2F1|:2h,1+2h,§+2h;_tan|:9:| ] (75)
r(2 +2h) 2 22 2

We now pause to discuss the physical significance of these two terms. The first term is precisely
equal to the shift in the expectation of the CFT modular Hamiltonian (69). From the bulk point
of view it arises from the structure of the asymptotic metric, and to this order we would have
obtained precisely the same term even if we had been dealing with a delta-function of stress-
energy localized at the center®.

The second term is less universal; we can see that it is probing the interior of the geometry
and so depends on the details of the lump of energy in the center. In a small-6 expansion it
turns out to depend non-analytically on 6 as 6*", allowing it to be easily distinguished from
the analytic dependence on 6 in the first term.

Finally, we can expand this answer in the small interval limit. We find

AA 9)4h r(3)r@ +2h)

92
—:h?(1+ﬁ(92))—(— EFEy (1+006H))+.... (76)

4Gy 2

We will make use of this expression in the next subsection.

4.2 Bulk Modular Hamiltonian

We now turn to an evaluation of the shift of K]?ulk. This operator is the modular Hamiltonian
for the scalar field density matrix associated with the bulk entangling region >, in the vacuum.
This has a local expression in terms of the scalar field stress tensor. In particular, tracing out
the region outside v, in the thermofield representation of the vacuum state (53), we find that
this density matrix takes the form

00 = Z e~27En|n) (n| = e Koux, (77)

n

5To see this explicitly, one can consider the entanglement entropy in conical defect geometries. The answer for
the entanglement entropy in those backgrounds is given for example in (3.2) and (3.3) of [19] (see also [43]).
Expanding to first order in h/c, we get precisely (69), which was the identity contribution to the CFT correlator.
The higher orders in h/c come if one includes the entire Virasoro identity block.
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where here E,, is the energy conjugate to the Killing time 7 in the Rindler coordinates (51). We
may thus write Kgulk as an integral over the scalar field stress tensor T, defined in equation
(44) as

Kl(a)ulk = 27TJ V |gZA| dZAngMT,uW (78)
T

where gy, is the induced metric on the entangling region, " is the Killing vector generating 7
translations, and N* is the normal vector to ¥,. We now evaluate (1/)|Kl?ulk|1/)), which simply
counts the bulk energy inside the entangling region.

To evaluate this integral, it is simplest to use the coordinate transformations (50) to convert
the global coordinate expressions for (|T,,|+)) in equation (46) to Rindler coordinates (51).
We may then integrate over all x € R, p > 1 at a fixed Rindler time 7. This precisely covers
X4

The resulting answer is somewhat unwieldy and complicated, but in an expansion in powers
of 6 we find the leading term to be

—2h
AKD = 6412 p(2h — 1)J dpdx p (p2 —1+pcoshx (2 p2—1+p coshx)) .
Za

(79)
The result of the integral is

0 _
AKbulk -

6 \* I'(2)T(1+2h)
( 2 ) r(3+2n)
We have demonstrated this analytically for integer values of h and numerically for all other
values. It is precisely equal in magnitude and opposite in sign to the negative term in equation
(76). We will use this result in the next sub-section.

Assembling together equations (76) and (80) into the right hand side of equation (67), we see
that all non-analytic terms in 6 cancel, and what remains precisely agrees with the (small 0
expansion of) equation (69). In other words, the JLMS formula (67) holds.

We note that this is not a miraculous consequence of holography; rather, the implementation of
equation (65) in this particular state (and to leading order in Gy) follows from semi-classical
gravity [5,44,45]. We briefly summarize the argument, whose essence follows from a gravi-
tational Gauss law. More specifically, Wald’s treatment of the first law of black hole mechan-
ics [46,47] tells us that if we have a spacetime with a timelike Killing vector ¢ that degenerates
on a horizon y,, then the change in the area AA of the horizon under a small perturbation of
the metric 6 g is related to the change in boundary energy AKgFT as

(1+0(6%). (80)

AA
AKQp = —— +f dSAE"NVSE,,[g], (81)
4Gy )y,

where 8E,,, is the linearization of the geometric part of the Einstein equation, including a
cosmological constant term. The above relation holds for any perturbation 6 g; however if we
now restrict to on-shell perturbations, then the Einstein equations relate 5E,,,[g] to the scalar
field stress tensor, which when combined with equation (78) results immediately in equation
(67).

