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Abstract

We study the triangular-lattice Ising model with dipolar interactions, inspired by its
realisation in artificial arrays of nanomagnets. We show that a classical spin-liquid
forms at intermediate temperatures, and that its behaviour can be tuned by tempera-
ture and/or a small lattice distortion between a string Luttinger liquid and a domain-
wall-network state. At low temperature there is a transition into a magnetically ordered
phase, which can be first-order or continous with a crossover in the critical behaviour
between Pokrovsky-Talapov and 2D-Ising universality. When the Pokrovsky-Talapov crit-
icality dominates, the transition is essentially of the Kasteleyn type.
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1 Introduction

Spin liquids, which can be found in both quantum and classical systems, are often defined
by the absence of symmetry breaking at low temperature. This raises the question of what is
happening at low temperature, and the variety of possible behaviour is comparable to that of
the vast array of symmetry-broken phases [1].

One of the oldest and best-understood examples of a classical spin liquid is the Ising model
on the triangular lattice with nearest-neighbour interactions. It has been known for many
years that this fails to order even at zero temperature [2, 3], instead forming a critical state
with long-range, algebraic spin correlations [4, 5]. The key feature of the spin liquid is that
there is robust local ordering associated with the requirement that every triangle has only two
equivalent spins, but there are exponentially many configurations that respect this local order,
resulting in long-range disorder [2].

This behaviour is not confined to T = 0, but holds to a good approximation throughout
the region 0 ≤ T ® J1, where J1 is the nearest-neighbour coupling constant. For T > 0 the
correlations between spins are exponentially rather than algebraically decaying, but the corre-
lation length remains large within the low-temperature region. The whole region 0 ≤ T ≤ J1
can therefore be considered as a spin-liquid, and weakly-correlated, paramagnetic behaviour
only occurs for T > J1.

The reason that the nearest-neighbour, triangular-lattice, Ising antiferromagnet (TLIAF) is
so well understood is that it can be mapped onto a 1D model of free spinless fermions [2,4,6].
This almost magical transformation converts a strongly-interacting spin problem into a non-
interacting fermion problem, thus making possible the calculation of virtually all quantities of
interest directly in the thermodynamic limit. The key to this “magic” is that the constraints
imposed by the strong interactions between spins map directly to the Pauli exclusion principle,
and can therefore be dealt with trivially in the fermionic picture.

The situation becomes more difficult, and more interesting, when additional interactions
couple spins beyond nearest neighbour. Further-neighbour interactions tend to stabilise an
ordered phase at temperatures below a characteristic, further-neighbour energy scale, Jfn [7–
11], but this leaves open the possibility of spin-liquid behaviour in the temperature window
Jfn ® T ® J1.

The difficulty in analysing further-neighbour models is due to the fact that they cannot
be mapped onto free-fermion models, and therefore lack simple analytical solutions. Never-
theless, the fermion picture can still provide useful insights, and in particular one can classify
different regions of the spin liquid as being weakly or strongly coupled in a fermionic sense.
Weak coupling can be expected for Jfn� T < J1 where the free-fermion model is only weakly
perturbed, and therefore one expects to find the 2D classical equivalent of a Luttinger liq-
uid. On the other hand, for T ∼ Jfn the fermionic model is strongly coupled, making simple
predictions more difficult.

There is an essentially infinite number of ways to include further-neighbour interactions,
and rather than trying to study all possible combinations of couplings, we concentrate on
dipolar coupling between spins, where the interactions fall off with the cube of the separation.
Nevertheless, we suggest that the results we obtain are very likely to be qualitatively correct
for any system in which the coupling constants are monotonically decreasing with distance
(if this condition is not respected there are other possibilities [10, 11]). The Hamiltonian we
consider is therefore given by,

Hdip =
∑

(i, j)

Ji jσiσ j , Ji j =
1

|ri − r j|3
, (1)

where σi = ±1 denotes an Ising spin at site i, the sum over (i, j) includes all possible pairs of
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Figure 1: The phase diagram of the dipolar, triangular-lattice, Ising antiferromagnet, Hdip [Eq. 1],
with distortion parameter δ. (a) Triangular-lattice bonds are labelled A, B and C and the distortion
is such that the length of A bonds remains invariant while the height of each triangle is reduced by a
factor 1−δ, thus shrinking B and C bonds equally. (b) Phase diagram showing the weakly-correlated
paramagnet (white), spin liquid (green) and stripe ordered phase (yellow), as calculated by Monte
Carlo simulation. The transition between the stripe and spin-liquid phases changes from first to sec-
ond order at a tricritical point, and the critical behaviour close to the second-order transition can be of
Kasteleyn/Pokroksky-Talapov type or 2D Ising. The spin liquid crosses over to an uncorrelated param-
agnet at T ∼ J̄1 = (J1A + J1B + J1C)/3.

spins with i 6= j and ri is the position of the ith spin.
Our choice to concentrate on dipolar interactions is not made at random, but is motivated

by experiment. In particular, artificial spin systems consisting of arrays of out-of-plane nano-
magnets arranged on a triangular lattice are starting to be fabricated, and these realise the
dipolar TLIAF to a good approximation [12, 13]. While artificial systems have been studied
for a number of years [14–23], recent advances have made it possible to make the nano-dots
small enough that they remain thermally active at experimentally viable temperatures [24,25],
motivating our study of the equilibrium properties of Hdip [Eq. 1].

While the primary experimental motivation comes from artificial spin systems, it is worth
pointing out that there are many other realisations of TLIAFs with further-neighbour couplings.
Examples include crystals of trapped ions [26], the disordered lattice structure of the spin-
orbital liquid candidate material Ba3Sb2CuO9 [27] and frustrated Coulomb liquids [28].

The only tuneable parameter in Hdip [Eq. 1] is the temperature, and this already leads
to subtle behaviour. Nevertheless, we also find it interesting to consider a second tuneable
parameter, namely a small lattice disortion associated with squeezing the lattice, and this is
parametrised by δ as shown in Fig. 1 (we only consider δ > 0).

Such a distortion is both experimentally accessible, since it is possible to build it into the
fabrication procedure of artificial spin systems, and convenient, since it can be used to tune the
collective transition temperature relative to the single-nano-dot blocking temperature [13].

At least as important is that there is a good theoretical motivation to study the effect of
distorting the lattice. For isotropic systems it has been shown that by carefully choosing the rel-
ative strengths of the further-neighbour interactions, it is possible to stabilise an intermediate
nematic phase that breaks the 3-fold rotational symmetry of the triangular lattice, but not the
Ising symmetry [10,11]. This nematic phase can be characterised by a set of fluctuating strings
that wind the system and form a disordered grill-like superstructure, and the density of the
strings can be controlled by temperature. At low temperatures the transition into an ordered
phase takes place via a Kasteleyn transition, and shows Pokrovsky-Talapov critical behaviour,
while at higher temperatures the nematic transitions into a paramagnet via a less-interesting
first-order transition (see phase diagram in Ref. [11]). The problem with realising such physics
in isotropic systems is that one requires a non-monotonically decreasing interaction strength,
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with, for example, J5 > J4, and this is difficult to find in nature.
By adding anisotropy of the type parameterised by δ, the symmetry distinction between

the nematic and the paramagnet is lost, and therefore there is never a high-temperature phase
transition between a paramagnet and a nematic, whatever the form of the further-neighbour
interactions. However, the anisotropy drives the appearance of the most interesting features
of the nematic, even for monotonically decreasing further-neighbour interactions, in particu-
lar the stabilisation at low temperature of a state with a tuneable density of fluctuating strings
that shows Pokrovsky-Talapov critical behaviour approaching a Kasteleyn transition into a fluc-
tuationless, low-temperature ordered phase. Since in such a situation the isotropic model is
expected to have a direct first-order transition from the disordered to the ordered state, the
addition of anisotropy also opens up the possibility that there is an unusual tricritical point, as
a first-order transition turns into a Kasteleyn transition.

As a foretaste of the results to come, we show in Fig. 1 a simplified phase diagram of Hdip

[Eq. 1] as a function of T and δ. One can see that there is a spin-liquid region sandwiched
between an ordered stripe phase and a weakly correlated paramagnet. The focus of this article
will be on the nature of the spin liquid, as well as on the transition from the spin liquid into
the ordered phase, and it can be seen that, as expected, this changes from a first-order to
a second-order, essentially Kasteleyn, transition via a tricritical point. The boundary between
the spin-liquid and the paramagnet is a crossover and not a phase transition, and a naive guess
puts this crossover at T ≈ J̄1 = (J1A + J1B + J1C)/3, where, J1A, J1B and J1C refer to nearest-
neighbour interactions along A, B and C bonds (see Fig. 1 for bond labelling). We provide
better ways of determining the boundary between the spin-liquid and paramagnetic regions
below, but find that they essentially agree with the simple estimate given by J̄1.

Our results for the dipolar TLIAF are presented in the main text of the article, since this is
the most experimentally relevant form of the interactions. The extensive appendicies discuss
related, but simpler models, in which the couplings are short range. This allows important
features of the TLIAF to be isolated and studied in more detail than is possible for the dipolar
model, since there is both more freedom to separate competing energy scales, and the simpler
models are more amenable to analytic calculations and larger scale Monte Carlo simulations.

2 Methods

We employ two complementary methods to study the dipolar TLIAF, Monte Carlo simulation
and mapping onto a model of strings/fermions.

2.1 Monte Carlo simulations

Monte Carlo is the standard way to simulate 2D Ising systems, but in the case of the dipolar
TLIAF proves difficult to equilibriate. To overcome this problem we use a combination of
update methods, including parallel tempering, single-spin-flip updates and worm updates.

Equilibriation difficulties are most acute close to the transition temperature, and are related
to a vanishingly small density of defect triangles (triangles with three equivalent spins). In
consequence local-update algorithms (e.g. single-spin-flip) have freezing problems.

Our solution is to employ a worm algorithm [29–31] in which loops are constructed on
the dual honeycomb lattice, taking into account the local interactions [11, 32–34] (see Ap-
pendix B for a discussion of dimer configurations on the honeycomb lattice). The sets of Ising
spins within these loops are then flipped with high probability, allowing the system to tun-
nel between very different configurations. For systems with local interactions (e.g. up to 5th
neighbour) the loops of the worm algorithm can be constructed such that detailed balance is
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automatically obeyed, and therefore the algorithm is rejection free [11]. For dipolar interac-
tions the construction of rejection-free updates is prohibitively time consuming, and instead
the algorithm uses effective values of the local coupling constants, Jworm

1 , Jworm
2 and Jworm

3 to
guide the loop creation. If these are well chosen, then accepting a flip of all the spins within
the loop has a reasonable probability. In practice we found that these parameters have to be
carefully tuned so as to target the configurations expected just above the phase transition.

For the isotropic, dipolar TLIAF just above the phase transition, an acceptance probability
of about 0.035 was found for the worm updates, which dropped to about 0.004 on crossing
the transition, before continuing to decrease. By running a dense set of temperatures, parallel
tempering steps were accepted with a probability of at least 0.8 across the transition, providing
a considerable aid to equilibriation.

Increasing the transition temperature, for example by adding a lattice distortion, simplifies
the simulations by increasing the density of defect triangles in the neighbourhood of the tran-
sition. Once this density is high enough, it is possible to use a simple single spin-flip algorithm
in combination with parallel tempering.

Simulations are run on hexagonal clusters that preserve all the symmetries of the triangular
lattice and have periodic boundary conditions. The linear size of the clusters is L and the total
number of triangular-lattice sites is N = 3L2. For the dipolar TLIAF we typically use clusters
sizes of L = 24, L = 36 and L = 48. While in 2D the dipolar energy is convergent, it was
found to be useful to use Ewald summation of the interactions to take into account their slow
decay [35].

When performing Monte Carlo simulations a number of physical quantities are sampled.
This includes the energy, E, and heat capacity, C , as well as the stripe order parameter and its
associated susceptibility,

mstripe =
1
N

√

√

√

√

∑

α

�

∑

i

ταi σi

�2

, χstripe =
N
T

�

〈m2
stripe〉 − 〈mstripe〉2

�

, (2)

where α ∈ {A,B,C}, i labels triangular lattice sites and ταi is the spin at the ith site for perfect
stripe order parallel to the α bond direction. It is also useful to track the triangular average of
the winding number, W = (W1, W2) (see below for the definition of the winding number, and
also Appendix B), given by,

Wtri =
1
L

q

W 2
1 −W1W2 +W 2

2 , χW =
L
T

�

〈W 2
tri〉 − 〈Wtri〉2

�

, (3)

which is designed such that Wtri = 1 for W = (L, L), W = (−L, 0) and W = (0,−L), while
Wtri = 0 for W= (0,0). Alternatively one can track the Monte Carlo average of the density of
strings, nstring (see Section B.2 for the definition of strings).

Correlations can be understood by measurement of the spin structure factor, defined in the
usual way in real and reciprocal space as,

S(r) = 〈σiσ j〉, S(q) =
1
N

∑

r

eiq·rS(r), (4)

where r= ri − r j and q is in the Brillouin zone of the triangular lattice.

2.2 String/fermion mapping

In order to gain intuitive insights into the TLIAF that complement the Monte Carlo simulations,
it is useful to consider some of the mappings that can be made.
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τ

(a) (b)

Figure 2: Mapping between Ising configurations on the triangular lattice and string configurations
on the dual honeycomb lattice. (a) In the absence of defect triangles, strings (purple) wind the system.
(b) Defect triangles (red) act as sources and sinks of pairs of strings, allowing strings to turn back on
themselves and form short closed loops. By choosing one of the spatial directions as imaginary time,
τ, the strings can be interpreted as the worldlines of fermions, with defect triangles corresponding to
pair creation or annihilation.

One option is to make a mapping onto a height model, which describes the configurations
of the TLIAF in terms of a coarse-grained height field, and this is particularly powerful way to
capture the long-wavelength features of the nearest-neighbour TLIAF [36].

For the questions we are interested in here, we find it more intuitive to make a mapping
onto strings [37,38], which can then be interpreted as the worldlines of fermions. The mapping
onto strings requires the choice of one of the 3 principal lattice directions as being special, and
while this is natural for the anisotropic TLIAF the decision is arbitrary for the isotropic model.
The strings live on the dual honeycomb lattice, whose bonds bisect those of the triangular
lattice (see Fig. 2 and also Appendix B for the link to dimer mappings). Along the special
direction each honeycomb bond bisecting an antiferromagnetically-aligned, triangular-lattice
bond is assigned to be a segment of a string, while in the other two directions honeycomb bonds
bisecting ferromagnetically-aligned, triangular-lattice bonds are assigned as string segments.
The string-free configuration is thus seen to correspond to an Ising stripe configuration, with
stripes of aligned Ising spins parallel to the special direction.

Using the above definition, each honeycomb-lattice site can be touched by either 0 or 2
string segments, and this ensures the continuity of the strings. For a system with periodic
boundary conditions the strings form closed loops, and no two strings can touch, let alone
cross, one another (see Fig. 2). If a reference line is chosen that winds the system, the number
of strings crossing it has to be even, and therefore string parity is conserved. If no defect
triangles are present, then there is no way for a string to turn back on itself, and strings both
wind the system and have a fixed length, and in this sense the strings are taut. Defect triangles
act as sources or sinks of pairs of strings, allowing them to turn back on themselves and thus
either form local loops or long floppy strings that wind the system.

In the absence of defect triangles the string degrees of freedom provide a way of labelling
the Ising configurations according to a pair of winding numbers. Two reference lines can be
chosen that wrap around a periodic cluster of linear size L, and the number of strings crossing
each reference line is related to the associated winding number according to
Wi = [L − no. of strings crossing ref. line i] (see Appendix B for the link to dimer representa-
tions of the Ising variables). In order to transition between Ising configurations with different
winding numbers, it is necessary to either create a pair of defect triangles and transport one
of them around the system before they recombine, or to make a non-local change of the Ising
configuration.

The properties of the strings allow them to be interpreted as the worldlines of spinless
fermions, as is common for 2D statistical mechanics problems [39–44]. The strings “travel”
in the direction perpendicular to the special lattice direction, and this is interpreted as the
imaginary time direction (see Fig. 2). At a mininum, the quantum Hamiltonian has to include
a chemical potential measuring the energy cost of creating a string/fermion, a hopping term
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that allows the strings to move in the direction perpendicular to that of imaginary time and
pair creation and annihilation terms that take into account the effect of defect triangles. For
the case of the nearest-neighbour triangular lattice these three terms are sufficient, and there
is an exact mapping onto,

H1D =
∑

i

�

−µc†
i ci + t

�

c†
i ci+1 + c†

i+1ci

�

+∆
�

c†
i c†

i+1 + ci+1ci

��

, (5)

where the parameters of the 1D quantum model can be expressed in terms of those of the 2D
classical model (see Appendix C, Appendix D and Appendix G for details). The simplicity of the
fermionic model is due to the fact that the string-string interactions in the nearest-neighbour
Ising model are purely entropic – they arise from the non-crossing constraint – and this maps
onto the fermionic Pauli exclusion principle.

Once further-neighbour Ising interactions are included, it is necessary to take into account
energetic string-string interactions, and these map onto fermionic interactions. However, a
phenomenological free-fermion model can still be applicable when the string/fermion density
is low, and can provide quantitative insights into the critical behaviour of the Ising model.
Futhermore, qualitative insights into the Ising system can be gained from considering the form
of the fermion-fermion interactions.

3 Monte Carlo simulation of the dipolar TLIAF

Here we determine the main physical features of the dipolar TLIAF using Monte Carlo simu-
lation. A more detailed discussion of their physical origin is postponed until Section 5.

The ground state of the dipolar TLIAF is 6-fold degenerate and consists of alternating
stripes of equivalent Ising spins running parallel to A, B or C bonds (see Fig. 5). The 3-
fold degeneracy associated with the choice of stripe direction is multiplied by a 2-fold Ising
degeneracy associated with a global spin flip, giving the overall 6-fold degeneracy.

At low temperature there is a stripe-ordered phase, which is dominated by the ground state
configurations. Local fluctuations are highly suppressed because they involve the creation of
pairs of defect triangles, and the associated energy cost is large. In principle it is also possible
to create strings that wind the system, but these are forbidden in the thermodynamic limit as
they cost a finite free energy per unit length [10,11].

On further increasing the temperature, there is a transition from the stripe phase into a
disordered phase. A previous study determined the transition temperature to be T/J1 ≈ 0.18,
but was not able to determine the nature of the transition or achieve equilibriation across the
transition [45]. Our simulations, which do achieve equilibriation, show that the transition
is first order, and this is clear from histogram analysis of the energy close to the transition
temperature, as shown in Fig. 3. The transition temperature can be determined from the peak
in the heat capacity, C , the order parameter susceptibility χstripe [Eq. 2] or the winding number
susceptibility χW [Eq. 3]. The positions of the peaks in these different quantities coincide for
a given system size, L, and we show results for χW in Fig. 3. The position of the peak shows
a weak L dependence, and using the standard scaling of a first-order transition temperature
with 1/N , we determine a transition temperature of T1/J1 = 0.1845± 0.0010.

The first-order nature of the transition is also clear from simulations of the heat capacity,
which are shown in Fig. 4. Integrating C/T from infinity shows that the disordered state just
above the phase transition has an entropy per site of S/N ≈ 0.22. While this is less than
the Wannier entropy Swan/N = 0.323 . . . associated with the ground state of the nearest-
neighbour TLIAF [2], it is still considerable. The low-temperature stripe phase is essentially
fluctuationless and has S/N = 0, showing that there is a significant entropy release in the
first-order transition.
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Figure 3: Monte Carlo simulations probing the phase transition in Hdip [Eq. 1]. (a) The winding
number susceptibility, χW [Eq. 3], is shown in a narrow temperature window surrounding the transi-
tion for hexagonal clusters of size L = 24 (red), L = 36 (orange) and L = 48 (green). (Inset) The
maximum of χW scales approximately with 1/N , as is standard for a 1st order phase transition, leading
to our estimate that in the thermodynamic limit the transition temperature is T1/J1 = 0.1845±0.0010.
(b) Energy-histogram analysis of an L = 36 cluster for temperatures close to the χW-maximum of
T1/J1 ≈ 0.183. Energies are measured in units of J1 and energy bins have width 0.0005J1. A sharp
low-energy peak, associated with an almost fluctuationless low-temperature phase, is separated from a
Gaussian peak associated with the high-temperature phase by an energy gap of approximately 0.03J1

per site. The separation of the two peaks is evidence of a first-order transition.

The nature of the correlations can be accessed via the spin stucture factor, and a represen-
tative set of examples are shown in Fig. 5. In the stripe-ordered phase there are Bragg peaks
associated with the three different stripe directions, and these occur at qstripe = (0,2π/

p
3)

and symmetry related wavevectors. At temperatures just above the transition, the structure
factor develops weight on the whole of the Brillouin zone boundary, but remains peaked at
qstripe, despite the significant entropy change. Small further increases in temperature result
in the growth of sharp structure-factor peaks at qtri = (2π/3,2π/

p
3), and the disappearance

of peaks at qstripe. Further increasing the temperature results in the structure-factor weight
becoming more diffuse, and the peaks at qtri become less sharp.

The crossover from a highly-correlated paramagnet with sharp structure-factor peaks to
a weakly-correlated paramagnet with a diffuse structure factor is governed by the presence
or absence of defect triangles. The temperature evolution of the density of defect triangles,
ndef , is shown in Fig. 4, where ndef is defined as the total number of triangular plaquettes with
three equivalent spins divided by the total number of plaquettes, 2N . Just above the transition
temperature the density is very low, and at T/J1 = 0.2, one finds ndef ≈ 10−4. On the other
hand, in the uncorrelated, infinite-temperature limit the defect-triangle density saturates at
ndef = 0.25, since triangles can take 8 possible equally probable configurations, 2 of which
have three spins aligned. For simplicity we take the crossover from strong to weak correlation
to be at ndef = 0.025 (i.e. 10% of the saturation value) and this occurs at T = 0.75J1, which
matches well to the broad peak in the heat capacity (see Fig. 4).

It is possible to estimate the typical energy of an isolated defect triangle by making fits to
ndef in the temperature range T ® J1. This shows activated behaviour, and a crude estimate
of the functional form is derived in Appendix A. The best fit, shown in Fig. 4, corresponds to
a defect-triangle energy of Edef = 1.60J1. This shows that one effect of the further-neighbour
interactions is to slightly decrease the typical energy of a defect triangle relative to the nearest-
neighbour TLIAF, where Edef = 2J1.
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Figure 4: The heat capacity, entropy per site and defect triangle density for Hdip [Eq. 1] with δ = 0.
Error bars are smaller than the point size unless explicitly shown. (a) The heat capacity (red) shows a
broad maximum centred on T = 0.8J1, which corresponds to the freezing out of defect triangles, and
a sharp peak at T = 0.185J1 due to a first-order phase transition. This can be compared to the case
of the nearest-neighbour TLIAF (blue), which shows a similar broad maximum centred on T = 1.2J1,
but no low-temperature phase transition. (b) The entropy per site (red) is calculated by integrating
the heat capacity from infinity. The entropy passes though Swan/N , at T = 0.5J1, but does not show
an extended plateau, unlike the nearest-neighbour TLIAF (blue). At the phase transition there is an
entropy jump of ∆S/N ≈ 0.22. (c) The defect triangle density, ndef . (Inset) At low temperatures ndef

follows an activated behaviour, and the blue line is the best fit to Eq. 29 with A= 0.24 and Edef = 1.60
(see Appendix A).

4 Monte Carlo simulation of the anisotropic, dipolar TLIAF

Next we turn to the distorted triangular lattice, and show that even quite small distortions can
lead to significant changes in the physical behaviour compared to the isotropic lattice.

The distortion, which is parameterised by δ, leaves the length of A bonds invariant, while
reducing the length of B and C bonds and therefore breaks the 6-fold ground-state degeneracy
of the isotropic lattice down to a 2-fold degeneracy. Stripes form parallel to A bonds, and the
2-fold, ground-state degeneracy is simply due to an Ising degree of freedom, associated with
a global flip of all the spins.

As in the isotropic case, the transition from the stripe phase to the disordered phase can
be located using the peaks in the heat capacity, C , the order parameter susceptibility χstripe

[Eq. 2] or the winding number susceptibility χW [Eq. 3], and the resulting phase diagram is
shown in Fig. 6. Histogram analysis of both nstring and E show that the transition changes
from first order at low δ (see Fig. 3) to second order at high δ (see Fig. 6), and the change
occurs at δtri ≈ 0.02. However, this type of analysis is not a very precise gauge of δtri, due
to both finite-size effects and the fact that the first-order nature of the transition becomes
weaker approaching δtri. In Section 5 we use finite-size scaling analysis to determine how the
critical exponents depend on δ, and thus demonstrate that the change from first to second
order occurs via a tricritical point located at δ = δtri = 0.022 and T = Ttri = 0.343.

The spin-liquid region, in which strong local correlation co-exists with long-range disorder,
is found to extend until approximately δ ≈ 0.15, with the associated temperature window
decreasing with increasing δ. This is shown in Fig. 6, where we continue to use a defect-
triangle density, ndef = 0.025 (10% of the saturation value) to signify the upper extent of the
spin liquid.

The structure factor shows signs of a second order transition for δ > δtri and can also be
used to characterise the disordered region. For δtri ≤ δ ® 0.1 satellite peaks appear at the tran-
sition either side of qstripe = (0,2π/

p
3(1 − δ)), and gradually shift towards

qtri = (2π/3,2π/
p

3(1− δ)) as the temperature is increased. We will argue below that these
follow the string density, and the structure factor is peaked at
q = qstring = (πnstring(T,δ), 2π/

p
3(1− δ)). In the spin-liquid region these peaks are sharp,

and this is associated with a long spin-spin correlation length. In the weakly-correlated region,
the structure factor becomes diffuse, signalling the breakdown of strong correlations and a
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Figure 5: The structure factor of the dipolar TLIAF, together with typical configurations. (a) Below the
first order transition there are Bragg peaks at qstripe = (0,2π/

p
3) and symmetry-related wavevectors,

associated with the stripe ordering. (b) Above the transition weight develops around the BZ boundary,
but is peaked at qstripe and qtri = (2π/3, 2π/

p
3), and this is associated with a domain-wall network

configuration. (c) Further increasing the temperature results in the peaks at qtri dominating over those
at qstripe, and this is associated with a switch from attractive to repulsive string-string interactions. (d)
At still higher temperatures the peaks at qtri remain sharp, and the system can be described as a string-
Luttinger liquid. (e) Once the temperature becomes comparable with J1 the peaks at qtri lose their
sharpness, and this is associated with the proliferation of defect triangles and the loss of significant
correlation.

short spin-spin correlation length. For δ ¦ 0.15 the spin-liquid region is totally suppressed
and, above the transition, the structure factor has peaks at qstripe. In this region the critical
behaviour shows the characteristics of a usual second-order Ising transition into a symmetry-
broken, stripe phase, with a structure factor peak developing in the disordered region at the
ordering vector.

5 Discussion and analysis

In order to gain physical insight into the Monte Carlo simulation results presented in Sections 3
and 4, it is useful to analyse them in terms of the string model introduced in Section B.2.
We first discuss the nature of the phase transitions and then move on to the nature of the
correlations within the classical spin-liquid region.

5.1 The nature of the phase transitions

Depending on the value of the anisotropy parameter, δ, the phase transition has different
character, with a first-order transition at δ < δtri turning into a second order transition at
δ > δtri via a tricritical point at δ = δtri (see Fig. 6).

The nature of the second-order transition for δ > δtri is complicated by the fact that it
shows a combination of Pokrovsky-Talapov and Ising criticality, with the details depending on δ
and T . Here we show that the criticality is 2D Ising over some potentially narrow temperature
window close to the transition, and then crosses over to Pokrovsky-Talapov outside this region
(see Appendix D for a discussion of similar behaviour in a simpler setting). The width of the
Ising temperature window is exponentially suppressed as δ decreases and for small δ (e.g.
δ = 0.05) the transition is to all intents and purposes in the Pokrovsky-Talapov universality
class (i.e. is of Kasteleyn type).

First we consider the extreme case where defect triangles are completely absent and the
transition is strictly in the Pokrovsky-Talapov universality class (see also Appendix C). While
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Figure 6: The phase diagram of the dipolar TLIAF as a function of T and δ. (a) The phase transition
out of the stripe phase changes from first to second order with increasing anisotropy, δ, via a tricritical
point at δtri = 0.022. Strong correlations are associated with a small defect triangle density, ndef , and
this is shown by the colour scheme. The crossover from the strong-correlated (spin-liquid) regime to
the weakly-correlated paramagnet occurs at approximately ndef = 0.025 (i.e. 10% of the saturation
value). (b) Energy-histogram analysis, showing a second-order transition for δ = 0.05. Unlike in the
case of a first-order transition (see Fig. 3), the energy histogram evolves smoothly across the transition,
showing no sign of phase coexistence.

this is never rigorously true in the dipolar TLIAF, it is a good approximation at low T . The
partition function of the 2D classical model can be mapped onto that of a 1D quantum model
with the Hamiltonian,

H1D =
∑

q

ωqc†
qcq, ωq = a+ bq2 + . . . , a = a0(Tc − T ), (6)

where Tc is the critical temperature of the dipolar TLIAF, and a0 and b are phenomenological
parameters. In the simpler case of the nearest-neighbour TLIAF, the exact 1D quantum Hamil-
tonian is given in Eq. 5, and matching this to Eq. 6 requires µ+ 2t → a0(T − Tc), t → b and
∆→ 0. For the dipolar TLIAF such a microscopic matching of parameters is not possible, but
the phenomenological dispersion given in Eq. 6 is valid as long as the probability of creating
a defect triangle is very low. Furthermore, truncation of the dispersion beyond the q2 term
remains a good approximation as long as the string density is low.

For the fermion model, the T that appears in Eq. 6 does not have the meaning of tem-
perature, and is simply a tuneable parameter that controls the transition from an insulating
phase with no fermions (T < Tc) to a metallic phase with gapless excitations (T > Tc) at a
fermi wavevector qf =

p

−a/b. Once this is mapped back to the dipolar TLIAF, T regains the
meaning of temperature, the insulating fermionic phase corresponds to the string vacuum (the
stripe phase) and the metallic fermionic phase to the spin-liquid phase where there is a finite
density of fluctuating strings that wind around the system.

The density of strings in the 2D classical model is equal to the density of fermions in the
1D quantum model, and can be calculated as,

nstring =
1
π

∫ qf

0

dq =
qf

π
⇒ nstring =

�

0 T < Tc
1
π

q

−a
b T > Tc

. (7)

In the fluctuating phase the string density can be expressed as nstring ∝ (T − Tc)β , with the
critical exponent β = 1/2. This is characteristic of Pokrovsky-Talapov-type critical behaviour
[39,40] associated with a Kasteleyn transition [46].

To make a connection with previous work [40], it is useful to determine the free energy of
the 2D classical model, which is just given by the energy of the 1D quantum model, resulting
in,

FPT =
1
π

∫ qf

0

ωqdq = a0(Tc − T )nstring +
bπ2

3
n3

string + . . . , (8)
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Figure 7: The structure factor S(q) [Eq. 4] in the anisotropic, dipolar, triangular-lattice, Ising antifer-
romagnet. Simulations are run for hexagonal clusters with L = 48. (Top row) At δ = δtri = 0.022 there
is a tricritical point at T = Ttri = 0.343, and above this tricritical point there is a broad maxima in S(q),
showing that there are significant fluctuations in the string density, nstring. Increasing the temperature
leads to a sharper maximum at qstring, showing a reduction in the variance of nstring. (Middle row) At
δ = 0.04 there are peaks in S(q) at qstring that coexist close to the phase transition with an additional
peak at qstripe. At higher temperatures the peaks at qstripe are suppressed, leaving the peaks at qstring

more visible. (Bottom row) At large values of δ (here δ = 0.2) the spin liquid region is absent, and
S(q) is peaked at qstripe, displaying the usual behaviour associated with a second-order transition.

where nstring = qf/π. In Ref. [40] it was shown that the cubic term describes the string-string
repulsion.

For the dipolar TLIAF, the above analysis should apply to the second-order phase transition
at anisotropy values δ ¦ δtri, where the transition temperature is low enough that there are
very few defect triangles in the system. In order to test this, we perform simulations of Hdip

[Eq. 1] for δ = 0.05 at a range of system sizes. While finite-size effects make it hard to directly
measure the exponent β in simulations, it is possible to write down a scaling hypothesis for
nstring and use this to determine β . We consider,

nstring(T, L) = (T − Tc)
β gPT

�

L
ζ‖

�

, (9)

where gPT is an unknown scaling function and ζ‖ is the correlation length in the direction
parallel to the domain walls, defined as the lengthscale at which asymptotic values of the
structure factor becomes valid [47]. In the critical region it is expected that ζ‖∝ (T − TK)−ν‖
with ν‖ = 1, and this can be compared to the correlation length perpendicular to the domain
walls, which is given by ζ⊥∝ (T − TK)−ν⊥ with ν⊥ = 1/2 [40,47,48]. Since we typically con-
sider hexagonal shaped clusters, finite-size effects will be dominated by ζ‖, since this diverges
faster than ζ⊥.

In order to quantitatively test the goodness of the data collapse according to the scaling
hypothesis [Eq. 9], we use the measure proposed in [49]. The best collapse was found for
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Figure 8: Data collapse close to the critical point for Hdip [Eq. 1]. Monte Carlo simulation results are
shown for mstripe [Eq. 2] and nstring [Eq. 45] on hexagonal clusters of size L = 24 (red), L = 36 (orange)
and L = 48 (green). Error bars are in all cases smaller than the point size. (a) In the tricritical region
the best data collapse is found for mstripe at δ = 0.022 using the scaling hypothesis given in Eq. 14
with Ising tricritical exponents β = 1/4 and ν = 1. (b) Data collapse at δ = 0.05 using the scaling
hypothesis given in Eq. 9 for Pokrovsky-Talapov critical behaviour and for exponents that minimise the
“goodness of collapse” measure proposed in [49]. This gives β = 0.44±0.07 and ν‖ = 0.92±0.2, which
are consistent with the expected Pokrovsky-Talapov exponents β = 1/2 and ν‖ = 1. (c) Data collapse
at δ = 0.2 using the scaling hypothesis given in Eq. 14 and the Ising critical exponents β = 1/8 and
ν= 1.

β = 0.44 ± 0.07 and ν‖ = 0.92 ± 0.2 (see Fig. 8), which is consistent with the expected
Pokrovsky-Talapov exponents of β = 1/2 and ν‖ = 1. Thus we conclude that at low values
of δ the second-order transition shows critical behaviour associated with a Kasteleyn-type
transition, which is driven by the appearance of non-local strings that wind the system.

In reality Hdip [Eq. 1] supports a small density of defect triangles at any finite temperature,
and even a tiny density of defect triangles drives the transition to be in the Ising universality
class (see also Appendix D). However the temperature window over which Ising criticality
applies is exponentially suppressed at small δ. In order to better understand the nature of the
suppression and the crossover between Ising and Pokrovsky-Talapov criticality, we consider
the phenomenological 1D quantum Hamiltonian,

H1D =
∑

q>0

�

Aq

�

c†
qcq + c†

−qc−q

�

+ Bq

�

c†
qc†
−q + c−qcq

��

,

Aq = a0(Tc − T ) + bq2 +O(q4), Bq = 4qzdef +O(q3), (10)

where zdef = e−
Edef

T and Edef is a measure of the energy cost of a defect triangle. Diagonalisa-
tion via a Bogoliubov transformation, results in,

H1D =
∑

q

ωqa†
qaq +

1
2

∑

q

�

Aq −ωq

�

, ωq =
Ç

A2
q + B2

q , (11)

where aq and a†
q are fermionic operators.

In terms of fermions the parameter T controls a transition from a gapped, insulating phase
at T < Tc to a gapped, p-wave-superconducting phase at T > Tc via a gapless point at T = Tc.
In terms of the 2D classical model this maps onto the transition from the stripe phase at T < Tc

to a phase with fluctuating strings at T > Tc.
The Ising/Pokrovsky-Talapov nature of the criticality is encoded in the location of the min-

imum of ωq [Eq. 11]. Ising criticality is associated with a minimum at q = 0, and this oc-
curs for Tc < T < TIs, where, TIs = Tc + 8z2

def/(a0 b). The 2D Ising nature of the criticality
in this temperature window is clear from considering the correlation length, which goes as
ξIs ∼ |T − Tc|−1 [43]. For T > TIs the dispersion minimum moves away from q = 0 to
qmin = (−a/b − 8z2

def/b2)1/2 and the system enters the crossover region between Ising and
Pokrovsky-Talapov universality. Pure Pokrovsky-Talapov critical behaviour is recovered in the

14

https://scipost.org
https://scipost.org/SciPostPhys.5.3.030


SciPost Phys. 5, 030 (2018)

- 2.0 - 1.5 - 1.0 - 0.5 0.0 0.5 1.0 1.5 2.0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(T- Tc)/(TIs- Tc)

n
st
rin
g

Figure 9: Behaviour of the string density, nstring, in the vicinity of the critical point, calculated from
H1D[Eq. 10]. For zdef 6= 0 the string density remains finite at the critical point, but dnstring/dT shows
a logarithmic divergence (blue).
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Figure 10: The δ dependence of the defect triangle density, ndef , and its crossover scaling. Monte
Carlo simulations are run for L = 24 for a number of δ values and error bars are smaller than the point
sizes. (a) ndef as a function of T for variable δ. (b) Collapse using the crossover scaling function of
Eq. 13 gives α= 0.5 and φ = 1.12.

limit T−Tc� TIs−Tc, where qmin = (−a/b)1/2 is recovered, and therefore nstring∝ (T−Tc)1/2.
In the case T � Edef , the temperature width of the Ising window is exponentially suppressed
due to the z2

def factor, and the system shows Pokrovsky-Talapov characteristics over all acces-
sible temperatures.

In the critical region the string density and its derivative are given by,

nstring =
1

2π

∫ π

0

dq

�

1−
Aq

ωq

�

,
1
a0

dnstring

dT
=

1
2π

∫ π

0

dq
B2

q

ω3
q

. (12)

In the region Tc < T < TIs it is possible to extract analytic expressions for these quanti-
ties in terms of elliptic integrals. However, these expressions are not so enlightening, and
we instead show a numerical evaluation in Fig. 9. For zdef 6= 0, the string density is finite
both above and below the transition and takes the value nstring = 2zdef/(πb) at T = Tc. As
such nstring is not technically a good order parameter, but it still provides a useful indicator
of the transition temperature since dnstring/dT shows a logarithmic divergence according to
dnstring/dT ∝ log |T − Tc| (see Fig. 9).

At intermediate values of δ (e.g. δ ≈ 0.1), the dipolar TLIAF should show a crossover
between Ising and Pokrovsky-Talapov criticality. As is standard in such situations, an exponent
φ can be used to parametrise the crossover [50, 51]. This appears in the scaling form of
physical quantities, and we consider the defect-triangle density, which is expected to scale as,

ndef(T, zdef) = |T − Tc|2−αgφ

�

zdef

|T − Tc|φ

�

, (13)
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where α is associated with the Pokrovsky-Talapov critical behaviour and therefore expected to
take the value α = 1/2 [48]. As shown in Fig. 10, scaling collapse of Monte Carlo simulation
data in the range 0.06≤ δ ≤ 0.1 works well for α= 0.5 andφ = 1.12. This compares well to a
similar scaling analysis of the nearest-neighbour model, where ndef can be calculated directly
in the thermodynamic limit, and we find α= 0.5 and φ = 1 [see Appendix D].

At large values of δ there is a high density of defect triangles at the transition, and one
expects Ising criticality to apply over a wide temperature window. That this is indeed the case
can be shown by analysing simulation data at δ = 0.2. The standard scaling hypothesis for
the Ising order parameter, mstripe [Eq. 2], is,

mstripe(T, L) = (T − TK)
β gIs

�

L
ξIs

�

, (14)

and it is expected that data collapse occurs for β = 1/8 and ξIs ∼ |T − Tc|−1. It can be seen in
Fig. 8 this results in good collapse of the simulation data.

At δ = δtri = 0.022 there is a tricritical point, and the critical behaviour is different from
that of the second-order transition. Since the transition temperature at the tricritical point is
low, one would naively expect that the associated low density of defect triangles would result in
Pokrovsky-Talapov tricritical behaviour (see Appendix E for a discussion of Pokrovsky-Talapov
tricriticality). Pokrovsky-Talapov tricriticality can be described by the 1D quantum dispersion,

ωq = a(TK − T ) + bq2 + cq4 + . . . , (15)

where a > 0, c > 0 and b(δ − δtri) is an odd function of δ − δtri that changes sign when
δ = δtri. It follows that exactly at the tricritical point (b=0),

qf =
�

a(T − TK)
c

�
1
4

, nstring =

(

0 T < Tc

1
π

�

a(T−TK)
c

�
1
4 T > Tc

, (16)

resulting in a critical exponent of β = 1/4. In terms of the free energy of the 2D classical
model, the tricritical point occurs when the cubic term disappears, resulting in,

Ftri = a(TK − T )nstring +
cπ4

5
n5

string + . . . (17)

Since the cubic term controls the string-string interaction, changing its sign is equivalent to
going from a repulsive interaction associated with a second-order transition to an attractive
interaction associated with a first-order transition.

For the tricritical point to be effectively in the Pokrovsky-Talapov-tricritical universality
class, it is necessary that the Ising temperature window is negligible. The problem with this
is that the expression we previously calculated, TIs = Tc + 8z2

def/(a0 b), diverges as b → 0.

Including the fourth order term inωq [Eq. 15] results in TIs = Tc+6z4/3
def
/(ac1/3) at b = 0. The

exponential suppression of the Ising temperature region with Edef/T is thus less pronounced
than at the critical point, and, depending on the value of c, this could in principle lead to a
wide temperature window of Ising tricriticality.

Monte Carlo simulations allow us to test whether Pokrovsky-Talalapov or Ising tricriticality
dominates, and come down in favour of a significant Ising-tricritical window. This can be seen
in Fig. 8, where mstripe [Eq. 2] shows convincing data collapse for 2D Ising tricritical exponents.
At higher temperatures the system presumably crosses over to Pokrovsky-Talapov tricriticality,
but the Ising temperature window is wide enough that this is difficult to ascertain.