5 Bulk Entanglement Entropy

We now turn to the computation of the bulk entanglement entropy with the aim of testing the
FLM proposal

A
ST = —42;‘ +Splk (82)
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We computed the quantum corrected minimal area in equation (76) and by comparing with
the CFT answer (31), we expect to find

O T(3/2)T(2h+1) (6" I(3/2)I(4h +1)
bulk o, [ ¥ Y
Adgp ™ (2) T(2h +3/2) ( ) T(4h +3/2)

2 (83)

In this section, we reproduce this result by a bulk computation. The bulk density matrix is
given by

p=a"|0)(0]a. (84)
As explained in Section 3.2, it can be rewritten in terms of Rindler modes using the Bogoliubov
transformation (57) as

p = Z ((1 - 6_2"”)a2,kbl,k +(1—e*™)By x bw,k) |0) (0]

w,k

x> (A= ag, jobe g +(1— 25, b (85)

w’ k!
Since all operators act solely on the right wedge, it is easy to trace out the left region to obtain

P1=Trgp = p (1= 2™)a bl +(1—e2 )P kb ) e 2™

w,k

Z ((1 — e_znw/)aw/’k/ bwl’k/ + (1 — eznw/)ﬁ;‘:,,k, bz),’k,) 5 (86)

w’ k!

X

where '
H= wbl b,;. (87)
w,k

With this representation, we can see that the reduced density matrix of the right wedge is some
excitation of the thermal state (77), where we note that Klgulk = 27H,

po = e_ZTEH . (88)

Since a direct diagonalization of p, is too difficult, we will proceed with the replica trick. We
start by computing the change in the Rényi entropies

1 Trp"
Aspk = T, 08 pi ,
—n 04

(89)

before analytically continuing and taking the n — 1 limit. Computing the Rényi entropies is
in principle straightforward. All expectation values of the creation and annihilation operators
are computed using Wick’s theorem for free fields and the thermal two-point functions are
given by

4125(w — w8 (k— k')

T —
Trpo bw,k bw’,k’ = e2mw _ ] . (90)

Given the exact expressions for the Bogoliubov coefficients (62), to compute the n-th Rényi
entropy we simply need to perform 2n integrals over frequencies and momenta, which at the
very least can be done numerically. However, we are left with the problem of performing the
analytic continuation. Note that this is exactly the same problem as in the CFT: we could
compute the Rényi entropies using Wick contractions for generalized free fields, but we were
not able to perform the analytic continuation for general conformal dimension. For this rea-
son, we will now consider a small interval limit in which we can match bulk and boundary
computations.

19


https://scipost.org
https://scipost.org/SciPostPhys.5.3.024

Scil SciPost Phys. 5, 024 (2018)

5.1 The Small Interval Limit

In the CFT, the small interval limit is defined by
0<1, (oD

for O the size of the boundary interval. In the bulk, using equation (52), it can be defined as
the limit of large boost parameter, namely

n>1. (92)

The boost parameter 7 is a purely kinematical component of the problem and enters the bulk
computation only through the Bogoliubov coefficients. One might naively guess that large 7
translates into the Bogoliubov coefficients being small. As explained in Section 3.2.2, this is
true pointwise in frequency but does not necessarily hold for integrated quantities; one obvious
exception is given by the normalization integral (60) over all Bogoliubov coefficients, which
always evaluates to 1. For this reason, care must be taken in expanding the Rényi entropies
(89) to a given order in the Bogoliubov coefficients. We need to expand in the true small
parameter in the problem which can be isolated by defining

6p=p1—po- (93)

We know that the matrix elements of 6 p must become small in the small interval limit since
one should not be able to distinguish between p; and p in the limit where the right wedge
goes to zero size. This will be correct if the two density matrices are close. We will now
expand the Rényi entropies order by order in § p which will enable us to perform the analytic
continuation and compute the entanglement entropy.