For δ < δtri the transition is first order. In this situation the string-string interaction is
attractive, and the string density jumps at the transition. Expansion of the free energy in
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terms of the string density is therefore only possible close to the tricritical point, where the
jump in the string density is relatively small.

Close to the first-order transition the effective fermion degrees of freedom are long lived,
since decay of fermions is associated with the, essentially negligible, presence of defect trian-
gles in the 2D classical model. As a result, even though the fermions are strongly interacting,
the interactions just renormalise the free-fermion terms in the Hamiltonian, but don’t generate
new terms. Thus one can still think in terms of an effective free-fermion dispersion, ωq. How-
ever, the deeper one goes into the first-order region the larger the jump in the string density
and the more (even) powers of q have to be retained in the expansion of ωq. This is because
in order to generate a jump in nstring a finite region of q values must have a flat dispersion
with ωq = 0 at the transition, and the larger this region, the more powers of q are required
to capture it effectively (strictly all powers of q are required for a region of ωq = 0, but close
to the tricritical point this effect can still be essentially captured by a finite expansion). The
predictive power of the phenomenological theory thus reduces away from the tricritical point
due to the rapid increase in the number of coefficients.

Taking all the results of this section together, one can see that with relatively few param-
eters, it is possible to understand the full gamut of critical behaviour in the dipolar TLIAF.
The important parameters are the reduced temperature, (T − Tc)/Tc, which changes sign at a
second-order phase transition, the distortion-dependent parameter b, which changes sign at
the tricritical point, and the ratio Edef/Tc, which determines the temperature window of Ising
criticality at the transition.

5.2 Correlations between spins

Next we turn to the spin correlations, the nature of which can be used to attain a more detailed
understanding of the phase diagram. These can be probed via the spin structure factor, S(q)
or S(r) [Eq. 4].

The correlations are very simple in the stripe-ordered phase, which has Bragg peaks in
S(q) at q = qstripe = (0, 2π/

p
3(1 − δ)), and symmetry-related wavevectors (see Fig. 5 and

Fig. 7). Since at low temperatures the stripe phase is essentially fluctuationless, virtually all the
spectral weight is contained in the Bragg peak, and in real space there is no decay of the spin
correlations with separation. For larger values of δ the stripe-ordered phase survives to higher
temperatures, and for T ∼ J1 local fluctuations around the stripe ground state associated
with pair creation of defect triangles become significant, resulting in some diffuse scattering
surrounding the Bragg peak.

More interesting is the disordered phase, which shows three qualitatively different regimes
of spin correlations. At high T there is a weakly-correlated paramagnet in which the spin
correlations are short ranged, at lower T and for δ < 0.15 there is a strongly-correlated regime
with longer-range correlations that we name a string Luttinger liquid and for T < Ttri and
δ < δtri there is a different strongly-correlated regime that we call a domain-wall network
(see Fig. 11).

It is instructive to discuss each of these regimes in more detail, and first we turn to the string
Luttinger liquid (see also Appendix E). In this regime the density of defect triangles is low, and
there is a repulsive interaction between the strings. Since the strings repel one another they
form a (disordered) grill-like superstructure where the average spacing between the strings
depends on the string density, nstring(T,δ) (see Fig. 12). As a result of this superstructure,
the structure factor is peaked at q= qstring(T,δ) = (πnstring(T,δ), 2π/

p
3(1−δ)) and related

wavevectors (see Fig. 7). However, since the strings are fluctuating, the peaks are not Bragg
peaks, and in real space spin correlations decay to zero for large enough separations.

In the absence of defect triangles spin correlations in real space decay algebraically, while
in the presence of defect triangles the decay is exponential at large enough distances. We make
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Figure 11: Correlations in the dipolar TLIAF. (a) Phase diagram showing the string density, nstring and
the three qualitatively different regimes of the disordered phase: a weakly-correlated paramagnet (PM),
a strongly-correlated string Luttinger liquid and a strongly-correlated domain-wall network. (b) Within
the string-Luttinger-liquid regime the correlation length, ξ, and Luttinger parameter, K , (see Eq. 18)
can be determined at a given T and δ by fitting S(q) using Eq. 19. (c) The crossover from the string-
Luttinger-liquid to the domain-wall-network regime is due to a change from repulsive to attractive
string-string interactions. The temperature of this crossover can be approximately determined from
simulating the average string separation, ∆x (see Appendix E.4 for a definition of ∆x), in a system
constrained to have exactly two strings.

Domain wall network String Luttinger liquid Paramagnet

Figure 12: Typical string configurations in the domain-wall-network, string-Luttinger-liquid and
paramagnetic regions. In the domain-wall-network region strings typically wind the system and at-
tractive string-string interactions cause them to bind together. In the string-Luttinger-liquid region the
strings also tend to wind the system, but repulsive interactions result in a grill-like superstructure with
strings avoiding one another as far as possible. In the paramagnet there are many defect triangles that
act as sources and sinks of pairs of strings, resulting in the strings being floppy and forming short closed
loops.

the ansatz that the real-space, spin-correlation function takes the asymptotic form,

S(r)∝
cos[qstring · r] e−

rx
ξ⊥ e
−

ry
ξ‖

|r|
K
2

, (18)

where ξ⊥ and ξ‖ are correlation lengths in the directions perpendicular and parallel to the
strings (in the isotropic case ξ⊥ = ξ‖). The exponential nature of the decay only becomes
apparent when the spin separation is comparable to the correlation length ξ⊥ or ξ‖. For low
defect-triangle densities, this correlation length is typically large (it becomes infinite when
the defect triangle density goes to zero) and for r ≤ ξ the spin correlations are essentially
algebraic.

The parameter K detemines the speed of the algebraic part of the decay, and is nothing
but the Luttinger parameter familiar from 1D fermionic systems [52]. That this should appear
is unsurprising given the mapping between strings and spinless fermions (see Section B.2)
and due to the fact that a repulsive interaction between strings maps onto a weakly attractive
interaction between fermions, one expects K > 1 (for comparison non-interacting fermions
have K = 1).
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In practice simulations show that the reciprocal-space structure factor in the string-Luttinger-
liquid region is dominated by peaks at q= qstring, but there is also spectral weight on the line
of q values joining qstring and −qstring (see Fig. 7). In consequence it is better to fit the struc-
ture factor in reciprocal space than in real space, and Fourier transforming the asymptotic form
given in Eq. 18 in the vicinity of q= qstring and for ξ⊥ = ξ‖ = ξ gives [53],

S(p)∝
1

p2− K
2

g(pξ), (19)

where p= q− qstring, p = |p| and,

g(pξ) = 2π

∫ ∞

0

d x x1− K
2 e−

x
pξ J0(x)

= 2π(pξ)2−
K
2 Γ

�

2−
K
2

�

2F1

�

6− K
4

, 1−
K
4

; 1;−(pξ)2
�

, (20)

where J0(x) is the Bessel function of the first kind, Γ (x) is the Euler Gamma function and

2F1(a, b; c; z) is the hypergeometric function. The result of fitting this to simulations for δ = 0
and appropriate T is shown in Fig. 11, and it can be seen that the Luttinger parameter does
indeed take values K > 1, and the correlation length can be many multiples of the lattice
spacing. A more precise determination of K and ξwould require simulations on larger clusters
(for a numerical determination of K in a simpler model see Appendix E).

It is clear from the simulations of S(q) shown in Fig. 5 that the string-Luttinger liquid
regime does not survive all the way down to the phase transition when δ < δtri. Rather than
being peaked at q= qstring, the low-temperature structure factor in the disordered region has
spectral weight spread around the BZ boundary, and in particular weight starts to develop
at q = qstripe. As was shown in Ref. [11] this type of stucture factor is associated with the
formation of sizeable domains of stripe order, with neighbouring domains having stripes along
different principal axes (see Fig. 12).

The formation of large stripe-ordered domains is suggestive that within this regime the
strings attract one another (see also Appendix E). It makes sense that the crossover from the
string-Luttinger-liquid regime (high T , repulsive string-string interactions) to the domain-wall-
network regime (low T , attractive string-string interactions) should occur at approximately
T = Ttri, and this is consistent with the S(q) measurements (see Fig. 5). A simple way to
test wether this is the case is to perform simulations in a highly restricted manifold of Ising
configurations containing two strings, each of which winds the system. The average separa-
tion of the strings does indeed show a significant drop starting at T ≈ Ttri, indicating a shift
from repulsive to attractive interactions (see Fig. 11). We find that the temperature at which
this change occurs is essentially independent of δ in the relevant region (0 < δ < δtri), and
therefore the crossover between the string-Luttinger-liquid and domain-wall-network regimes
is approximately flat, as shown in Fig. 11.

In terms of fermions, the domain-wall network state can be thought of as being a fluctu-
ating, phase-separated state, with a loose analogy to the clustering of holes in superconduc-
tors [54,55].

At high temperatures the system forms a weakly-correlated paramagnetic regime. The
correlations can still be described by Eq. 18, but the correlation length is comparable to the
lattice spacing, and so the correlations are exponentially decaying at all length scales. While
we have defined the crossover from the Luttinger liquid regime to the weakly-correlated regime
in terms of the density of defect triangles reaching 10% of its saturation value (see Fig. 6) this
is roughly equivalent to defining a crossover in terms of the correlation length reducing to
about 2 lattice spacings.
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For δ ¦ 0.15 there is a direct transition from the stripe-ordered phase to a standard para-
magnet, and as such the structure factor shows the usual features of a second-order transition,
with spectral weight building up at the ordering vector as the transition is approached from
above, and a diverging correlation length at the transition that results in the formation of a
Bragg peak.

5.3 Triangular lattice antiferromagnets with general couplings

Here we take a step back and discuss the general features of TLIAF models with monotonically
decreasing further-neighbour interactions. We have argued that a good way to understand
such models is in terms of the string degrees of freedom, which can be thought of either in their
2D classical incarnation or as the worldlines of spinless fermions in 1D. As such we would like
to determine which energy scales present in a given microscopic model dictate the behaviour
of the strings and therefore the form of the phase diagram and the physical observables.

In general TLIAF models have many competing couplings, as is clearly true in the dipolar
case. Our claim is that these can in most cases be distilled into four important energy scales
(it is worth noting that other energy scales can become important if the further-neighbour
interactions are not monotonically decreasing interactions [10,11]).

The first and most important energy scale is the isotropic part of the nearest-neighbour
interaction; that is the part of the nearest-neighbour interaction that does not vary with the
anisotropy (i.e. J1A). This approximately sets the energy cost of creating defect triangles, and
therefore “interesting”, strongly-correlated physics only occurs in the region T < J1A.

Next are two energy scales that combine the isotropic parts of the further-neighbour cou-
plings. The first of these, Jfn, is a measure of the internal energy of a string and also sets
the string-string interaction energy scale. As an example, for the TLIAF with J1, J2 and J3
couplings it is given by Jfn = J2 − 2J3 [10]. This shows that even if the further-neighbour
couplings are comparable with J1, their combined effect can still be small due to frustration.
The second energy scale is Jc, and this is related to the energy cost associated with a string
changing direction, and in the case of the J1-J2-J3 model this is given by Jc = J2. One thing
that is important to note is that we always consider Jfn, Jc > 0, and if this is not the case
different physics can be expected [11].

The final energy scale we consider is a measure of the anisotropy and is labelled Jan. For
the dipolar TLIAF it clearly depends on δ, and a rough estimate is given by the difference in
the nearest-neighbour interaction strengths, resulting in,

Jan(δ)≈ J1B − J1A =
9δ
4

J1A +O(δ2). (21)

The energy scales J1A, Jfn, Jc and Jan have been constructed with the string degrees of
freedom in mind, and we now make the link more explicit. We concentrate in particular on
J1A� Jfn, Jan, which is the requirement for the existence of spin-liquid behaviour.

A particularly important quantity is the internal free energy per unit length of an isolated
string, which depends on Jfn, Jc and Jan, and is approximately given by [10,27],

fstring(T )≈ 2Jan + 4Jfn − T log
�

1+ e−
2Jc
T

�

. (22)

If string-string interactions are ignored, strings will be present in the system above a temper-
ature Tstring, and this is approximately given by,

Tstring ≈
2Jan + 4Jfn + Jc

log 2
. (23)
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While a number of approximations have been made in order to arrive at this simple expression,
except in the extreme case of Jc � Jfn, it matches well to Monte Carlo simulations of simple
models [11].

In reality the strings are not isolated, and the transition temperature and the nature of the
correlations in the spin liquid depend on the string-string interactions. These have two main
contributions, the first of which is an entropically-driven repulsion associated with the no-
crossing constraint, and in the fermion language this maps onto the Pauli exclusion principle.
The second is an energetically-driven attraction due to the further-neighbour interactions,
which is approximately measured by Jfn, and in the fermion language it is only this second
contribution that counts as an interaction.

If the attractive interaction dominates in the vicinity of T = Tstring then an array of strings
can lower their energy by binding together, and this binding energy results in a first-order tran-
sition with T1 < Tstring. As a result the string density jumps at the transition from nstring ≈ 0
to a finite value. At temperatures just above the transition the string-string interactions re-
main attractive and the strings loosely bind together, forming a domain-wall-network state.
The domain-wall-network state also relies on a positive Jc which penalises changes in direc-
tion of the strings. The larger the value of Jc and Jfn relative to T , the larger the domain
size will be. The dominance of attractive interactions in the string picture corresponds to the
strong-coupling regime of the fermionic model.

When T � Jfn the entropically-driven repulsion between strings dominates over the
energetically-driven attraction. If Tstring� Jfn then the strings repel one another in the critical
region, resulting in a second-order transition at T = Tstring. As long as J1A� Tstring then this
transition is essentially of the Kasteleyn type, since it is driven by the sudden appearance of
strings that mostly wind the system. This type of phase transition is quite different from the
more usual Ising transition which is driven by the proliferation of local defects.

Above the second-order transition the string density, nstring, increases with increasing tem-
perature, and, while the strings fluctuate, they on average form an equally-spaced, grill-like
structure due to their mutual repulsion. In the fermionic language this corresponds to weak
coupling and a 2D classical equivalent of a Luttinger liquid forms.

When the attractive and repulsive interactions balance, the phase transition is tricritical,
and this occurs when Jan ≈ Jfn. Just above the transition the string or fermion dipersions are
soft, resulting in large fluctuations in the string/fermion density.

The crossover between the spin liquid and paramagnet occurs at T ≈ J1A and at this
temperature defect triangles become common. As a result strings form short closed or longer
floppy loops that typically don’t wind the system. If Tstring ≈ J1A, then the transition is in the
Ising universality class and is driven by the proliferation and growth of local defects, resulting
in a direct transition from the ordered phase to the weakly-correlated paramagnet. In the
dipolar TLIAF this occurs for δ ¦ 0.15.

For the dipolar TLIAF it is possible to approximately determine the appropriate energy
scales as Jfn ≈ 0.02J1A, Jan ≈ 9δJ1A/4 and Jc ≈ 0.08J1A. Here Jc is determined as half the
energy cost of an isolated corner, while Jfn is determined so as to be consistent both with Tstring

[Eq. 23] and with Monte-Carlo, worm-update simulations, which are found to work best with
approximately this value of Jworm

2 − 2Jworm
3 (see Section 2.1). Despite the slowly decreasing

nature of the dipolar interaction with distance, it can be seen that frustration leads to a value
of Jfn that is considerably smaller than J1A, resulting in a significant window in which the spins
are strongly correlated.

An obvious question raised by this analysis is how to further reduce the value of Jfn and Jc

relative to J1A, since this would increase the size of the spin-liquid region and give a cleaner
realisation of the Kasteleyn transition. One possibility would be to find systems with local in-
teractions such that J1� J2, J3 . . . , but we are not currently aware of any such systems. A more
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realistic option is to change the nature of the long-range interaction such that Ji j ∝ |ri−r j|−a,
where a = 3 corresponds to the dipolar case. The possibility of changing a has been realised
experimentally using trapped ions that naturally form a triangular lattice, and a was found to
be tuneable in the range 0 < a < 3 [26]. Estimating the relationship between Jfn, Jc and a is
complicated, due to the competition between the further-neighbour interactions, but it seems
most likely that suppression of Jfn would require the further-neighbour interactions to fall off
faster than in the dipolar case, and therefore a > 3.

Another possibility is to add a small transverse magnetic field. This would tend to act in
opposition to the further-neighbour interactions, since quantum fluctuations favour nearest-
neighbour-flippable configurations of Ising spins, while the stripe configuration is maximally
unflippable. Therefore a transverse field would be likely to reduce the critical temperature by
suppressing Jfn.

6 Conclusion

We have shown that the dipolar TLIAF shows a variety of behaviours, with stripe-ordered,
spin-liquid and paramagnetic phases. Furthermore, the nature of the spin-liquid region can
be tuned by temperature between a “strongly-coupled” domain-wall network and a “weakly-
coupled” string Luttinger liquid, where the strength of the coupling refers to a mapping to a 1D
fermionic model. The addition of a small anisotropy allows the nature of the spin liquid to be
further tuned, and this in turn changes the critical behaviour from first order to Kasteleyn-like,
via a tricritical point with mixed tricritical-Ising and tricritical-Pokrovsky-Talapov characteris-
tics.

We end with the hope that the physics we have described will soon be explored experimen-
tally in artificial spin systems. In such a setting the physics of the isotropic dipolar TLIAF may
be even richer, since it is likely that the dynamics will be too local to reliably find the stripe-
ordered phase at low temperature, and instead the domain-wall network state will likely freeze
to form a glassy state.
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A Defect triangles in the dipolar TLIAF

In this appendix we construct a crude model for the density of defect triangles, ndef , in the low-
temperature paramagnetic state of the dipolar TLIAF. The aim is to justify the simple functional
form of ndef used to fit the Monte Carlo simulations in Fig. 4.

Defect triangles are constrained to occur in pairs, and can be considered to appear on top
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of microstates of the constrained manifold (configurations without defect triangles). We make
the crude assumption that the energy cost of these defect triangles is only weakly dependent
on position and has an average value Edef . In this approximation, the total energy due to the
defect triangles is given by,

E = Ndef Edef , (24)

where Ndef is the number of defect triangles and interactions between defect triangles have
been ignored.

The number of ways Ndef defect triangles can be placed in the system with Nplq triangular
plaquettes is simply given by the binomial coefficient, and therefore the associated partition
function is,

Zdef =
Nplq
∑

Ndef=0,2,4...

Nplq!

Ndef !(Nplq − Ndef)!
e−βEdef Ndef

=
1
2

Nplq
∑

Ndef=0

�

1+ (−1)Ndef
� Nplq!

Ndef !(Nplq − Ndef)!
e−βEdef Ndef

=
1
2

�

�

1+ e−βEdef
�Nplq +

�

1− e−βEdef
�Nplq

�

, (25)

where β = 1/T . The average number of defect triangles is given by,

〈Ndef〉= −
1
β

∂ logZdef

∂ Edef
= Nplq

�

1+ e−βEdef
�Nplq−1 −

�

1− e−βEdef
�Nplq−1

�

1+ e−βEdef

�Nplq +
�

1− e−βEdef

�Nplq
e−βEdef . (26)

In the limit T � Edef/ log Nplq the defect triangle density is given by,

ndef ∝ Nplqe−2βEdef , (27)

in agreement with an exact calculation for the nearest-neighbour TLIAF. In the opposite limit
of T � Edef/ log Nplq then for T � Edef one finds,

ndef ∝ e−βEdef . (28)

While the above analysis is clearly highly simplified with respect to the true situation in
the dipolar TLIAF, it suggests that at low temperature and on finite-size systems one should
expect the density of defect triangles to obey the relationship,

ndef ≈ A

�

1+ e−βEdef
�Nplq−1 −

�

1− e−βEdef
�Nplq−1

�

1+ e−βEdef

�Nplq +
�

1− e−βEdef

�Nplq
e−βEdef , (29)

with A and Edef fitting parameters. The result of fitting this to Monte Carlo simulations is shown
in Fig. 4, and we find Edef = 1.60J1 in the isotropic, dipolar TLIAF. This can be compared with
the nearest-neighbour TLIAF, where the energy cost per defect triangle is 2J1.

B Mappings and winding numbers

There are a number of possible mappings from Ising configurations of the TLIAF to dimer and
string representations. Here we review the mappings used in this article and the links between
them. In order to do this it is useful to define two different manifolds of Ising configurations,
the unconstrained manifold that contains all possible configurations and the constrained man-
ifold that contains only those configurations that are ground states of the nearest-neigbour
TLIAF. The constrained manifold is clearly smaller than the unconstrained one, but is itself
extensive [2].
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(a) (b) (c) (d)

Figure 13: Mapping between Ising configurations on the triangular lattice and dimer configurations
on the honeycomb and extended honeycomb lattices. (a) There is a correspondence between bonds
of the triangular and honeycomb lattices, and this is used to define a honeycomb-lattice dimer model.
If the spins are aligned on the triangular-lattice bond, the associated honeycomb bond is covered by a
dimer. If the spins are opposite, then the honeycomb bond is empty. In the ground state of the nearest-
neighbour TLIAF all honeycomb vertices are covered by one dimer (i.e. the model is hardcore). (b)
The presence of defect triangles (coloured red) results in honeycomb sites that are covered with three
dimers. (c) and (d) In order to obtain a dimer model that is hardcore for all Ising configurations the
honeycomb lattice can be extended by the Fisher construction [56].