5.2 The First Order Result
We begin with the following expansion

Trp] = Tr(po+6p)"
Trpg + nTrpg_15p +0(5p2)
= Trpy+ nTlrpg_1 p1—nTrpg. (94)

From this, we can compute the change in entanglement entropy as

n=1"

The first term in equation (94) is canceled by the denominator of equation (89), coming from
the subtraction of the vacuum entanglement entropy. Using the fact that Trpy = Trp; = 1, we
find

ASEEH‘ = —Trp; logpo + Trpg log po + O(5p?). (96)
This can be rewritten as

ASYE =27 A (H) + 0(5p%), 97)

which is nothing else than the first law of entanglement for the bulk quantum field theory.
We have already computed the expectation value of this Hamiltonian in position space in

equation (80). To build technology for the next section we do so again using momentum
space techniques. We have

_ —2 2 T
arath) = Topo D (= g b, + =B L) O8)
K kaks

T -2 2
X (27’[(1)2 bw27k2 bwz;kz) ((1 —e 7'5603)(1:3,’(3 bcio3,k3 + (1 —e n3w3)/3w3,k3 bwa’k:;) :I 5
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Figure 4: The black dots represent the coefficient of 0*" in the first order change to the entan-
glement entropy. The blue line represents the absolute value of the 84" coefficient appearing

in the area operator, which is of opposite sign. The matching is exact and thus they cancel.

where the subtraction of Trp,log p, implies that in the above expression we do not allow any

Wick contractions between the b:o K and b
2,12

Evaluating the expectation values using equation (90), we find

wy,k*

2nA (H sz(lawklz+ Bl (99)

It is important to note that this integral is more convergent at large « than the normalization
integral (60). We can therefore strip out the factor (coshn)™*" in the squared Bogoliubov
coefficients, set n = oo in the remainder, and still have a finite integral. Plugging in the
expression for the Bogoliubov coefficients, we find

2nA(H) = (cosh’q)“hf dcofdk

with

w+k _ stk —k —i=
Fy(o,k) = Fiw)(—iw)T(h+i%5= )1"((;1(2;))2 J'(h+i=)I(h—i= ) (101)

The double integral can be evaluated numerically and we plot the result in Fig. 4. The pref-
actor gives a factor 04" and we find perfect agreement between the values of the integral and
the first term in equation (83).

5.3 The Second Order Result

We now turn to the second order contribution. At second order in 6 o we have

n—2

n
Trp? = — ) Trépplsppl2m
. szZO PPyEPPy
n ~ — _ n(n—1
= ETrplp(n)pg 2—n(n—l)Trpg 1p1+%Trpg, (102)
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where we have defined

n—2
p(n) = > prpipg™
m=0

1 — 2@ e)nl) —2nw —27T Wy T
= Z [ T (1—e )(1—e 2)ajasb;pobsy
w1,w
ks
1— e—2n(w1+w2)(n—1)

—2 2 Tt
" 1 — e—2n(w1+wy) (I—e™™)(1—e nwz)aiﬁ;blpobz

1— eZﬂt(col +wy)(n—1)

27w —27Tw
- 1 — e2n(w1+w,) (1—e™)(1—e 2)Brazb1poby

1— eZn(wl—wz)(n—l)

21w 21w * T
+ 1_62n(w1—w2) (1_6 1)(1_6 Z)ﬁlﬁzblpobz]- (103)

From now on we will work with the shortened notation a; = a,, \, and identically for the
b, b", . We may now take the derivate with respect to n and we obtain

o 1 1.
ASY) = 5 ETrpl,o’(1)po 1 (104)

where we used the fact that 5(1) = 0. In total this gives

> |

wW1,W7,W3,W4
ISHININA

(1 _ e—anl)(e%cwz _ 1)(1 _ e—27ta)3)(1 _ 6—2750)4)
1 — e2n(wy—wq)
(1 _ e—anl)(eZTm)Z _ 1)(1 _ e2mo3)(1 _ 62nw4) . . -
+27T(CL)2_C()1) 1—@27'[(0)2_0)1) a1a2ﬂ3ﬂ4Trp0b4b1 b2b3
(1 _ eanl)(e—anz _ 1)(1 _ e—2nw3)(1 _ e—Zna)4)
1 — e2m(w1—wy)

(1 _ eZTcwl)(e—anz _ 1)(1 _ ean3)(1 _ eZTcw4) . .
T g2m(or—a) B185 B3, Trpobybibybs