B.1 Mapping to dimer coverings of the dual lattice

One useful mapping is from Ising configurations on the triangular lattice to dimer configura-
tions on the dual honeycomb lattice [46]. We use this when constructing Monte Carlo worm
updates [11].

The dual honeycomb lattice is constructed such that its bonds cut exactly one bond of the
original triangular lattice (and vice versa), as shown in Fig. 13. If the triangular-lattice bond
has two equivalent spins, then the honeycomb-lattice bond is covered by a dimer, while if the
spins are inequivalent the honeycomb-lattice bond is left empty. The mapping between spin
and dimer configurations is 2→ 1, since the dimer configuration is unaffected by a global flip
of all the Ising spins.

Configurations within the constrained manifold (i.e. ground states of the nearest-neighbour
TLIAF model) have one ferromagnetic bond per triangle, and therefore the number of dimers
is fixed and equal to the number of triangular lattice sites, N . It follows that sites on the honey-
comb lattice respect the usual dimer model constraint of being covered by exactly one dimer,
as shown in Fig. 13(a).

In the unconstrained manifold, for each pair of defect triangles there are two additional
dimers, and therefore the number of dimers is not fixed. The honeycomb-lattice site at the
centre of a defect triangle is covered by three dimers, and therefore does not respect the usual
dimer model constraint (see Fig. 13(b)).

For the unconstrained manifold of Ising configurations an alternative dimer mapping is
possible, which is constructed such that the number of dimers is fixed and each site obeys
the usual dimer-model constraint of being covered by exactly one dimer [56]. This involves
extending the honeycomb lattice such that every original site is replaced by three new sites
arranged in a triangle (see Fig. 13). Dimers are then placed on the original honeycomb lattice
bonds in the same way as before, leaving a unique way of dimer covering the remaining sites
of the extended honeycomb lattice such that every site is covered exactly once.

B.2 Mapping to string configurations on the dual lattice

The main mapping used throughout the article is onto string configurations on the dual hon-
eycomb lattice [37, 38]. Here we show how this is related to the dimer mapping described
above. This proceeds by comparing a given dimer configuration to a reference configuration
in which all the dimers are parallel (see Fig. 14). Any honeycomb-lattice bonds on which
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Reference Actual String
(b)(a) (c) (d)

Figure 14: Mapping between Ising configurations on the triangular lattice and string configurations
on the honeycomb lattice. (a) Reference Ising configuration. (b) A configuration of interest. Spins that
differ from the reference configuration are highlighted in yellow. (c) The configuration of interest can
be specified (up to a global spin flip) by a set of strings (purple), which measure the difference in dimer
covering between the actual and reference configurations. These strings are always non-crossing, and
for configurations within the constrained manifold are directed in the sense that they never turn back
on themselves, and therefore wind the system. (d) Defect triangles (red) act as sources and sinks of
pairs of strings, and allow strings to turn back on themselves.

there is a discrepancy between the actual dimer configuration and the reference configuration
is assigned to be part of a string.

The chosen reference configuration consists of alternating horizontal stripes of aligned
Ising spins, and this corresponds to all vertical bonds of the honeycomb lattice being covered
by dimers (see Fig. 14(b)). This choice of reference configuration results in a number of useful
properties of the strings, the most important of which is that strings never touch or cross. For
periodic boundary conditions there is the additional constraint that the number of strings
crossing an arbitrary reference line that winds the system has to be even, meaning that the
string parity is conserved. If the Ising configurations are restricted to be in the constrained
manifold the strings are directed, in the sense that they cannot turn back on themselves, and
therefore have to wind the system, as shown in Fig. 14(c). In the unconstrained manifold
defect triangles act as sources and sinks of pairs of strings, resulting in (non-winding) closed
loops of strings as well as strings that turn back on themselves, as shown in Fig. 14(d).

B.3 Winding number sectors

In the presence of periodic boundary conditions, Ising configurations within the constrained
manifold can be labelled by a pair of winding numbers.

One way to define the winding numbers, W= (W1, W2), is to consider a pair of reference
lines, as shown in Fig. 15. For each dimer crossing the horizontal part of the reference line
the winding number is augmented by +1, and for each dimer crossing the angled part of the
reference line it is augmented by −1. For hexagonal clusters of linear size L with N = 3L2

triangular-lattice sites, the allowed winding number sectors form a triangle with vertices at
W = (L, L), W = (0,−L) and W = (−L, 0). Within this triangle, all even values of W1 and W2
are allowed.

In the string picture, the winding number is simply given by,

W1 = L − no. strings crossing ref line 1

W2 = L − no. strings crossing ref line 2, (30)

and it follows that the density of strings in the constrained manifold can be written as,

nstring =
2
3
−

W1 +W2

3L
. (31)

The string vacuum is therefore equivalent to the winding number sector W = (L, L) and the
sector W= (0,0) corresponds to a density nstring = 2/3.
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Figure 15: Winding numbers sectors of the triangular-lattice Ising antiferromagnet (reproduced
from Ref. [11]). (a) A pair of reference lines is defined on hexagonal clusters with periodic boundary
conditions, and the dimer crossing of these lines gives the winding number W = (W1, W2). Dimers
crossing the horizontal lines increase Wi by 1, while those crossing angled lines decrease Wi by 1.
This is simply related to the number of strings crossing the reference lines by Eq. 30. (b) The allowed
winding number sectors for an L = 12 cluster are shown by black dots. W1 and W2 are both even, and
lie within a triangle with vertices at W= (L, L), W= (−L, 0) and W= (0,−L).

The winding numbers split the constrained manifold into topological sectors, in the sense
that it is not possible to move between configurations with different winding numbers by
making a series of local spin flips. Instead it is necessary to flip clusters of spins that wind the
system.

In the unconstrained manifold (defect triangles allowed) W remains a useful quantity, but
is no longer strictly a winding number, since the creation of a pair of defect triangles on the
reference line is a local move that alters W. Nevertheless, it remains a useful concept when
the defect-triangle density, ndef , is low.

C J1A-J1B model with a constrained manifold

In order to isolate and study some of the important features of general TLIAF’s, we consider
a number of simple models, in which the interactions are local and can be varied at will. The
subject of this appendix is the simplest of these models, the TLIAF with anisotropic nearest-
neighbour interactions and a constraint forbidding defect triangles. The purpose of studying
such a model is to understand the Pokrovsky-Talapov critical behaviour [39, 40] and the cor-
relations within the spin-liquid phase in a simple setting. In terms of the anisotropic, dipolar
TLIAF studied in the main text, the ideas will be particularly relevant to the phase transition
in the region δtri < δ ® 0.1 and to the correlations in the string-Luttinger liquid phase for
T � J1A.

The solution of this model is already well known due to the fact it can be mapped to
free fermions, and was studied by Wannier in the case of isotropic interactions [2], and can
be transformed to the Kasteleyn model for anisotropic interactions [46]. The Hamiltonian is
given by,

HABB = J1A

∑

〈i j〉A

σiσ j + J1B

∑

〈i j〉B

σiσ j + J1B

∑

〈i j〉C

σiσ j , (32)

where 〈i j〉α denotes nearest-neighbour bonds in the α direction (see Fig. 1 for the definition
of bond directions). An alternative parametrisation can be achieved by writing,

J1B = J1A +δJ , (33)

and we consider the case δJ > 0 (equivalently J1A < J1B). We also impose the constraint that
defect triangles are forbidden, which corresponds to taking the limit J1A/δJ →∞.
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C.1 Dimer mapping

HABB [Eq. 32] can be mapped onto the Kasteleyn model of dimer coverings of the honeycomb
lattice, which has an exact solution [46]. The mapping from Ising spins on the triangular
lattice to dimers on the dual honeycomb lattice is described in Appendix B.1, and the energy
of a dimer configuration is given by,

EABB =−
1
3
(J1A + 2J1B)Nbond + 2J1ANA

dim + 2J1B(N
B
dim + NC

dim), (34)

where Nbond = 3N is the total number of bonds (this is the same for the triangular and dual
honeycomb lattices) and Nαdim is the number of dimers covering α-type bonds. Since defect
triangles are forbidden, the total number of dimers is fixed as NA

dim + NB
dim + NC

dim = Nbond/3.
In the ground state NA

dim = Nbond/3 and NB
dim = NC

dim = 0, and therefore the energy of a given
configuration relative to the ground state energy is,

∆EABB = 2 δJ(NB
dim + NC

dim). (35)

It follows that the partition function can be written, up to a configuration independent pref-
actor, as,

ZABB∝ Zhon =
∑

dimer cov

zNB
dim+NC

dim , (36)

where the sum is over all dimer coverings of the honeycomb lattice. It can be seen from Eq. 35
that the weight associated with dimer covering a B or C bond is given by,

z = e−
2δJ

T . (37)

C.2 Evaluation of the partition function

It has been known how to evaluate partition functions of the type Zhon [Eq. 36] for many
years [6, 46]. Here we will briefly sketch the solution, since it will prove a useful basis from
which to consider more complicated models.

The starting point is to introduce a real, anticommuting Grassmann variable at each site
of the honeycomb lattice [6, 57, 58]. These variables obey the usual rules: aia j = −a jai ,
∫

dai = 0 and
∫

daiai = 1. Since the honeycomb lattice has a 2-site basis, it is useful to label
Grassmann variables as a and b on the two sublattices, and the partition function is therefore
given by,

Zhon =

∫

∏

i

daid bi eS2[a,b] = det K , S2[a, b] =
∑

i j

aiKi j b j , (38)

where i labels unit cells and S2[a, b] is the Kastelyn action. Here K is a signed adjacency
matrix, known as the Kasteleyn matrix [46], and contains the weights z [Eq. 37]. The reason
for the appearance of det K rather than the more usual Pfaffian is that the matrix connects
sites on different sublattices, but not those on the same sublattice.

To simplify the geometry the honeycomb lattice is distorted into the brick lattice, as shown
in Fig. 16. Bonds are assigned a direction in accordance with the Kasteleyn theorem, which
states that transition cycles should have an odd number of arrows in each sense [46]. The
bond weights are assigned according to Eq. 36, with weight 1 on A bonds and weight z on B
and C bonds. It follows that the action can be written as,

S2[a, b] =
∑

i

�

zai bi+êy
+ zbi−êx

ai + biai

�

, (39)
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Figure 16: The brick lattice and Kasteleyn-matrix spectrum, |εk| [Eq. 42], for HABB [Eq. 32] in
the constrained manifold. (a) Bond directions (black arrows) are chosen so as to respect Kasteleyn’s
theorem [46], and bond weights are chosen to be z on B and C bonds and 1 on A bonds, in accordance
with Zhon [Eq. 36]. The ith unit cell (green) contains two sites with associated Grassmann variables ai

(blue) and bi (red). The translation vectors of the unit cell are êx and êy, and these are taken to be unit
length. (b) The spectrum |εk| is shown along the path k= (k, k+π). For T < TK (black) the spectrum
is gapped at all k, and this corresponds to the stripe-ordered phase. At T = TK (red) the gap closes
at k = (π, 0) and a Kasteleyn transition occurs. For T > TK (blue) the gapless point migrates from
k = (π, 0) to k = (2π/3,−π/3) with increasing temperature, and the location of this gap is related to
the density of strings, nstring [Eq. 45].

where the coordinate system is defined by the unit vectors êx and êy, as shown in Fig. 16. The
action is simply diagonalised by taking the Fourier Transform,

ai =
1
p

N

∑

k

akeik·ri e−i
kx−ky

2 , bi =
1
p

N

∑

k

bkeik·ri , (40)

to give,

S2[a, b] =
∑

k

εkakb−k, εk = −2iz sin

�

kx + ky

2

�

− e−i
kx−ky

2 . (41)

Finally the partition function can be evaluated as,

Zhon =
∏

k

εk =
∏

k

p

εkε−k =
∏

k

|εk|,

|εk|=
q

1+ 2z(cos kx − cos ky) + 2z2(1− cos[kx + ky]), (42)

where ε∗k = ε−k has been used.

C.3 Physical properties

In order to understand better the physical properties of HABB [Eq. 32] it is useful to notice
that the free energy, which is given by,

Fhon = −T logZhon = −T
∑

k

log |εk|, (43)

is typically dominated by the minimal values of |εk|. The physical characteristcs of the system
are therefore determined predominantly by the “low-energy” part of |εk|.

At low temperature, the spectrum of |εk| is gapped at all k, as shown in Fig. 16, and this
corresponds to the stripe-ordered state. The gap closes at k= (π, 0) at the temperature,

2z(TK) = 1, TK =
2δJ
log2

, (44)
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Figure 17: The string density, nstring [red, Eq. 49], and the phase diagram for HABB [Eq. 32] in the
constrained manifold. (a) Comparison between nstring [red, Eq. 49] and the stripe order parameter,
mstripe [blue, Eq. 2]. mstripe shows a step-like behaviour at the critical point, T = TK, while nstring has
Pokrovsky-Talapov critical behaviour, with nstring ∝ (T − TK)β and β = 1/2 for small T − TK > 0. In
the limit T →∞ it saturates at nstring = 2/3. (b) The phase diagram showing stripe and spin-liquid
phases separated by a second-order transition at T = TK [Eq. 44], and overlaid with the string density,
nstring [Eq. 45].

and this corresponds to the temperature at which the free energy of strings goes to zero.
At T = TK strings condense into the system, and there is a Kasteleyn transition out of the

stripe-ordered phase and into the spin liquid. This is second order due to the non-crossing
constraint of the strings, which results in an entropically-driven string-string repulsion. The
transition is in the Pokrovsky-Talapov universality class [39,40].

For all T > TK the spectrum of |εk| is gapless. The position of the gapless point moves from
k = (π, 0) at T = TK to k = (2π/3,−π/3) at T →∞ and the position of this point is simply
related to the string density, which smoothly increases with increasing temperature. We show
below that the gaplessness of the spectrum is associated with algebraic decay of the spin-spin
correlations [4,5].

In order to detect the transition between the stripe-ordered phase and the paramagnet,
one possibility is to measure the local stripe order parameter mstripe [Eq. 2]. However, this is
somewhat unsatisfactory, since mstripe = 1 in the ordered phase, and there is a discontinuous
jump to mstripe = 0 at T = TK (see Fig. 17). Thus mstripe does not show critical behaviour, and
this is due to the fact that the transition is not driven by the proliferation of local defects, but
by strings that wind the system.

A more useful physical quantity is the density of strings, nstring, and this does show critical
behaviour. However, unlike a conventional order parameter, nstring = 0 in the ordered phase,
and only takes a finite value for T > TK. It can most simply be calculated in terms of dimer
densities, according to,

nstring =
1
2
+
〈NB

dim + NC
dim − NA

dim〉
2N

, (45)

where the normalisation is such that 0 ≤ nstring ≤ 1. In the case of the constrained mani-
fold, the total number of dimers is fixed (see Appendix C.1) and this leads to the simplified
expression [37],

nstring =
〈NB

dim + NC
dim〉

N
=

z
N
∂ logZhon

∂ z
=

1
N

∑

k

z
|εk|

∂ |εk|
∂ z

, (46)

where the second equality follows from the expression for Zhon [Eq. 36].
When working in the constrained manifold, the string density can be calculated in a simple

closed form. Substituting the expression for |εk| [Eq. 42] into nstring [Eq. 46], making the
change of variables px = (kx+ky−π)/2 and py = (kx−ky−π)/2, and taking the thermodynamic
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Figure 18: The structure factor of HABB [Eq. 32]. (Top) The reciprocal-space structure factor S(q)
at various temperatures, calculated by Monte Carlo simulation for a hexagonal cluster with L = 72.
For T < TK there are Bragg peaks at qstripe = (0, 2π/

p
3), and these have been artificially broadened

for clarity. For T > TK there are divergencies at the wavevectors qstring(T ) = (±πnstring, 2π/
p

3) that
go as S(qstring + δq) ∝ |δq|−3/2. For T � TK the physics of the isotropic TLIAF is recovered, with
nstring = 2/3 and qstring(T ) = (±2π/3,2π/

p
3). (Bottom) The real-space structure factor, S(rx) [Eq. 4],

in the direction perpendicular to the strings (i.e. parallel to A bonds), calculated in the thermodynamic
limit using the Grassmann path integral approach (see Appendix F). Red dots show calculations and
the blue line shows the best fit to S(rx) = Acos(πnstring rx)/

p
rx, where A is the only free parameter.

limit results in,

nstring =
1
π2

∫ π

0

dpx

∫ π

0

dpy

4z2 cos2 px − 2z cos px cos py

1− 4z cos px cos py + 4z2 cos2 px

=
1
π2

∫ π

0

dpx
u
2
∂

∂ u

∫ π

0

dpy log[1− 2u cos py + u2], (47)

where u= 2z cos px. The integral over py is tablulated and given by [2],

∫ π

0

dpy log[1− 2u cos py + u2] = 2π[1− D(u)] log u, D(u) =

�

1 |u|< 1
0 |u|> 1

. (48)

As a result one finds,

nstring =

� 2
π arccos

� 1
2z

�

z > 1
2

0 z < 1
2

, (49)

and this is plotted in Fig. 17. It can be seen that for T → ∞ (z → 1) the string density
saturates at nstring = 2/3, while for T ≈ TK it shows Pokrovsky-Talapov critical behaviour with
nstring∝ (T − TK)β and β = 1/2.

C.4 Correlations

In order to better understand the correlations it is useful to study the spin-spin structure factor
[defined in Eq. 4]. When doing this care should be taken not to confuse q, which denotes
a reciprocal vector in the Brillouin zone of the triangular lattice, with k, which lives in the
Brillouin zone of the brick lattice.

The structure factor can be calculated in the thermodynamic limit using the Grassmann
path integral approach, following the general method proposed in Ref. [59]. For δJ = 0
this reproduces the results of Ref. [4, 5]. A detailed summary of the calculation is given in
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Appendix F, both for pairs of spins separated by an arbitrary number of A bonds (i.e. in the
direction perpendicular to the strings, denoted rx) and for separations orthogonal to A bonds
(i.e. in the direction parallel to the strings, denoted ry). In both cases the structure factor can
be written as the determinant of a Toeplitz matrix, whose dimension is proportional to the
separation between the spins. Exact expressions can be written for the matrix elements, but
we find it necessary to calculate the determinant numerically.

In the case of isotropic interactions the structure factor takes the asymptotic form [4,5],

S(r)∝
cosq · r
p

|r|
, (50)

where q = (±2π/3,2π/
p

3), as can be seen in Fig. 18. The algebraic decay of correlations
shows that the T = 0 nearest-neighbour TLIAF is critical, and is on the verge of forming 3-
sublattice order. The combination of long-range disorder and local correlation means that the
system forms a classical spin liquid.

For δJ 6= 0 and T > TK the structure factor retains the long-distance functional form given
in Eq. 50, but the wavevector becomes temperature dependent and is given by
q = ±qstring(T ) = (±πnstring(T ), 2π/

p
3). This is clearly physically sensible, since the strings

separate regions in which Ising spins have opposite sign, and the oscillation of the correlation
function in the direction perpendicular to the strings should therefore have a period given by
the average string separation. Some typical examples are shown in Fig. 18. Also shown is
S(q), which has pairs of algebraically diverging peaks at q = ±qstring(T ). In the vicinity of
these peaks S(qstring+δq)∝ |δq|−3/2 in agreement with the algebraic decay of S(r) [Eq. 50].
It can be seen that the critical nature of the correlations is not broken by a non-zero δJ as long
as T > TK, and this is due to the constraint forbidding defect triangles.

Having stated that the structure factor has the functional form given in Eq. 50 in the long
distance limit, it is useful to be more precise over what counts as long distance. This has been
considered in the closely related field of adsorption of a gas onto a substrate, where there exist
domain walls with similar properties to the strings of the TLIAF [47]. A correlation length
can be defined beyond which the long-distance algebraic correlation function given in Eq. 50
applies. In the direction perpendicular to the strings it is intuitively obvious that this is given
by the average string-string separation, and therefore ζ⊥ ∼ 1/nstring. In the direction parallel
to the strings it can be argued that ζ‖ ∼ 1/n2

string [47]. In the case of δJ = 0 (or T � δJ),
where nstring = 2/3, the correlation lengths, ζ⊥ and ζ‖, are not much longer than a single
lattice spacing, and the long distance asymptotic form of the structure factor is recovered for
spins separated by only a few lattice spacings. On the other hand, for δJ 6= 0 and T ≈ TK the
string density is low, and the correlation lengths become very large, especially in the direction
parallel to the strings. For T → TK an expansion of nstring [Eq. 49] shows that the correlation
lengths diverge as ζ⊥ ∼ (T − TK)−ν⊥ and ζ‖ ∼ (T − TK)−ν‖ , with ν⊥ = 1/2 and ν‖ = 1.

For T < TK the spin structure factor clearly does not follow the functional form of Eq. 50.
Instead it is constant in real space, since the stripe state admits no fluctuations, and has Bragg
peaks in reciprocal space. On cooling through T = TK the pair of algebraically-diverging peaks
in S(q) coalesce to form a single Bragg peak at q= qstripe = (0, 2π/

p
3) (see Fig. 18).