(1 _ e—2nw1)(e—2nw2 _ 1)(1 _ eang)(l _ e—an4)
1 — e—27(w1+wy)

(1 _ eanl)(eZﬂ:wZ _ 1)(1 _ e—27‘rw3)(1 _ eZTEw4)
1 — e2n(wi+ws)

(2) _
ASgy = -+

N| -

1
2

* * T I}
ajaya5a,Trpgbsbybyb,

2m(wy — wq)

+27'C(CL)1 _0)2) ﬂ1ﬂ§a§a4Trp0b4b1b;b;

+271(w — w,)

—27'5((1)1 + O)Z) aﬂi/j;ﬁ3a4Trp0b4bIb£b3

BrasasBiTrpobyby byb} |
(105)

+21(w + wy)

Each of these terms has two possible Wick contractions giving a total of twelve terms that
contribute. The four terms where the Wick contraction is between the oscillators one and two
combine to give exactly —1/2, cancelling against that term on the first line. The remaining
eight terms give convergent integrals upon factoring out the factor (coshn)™®" and setting
1 = 0. After some math, we find

Ao L do doy | diy | dk %T3323%F(a> ky, wo,ky), (106)
EE ™ (coshm)sh @1>0 ' ©y>0 2 ! 2 eqns LD TERR2D

with

—2mwq )(1 _ 6271@2)

(1

Fy(wq, ki, wy,ky) = (w1—ws) Fy(wq,ky)F;(wq, ky)

—e
1 — e2m(wy—w;)
(1 _ eanl)(l _ eanz)
1— eZn(w1+cu2)

+ (w0 +w)) Fi(w1,k)Fi(wq,ky). (107)
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Figure 5: The black dots represent the absolute value of the coefficient of 68" coming from
the second order change to the entanglement entropy. The blue line represents the absolute

value of the 88" coefficient as calculated from the CFT and exhibits a perfect match.

This integral can be done numerically and we plot the results in Fig. 5. We find perfect agree-
ment between our results and the second order term in (83). This completes our calculation
of the bulk entanglement entropy; we have verified that the FLM formula agrees with the CFT
result. We now turn to the discussion and outlook.

6 Conclusion and Outlook

6.1 Conclusion

In this paper, we successfully tested the FLM and JLMS formulae for quantum corrections to
holographic entanglement entropy. We considered CFT states that are obtained by acting on
the vacuum by scalar primary single-trace operators and computed their entanglement entropy,
in the limit of small subsystem sizes. We then compared this result to a gravity computation.
We studied one-particle states in the bulk scalar free field theory, for which we computed the
change in the minimal area as well as the bulk entanglement entropy. We found a perfect
match between the two’

AA;
ASTT = 4;;“ + ASpuk (108)
shr(3)r(4h+1
= 2h(2—9cot(9))—(sin9) (2);3)(1+ﬁ(92))+0(912h).
2 2 T(4h+3)

In order to compute this quantity in the bulk scalar field theory, we needed to know the exact
form of the Bogoliubov coefficients between global and Rindler AdS;. We provided what we
believe is the first calculation of these coefficients in explicit form. The result (108) included

a term that appeared both in the AA_;, and AS]E’EH‘, but with opposite signs. This precise

’This expression is the full expression that we were able to compute and successfully compare, including the
order of all expected corrections. Note however that it is a slight abuse of the small 8 expansion since the first
term contains arbitrary high powers of 8. In the strict perturbative expansion, the relevant expression is equation

4.
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cancellation, although in general guaranteed by the gravitational Gauss law, provided a nice
check of the first law of entanglement for the bulk quantum field theory.

We now discuss various ideas that would provide extensions of our results but still require
further investigation.

6.2 Outlook

Finite interval sizes

First, it would be very interesting to push our results beyond the limit of small intervals. The
main barrier for this is the difficulty in the analytic continuation of the Rényi entropies to
n = 1. In the CFT, the problem seems tractable as one has an explicit closed form expression
for any given Rényi entropy S,,. It would be interesting to see if one could find a generalization
of the Hafnian/Determinant method developed in [28-31] to conformal dimensions different
from one.

In the bulk, the problem is slightly harder, since we do not have a closed-form expression for
the bulk Rényi entropies. We can express the bulk Rényi entropies S:“lk as 2n integrals over
momentum and frequency, with expressions that are not beyond hope. The main problem
is that the integrals do not factorize into 2n independent integrals. It would be particularly
interesting to see if one could perform the integrals for the case of h = 1/2, since in that case
we know the analytic continuation exactly in the CFT. We were unfortunately not capable of
doing that, so we leave it for future work.

Nevertheless, we would like to emphasize that the only difficulty is in the analytic continuation.
This should be contrasted with the case of the mutual information of two spherical regions in
higher dimensions [10], where it is not even really known how to proceed beyond the limit
of small interval size. Even in three dimensions, the method described in [12] is very hard to
deal with on a practical level for arbitrary Rényi entropies.

Gravitons and photons

Next, it would be very interesting to consider excitations by operators that are not scalars. In
particular, it would be very interesting to take the single-trace operator to be the stress-tensor
T. In this case, we would be computing the entanglement entropy of boundary gravitons in the
bulk. A proper understanding of the entanglement entropy of gravitons is somewhat daunt-
ing, combining as it does the usual ambiguities with the factorization of the Hilbert space in a
gauge theory [48-52] with new wrinkles associated with the fact that the gauge symmetry in
question is diffeomorphism invariance [5,53]. Nevertheless, progress has been made towards
dealing with such ambiguities, and it would be very nice to tackle this hard problem in AdS;
where gravitons do not propagate and are purely boundary modes that nevertheless will con-
tribute in a (presumably) calculable manner to the entanglement entropy. In particular, on the
CFT side this problem maps to computing the entanglement entropy of Virasoro descendants
of the vacuum. This answer is completely determined by Virasoro symmetry since the Rényi
entropies are 2n-point functions of stress tensors. These are completely fixed by the conformal
ward identities [54]. The result can thus only depend on the central charge ¢ (this would be
drastically different in higher dimensions).

It would also be interesting to consider U(1) currents. In the bulk, this would require com-
puting the entanglement entropy of photons in the one-photon state. Note however that the
computation should be quite tractable since the dynamics of the gauge field are given by a
Chern-Simons terms and hence are topological. It is particularly interesting to compare the
result with the CFT since this is precisely the case h + h = 1, where the analytic continuation
is feasible! We hope to return to these questions in future work.
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Quantum corrections to the Rényi entropies

It would also be interesting to compute the quantum corrections to the CFT Rényi entropies in
the bulk directly. At the leading order, this can be done by introducing a cosmic brane in the
bulk [55]. The quantum corrections to this formula were discussed in [4] and one expects®

n?a, (“—_155”) = Lo 42, (n—_lsbulk) . (109)
n 4Gy n "

to hold. To check this, one would need to understand the nature of the interaction between

the matter and cosmic brane backreactions. It would be very interesting to try to work out

these details in our simple setup. Note that there is a n-derivative acting on the Rényi entropy

which means we still need to have analytic control over the boundary and bulk Rényi entropies

to compute both sides of this formula.

Higher dimensions

Finally, it would be interesting to extend our results to dimensions d > 2. Many things would
go through smoothly, one can still consider one-particle states in the bulk, still compute Bogoli-
ubov coefficients since they are fixed by symmetry and much of the analysis would go through
in a similar fashion. In the CFT however, things become more complicated. In d = 2, the
Rényi entropies are given by 2n-point functions in the vacuum, which are basically fixed with
the generalized free field assumption. For d > 2, the 2n-point function is not on flat-space but
rather on S* x H,;_; [56], where the periodicity of the spatial circle is 27tn. Even with the fac-
torization assumption, one is left with two-point functions at finite temperature on hyperbolic
space. These are not universally fixed by the conformal dimension of the operator.

In fact, even the Rényi entropies themselves are no longer completely fixed by the central
charge. For example, they could drastically differ if the CFT is strongly coupled or weakly
coupled. The hyperbolic black holes of [57] can only be trusted if the gravity dual is Einstein
gravity. The situation is in fact even more complicated, since even for Einstein duals new
phases corresponding to hairy hyperbolic black holes can exist [58,59].