C.5 Mapping to 1D quantum model

A slightly different perspective on the nearest-neighbour TLIAF is achieved by making a map-
ping onto a 1D quantum model of spinless fermions. The idea is that the strings can be viewed
as the worldlines of spinless fermions, and the spatial direction parallel to the strings inter-
preted as imaginary time. The non-crossing constraint of the strings corresponds to the Pauli
exclusion principle, and periodic boundary conditions in the 2D classical model enforce peri-
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odicity in imaginary time in the 1D quantum model. This type of mapping has been frequently
used for related 2D classical models with non-crossing domain walls [39–44].

We show in Appendix G that HABB [Eq. 32] maps exactly onto the 1D quantum model,

H1D =
∑

i

�

−µc†
i ci + t

�

c†
i ci+1 + c†

i+1ci

��

, t = z2, µ= 2z2 − 1. (51)

The mapping demonstrates that the Grassmann variables, ai and bi , describe coherent states
of fermions/strings (for details see Appendix G).

H1D [Eq. 51] is simply diagonalised by Fourier transform, giving,

H1D =
∑

k

ωkc†
kck, ωk = 2t cos k−µ, (52)

and the phase diagram of the fermion model can be matched to that of the nearest-neighbour
TLIAF. For µ/2t < −1 there are no fermions in the system and this is analagous to the stripe
phase in which there are no strings. At µ/2t = −1 there is a phase transition due to the
minima of the fermion band touching zero, and for µ/2t > −1 the fermion density, nf , is
given by, nf = 1− arccos[µ/2t]/π, which can be seen to be exactly equal to nstring [Eq. 49].
According to the mapping given in Eq. 51, µ and t are not independent parameters, and the
maximum value of their ratio is given by µ/2t = 1/2. This corresponds to z = 1 (equivalently
T → ∞) and at this point nf = nstring = 2/3 as expected. Other physical quantities, such
as the heat capacity or the spin-spin structure factor can be calculated within the 1D fermion
picture, and in some cases this simplifies the procedure.

It should be noted that if the 2D classical model has periodic boundary conditions, then the
number of strings in the system is constrained to be even. The 1D quantum model is therefore
restricted to the even-parity fermion subsector. If the 2D model is instead defined on a cylinder
with the periodic direction parallel to the strings, then this restriction is lifted.

One of the utilities of the 2D classical to 1D quantum mapping is that for more complicated
2D models with longer range interactions it provides a good starting point for phenomenologial
theories.

D J1A-J1B model with an unconstrained manifold

The next model we consider is the TLIAF with anisotropic nearest-neighbour interactions but
now with defect triangles allowed (i.e. in the unconstrained manifold). The point is to better
understand the crossover between the spin liquid and the weakly-correlated paramagnet and
the crossover between Ising and Pokrovsky-Talapov criticality, which are both also features of
the dipolar TLIAF. The Hamiltonian HABB [Eq. 32] is the same as in Appendix C, except for
the important difference that the manifold of Ising configurations is unconstrained, meaning
defect triangles are allowed.

D.1 Dimer mapping

HABB [Eq. 32] with an unconstrained manifold can be mapped onto a dimer model on the
honeycomb lattice, but there is no longer a hardcore constraint, since vertices at the centre
of defect triangles are covered by 3 dimers. Since the Grassmann path integral approach to
determining the partition function requires the dimers to obey a hardcore constraint, it is
necessary to instead consider the mapping onto a dimer model on the extended honeycomb
lattice (described in Appendix B.1 and Fig. 13). This type of mapping was suggested in a more
general context in [56], and makes possible an exact evaluation of the partition function.
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The dimers can be categorised as those covering A, B or C bonds of the original triangular
lattice (see Fig. 1 for bond labelling) or “extra” dimers, covering the bonds introduced in the
act of extending the honeycomb lattice. The total number of dimers is fixed and given by,

NA
dim + NB

dim + NC
dim + Next

dim = Nbond, (53)

where Nbond = 3N refers to the number of bonds of the original triangular lattice and Next
dim is

the number of dimers on “extra” bonds. The energy of a given configuration relative to that
of the ground state can be written as,

∆EABB =
4
3

J1ANbond + 2δJ(NB
dim + NC

dim)− 2J1ANext
dim, (54)

and therefore,

ZABB∝ Zexhon = z2N
A

∑

dimer cov

zNB
dim+NC

dim z
−Next

dim

A
, (55)

where the sum is over all dimer coverings of the extended honeycomb lattice,

zA = e−
2J1A

T , zB = e−
2J1B

T , z =
zB

zA
, (56)

and the factor z2N
A ensures that Zexhon is equal to Zhon [Eq. 36] in the limit where zA → 0

and zB → 0 with z finite (i.e. the condition for being in the constrained manifold of Ising
configurations).

D.2 Evaluation of the partition function

The evaluation of the partition function proceeds as in Appendix C, with the main difference
being that there are 6 rather than 2 lattice sites in the unit cell (see also Ref. [60] for slightly
different way of evaluating the partition function).
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Figure 19: The extended brick lattice and spectrum |εk| [Eq. 60] used to calculate the partition
function of HABB [Eq. 32] in the unconstrained manifold. (a) Bond directions (black arrows) are
chosen so as to respect Kasteleyn’s theorem [46], and bond weights are chosen to be z on B and C
bonds, 1 on A bonds and z−1

A on “extra” bonds, in accordance with Zexhon [Eq. 55]. The ith unit cell
(green) contains 6 sites with associated Grassmann variables a(1)i , a(2)i and a(3)i (blue) and b(1)i , b(2)i and
b(3)i (red). The translation vectors of the unit cell are êx and êy (see Fig. 16), and these are taken to be
unit length. (b) The spectrum |εk| [Eq. 60] along the path k = (k, k + π) for J1A = 1 and J1B = 1.5.
For T < Tc (black) the spectrum is gapped at all k, and this corresponds to the stripe-ordered phase.
At T = Tc (red) the gap closes at k = (π, 0) and an Ising transition occurs. For T > Tc (blue) the gap
reopens. For Tc < T < TIs the minimum of |εk| is at k = (π, 0). For T > TIs the minimum migrates
away from k= (π, 0). In the limit T →∞ the spectrum becomes flat.

Each site of the extended honeycomb lattice is assigned a real Grassmann variable, as
shown in Fig. 19, and these are labelled al

i and bl
i where i labels the unit cell, and l ∈ {1, 2,3}
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labels sites within the unit cell. Bond weights are z on B and C bonds, 1 on A bonds and z−1
A

on “extra” bonds, in accordance with Zexhon [Eq. 55]. The partition function is given by,

Zexhon = z2N
A

∫

∏

i,l

da(l)i d b(l)i eS2 , (57)

where,

S2 =
∑

i

h

b(2)i a(2)i + z
�

b(3)i a(3)i+êx
+ a(1)i b(1)i+êy

�

+z−1
A

�

b(1)i b(3)i + b(1)i b(2)i + b(3)i b(2)i + a(1)i a(3)i + a(1)i a(2)i + a(3)i a(2)i

��

. (58)

This can be diagonalised by taking the Fourier Transform of the Grassmann variables (see
Eq. 40), resulting in,

S2 =
∑

k

�

b(2)−k a(2)k e−i
kx−ky

4 + z
�

b(3)−k a(3)k + a(1)−k b(1)k

�

ei
kx+ky

4

+ z−1
A

�

b(1)−k b(3)k ei
kx+ky

4 + b(1)−k b(2)k ei
ky
4 + b(3)−k b(2)k e−i kx

4

+ a(1)k a(3)−k ei
kx+ky

4 + a(1)k a(2)−k ei
ky
4 + a(3)k a(2)−k e−i kx

4

��

. (59)

After rewriting the action as a matrix equation, taking the Pfaffian of the matrix and absorbing
the z2N

A factor, one can show that,

Zexhon =
∏

k

|εk|, |εk|=
�

1+ 2z(cos kx − cos ky) + 2z2(1− cos[kx + ky])

+2z2
B cos[kx + ky]− 2z2

Bz(cos kx − cos ky) + z4
B

	
1
2 . (60)

It can be seen that this reduces to the |εk| of the constrained manifold [Eq. 42] when the limit
zA→ 0 and zB→ 0 is taken such that z remains finite (equivalently J1A→∞ and J1B→∞
while δJ remains finite). It can also easily be checked that in the T →∞ limit the entropy
per site is S/N = log2 as expected.

D.3 Physical properties

The spectrum |εk| [Eq. 60], which is is shown in Fig. 19, determines the physical properties of
HABB [Eq. 32]. As in the case of the constrained manifold there is a phase transition between
an ordered and disordered phase. However, we label the transition temperature Tc rather than
TK, since it is not technically a Kasteleyn transition, as will be explained below.

For T < Tc the spectrum is gapped at all k, and this corresponds to the stripe-ordered
phase. The main difference from the case of the constrained manifold is that local fluctuations
involving the creation of pairs of defect triangles are possible, though, depending on the value
of Tc, they can be highly suppressed.

There is a phase transition at T = Tc associated with the closing of the gap in |εk|, and this
occurs at k= (π, 0). It can be seen from Eq. 60 that this requires,

1− 2z(Tc)− zB(Tc)
2 = 0, (61)

and the solution of this equation gives the critical temperature.
For T > Tc a gap reopens in |εk|, and this signifies that correlations are exponential in the

paramagnetic state [47].
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In order to investigate the nature of the phase transition, it is natural to define a second
temperature, TIs, such that in the temperature range Tc < T < TIs the minimum of |εk| is at
k = (π, 0), while for T > TIs the minimum of |εk| is at a temperature-dependent incommen-
surate wavevector. TIs can be determined from the equation,

(1− 2z)2 + 4
z2

B

z
−10z2

B + 4z2
Bz +4

z4
B

z2
− 4

z4
B

z
+ z4

B

�

�

�

�

�

T→TIs

= 0, (62)

and it can be seen from Eq. 60 that for Tc < T < TIs the gap is given by, min |εk|= |1−2z−z2
B|.

After setting T = Tc + δT , with δT � Tc and δT < TIs − Tc, one can show that the gap
goes as min |εk| ∝ δT . Taking the correlation length to be inversely proportional to the gap,
ξ∝ 1/min |εk|, results in ξ∝ δT−ν with ν = 1, and this is typical of a 2D Ising transition
[43]. Therefore Ising critical exponents are realised in the temperature window Tc < T < TIs.
However, the caveat to this is that the Ising temperature window can be exponentially small,
and this is the case for δJ � J1A where, TIs − Tc∝ exp[−J1A/δJ].

For T > TIs the minimum of |εk| moves away from k = (π, 0) and the critical behaviour
crosses over to that of the Pokrovsky-Talapov universality class for δT � TIs − Tc. Thus in
the situation where δJ � J1A the transition is technically an Ising transition, but all practical
measurements, whether in experiment or simulation, will show the features of a Kasteleyn
transition. The values of Tc and TIs are shown as a function of δJ/J1A in Fig. 22, and it can
be seen that the Ising temperature window only starts to be significant for δJ/J1A ¦ 0.3.

Further increases in T increase the size of the gap and in the limit T → ∞ the spec-
trum, |εk|, becomes completely flat, corresponding to an uncorrelated paramagnet where all
configurations are equally likely.
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Figure 20: The density of strings, nstring [Eq. 45] calculated from |εk| [Eq. 60] in the unconstrained
manifold (red). The parameters used are J1A = 1 and J1B = 1.5. Also shown are the value of TIs (black,
dashed line) and dnstring/dT (blue), which shows a logarithmic divergence at T = Tc.

The density of strings, nstring, can be calculated using Eq. 45 and the result is shown in
Fig. 20. In the stripe-ordered phase nstring is low, but not fixed to zero, as it is possible to create
bound pairs of defect triangles, connected by a pair of strings. Its value increases rapidly at
T = Tc, since the defect triangles unbind, and therefore strings can wind the system. On
further increasing T the density of strings passes through nstring = 2/3 (the value realised in
the constrained manifold) before saturating at nstring = 3/4.

Since nstring is not zero in the stripe phase, it is not, strictly speaking, an order parameter.
However, it remains a useful indicator of where the transition occurs, since the derivative
dnstring/dT diverges logarithmically, as can be seen in Fig. 20.

D.4 Ising to Pokrovsky-Talapov crossover

The nearest-neighbour TLIAF provides a good setting in which to study the crossover from Ising
to Pokrovsky-Talapov critical behaviour, since physical quantities can be calculated directly in
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the thermodynamic limit.
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Figure 21: Determination of the Ising to Pokrovsky-Talapov crossover exponent, φ, via scaling of
the defect triangle density, ndef . (a) ndef calculated in the thermodynamic limit for δJ = 0.3 (red) to
δJ = 0.7 (black). Tc and TIs are shown for δJ = 0.7 (black) and δJ = 0.4 (orange). (b) Scaling of ndef

using Eq. 63 gives good data collapse for α= 1/2 and φ = 1.

For Tc < T < TIs the system shows Ising critical exponents, while for T − Tc � TIs − Tc

it shows Pokrovsky-Talapov criticality. The crossover between these two limiting cases can be
understood by studying the density of defect triangles, ndef (see Ref. [51] for a similar analysis
in terms of monopoles in spin ice), and we postulate a scaling ansatz,

ndef(T, zdef) = |T − Tc|2−αgφ

�

zdef

|T − Tc|φ

�

, (63)

where zdef = exp[−Edef/T], Edef = 2J1B = 2(J1A + δJ) and gφ is an unknown function. The
exponent α is the usual heat capacity exponent, and is expected to take the value α = 1/2
[48], while φ is the crossover exponent. By calculating ndef in the thermodynamic limit and
performing scaling according to Eq. 63 we find a convincing data collapse for φ = 1, as shown
in Fig. 21.

D.5 Phase diagram and correlations

The phase diagram for HABB [Eq. 32] in the unconstrained manifold can be calculated exactly,
and is shown in Fig. 22. The nature of the correlations can be explored via the spin structure
factor [Eq. 4], and this is shown in the same figure for a representative set of parameters.

The phase diagram shows three regions, a stripe-ordered phase, a strongly-correlated spin-
liquid region and a weakly correlated paramagnet. The stripe-ordered phase is separated from
the disordered region by a phase transition at Tc [Eq. 61], while we take the crossover between
the spin-liquid and paramagnetic regions to occur when the density of defect triangles, ndef

reaches 10% of its saturation value (i.e. ndef = 0.025). As δJ is increased, the transition
temperature Tc increases faster than the crossover temperature, and therefore the spin-liquid
region shrinks.

The nature of the correlations in the disordered phase changes significantly with varying T
and δJ , and this can be seen from studying the structure factor [Eq. 4]. S(r) can be calculated
in the thermodynamic limit via the Grassmann path integral approach (see Appendix F), and
some examples are shown in Fig. 22. Also shown is S(q), which for simplicity is calculated
using Monte Carlo simulation.

We make the ansatz that in the disordered regions S(r) takes the long-distance asymptotic
form [5] (see Appendix F),

S(r)∝
cosq · r e−

rx
ξ⊥ e
−

ry
ξ‖

p

|r|
, (64)
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Figure 22: The phase diagram and structure factor of HABB [Eq. 32] in the unconstained manifold.
(Top) Phase diagram showing stripe-ordered, spin-liquid and paramagnetic (PM) regions, with lines
showing the critical temperature Tc [Eq. 61, red] as well as TIs [Eq. 62, blue dashed]. Colour overlays
show the density of defect triangles, ndef , and string density, nstring, calculated from the Grassmann
path integral approach. (Middle) The structure factor S(q) calculated on an L = 72 hexagonal cluster
using Monte Carlo simulation. (Bottom) The real space structure factor S(rx) [Eq. 4] in the direction
perpendicular to the strings (i.e. parallel to A bonds), calculated in the thermodynamic limit using
the Grassmann path integral approach. The blue line shows a fit to the long-distance asymptotic form
given in Eq. 64, with the fitting parameters ξ⊥, qx and a multiplicative prefactor. (a) At δJ = 0 and
T � J1A the structure factor is indistinguishable from T = 0, with sharp essentially algebraic peaks at
q= (±2π/3, 2π/

p
3) and a correlation length ξ⊥→∞. (b) At δJ = 0 and T ∼ J1A the peaks remain at

q= (±2π/3, 2π/
p

3) but broaden and the correlation length is only a few times larger than the lattice
spacing. (c) For δJ � J1A and for temperatures deep in the spin-liquid regime there are a pair of peaks
whose positions approximately track the string density according to qstring(T ) = (±πnstring, 2π/

p
3).

The correlation length is typically many times the lattice spacing. (d) At δJ � J1A = 0.4 the spin-liquid
region is narrow, but weight at qstring(T ) remains more significant than that at qstripe = (0,2π/

p
3). (e)

At δJ � J1A = 0.6 the spin-liquid regime has disappeared and above the transition the structure factor
is dominated by correlations at the ordering vector, qstripe = (0,2π/

p
3).

where in the case of δJ 6= 0 the correlation length perpendicular to the strings, ξ⊥, can be
different from that parallel to the strings, ξ‖. This is found to give good fits to the calculated
values of S(r) after taking into account the definition of long distance given in Appendix C.4.

In the spin-liquid region the correlation length is considerably larger than the lattice spac-
ing, and the system approximately realises the algebraically decaying correlation function stud-
ied in Appendix C.4 for the constrained manifold. In particular for δJ = 0 and T � J1A the
correlation length diverges as ξ⊥ = ξ‖∝ exp[2J1A/T] [53]. At the crossover to the paramag-
netic region, the correlation length is approximately ξ⊥ ∼ 5, with ξ‖ ≥ ξ⊥. Since the density
of defect triangles is by definition low within the spin-liquid region, most of the strings wind
the system, and therefore the relationship q ≈ ±qstring(T ) = (±πnstring(T ), 2π/

p
3) holds to

a good approximation.
In the paramagnetic region the correlation lengths become comparable with the lattice

spacing, and the structure factor has a very different form to the algebraic decay found for the
constrained manifold. In this region the strings mostly form short closed loops, and therefore
the relationship between q and nstring breaks down. For δJ ¦ 0.5 there is a direct transition
from the stripe-ordered phase to the paramagnet. In the Ising critical region close to the
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transition the correlation function shows the usual 2D Ising scaling and is peaked in reciprocal
space at qstripe.

In the stripe-ordered phase the asympotic form of S(r) given in Eq. 64 is no longer relevant,
and Bragg peaks form in S(q) at the ordering vector qstripe = (0, 2π/

p
3). Fluctuations around

the ground state are not strictly forbidden, but are rare unless T ∼ J1A, which is only possible
for large anisotropies.

D.6 Mapping to 1D quantum model

HABB [Eq. 32] in the unconstrained manifold can be exactly mapped onto a 1D quantum model
of spinless fermions, as was found to be the case for the constrained manifold in Appendix C.5.
The main difference is that in the unconstrained manifold defect triangles act as sources and
sinks of pairs of strings. In consequence, pair creation and annihilation terms appear in the
1D quantum model.

Following a similar logic to that of Appendix G, there is an exact mapping of HABB [Eq. 32]
onto

H1D =
∑

i

�

−µc†
i ci + t

�

c†
i ci+1 + c†

i+1ci

�

+∆
�

c†
i c†

i+1 + ci+1ci

��

, (65)

where

t = z2 + z2
B, µ= 2z2 − (1+ z4

B), ∆= 2zBz, (66)

and the evolution of these parameters with the temperature of the classical model is shown in
Fig. 23.

0 2 4 6 8 10 12 14
- 1.5
- 1.0
- 0.5
0.0

0.5

1.0

1.5

2.0

T/Tc

1D
pa
ra
m
et
er
s

μ/2t

Δ/tΔ

t

μ

Figure 23: Mapping between the 2D classical model HABB [Eq. 32] and the 1D quantum model H1D

[Eq. 65]. The parameters of the 1D quantum model depend on those of the classical model according
to Eq. 66, and the relationship is shown for J1B/J1A = 1.5. As T → 0 then t → 0, µ → −1, ∆ → 0,
µ/2t → −∞ and ∆/t → 0. The phase transition occurs when µ/2t = −1. In the limit T →∞ then
t → 2, µ′→ 0, ∆→ 2, µ/2t → 0 and ∆/t → 1.

H1D [Eq. 65] can be diagonalised by Fourier and Bogoliubov transformations, resulting in,

H1D =
∑

k

ωka†
kak +

1
2

∑

k

(Ak −ωk) , (67)

where,

Ak = 2t cos k−µ, Bk = 2∆ sin k, ωk =
Ç

A2
k + B2

k . (68)

Physical properties of the classical TLIAF can be calculated directly from the quantum model.
For example the classical quantity nstring [Eq. 45] is equal to the fermion density [43].
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E J1A-J1B-J2 model with a constrained manifold

The last simplified model we study consists of a TLIAF with first and second-neighbour inter-
actions and a constraint forbidding defect triangles. The motivation is that this is the simplest
form of further-neighbour interactions, and can be used to study a number of features of
the more physically relevant TLIAF in a simplified setting. In particular we will consider the
crossover of the phase transition into the stripe-ordered phase from first to second order via a
Pokrovsky-Talapov tricritical point, the string Luttinger liquid (as opposed to the free-fermion
spin liquid studied in Appendix C) and its crossover into a domain-wall network state. Since
the further-neighbour interactions destroy the mapping onto a free-fermion model, we rely on
a combination of Monte Carlo and perturbation theory.