This should be contrasted with d = 2 where 3d dual gravity is in some sense universal. Because
of Virasoro symmetry, the coupling of matter to gravity is universal in AdSs;. It is worth noting
that the assumption used for the calculations in this paper only required large c factorization
of the matter and never demanded the bulk dual to be Einstein. In fact, if one had considered
the CFT to be the D1-D5 system at the orbifold point (zero coupling), our results still apply!
This is true even though at the orbifold point the bulk dual is full-blown string theory. In that
setting, there is in principle no reason to suspect that the RT formula is accurate. This really
highlights the pecularity of 3d gravity where many features are perhaps more universal than
they “should be” [17,60,61].

To return to higher dimensions, the implication of these facts is that one could still perform
computations in the small subsystem limit, but only there. Away from that point, one would
need strong additional assumptions and direct input coming from the bulk, with no natural
CFT justification. It would be interesting to pursue these ideas further.

Acknowledgements

We are happy to thank Cesar Agon, Alejandra Castro, Tom Faulkner, Ben Freivogel, Nima
Lashkari, Aitor Lewkowycz, Alex Maloney and especially Simon Ross, Gabor Sarosi and

8We are grateful to Aitor Lewkowycz for pointing this out to us.

25


https://scipost.org
https://scipost.org/SciPostPhys.5.3.024

Scil SciPost Phys. 5, 024 (2018)

Tomonori Ugajin for helpful discussions. The inspiration for this work arose partly from dis-
cussions at the D-ITP Entanglement Workshop at the University of Amsterdam. This work
was partly completed at the Aspen Center for Physics, which is supported by National Science
Foundation grant PHY-1607761. AB would like to thank the String Theory group at ETH for
hospitality. AB is supported by the NWO VENI grant 680-47-464 / 4114. NI would like to
thank Delta ITP at the University of Amsterdam for hospitality. NI is supported in part by the
STFC under consolidated grant ST/L000407/1. SFL would like to acknowledge support from
the Netherlands Organisation for Scientific Research (NWO) which is funded by the Dutch
Ministry of Education, Culture and Science (OCW).

A Computation of the Bogoliubov Coefficients

A.1 Rindler Mode Functions

Recall that the bulk scalar field can be expanded in terms of the Rindler modes as follows

dw dk —iw iw i *
¢(P:T:x)= Z f %f %(e wa,k,lga),k,l(pix)—i_e—‘r Tb-iw’k’lgw,k’[(pzx)): (110)
w>0

I€L,R

with the left and the right Rindler mode functions g,  ; given by [62]

- _ 1 - i(w+k i(w—k 1
Skt =Ny e p 2h(1——2) zFl[h— ( ),h— ( ),2h;—2]. (111)
P 2 2 P

In the above, there are two pairs of coordinate systems (o, T, x), one each for left and right
wedges. The number N,,  is the normalization constant is given in [8]

T(h+ 2R (p4 Lt p(p - Lok p(f otk
’k:J( 7 )r (nr 15 r (=) (- 1)

N, , 112
© 20 T'(2h)2T(iw)'(—iw) (112)

where we have taken N, to be real. In the limit p — co, the mode functions satisfy
Jim g1 (p,x) = €™ Ny (113)

A.2 Bogoliubov Coefficients

As described in section 3.2.1, Bogoliubov coefficients relate the creation and annihilation op-
erators of the global modes to those in the right and the left Rindler patches. Since the creation
operator in global coordinates is a linear combination of these, we have the relation (61)

ag,()IO) = Z ((1 - e—an)aZ,k’sz)’k)R + (1 - eznw)ﬁw,k,Rba),k,R) |0> a 14)
w,k

We now calculate the Bogoliubov coefficients explicitly. We start by looking at the two-point
function

: 2h T
Tim 12 (0] $(r,t, 9)ah, 10) (115)

where ¢(r, t, ) is the field in the global coordinates. Using (41), we get

—2iht
lim r2" (0| ¢(r,t,0)al . [0) = S— . (116)
im0l @0 6 9) g 10) = ——=
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Let us now rewrite the above expression using Rindler coordinates and modes. Substituting
the expressions for ¢ and a' in terms of right Rindler modes in equation (116), we obtain