The Hamiltonian is given by,

HABB2 = J1A

∑

〈i j〉A

σiσ j + J1B

∑

〈i j〉B,C

σiσ j + J2

∑

〈i j〉2

σiσ j , (69)

where the second-neighbour bonds are labelled 〈i j〉2 and we consider the constrained manifold
of Ising configurations (i.e. no defect triangles).

E.1 General considerations

Before turning to detailed calculations, it is worth considering some of the qualitative features
of HABB2 [Eq. 69], both in terms of the nature of the phase transition and of the correlations
in the spin-liquid phase (there is no paramagnetic region due to being in the constrained
manifold).

The second-neighbour interaction, J2, and the nearest-neighbour anisotropy, δJ , act in
concert with one another, in the sense that they both favour a stripe-ordered ground state.
However, they act in opposition in the sense that J2 favours a first-order phase transition,
while δJ favours a second-order transition.

This can be seen by comparing the δJ = 0 case to that with δJ � J2. At δJ = 0 the J2
interaction selects a 6-fold degenerate, stripe-ordered ground state from the manifold of con-
strained Ising configurations [10]. The J1-J2 TLIAF has been extensively studied, both analyti-
cally and by Monte Carlo simulation, and it is known that there is a first-order phase transition
into the stripe phase [7–11]. In the limit of J1→∞ the transition occurs at T1 = 6.39J2 [11].
Therefore we expect that, in the region where J2� δJ , the transition between the paramagnet
and stripe-ordered state will be first order.

In contrast, the first-neighbour anisotropy, δJ , favours a 2-fold degenerate stripe-ordered
ground state, with stripes running parallel to A bonds (see Fig. 1 for the definition of bond
directions). For δJ � J2 the J2 interaction is irrelevant, and to a good approximation the
analysis of Appendix C applies, indicating that the transition is second order. One focus here
will be to study the crossover between the first and second-order phase transitions, which
occurs when J2 and δJ are comparable in magnitude.

When the transition is second order it is driven by the creation of isolated strings that wind
the system (in [10] this is discussed in terms of the closely related concept of double domain
walls). In order for a second-order transition to occur it is necessary that there is a repulsive
interaction between these strings, and this repulsion is entropically driven and associated with
the no-crossing constraint [39,40]. We show below that further-neighbour interactions result
in an energetically-driven attraction between the strings, and that the second to first order
crossover occurs when this balances the entropically-driven repulsion.

The free energy of an isolated string can be calculated exactly, and this can be used to
find the exact transition temperature in the case of a second-order transition. Relative to the
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ground-state energy, strings cost an energy per unit length of Estring = 2δJ +4J2 and corners,
at which the string changes direction, have an energy cost Ec = 2J2 [10, 11]. It follows that
the free energy per unit length of an isolated string relative to the stripe ground state is given
by [10],

fstring(T ) = Estring − T log
�

1+ e−
Ec
T

�

. (70)

The second order transition temperature, TK, can be calculated from solving the equation
fstring(TK) = 0, and in the case of J2 = 0 it can be seen that this reduces to Eq. 44.

The behaviour in the spin-liquid state should be closely related to the nature of the phase
transition, since it is also sensitive to whether the interaction between strings is attractive or
repulsive. In the introduction it was argued that the associated fermionic model can be weakly
or strongly coupled, and it makes intuitive sense that weakly-coupled fermions correspond to
repulsive string-string interactions, while strongly-coupled fermions correspond to attractive
string-string interactions. In the weak-coupling case it can be expected that the spin liquid
realises a 2D classical equivalent of a Luttinger liquid. In the strong coupling case it is less
clear what to expect a priori. The crossover between weak and strong coupling is controlled
by the ratio J2/T , with weak coupling for T � J2.

E.2 Diagrammatic perturbation theory

The first approximate method we use to better understand HABB2 [Eq. 69] in the constrained
manifold is that of perturbation theory around the high-temperature limit. This approach
cannot hope to compete with Monte Carlo simulations in terms of quantitative measures of,
for example, the transition temperature, but does provide useful physical insights that are not
apparent in Monte Carlo. While the approach is well motivated in the “weak-coupling” regime,
we find that it also gives some clues as to how the system crosses over to the “strong-coupling”
regime and to the appearance of a first-order phase transition.

The starting point of the perturbation expansion is the exact solution of HABB [Eq. 32],
which is summarised in Appendix C. This captures the behaviour of HABB2 [Eq. 69] in the limit
J2/T → 0. The perturbation expansion involves introducing the effect of the J2 interactions
order by order in the small parameter |z2 − 1|, where,

z2 = e−
2J2
T , (71)

and this can be done using a Grassmann path integral approach, following in spirit Ref. [61].
The first step is to map the Ising model, HABB2 [Eq. 69], onto a dimer model on the

dual honeycomb lattice. For the nearest-neighbour interactions the mapping is the same as
in Appendix C. The second-neighbour coupling maps onto dimer-dimer interactions, where
dimers on the same hexagon interact if they are separated by one unfilled bond (see Fig. 24).
It follows that the partition function can be written as,

ZABB2∝ Zhon2 =
∑

dimer cov

zNB
dim+NC

dim zN2
2 , (72)

where N2 is the number of dimer-dimer interactions (see Fig. 24).
The mapping of Zhon2 [Eq. 72] onto a Grassmann path integral does not result in a purely

quadratic action, and therefore it is not exactly solvable by this method. Instead the mapping
results in an action including terms with 2,4, 6 . . . 2N Grassmann variables, and one can write,

Zhon2 =

∫

∏

i

daid bi eS2[a,b]+S4[a,b]+S6[a,b]+···+S2N [a,b], (73)
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(a) (b)

Figure 24: Dimer-dimer interactions on the brick (honeycomb) lattice. Dimers interact if they are on
the same hexagonal plaquette and are separated by a single unfilled bond, and interactions are shown
by black arrows. Each interaction carries a weight z2 in the partition function Zhon2 [Eq. 72]. The
system can be split into connected clusters of mutually interacting dimers, and these are only assigned
the correct weight when the expansion of the action reaches that of the cluster size (see Eq. 73). (a) The
largest connected cluster has 5 dimers, and it is therefore necessary to consider terms up to S10[a, b].
(b) The largest connected cluster has only 2 dimers, and the weight is correctly assigned by considering
terms up to S4[a, b].

where the quadratic term S2[a, b] is given in Eq. 39 and contains products of 2 Grassmann
variables, the quartic term, S4[a, b], contains products of 4 Grassmann variables and similarly
for higher order terms, with 2N the number of honeycomb lattice sites.

For a particular dimer configuration, one can ask which terms in the expansion of the
action are required to correctly assign the weight. The answer depends on the size of the largest
cluster of dimers connected by pairwise interactions (see Fig. 24). If the largest cluster contains
n dimers, then it is necessary to consider the terms S2m[a, b] with m ≤ n. Since clusters that
include a sizeable fraction of all the dimers are common, many dimer configurations require
one to consider terms up to n∼ N .

For an infinite lattice it is necessary to truncate the expansion of the action in order to be
able to perform calculations. This can be done systematically by considering z2−1 to be a small
parameter, which is valid for T � 2J2. The reason that this is a useful expansion parameter is
due to the fact that S2n[a, b] has a lowest order contribution proportional to (z2−1)n−1. Thus
for a chosen value of n, it is only necessary to consider terms in the action up to S2n[a, b]. A
simple worked example on a finite-size lattice is given in Appendix H to show how this type of
expansion works in detail. Here we will consider n= 2, and therefore only retain the S2[a, b]
and S4[a, b] terms in the action, thus working at first order in the small parameter |z2 − 1|.

The quartic term in the action can be determined by observing that for a 2-site unit cell
there are 6 terms containing 4 Grassmann variables, and these are shown schematically in
Fig. 25. Thus one finds

S4[a, b] = (z2 − 1) (74)
∑

i

�

z
�

biai bi+êy
ai+êx+êy

+ biaiai+êx
bi+êx+êy

+ biai bi−êx−êy
ai−êy

+ biaiai−êx−êy
bi−êx

�

+z2
�

biai+êx
ai bi+êy

+ ai−êy
bi bi−êx

ai

��

, (75)

and taking the Fourier transform using Eq. 40 results in,

S4[a, b] =
z2 − 1

N

∑

k1,k2,k3,k4

δk1+k2+k3+k4,0V sym
4 (k1,k2,k3,k4) ak1

bk2
ak3

bk4
, (76)

where

V sym
4 (k1,k2,k3,k4) =

1
4

�

V4(k1,k2,k3,k4)− V4(k3,k2,k1,k4)

−V4(k1,k4,k3,k2) + V4(k3,k4,k1,k2)
�

(77)
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Figure 25: The interacting brick lattice and Hartree-Fock spectrum εHF
k [Eq. 85] used to pertur-

batively calculate Zhon2 [Eq. 72]. (a) At first order in the perturbation expansion interactions occur
between pairs of bonds that are on the same hexagon and separated by a single unfilled bond (shown
in orange), resulting in a quartic interaction, S4[a, b] [Eq. 76]. Higher-order terms in the action are
associated with connected pairwise interactions, and thus involve 3 or more bonds (b) The spectrum
εHF

k [Eq. 85] at the temperature for which εHF
(π,0)(T ) = 0 along the path k= (k, k+π). For δJ/J2 = 1.5

(blue) the minimum of the dispersion occurs at k = (π, 0), indicating a second-order phase transition.
For δJ/J2 = 0 (black) there is an additional zero at k 6= (π, 0), indicating a break-down of the pertur-
bation theory and a first-order phase transition. The crossover between these two types of behaviour
occurs at δJ/J2 = 0.56 (red), which corresponds to a Pokrovsky-Talapov tricritical point.

is the interaction vertex symmetrised over the pairs {k1,k3} and {k2,k4} and,

V4(k1,k2,k3,k4) = z e−i
k1x−k1y

2

�

z
�

ei
k3x+k3y

2 eik4y + e−i
k3x+k3y

2 e−ik4x

�

+ ei
k3x+3k3y

2 eik4y − e−i
3k3x+k3y

2 e−ik4x −ei
k3x+k3y

2 ei(k4x+k4y) + e−i
k3x+k3y

2 e−i(k4x+k4y)
�

. (78)

The truncated action, which is given by the sum of S2[a, b] [Eq. 41] and S4[a, b] [Eq. 76],
has a quartic interaction term, and therefore it is not possible to perform the path integral
exactly. Instead a perturbative diagrammatic approach can be used, as is standard in quantum
field theory [61]. It is important to note that the expansion order of the perturbation theory
is set by the truncation of the action, and only diagrams consistent with this order should be
considered.

The first step in the construction of a diagrammatic perturbation theory is the calculation
of the free Green’s function, and this is given by,

〈ak1
bk2
〉0 =

1
Zhon

∫

∏

k

dakd b−kak1
bk2

eS2[a,b] =
δk1+k2,0

εk1

. (79)

This can be used to perturbatively construct the interacting Green’s function, which is given
by,

〈ak1
bk2
〉=

1
Zhon

∫

∏

k

dakd b−kak1
bk2

eS2[a,b]+···+S2N [a,b] =
δk1+k2,0

ε̃k1

, (80)

where ε̃k = εk +Σk and Σk is the self energy.
In the case we are considering, the anomalous Green’s functions 〈ak1

ak2
〉 and 〈bk1

bk2
〉

vanish at all orders of perturbation theory, and this is related to the absence of defect triangles.
In consequence the effective quadratic action takes the simple form,

S2,eff[a, b] =
∑

k

ε̃k akb−k, (81)
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and it follows that the partition function can be written as,

Zhon2 =
∏

k

ε̃k. (82)

In order to be consistent with the expansion of the action to first order in the small pa-
rameter |z2 − 1|, we consider the Hartree-Fock diagrams, and therefore approximate the self
energy as,

Σk ≈ ΣHF
k = (z2 − 1)Ωk, (83)

where

Ωk =
1
N

∑

k′

2
εk′

�

V sym
4 (k,−k,k′,−k′)− V sym

4 (k,−k′,k′,−k)
�

. (84)

At this level of approximation the partition function is given by

Zhon2 ≈
∏

k

εHF
k , εHF

k = εk +Σ
HF
k . (85)

The effective action S2,eff[a, b] [Eq. 81] can be used to study the physical properties of
the system, as in Appendix C. In particular we focus on the crossover between a second and
first-order phase transition, which corresponds to the crossover from the weak to the strong
coupling regimes (in fermionic language). Information about the nature of the phase transition
can be extracted from the spectrum, εHF

k [Eq. 85], and it can be seen in Fig. 25 that this
undergoes a change of structure at δJ/J2 = 0.56.

For δJ/J2 > 0.56 the spectrum, εHF
k [Eq. 85], shows the characteristic features of a second-

order transition. In the disordered phase it has a gapless point at a temperature-dependent
and incommensurate wavevector. As the temperature is lowered towards the critical point the
gapless point migrates towards the wavevector k= (π, 0), and the critical temperature can be
found from solving the equation εHF

(π,0)(T ) = 0. Below the transition the spectrum is gapped at
all wavevectors, and the minimum is at k= (π, 0).

The second-order transition temperature is known exactly from Eq. 70, and Fig. 26 shows
a comparison between the exact value and the estimate from first-order perturbation the-
ory. First-order perturbation theory seems to work well even approaching the tricritical point,
where Ttri ≈ 9J2 (the tricritical temperature will be determined more accurately by Monte
Carlo simulations in the next section). At this temperature the small parameter is 1− z2(Ttri)≈ 0.2,
and so the perturbation expansion is reasonably well controlled. The discrepancy in the critical
temperature between zeroth and first-order perturbation theory can be seen from expanding
the exact second-order transition temperature as,

TK

δJ
=

2
log 2

+
5

log2
J2

δJ
+O

�

J2
2

δJ2

�

, (86)

where it can be seen that for δJ ≈ J2 the J2/δJ term is larger than the leading term. In fact
further expansion of the transition temperature reveals that at δJ ≈ J2 higher order terms are
not small, but do cancel one another. However, it is important to remember that J2/δJ is not
the expansion parameter.

Exactly at the critical temperature the spectrum has qualitatively the same behaviour as
the J2 = 0 case (see Appendix C) close to the gapless point. Along the path k= (k, k+π) the
spectrum grows as (k−π)2. This behaviour is typical of a Pokrovsky-Talapov transition [39,40].

At δJ/J2 = 0.56 the spectrum shows a change of character. The coefficient in front of the
quadratic term goes to zero, and the spectrum grows as (k − π)4 around the gapless point.
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Figure 26: The phase diagram and structure factor of HABB2 [Eq. 69] in the constrained manifold.
(Top) Phase diagram showing the stripe-ordered and spin-liquid phases. First (purple), second (red)
and Pokrovsky-Talapov tricritical (large yellow dot) transitions are determined from finite-size scaling
analysis of Monte Carlo simulations [Eq. 87], and in the case of the second-order transition compare
well to the exact value (blue solid line). Zeroth (black-dashed) and first-order (orange) perturbation
theory calculations of the critical temperature (orange) are shown on the left hand plot (i.e. the temper-
ature at which εHF

(π,0) = 0 [Eq. 81]). On the right-hand plot the spin-liquid is split into a string Luttinger
liquid for T > Ttri = 9.14J2 and a domain-wall network for T < Ttri (separated by dashed yellow line).
(Middle) Structure factor S(q) calculated by Monte Carlo simulation of an L = 72 hexagonal cluster
(letters correspond to those on the phase diagram). (Bottom) Cuts through both S(q) and S(r). (a)
For δJ = 0 and close to the first-order phase transition S(q) has significant spectral weight around the
perimeter of the triangular-lattice Brillouin zone, as is typical of a domain-wall network. (b) On in-
creasing the temperature spectral weight rapidly accumulates at q= (±2π/3,2π/

p
3), as is typical for

a string Luttinger liquid. In the whole string Luttinger liquid region the asymptotic form of S(r) follows
Eq. 90 with a parameter-dependent Luttinger parameter, K ≥ 1. (c) At temperatures just above the
Pokrovsky-Talapov tricritical point, there is a near-degeneracy between string sectors and the structure
factor therefore shows extended spectral weight in the qx direction. (d) Further increasing the tem-
perature breaks this quasi-degeneracy and sharp peaks form at qstring(T ) = (±πnstring, 2π/

p
3). (e) At

temperatures just above the second-order transition the structure factor is sharply peaked at qstring(T ).
(f) For T � J2 the behaviour of the nearest-neighbour TLIAF in the constrained manifold is recovered,
with K = 1.

We refer to this point as a Pokrovsky-Talapov tricritical point, as the critical exponents are
different from the standard ones of the Kasteleyn transition. This change of behaviour is not
just an artifact of first-order perturbation theory, since its effects can be observed in Monte
Carlo simulation (albeit at δJ/J2 = 0.7 – see Appendix E.3).

For δJ/J2 < 0.56 the perturbative approach breaks down, but can be used to find some
clues as to the true situation. In the paramagnet there is a gapless point at an incommensurate
wavevector, as shown for the case of δJ = 0 in Fig. 27. As the temperature is reduced this
migrates towards k = (π, 0), as is the case for a second-order transition. However, before the
gapless point reaches k = (π, 0) the gap at k = (π, 0) closes, resulting in a pair of gapless
points. This situation is not physical, and does not obviously correspond to the expected first-
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δJ=0 T/J2=6.3
T/J2=6.72
T/J2=8

Figure 27: The spectrum εHF
k [Eq. 85] at δJ = 0 and for varying temperature. The path through

2D reciprocal space is parametrised by k= (k, k+π). In the paramagnet (red) there is a single gapless
point in the region k > 0 and this occurs at an incommensurate wavevector. At T/J2 = 6.72 (orange)
the gap at k = (π, 0) closes, but there remains a gapless point at an incommensurate wavevector. At
lower T (blue) the gapless points approach one another, and the spectrum is very flat in their vicinity.
While it is clear that the perturbative approach has broken down at such a small value of δJ/J2, the
results are suggestive that lines of zeros appear in the spectrum, and this would be consistent with a
first-order phase transition.

order phase transition. However, it can be seen that the spectrum is very flat between the two
gapless points. We suggest that in reality gapless lines should develop in this region, and this
would correspond to a first-order phase transition. This type of behaviour can never be exactly
recovered using a perturbative approach, since a gapless line relies on the correct relationship
between all coefficents in the expansion of the free energy.

E.3 Phase diagram determined from Monte Carlo simulations

As a complement to the perturbation theory approach, we also study HABB2 [Eq. 69] using
Monte Carlo simulation.

The simulations are carried out using a worm algorithm very similar to that presented in
Ref. [11]. This works in the dimer representation (see Appendix B.1), and creates loops of
alternating dimer-filled and empty bonds, which are then flipped, resulting in the reversal of
all the Ising spins contained within the loop. The loop creation is carefully controlled such that
detailed balance is maintained, and the absence of rejection results in an efficient algorithm.
Hexagonal shaped clusters with periodic boundary conditions are used, containing N = 3L2

Ising spins, where L measures the length of one side. Simulations are performed using system
sizes from L = 24 up to L = 192.

The phase diagram of HABB2 [Eq. 69], as determined by Monte Carlo simulation, is shown
in Fig. 26. The phase transitions can be located either from measuring the triangular average
of the winding number and associated susceptibility, defined in Eq. 3, or by measuring the heat
capacity, and the results are consistent.

In the region where the phase transition is second order, the critical temperature is found
from finite-size scaling analysis. We use the standard relation for a Kasteleyn transition [62],

TK(L) = TK(∞)− cL−1/ν‖ , (87)

where c is a constant, L is the linear dimension of the system and ν‖ = 1 is the critical exponent
of the correlation length in the direction parallel to the double domain walls, below which the
algebraic scaling of spin correlations breaks down [40,47,48]. We consider the parallel corre-
lation length, ν‖, rather than the perpendicular correlation length, ν⊥, due to the anisotropy
of the system which results in ν⊥ = 1/2 6= ν‖. Since the clusters used in the simulations are
hexagonal in shape, and therefore isotropic, the growth of correlations parallel to the strings
dominates the finite size effects. The exact second-order transition temperature is known from
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solving Eq. 70, and it can be seen in Fig. 26 that the finite-size-scaled Monte Carlo results are
in good agreement with this.
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Figure 28: Data collapse demonstrating a second-order Pokrovsky-Talapov phase transition. The
model in question is HABB2 [Eq. 69] in the constrained manifold and δJ/J2 = 1.5. Simulations are
run on hexagonal clusters with N = 3L2 and L = 24 (red), L = 36 (orange), L = 48 (green), L = 72
(blue), L = 96 (black), L = 144 (cyan), L = 192 (purple). The data are plotted according to the scaling
hypothesis given in Eq. 9, and the best collapse is found for β = 0.47±0.04 and ν‖ = 1.05±0.09. This
is consistent with β = 1/2 and ν‖ = 1, which are the expected values for a second-order Pokrovsky-
Talapov transition. The inset shows the scaling of the critical temperature, which follows Eq. 87.

As an example of such data collapse one can consider HABB2 [Eq. 69] in the constrained
manifold. We set δJ/J2 = 1.5, since this is far enough from the tricritical point that devi-
ations from the Pokrovsky-Talapov universality class are expected to be negligible. The re-
sults are shown in Fig. 28, and a convincing data collapse is found for β = 0.47 ± 0.04 and
ν‖ = 1.05± 0.09, which is consistent with the expected β = 1/2 and ν‖ = 1.
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Figure 29: Data collapse demonstrating a Pokrovsky-Talapov tricritical point. The model in question
is HABB2 [Eq. 69] in the constrained manifold and δJ/J2 = 0.7. Simulations are run on hexagonal
clusters with N = 3L2 and L = 24 (red), L = 36 (orange), L = 48 (green), L = 72 (blue), L = 96
(black), L = 144 (cyan), L = 192 (purple). The data are plotted according to the scaling hypothesis
given in Eq. 88, and the best collapse is found for β = 0.21 ± 0.04 and ν‖ = 0.91 ± 0.25. This is
consistent with β = 1/4, which is the expected value at a Pokrovsky-Talapov tricritical point.

The line of second order transitions ends at a Pokrovsky-Talapov tricritical point, which is
found to be at δJ/J2 = 0.7 and T = Ttri = 9.14J2.

In order to test for the presence of a Pokrovsky-Talapov tricritical point in Monte Carlo
simulations one can use the scaling hypothesis,

nstring(T, L) = (T − TK)
β gtri

�

L
ζ‖

�

. (88)

If the data for different system sizes can be collapsed using β = 1/4, then this provides good
evidence of the presence of a Pokrovsky-Talapov tricritical point. We apply this scaling hypoth-
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esis to HABB2 [Eq. 69] in the constrained manifold in Fig. 29, and find that for δJ = 0.7 the
data can be convincingly collapsed using β = 0.21± 0.04 and ν‖ = 0.91± 0.25.

The findings from Monte Carlo can be seen to be in reasonable agreement with first order
perturbation theory (see Appendix E.2), where a Pokrovsky-Talapov tricritical point was found
at δJ/J2 = 0.56.

For δJ/J2 < 0.7 the transition is first order, and it is typically possible to simulate large-
enough systems that the finite-size effects are small. In consequence the transition tempera-
tures plotted in Fig. 26 are taken from the largest simulated systems. For 0.5 < δJ/J2 < 0.7
this is L = 192, while for δJ/J2 < 0.5 it is sufficient to consider L = 48.

E.4 Monte Carlo simulations in the 2-string sector

4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

T/J2

2Δ
x/
L

Figure 30: The average separation of a pair of strings, 2∆x/L [Eq. 89]. Monte Carlo simulations
are carried out in a reduced manifold of Ising configurations, constrained to have exactly two strings.
The simulations use a square cluster with linear sizes L = 24 (red), L = 48 (orange), L = 96 (blue)
and L = 144 (black). At low temperature the strings bind together (see left-hand inset), while at
higher temperatures the strings repel one another (see right-hand inset). The dashed line shows the
temperature of the Pokrovsky-Talapov tricritical point, Ttri, as measured by Monte Carlo simulation (see
Fig. 26).

In order to gain physical insight into the crossover between a second and first-order phase
transition, which in the spin-liquid region corresponds to the crossover between weak and
strong coupling, we perform Monte Carlo simulations in a reduced manifold of states. The
number of strings is fixed to be two, and the idea is to study the interaction between a pair of
strings.

Monte Carlo simulations are performed on a square cluster with periodic boundary condi-
tions, linear dimension L and total number of sites L2. In the 2-string manifold, allowed Ising
configurations are distinguished by their J2 energy, but all have the same energy in terms of
δJ , since there are a fixed number of dimers occupying B and C bonds. In consequence it
is not necessary to vary δJ/J2, but only T/J2. This shows that the string-string interactions
are independent of δJ , and therefore the temperature at which weak coupling crosses over to
strong coupling is also δJ independent.

For each considered temperature we measure the average separation between the strings,
taking into account the periodic boundary conditions, and this is given by

∆x = 〈min[x2 − x1, L − (x2 − x1)]〉 , (89)

where x1 and x2 are the positions of the strings along the x axis at a given height.
It can be seen in Fig. 30 that as the temperature is reduced there is a change in∆x starting

at about T = Ttri. For T > Ttri the strings repel one another, and ∆x/(L/2) ≈ 1/2. This
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repulsion is entropically driven, and is due to the no-crossing constraint obeyed by the strings,
which reduces the available fluctuations of a string if it is in close proximity to another string.
This type of pairwise repulsion is crucial for the existence of a second-order phase transition
out of the stripe phase, since it limits the number of strings that are condensed into the system
when the free energy of an isolated, fstring [Eq. 70], goes to zero.

For T < Ttri the pair of strings start to approach one another, showing that the energetically-
driven attractive interaction starts to dominate over the repulsive interaction. The strings gain
some binding free energy by being, on average, proximate to one another, and this is consis-
tent with the crossover from a second to a first-order phase transition at T = Ttri seen in the
full Monte-Carlo simulations (see Fig. 26). The lower the temperature the more tightly the
strings bind, suggesting that the transition should become more first-order as the temperature
is decreased, and this is also consistent with the full simulations.

Since the string-string interactions are independent of δJ , the spin liquid region should
have attractive string-string interactions in the temperature window T1 < T < Ttri, and we
will discuss the implications of this in the next section.

E.5 Mapping to 1D quantum model and correlations

The nature of the correlations in HABB2 [Eq. 69] can be used to understand the behaviour
of the spin liquid, and can be determined by combining Monte Carlo simulation of the spin
structure factor with insights from fermionic mappings.

It is useful to first consider at a qualitative level how the mapping to a 1D quantum model
of spinless fermions is altered by the further-neighbour interactions (see Appendix C.5 and
Appendix G for the nearest-neighbour case). At the level of an isolated string the J2 interaction
both increases the internal energy, and adds an energy penalty to “corners” where the string
changes direction [10, 11]. In the fermion model this alters the values of µ and t and adds a
history dependence to the motion of the fermion, such that the passage from the imaginary
timestep τ to τ + ∆τ depends not only on the fermion configuration at τ but also on the
configuration at τ−∆τ.

A second effect of the J2 coupling is to drive an attractive interaction between strings.
When strings neighbour one another their J2 energy is reduced, and therefore the fermionic
model also has an attractive interaction of the form V (z2)c

†
i ci c†

i+1ci+1. In the string picture
this attractive interaction is energetically-driven and competes with the entropically-driven
repulsive interaction arising from the string non-crossing contraint. In the fermionic language
the entropic repulsion maps onto the Pauli exclusion principle, which is a property of free
fermions, and therefore the fermionic model is always attractive.

One advantage of mapping onto a fermion model is that it is known that fermions with
weak attractive interactions form a Luttinger liquid, with Luttinger parameter K > 1 (K = 1
for free fermions) [52]. We therefore make the ansatz that the spin structure factor in the 2D
classical model takes the asymptotic form [48,52],

S(r)∝
cos[qstring · r]

|r|
K
2

, (90)

where K > 1. This corresponds to a reciprocal space structure factor with algebraically sharp
peaks at q = qstring. The asymptotic form given in Eq. 90 can be tested against Monte Carlo
simulations, and we find that it gives a good fit to the simulations for T ¦ Ttri, and some
examples are shown in Fig. 26. The value of K can be extracted from the fits to the simulations,
and the result of doing this for T > Ttri and δJ = 0 is shown in Fig. 31. It can be seen that close
to T = Ttri the Luttinger parameter, K , becomes significantly different from the free fermion
case of K = 1, while in the limit T/J2→∞ the free fermion case is recovered, corresponding
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Figure 31: String Luttinger liquid and domain-wall network states. (a) The String Luttinger liquid
is characterised by the parameter, K , and this is determined from Monte Carlo simulations of an L = 72
hexagonal cluster by fitting S(r) with the asymptotic form given in Eq. 90. This type of fitting breaks
down at T ≈ Ttri = 9.14J2 (b) Snapshot of a domain-wall network configuration, taken from a Monte
Carlo simulation at δJ = 0 and T = 6.5J2. Domains have stripes parallel to A (red), B (green) or C
(yellow) bonds. A domains correspond to an absence of strings while B and C domains to parallel
neighbouring strings, and this type of configuration is driven by string-string attraction.

to 1/
p

|r| spin correlations (see Eq. 50). As a result of these findings we label the region of
the spin liquid with T > Ttri as a string Luttinger liquid.

At T = Ttri the entropic repulsion and energetic attraction between strings becomes com-
parable (see Fig. 30) and the strings start to bind together. At this temperature the distribution
of spectral weight in the structure factor starts to rearrange itself such that S(q) is no longer
dominated by a single q value, and Eq. 90 is inapplicable. Instead the weight is distributed
around the perimeter of the triangular-lattice Brillouin zone (see Fig. 26), and this is typical
of a domain-wall network (see supplementary material of Ref. [11]). Neighbouring parallel
strings form domains in which Ising stripes are parallel to either B or C bonds, while domains
with stripes parallel to A bonds correspond to an absence of strings, and an example of this
is shown in Fig. 31. We find that the spin-liquid region of HABB2 [Eq. 69] is best described
as a domain-wall network in the region T1 < T < Ttri, as shown in Fig. 26. The domain-wall
network state can be thought of as being a fluctuating, phase-separated state, with a loose
analogy to the clustering of holes in superconductors [54,55].

The more the energetically-driven attraction between strings dominates over the entropic
repulsion, the more tightly bound the strings and the larger the average domain size. In the
case of HABB2 [Eq. 69] and for δJ = 0 a first-order phase transition into the stripe phase occurs
while the average domain size is relatively small. The addition of a third-neighbour interaction
with 0 < J3 < J2/2 suppresses the transition temperature, and therefore allows the average
domain size to become larger since the attractive interaction becomes more important at low
temperature [10,11].

Increasing δJ causes domains with stripes parallel to A bonds to grow, which corresponds
to decreasing the string density, nstring. At the tricritical point the A-domains coalesce and
cover the whole system and there is a continous transition into the stripe phase.

F The spin-spin correlation function for the nearest-neighbour TLIAF

Here we show how to calculate the real-space, spin-spin correlation function, S(r) [Eq. 4], for
the nearest-neighbour TLIAF, working in both the constrained manifold (i.e. without defect tri-
angles) and the full, unconstrained manifold. Integral expressions for the correlation function
can be derived in the thermodynamic limit, and numerical evaluation results in exact results
up to numerical error. In the isotropic case these calculations just show how to derive the
long-established results of Ref. [4,5] within the Grassmann variable approach [59]. The point
of showing the calculations here is that the Grassmann approach makes it simple to extend
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the old results to the case of anisotropic interactions, for which it is necessary to separately
consider correlations parallel and perpendicular to the string direction.

In this Appendix we show the mechanical steps used to calculate the correlation functions,
while a physical discussion of the results is given in Appendix C, Appendix D and the main
text. We consider separation vectors, r = r j − ri , that are either perpendicular or parallel to
the average direction of the strings, and label the corresponding correlation functions as S⊥(r)
and S‖(r) (corresponding to the êx and êy direction in Fig. 32).

F.1 Spin-spin correlations in the constrained manifold

First we consider the nearest-neighbour TLIAF with a constrained manifold. The calculations
are slightly simplified by using a unit cell that contains 2 triangular lattice sites and 4 hon-
eycomb/brick lattice sites, as shown in Fig. 32 (as opposed to the minimal unit cell with 1
triangular and 2 honeycomb/brick sites used in Appendix C). The two spins contained within
the ith unit cell are labelled σ1,i and σ2,i and the perpendicular and parallel spin-spin corre-
lation functions are,

S⊥(r êx) = 〈σ1,iσ1,i+êx
〉, S‖(r êy) = 〈σ2,iσ2,i+êy

〉. (91)

Figure 32: Brick lattice used for calculation of the nearest-neighbour TLIAF spin-spin correlation
function in the constrained manifold. The (non-minimal) unit cell contains two spins, σ1,i and σ2,i , as
well as four Grassmann variables, labelled a1,i , b1,i , a2,i and b2,i . Correlations between spins can be
determined by studying expectation values of pairs of Grassmann variables associated with the inter-
mediate bonds.

The unit cell also contains 4 Grassmann variables, labelled a1,i , b1,i , a2,i and b2,i . These
can be used to determine the partition function as in Appendix C, resulting in

Zhon =

∫

∏

i

da1,id b1,ida2,id b2,i eS2[a1,b1,a2,b2], (92)

where the action is

S2[a1, b1, a2, b2] =
∑

i

�

b1,ia1,i + b2,ia2,i+ey
+ z

�

a2,i b1,i + b2,ia1,i + b1,ia2,i+ex
+ a1,i b2,i+ex

�

�

.

(93)

Fourier transforming the Grassmann variables results in

S2[a1, b1, a2, b2] =
∑

k

�

b1,−k, b2,−k

�

�

eiky/2 2iz sin kx
2

2iz sin kx
2 eiky/2

��

a1,k
a2,k

�

, (94)
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and this is diagonalised to give

Zhon =
∏

k

ε
(4)
k , ε

(4)
k = eiky + 2z2(1− cos kx). (95)

F.1.1 Correlations perpendicular to the strings

In order to calculate the spin-spin correlation function, it is necessary to express products of
spins in terms of Grassmann variables. Before considering the general case, it is useful to
first consider a pair of spins, σ1,i and σ1,i+êx

, separated by a single honeycomb/brick lattice
bond (see Fig. 32). If this bond is covered by a dimer then the spins are equivalent and
σ1,iσ1,i+êx

= 1, while if it is not dimer-covered σ1,iσ1,i+êx
= −1. The expectation value is

therefore given by

〈σ1,iσ1,i+êx
〉= Pdim

b1,i ;a1,i
−
�

1− Pdim
b1,i ;a1,i

�

= 2Pdim
b1,i ;a1,i

− 1 (96)

where Pdim
b1,i ;a1,i

is the probability of finding a dimer on the bond connecting the Grassmann

variables b1,i and a1,i . In order to determine Pdim
b1,i ;a1,i

one can calculate a reduced partition
function in which the sites b1,i and a1,i are excluded. Exclusion of these sites effectively fixes
a dimer on the bond between them, and therefore Pdim

b1,i ;a1,i
is given by the ratio of the reduced

partition function to the original partition function, Zhon [Eq. 95]. In order to exclude the two
sites, it is simply necessary to place b1,i and a1,i inside the partition function integral, using
the properties of Grassmann variables (a2 = 0). In consequence one finds,

Pdim
b1,i ;a1,i

=
1

Zhon

∫

∏

j

da1, jd b1, jda2, jd b2, j b1,ia1,i eS2[a1,b1,a2,b2] = 〈b1,ia1,i〉, (97)

and it is clear that Pdim
b1,i ;a1,i

is just the thermodynamic average of b1,ia1,i . In consequence,

〈σ1,iσ1,i+êx
〉= 〈2b1,ia1,i − 1〉. (98)

The thermodynamic average of two Grassmann variables can be calculated using

〈b1,ia1, j〉=
2
N

∑

k

〈b1,−ka1,k〉eik·(r j−ri)eiky/2, 〈b1,−ka1,k〉=
eiky/2

ε
(4)
k

. (99)

In the isotropic case (z = 1) integration yields Pdim
b1,i ;a1,i

= 1/3, as expected, and therefore
〈σ1,iσ1,i+êx

〉= −1/3.
More generally, the correlation between a pair of spins with a separation vector parallel to

êx is given by

S⊥(r êx) =

® r−1
∏

l=0

(2b1,i+l êx
a1,i+l êx

− 1)

¸

. (100)

This can be expanded using Wick’s theorem, and rewritten as the deteminant of an r × r-
dimensional Toeplitz matrix, resulting in

S⊥(r êx) = detM⊥, (101)

with components,

(M⊥)mn = 2〈b1,ia1,i+(n−m)êx
〉 −δmn. (102)
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In the thermodynamic limit the sum can be converted into an integral giving

(M⊥)mn =
1

2π2

∫ π

−π
dkxei(n−m)kx

∫ π

−π
dky

eiky

eiky + u
−δmn, (103)

where u= 2z2(1− cos kx). The integral over ky is given by

1
2π

∫ π

−π
dky

eiky

eiky + u
=

�

1 |u|< 1
0 |u|> 1

. (104)

It follows that,

(M⊥)mn =
2 sin [kF(n−m)]
π(n−m)

−δmn, (105)

where

kF = arccos
�

1−
1

2z2

�

, (106)

is the Fermi wavevector of the quantum model H1D [Eq. 51]. It can be seen that
(M⊥)mn = (M⊥)nm and thus the Toeplitz matrix is symmetric. It is also worth noting that
the matrix elements could have been calculated by making use of the exact mapping onto the
1D quantum model given in Appendix C.5.

F.1.2 Correlations parallel to the strings

The correlation between spins parallel to êy can be calculated by an analagous method. The
difference is that a pair of spins are separated by not one but two dimers (see Fig. 32). As such
the correlation function is given by

S‖(r êy) =

® r−1
∏

l=0

(2za2,i+l êy
b1,i+l êy

− 1)(2zb2,i+l êy
a1,i+l êy

− 1)

¸

. (107)

where the z’s take into account the weights of the excluded dimers. Wick’s theorem allows
this to be rewritten as the determinant of a 2r × 2r-dimensional Toeplitz matrix,

S⊥(r êx) = detM‖, (108)

with components

(M‖)2m−1,2n−1 = 2z〈a2,i b1,i+(n−m)êy
〉 −δmn

(M‖)2m,2n = 2z〈b2,ia1,i+(n−m)êy
〉 −δmn

(M‖)2m−1,2n = 2z〈a2,i b2,i+(n−m)êy
〉

(M‖)2m,2n−1 = 2z〈b1,ia1,i+(n−m)êy
〉, (109)

where m, n ∈ {1 . . . r}. The matrix elements can be calculated from

〈b1,ia2, j〉=
2
N

∑

k

〈b1,−ka2,k〉eik·(r j−ri)e−ikx/2

〈b2,ia1, j〉=
2
N

∑

k

〈b2,−ka1,k〉eik·(r j−ri)eikx/2

〈b2,ia2, j〉=
2
N

∑

k

〈b2,−ka2,k〉eik·(r j−ri)e−iky/2

〈b1,ia1, j〉=
2
N

∑

k

〈b1,−ka1,k〉eik·(r j−ri)eiky/2, (110)
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where

〈b1,−ka2,k〉= 〈b2,−ka1,k〉= −
2iz sin kx

2

ε
(4)
k

〈b1,−ka1,k〉= 〈b2,−ka2,k〉=
eiky/2

ε
(4)
k

. (111)

F.2 Spin-spin correlations in the unconstrained manifold

Calculation of the spin-spin correlation function in the nearest-neighbour TLIAF with an uncon-
strained manifold follows a very similar pattern to that of the constrained manifold. However
it is complicated by having to work with 6 or 12 Grassmann variables in the unit cell, as well
as the fact that the extended brick lattice is not bipartite.

Figure 33: Extended brick lattice used for calculation of the nearest-neighbour TLIAF spin-spin
correlation function in the unconstrained manifold. The (non-minimal) unit cell contains two spins,
σ1,i and σ2,i , as well as twelve Grassmann variables, labelled a1...a6 and b1...b6. Correlations between
spins can be determined by studying expectation values of pairs of Grassmann variables associated with
the intermediate bonds.

The two-spin unit cell is shown in Fig. 33 and contains 12 sites of the extended brick lattice,
and therefore 12 Grassmann variables, which are labelled a1...a6 and b1...b6. The partition
function can be calculated as in the constrained case, and this results in

Zexhon =
∏

kx>0,ky

ε
(12)
k , (112)

with

ε
(12)
k =(1− z4

B)
2 + 4(z2 + z2

B)
2 + 4cos kx(z

2
B(1+ z4

B)− 2z4)

+ 4 cos2 kx(z
2 − z2

B)
2 + 4z2(1− z2

B)
2 cos ky(1− cos kx). (113)

The spin-spin correlation function in the direction perpendicular to the strings (parallel to
êx) is given by

S⊥(r êx) =

® r−1
∏

l=0

(2b2,i+l êx
a2,i+l êx

− 1)

¸

, (114)
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and as in the constrained manifold case the correlation function can be written as the deter-
minant of an r × r-dimensional Toeplitz matrix, M⊥, with matrix elements

(M⊥)mn = 2〈b2,ia2,i+(n−m)êx
〉 −δmn. (115)

The correlation function in the direction parallel to the strings (parallel to êy) is given by

S‖(r êy) =

® r−1
∏

l=0

(2za4,i+l êy
b1,i+l êy

− 1)(2zb6,i+l êy
a3,i+l êy

− 1)

¸

, (116)

and this can be rewritten as the determinant of a 2r × 2r-dimensional Toeplitz matrix, M‖,
with matrix elements,

(M‖)2m−1,2n−1 = 2z〈a4,i b1,i+(n−m)êy
〉 −δmn

(M‖)2m,2n = 2z〈b6,ia3,i+(n−m)êy
〉 −δmn

(M‖)2m−1,2n = 2z〈a4,i b6,i+(n−m)êy
〉

(M‖)2m,2n−1 = 2z〈b1,ia3,i+(n−m)êy
〉. (117)

The matrix elements of interest can be determined from

〈b2,ia2, j〉=
2
N

∑

k

〈b2,−ka2,k〉eik·(r j−ri)eiky/4

〈b1,ia4, j〉=
2
N

∑

k

〈b1,−ka4,k〉eik·(r j−ri)e−ikx/4

〈b6,ia3, j〉=
2
N

∑

k

〈b6,−ka3,k〉eik·(r j−ri)eikx/4

〈b6,ia4, j〉=
2
N

∑

k

〈b6,−ka4,k〉eik·(r j−ri)e−iky/2

〈b1,ia3, j〉=
2
N

∑

k

〈b1,−ka3,k〉eik·(r j−ri)eiky/2, (118)

where 〈b2,−ka2,k〉 etc. are relatively simple to calculate within the Grassmann variable ap-
proach, but result in very length expressions.