—2iht(7,x)
€ — 1 2h —i i
e = (e, T 01 (€7 g, ) b+ € gL (p,x) by

, 117)
x > (1= ar, b, + (1= e ) By by )10)

w’ K’/

where we have omitted the subscript R and used the shorthand notation

ZEJd—‘” dk. (118)
p 27T 27

Using the following standard correlators,

(Ol boyi bey 10)=0, (0 b b, 10)= (119)
T (27[)2 PN 1t
<O| bw 'k |0> ( e 1)6(0) w )6(’( k ), (120)
. 2 2 27w
(O boyk by s 10) = ((Zt)w—)é( —w)6(k—K"), (121

we can simplify equation (117) to obtain.
e—Ziht(T,x)

o =m0 Z[ T gorlp )@ Tgi;,k(p,x)/o’w,k]. (122)
w,k

Using equation 50, in the limit of large p, we get

sinht

lim t= arctan(
p—00

) = t(r,x), (123)

cosh x coshn + cosh 7 sinhn
plirgo r(p,T,x)*" = pli)rgo p2h (sinh2 x + (coshn cosh T + sinh 1) cosh x)? )h . (124)

Also, from equation (113) we know that
Jim p* g 1(p,x) = e Ny, (125)

Therefore, equation (122) simplifies to

e—Ziht(T,x) 5 , h
——— = sinh® x + (coshn cosh 7 + sinh 1) cosh x) )
Van ( K K
(126)
% Z I:e—icu’r+ikx Ncu " ot . ew)f —ikx N* K ﬁw k]
5 w,
w,k
Collecting all functions of (7, x) on one side, we define
e—2iht(T,x)
B(r,x) = o 127)
V27 ( sinh? x + (coshn cosh T + sinh 1 cosh x)2 )
to obtain
dwdk S
(2(";)2 I:e—lw'r+lkx Nw,k a:) . ele —ikx N* K /30) k] — @(T,X) ) (128)
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One can then take a Fourier transform of both sides above to show that

oo
1 o
ok = 105 f dtdx e TR g*(x, 1), (129)
w,k R
oo
Bok = - J dtdx e TR g (x, 7). (130)
w,k

To calculate these integrals, it is easiest to work in light-cone coordinates defined by

Xx+7T X—T
t= , x~ . (131)
2 2

X

In these coordinates the function %3(t, x) factorizes to give

24h62’r]h

V2r

Let us focus on the Bogoliubov coefficient a,, ; for now. Here we need to be careful to take
the complex conjugate of B(x*,x™). After some simplifications, we find that

B(xT,x7) = BT (xT)- B (x7). (132)

+ h
B (x) = e , (133)
(en + en+2xt —je2x* 4 i)
- h
B (x) = ( e 2) . (134)
(e +ent2x" 4 je2x” —1)
The Bogoliubov coefficient then becomes
oo oo
2 2%he2nh o)t o b=
Ay i = , | dat el gt (i) dx~ et g =(x7) |, (135)
TN V2m [
w,k 5 e

where the factor of 2 comes from the Jacobian. The integrals can now be computed analytically
and read

oo

ik—c)
f dxt elk=@lxX™ ggrt (3 +) = (7 4 {)~2h (%)_h_T ZFgZh)
J (136)
F[h+M}F[h—M} .
2 2
Similarly we can show that
ry _ - —1+ie" =5
_l, dx~ e Cr e g (x7) = (e — i) (W) 2r'(2h) (137)
x F[h+@]l“[h—w] :
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Substituting this inside equation (135) gives us the final expression for the Bogoliubov coeffi-
cient a,, i

22" cosh(n) =21 [e” —1i ]i“’ r [h N M}

Ak = Nj  V/8mI(2h)2 Len +i 2 (138)
F[h— i(k—w)]r[h+ i(k+co)]r[h_i(k+w)] .
2 2 2

Repeating all these steps carefully, we can show that the Beta Bogoliubov coefficient is

22" cosh(n) " [e” +i]i°’r [h N M}

ﬂw,k =

_Nw’k,‘/%r(zh)z et 2 (139)
([ ] [, 2] )

Referring to equation (112), we recall that the normalization constant appearing in the Bo-
goliubov coefficients is

N e T e 1 e G
o 20 T(2h 2T (i) (—iw) :

N

w (140)
With the explicit expressions in hand, one can check that the Bogoliubov coefficients satisfy
the relations (59) and (60). This concludes our derivation of the Bogoliubov coefficients.
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