Finally, we note that when calculating the determinant of the Toeplitz matrices, there is
typically a finely-tuned cancellation between different terms. In the calculations presented
above, this is unproblematic, since the matrix elements can be computed exactly (at least up
to numerical accuracy). However, this limits the utility of the Toeplitz matrix approach for
models with further-neighbour interactions where only a perturbative solution of the Grass-
mann variable spectrum is available. Small, unavoidable errors in the calculation of the matrix
elements quickly have a significant effect on the determinant, resulting in unphysical results.
For this reason we do not use this method for the J1A-J1B-J2 model considered in Appendix E,
but instead rely on finite-size Monte Carlo simulations of the correlation function.

G Mapping between the 2D Kasteleyn partition function and a 1D
fermionic coherent-state path integral

Here we demonstrate the correspondence between the 2D, classical, nearest-neighbour TLIAF,
HABB [Eq. 32], and a 1D quantum model of spinless fermions, H1D [Eq. 51]. For simplicity,
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we work in the constrained manifold of Ising configurations, but an analagous calculation
can be carried out in the unconstrained manifold. In particular, we show that the Kasteleyn
formulation of the partition function naturally maps onto a quantum path integral written in
terms of fermionic coherent states. This makes clear that the Grassmann variables introduced
in the Kasteleyn method describe coherent states of strings.

The standard way to map between a d dimensional classical theory and a d − 1 dimen-
sional quantum theory is by equating the transfer matrix and the Hamiltonian according to
T ≡ e−δτH, where δτ is a small step in imaginary time. The partition function can then be
viewed either as a matrix product of transfer matrices, or as a quantum path integral. Detailed
examples of how to carry out this procedure in the cases of spin-ice and the cubic dimer model
are presented in Ref. [63,64].

Figure 34: The action of the transfer matrix for the nearest-neighbour TLIAF in a constrained man-
ifold. The transfer matrix translates strings (shown in purple) by four honeycomb bonds in the y
direction (from one blue dashed line to the next). At each translation the string can follow one of four
possible routes, with the result that its x coordinate either remains the same or gets translated one step
to the left or right. The string state on one of the blue dashed lines can be specified by the presence (1)
or absence (0) of a string at each site on the line. This can be re-interpreted as the presence or absence
of a spinless fermion at a particular imaginary timestep in a 1D quantum model.

In the case of the TLIAF, the transfer matrix acts on states of strings, as shown in Fig. 34, and
a translation across 4 bonds is necessary before the lattice structure repeats. These string states
can be reinterpreted as the fermionic state of a 1D quantum model at a given imaginary time
coordinate, and the classical partition function sum is therefore equivalent to the fermionic
path integral.

While it is possible to solve the nearest-neighbour TLIAF using a transfer matrix approach
[2, 3], the solution is considerably more compact using the Kasteleyn formulation expressed
as a multiple integral over Grassmann variables (see Appendix C and Appendix D). Further-
more, the Kasteleyn appoach provides a good starting point for perturbative studies of more
complicated models (see Appendix E.2). As such it would be useful to know how to link the
Kasteleyn action to that of the fermionic path integral.

We demonstrate below that the Kasteleyn action naturally maps onto the quantum action
when written in terms of fermionic coherent states. To do this we first re-examine the classical
partition function using a non-minimal, 4-site unit cell, motivated by the fact that the string
states shown in Fig. 34 involve a translation across 4 sites. We then examine the coherent-
state fermionic path integral, and show that the action can be brought to the same form as
the Kasteleyn action by introducing and summing over extra degrees of freedom that take into
account the intermediate sites present in the honeycomb/brick lattice (see Fig. 34). Finally
we link the Kasteleyn spectrum to that of the quantum model.

It should be noted that the mapping could just as well have been performed in the other
direction, by starting from the Kasteleyn action and performing a Gaussian integral over half
of the Grassmann variables to arrive at the fermionic coherent-state path integral. While this
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alternative method is probably slightly more direct, we feel that the method we present makes
clearer the physical link between the two.

G.1 Kasteleyn action in 4-site basis

The procedure for determining the Kasteleyn action in terms of Grassmann variables was de-
veloped in [6] and is reviewed in Appendix C. To ease the comparison with the 1D quantum
model, H1D [Eq. 51], we here re-determine the Kasteleyn action of the nearest-neighbour
TLIAF in the constrained manifold, using a 4-site unit cell and a different set of bond orienta-
tions compared to the main text.

The reason for using a 4-site cell is that it is natural to identify a string traversing 4 sites
of the honeycomb/brick lattice with a single imaginary timestep in the quantum model (see
Fig. 34). The bond orientations are shown in Fig. 35 and the reason they are different from
those in the main text is just to simplify the mapping. They are of course chosen in accordance
with Kasteleyn’s theorem [46] and therefore there is no effect on the physical properties.

Figure 35: The set-up of the brick lattice used to map between the 2D classical model HABB [Eq. 32]
and the 1D quantum model H1D [Eq. 51]. To simplify the mapping a non-minimal, 4-site (6-bond)
unit cell is chosen and the bond directions are different from in the main text. The four Grassmann
variables contained within a unit cell are labelled a1, b1, a2 and b2.

Referring to Fig. 35, the partition function Zhon [Eq. 38] can be rewritten as

Zhon =

∫

∏

i

da1,id b1,ida2,id b2,i eS2[a1,b1,a2,b2], (119)

with

S2[a1, b1, a2, b2] =
∑

i

−b1,ia1,i − b2,ia2,i + z(b1,i+ey
a2,i + b1,i+ex+ey

a2,i + b2,ia1,i + b2,i−ex
a1,i), (120)

where ex and ey are the translation vectors of the unit cell.
The action can be block diagonalised by Fourier transform, resulting in

S2[a1, b1, a2, b2] =
∑

p

�

a1,p, a2,p

�

�

eipy/2 −2z cos px
2

−2z cos px
2 eipy/2

��

b1,−p
b2,−p

�

. (121)

The partition function can therefore be written as

Zhon =
∏

p

εK
p =

∏

p

r

εK
p ε

K
−p =

∏

p

|εK
p | (122)
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where the determinant of the 2× 2 matrix is

εK
p = eipy − 4z2 cos2 px

2
, (123)

with modulus

|εK
p |=

s

1− 8z2 cos2
px

2
cos py + 16z4 cos4

px

2
. (124)

G.2 Fermionic coherent-state path integral

The Kasteleyn action can be mapped onto the fermionic, coherent-state path integral. To
make the discussion self-contained, we briefly review how to construct such a path integral,
following [65].

The 1D quantum model under consideration is given by

H1D =
1
2

∑

l

�

−(2z2 − 1)c†
l cl + z2

�

c†
l+1cl + c†

l−1cl

��

, (125)

where the coefficients have been chosen in anticipation of the final result. The associated
partition function is

Z1D =
∑

{n}

〈n|e−βH1D |n〉, (126)

where {n} is a complete set of states in any Hilbert-state basis, and it should be remembered
that the quantum inverse temperature, β , is related to the periodicity of the classical model in
the y direction and not to the temperature of the TLIAF.

The idea is to replace the Hilbert-state basis with that of fermionic-coherent states. These
are eigenvectors of the annihilation operator, cl , and therefore obey the eigenvalue equation,

cl |η〉= ηl |η〉, (127)

where ηl is a Grassmann variable. It follows that the coherent states are described by

|η〉= exp

�

−
∑

l

ηl c
†
l

�

|0〉, 〈η|= 〈0|exp

�

∑

l

η̄l cl

�

, (128)

where |0〉 is the fermionic vacuum. The action of creation and annihilation operators is given
by

cl |η〉= ηl |η〉, 〈η|c†
l = 〈η|η̄l , (129)

where η and η̄ are independent variables. The coherent states form an overcomplete basis,
with overlap,

〈θ |η〉= exp

�

∑

l

θ̄lηl

�

|0〉, (130)

and the completeness relation,
∫

∏

l

dη̄l dηl e−
∑

l η̄lηl |η〉〈η|= 1. (131)

57

https://scipost.org
https://scipost.org/SciPostPhys.5.3.030


SciPost Phys. 5, 030 (2018)

Insertion of the completeness relation into Z1D [Eq. 126] results in

Z1D =

∫

d(η̄0,η0)e
−
∑

l η̄l,0ηl,0〈−η0|e−βH|η0〉, (132)

where

〈−η|= 〈0|exp

�

−
∑

l

η̄l cl

�

, (133)

and
∫

d(η̄,η)m =

∫

∏

l

dη̄l,mdηl,m. (134)

The path integral is then formed by the usual time slicing procedure to give

Z1D =

∫ �

∏

m

d(η̄,η)m

�

〈−η0|e−δτH1D |ηL−1〉e−
∑

l η̄l,L−1ηl,L−1

× . . .

× 〈η2|e−δτH1D |η1〉e−
∑

l η̄l,1ηl,1

× 〈η1|e−δτH1D |η0〉e−
∑

l η̄l,0ηl,0

=

∫ �

∏

m

d(η̄,η)m

�

eS1D[η,η̄], (135)

where δτ= β/L and ηl,m is labelled by a spatial index l and an imaginary time index m. Since
H1D [Eq. 125] is normal ordered, its matrix elements are simply calculated using Eq. 129, and

S1D[η, η̄] =
∑

m

�

−δτH1D(η̄m+1,ηm)−
∑

l

η̄l,m+1(ηl,m+1 −ηl,m)

�

. (136)

G.3 Matching the fermionic and Kasteleyn actions

The action, S1D[η, η̄], exactly reproduces the partition function of the nearest-neighbour
TLIAF, but it does this by averaging over some of the degrees of freedom of the Kasteleyn
action. In order to make the mapping explicit, it is necessary to introduce these extra degrees
of freedom into the quantum path integral.

The microscopic relation between the quantum and classical partition functions requires
a correspondence between an imaginary timestep and a translation of the classical system
across 4 bonds in the y direction (see Fig. 36). In the classical set-up the string can hop by a
maximum of one 1D lattice site per imaginary timestep, and the expansion of the quantum
time-translation operator can therefore be truncated to first order without approximation,
giving

e−δτH1D → 1−δτH1D. (137)

However, it can be seen in Fig. 36 that, if the string configuration is only known every 4
bonds (i.e. on the blue dashed lines in Fig. 36), there is an ambiguity, since a string can take
two possible routes that leave its x coordinate invariant. In terms of the original Ising spins,
these two possible routes describe different configurations. In order to explicitly describe all
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Figure 36: A redrawing of the honeycomb/brick lattice that clarifies the mapping between
the nearest-neighbour TLIAF in the constrained manifold and H1D [Eq. 125]. H1D translates the
strings/fermions (purple lines) by four bonds, from dashed blue line to dashed blue line (the four
possible paths are shown). Knowing the string/fermion configuration only on the blue dashed lines
does not completely specify the Ising configuration, since the string can take two possible routes that
result in no change in its x position. As a result, it is necessary to introduce into the coherent-state path
integral extra states that take into account the string/fermion configuration on the red dashed lines
(see Eq. 140). In order to do this the Hamiltonian is split into Hl and Hr , describing hopping to the
left and right [Eq. 138].

the classical degrees of freedom, it is necessary to consider the translation of a string by only
2 bonds at a time, and therefore the quantum Hamiltonian is split into

Hl =
∑

l

�

−(z − 1)c†
l cl − zc†

l−1cl

�

, Hr =
∑

l

�

−(z − 1)c†
l cl − zc†

l+1cl

�

, (138)

where the effect of the non-Hermitian operator Hl is to translate from the blue to red dashed
lines in Fig. 36, while Hr translates from red to blue dashed lines. It is clear from Fig. 36 that
Hl only includes left-hopping while Hr only includes right-hopping. The coefficients of Hl
and Hr have been chosen such that the matrix elements obey the relationship

〈nm+1|(1−δτH1D)|nm〉=
∑

{u}

〈nm+1|(1−δτrHr)|u〉〈u|(1−δτlHl)|nm〉, (139)

with {u} a complete set of states in any Hilbert-space basis and δτ= δτl +δτr . Furthermore
we have set δτl = δτr = 1 to correspond to the lattice spacing of the classical model.

The splitting of the Hamiltonian can be built into the coherent-state path integral by in-
troducing sets of intermediate coherent states that are associated with the red dashed lines in
Fig. 36. These are labelled by θ , and the resulting path integral is

Z =
∫ �

∏

m

d(η̄,η)md(θ̄ ,θ )m

�

〈η0|e−Hr |θL−1〉 e−
∑

l θ̄l,L−1θl,L−1

× 〈θL−1|e−Hl |ηL−1〉 e−
∑

l η̄l,L−1ηl,L−1

× . . .

× 〈η2|e−Hr |θ1〉 e−
∑

i θ̄i,1θi,1〈θ1|e−Hl |η1〉 e−
∑

i η̄i,1ηi,1

× 〈η1|e−Hr |θ0〉 e−
∑

i θ̄i,0θi,0〈θ0|e−Hl |η0〉 e−
∑

i η̄i,0ηi,0

=

∫ �

∏

m

d(η̄,η)md(θ̄ ,θ )m

�

eS1D[η,η̄,θ ,θ̄], (140)

where

S1D[η, η̄,θ , θ̄] =
∑

l,m

�

−η̄l,mηi,m − θ̄l,mθl,m + z(η̄l,m+1θl,m + η̄l+1,m+1θl,m + θ̄l,mηl,m + θ̄l−1,mηl,m)
�

. (141)
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The fermionic action is now in a form that can be directly compared with the Kasteleyn
action S2[a1, b1, a2, b2] [Eq. 120]. It can be seen that these can be brought to the same form
simply by identifying

ηl,m→ a1,i , η̄l,m→ b1,i , θl,m→ a2,i , θ̄l,m→ b2,i , (142)

where there is an equivalence between i, which labels the unit cells in the 2D lattice, and (l, m),
which labels the sites and timeslices in the 1D quantum problem. This justifies the mapping
between the quantum and classical coefficients given in Eq. 51.

G.4 Matching the classical and quantum spectrums

As well as showing how the Kasteleyn and fermionic coherent state actions can be brought to
the same form, it is also useful to show the link between the spectrums. Since the fermions/strings
are free, the partition functions can be simply evaluated by Fourier transform, and the spec-
trums compared.

The Kasteleyn spectrum is given by |εK
p | [Eq. 124], and the partition function, Zhon [Eq. 122]

is the product of this spectrum.
The fermionic spectrum is (see Appendix C.5)

ωpx
= 2t cos px −µ= 2z2(cos px − 1) + 1, (143)

and this appears in the Fourier transform of S1D[η, η̄] [Eq. 136],

S1D[η, η̄] =
∑

p

ε1D
p η̄pηp, (144)

where δτ= 2 has been used,

ε1D
p = −ωpx

eipy − 1+ eipy , (145)

and

η̄p =
1
L2

∑

l,m

η̄l,mei(l px+mpy), ηp =
1
L2

∑

l,m

ηl,me−i(l px+mpy). (146)

Since the action is diagonal, the partition function is just given by

Z1D =
∏

p

ε1D
p . (147)

The equivalence between Zhon [Eq. 122] and Z1D is now clear since the modes can be matched
according to

εK
p = −eipyε1D

px+π,−py−π
= −ωpx+π + eipy + 1. (148)

In conclusion, there is an exact mapping between the Kasteleyn action and that of the
fermionic, coherent-state path integral with Hamiltonian H1D [Eq. 125]. This mapping also
makes it clear that the Grassmann variables introduced in the Kasteleyn formulation of the
classical partition function describe coherent states of strings, and therefore demonstrates the
link between the Kasteleyn and transfer matrix approach to solving the nearest-neighbour
TLIAF.
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H Perturbative expansion of the action: a simple example

The Grassmann path integral representation of interacting dimer problems, as used in Ap-
pendix E.2, is not unknown [61,66] but has not been widely explored in the literature. As an
aid to the interested reader, we here consider Zhon2 [Eq. 72], and show a worked example of
how to evaluate this partition function via Grassmann path integration on the simplest, non-
trivial lattice: the hexagonal plaquette. This provides useful insights into the construction of
a perturbation theory for the infinite lattice, as presented in Appendix E.2.

Figure 37: Dimer covering and Grassmann path integral representation of the partition function
for the hexagonal plaquette. The interacting dimer model, Zhon2 [Eq. 72], has dimer weight 1 on A
bonds and z on B and C bonds, and there is a weight z2 associated with interactions between dimers
separated by a single unfilled bond. (Top) The two dimer coverings of the hexagonal plaquette are
shown, along with the associated weights. (Bottom) The partition function can be recast as a path
integral over Grassmann variables associated with vertices of the plaquette (red and blue disks). The
action consists of 2, 4 and 6 body interactions, and the allowed 4-body interactions are represented as
orange arrows connecting pairs of bonds.

We consider the dimer covering of a hexagonal plaquette with a dimer weight of 1 on A
bonds, z on B and C bonds and a dimer interaction with weight z2 between dimers separated
by one unfilled bond (see Fig. 37). For a single plaquette there are only two possible dimer
coverings, shown in Fig. 37, and each of these has a weight z2z3

2 . The partition function, Zhon2

[Eq. 72], is therefore given by

Zhon2 = 2z2z3
2 = 2z2

�

(z2 − 1)3 + 3(z2 − 1)2 + 3(z2 − 1) + 1
�

, (149)

where the second equality is an exact rewriting that will prove useful below.
While in such a simple case the partition function can be calculated exactly just by inspec-

tion, it is instructive to perform the calculation via the Grassmann path integral representation.
On a finite lattice the highest order term in the action is S2N [a, b], where 2N is the number
of honeycomb lattice sites, and for the 6-site plaquette the partition function can therefore be
rewritten as

Zhon2 =

∫

∏

i

daid bi eS2[a,b]+S4[a,b]+S6[a,b], (150)

where i = {1, 2,3}.
The quadratic term in the action does not take into account the z2 interaction, and is given

by

S2 = b1a1 + b3a3 + z (a1 b2 + b1a2 + b2a3 + a2 b3) . (151)
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If the action is truncated at quadratic order, then the usual rules of Grassmann integration can
be used to find

∫

∏

i

daid bi eS2[a,b] = 2z2. (152)

Comparison with the exact value of the partition function [Eq. 149] shows that this quadratic
approximation becomes exact in the limit z2 − 1→ 0.

The quartic term in the action takes into account pairwise interactions of the dimers in
isolation from other pairwise interactions, and is given by

S4 =z(z2 − 1) (b1a1 b2a3 + b1a1a2 b3 + b3a3a1 b2 + b3a3 b1a2)

+z2(z2 − 1) (b1a2a1 b2 + a2 b3 b2a3) . (153)

The factor z2 − 1 is chosen such that if there were a configuration with only 1 dimer-dimer
interaction, the -1 would remove the contribution from the purely quadratic action, while the
z2 would replace this with a contribution that takes the interaction into account. In the case
of the hexagonal plaquette the allowed dimer configurations contain 3 mutually interacting
dimers, and this mutual interaction is not fully taken into account by the quartic term. Direct
evaluation results in

∫

∏

i

daid bi eS2[a,b]+S4[a,b] = 2z2 [3(z2 − 1) + 1] , (154)

reproducing the exact partition function [Eq. 149] to first order in z2 − 1.
Finally, the hexatic term takes into account the fact that the dimers are not interacting in

isolation, but are all mutually interacting, and is given by

S6 = z2
�

z3
2 − 3(z2 − 1)− 1

�

(b1a1 b2a3a2 b3 + b1a2a1 b2a3 b3)

= z2
�

(z2 − 1)3 + 3(z2 − 1)2
�

(b1a1 b2a3a2 b3 + b1a2a1 b2a3 b3), (155)

where in the first line the −1 removes the contribution from the quadratic action, the 3(z2−1)
removes the contribution trom the quartic action and the z3

2 replaces these with a contribution
that correctly reproduces the weight of three mutually interacting dimers. Direct calculation
including quadratic, quartic and hexatic terms correctly reproduces Eq. 149 for the partition
function,

∫

∏

i

daid bi eS2[a,b]+S4[a,b]+S6[a,b]

= 2z2
�

(z2 − 1)3 + 3(z2 − 1)2 + 3(z2 − 1) + 1
�

= 2z2z3
2 . (156)

As the lattice size is increased, it rapidly becomes impossible to determine the partition
function by inspection. A full expansion of the partition function in terms of Grassmann vari-
ables also becomes complicated due to the increase in the number of terms in the action.
However, the advantage of this method is that it provides a way of systematically carrying out
perturbation theory around the non-interacting limit |z2−1| → 0. For large or infinite lattices
direct evaluation of Grassmann actions with quartic and higher order interacting terms is not
possible, but approximate diagrammatic methods can be used, and the order of expansion
matched to that of the truncation of the action.
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