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Abstract

We investigate the short-time regime of the KPZ equation in 1+1 dimensions and develop
a unifying method to obtain the height distribution in this regime, valid whenever an ex-
act solution exists in the form of a Fredholm Pfaffian or determinant. These include the
droplet and stationary initial conditions in full space, previously obtained by a different
method. The novel results concern the droplet initial condition in a half space for sev-
eral Neumann boundary conditions: hard wall, symmetric, and critical. In all cases, the
height probability distribution takes the large deviation form P(H, t) ∼ exp(−Φ(H)/

p
t)

for small time. We obtain the rate function Φ(H) analytically for the above cases. It has a
Gaussian form in the center with asymmetric tails, |H|5/2 on the negative side, and H3/2

on the positive side. The amplitude of the left tail for the half-space is found to be half
the one of the full space. As in the full space case, we find that these left tails remain
valid at all times. In addition, we present here (i) a new Fredholm Pfaffian formula for
the solution of the hard wall boundary condition and (ii) two Fredholm determinant rep-
resentations for the solutions of the hard wall and the symmetric boundary respectively.
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1 Introduction

Many recent works study the continuum KPZ equation in one dimension [1–7]which describes
the stochastic growth of an interface parameterized by a height field h(x , t) at point x and time
t as

∂th(x , t) = ν∂ 2
x h(x , t) +

λ0

2
(∂xh(x , t))2 +

p
Dξ(x , t) , (1)

starting from a given initial condition h(x , t = 0). Here ξ(x , t) is a centered Gaussian white
noise with E

�

ξ(x , t)ξ(x ′, t ′)
�

= δ(x − x ′)δ(t − t ′), and we use from now on units of space,
time and heights1,2 such that λ0 = D = 2 and ν = 1 . Exact solutions have been found for
several initial conditions, notably flat, droplet and stationary [8–16], and, remarkably, can be
expressed using Fredholm determinants or Pfaffians. The typical behavior of the KPZ height
fluctuations has been obtained from them, and related to the so-called Tracy Widom distri-
butions in the large time limit (i.e. the distributions of the largest eigenvalues of standard
Gaussian random matrix ensembles).

Recently, the large deviations away from the typical behavior have been studied. Unlike
diffusive interacting particle systems for which powerful methods [17, 18] were developed,
systems in the KPZ class have required to develop new theoretical methods. A number of
results have been obtained for the short time regime t � 1. They all agree that the probabil-
ity density function (PDF), P(H, t), of the properly shifted height at one space point x = 0,
denoted H, takes the large deviation form

log P(H, t)'t�1 −
Φ(H)
p

t
, (2)

where Φ(H) is the short time large deviation rate function, which depends on the initial condi-
tion. Two independent methods have been developed to show (2) and obtain properties of the
rate function. The first method is the weak noise theory (WNT), pioneered in Ref. [19–21],
which allows to obtain Φ(H) (i) for any H, from a numerical solution of saddle point differen-
tial equations (ii) analytically in the limits of large |H| (and small |H|) for a variety of initial
conditions [22–27]. The second method uses the exact solutions mentioned above and lead to
an exact formula for Φ(H) for arbitrary H. It has been achieved for the droplet initial condition
(IC) [28] (with an impressive confirmation from high precision numerics [29]) and for the sta-
tionary IC [30]. Remarkably, it has been recently shown that the exact formula for the flat IC
is also contained in Ref. [30], up to a proper rescaling (i.e. one has Φflat(H) = 2−3/2Φstat(2H)
choosing the analytic branch contained in Eqs. (28,29,30,31) of Ref. [30] with the label ana-
lytic). All of these results however concern the KPZ equation in the full space.

Here, we consider the KPZ equation in a half-space, where Eq. (1) is considered for x ∈ R+

along with the Neumann boundary condition (b.c.)

∀t > 0, ∂xh(x , t) |x=0= A, (3)

where A is a real parameter which describes the interaction with the boundary (a wall at
x = 0). This problem was considered in a pioneering paper by Kardar [31] in the equivalent
representation in terms of a directed polymer near a wall. An unbinding transition to the wall

1Note that Refs. [22–25] use a sign of λ0 opposite to ours (we use the same notations as in Refs. [28, 30]).
Equivalently, the variable H is opposite to ours, which exchanges right and left tails.

2This is equivalent to use everywhere the following units of space, time and heights :
x∗ = (2ν)3/(Dλ2

0), t∗ = 2(2ν)5/(D2λ4
0), h∗ = 2ν

λ0
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was predicted for A = −1/2 (and later observed in numerical simulations [32]). Here and
below we restrict to the droplet IC

h(x , t = 0) = −
|x − ε|
δ

− logδ, (4)

with δ� 1 and where ε = 0+ is introduced to regularize the solution when it is not properly
defined at x = 0, as it is the case for A= +∞.

Exact solutions of this half-space problem, for the height at the origin at all times t, have
been obtained in three cases [33–35] and can be expressed in terms of Fredholm Pfaffian. For
A = +∞, which corresponds to an (absorbing) hard wall in terms of the directed polymer,
the PDF of the height converges at large time, in the typical regime H ∼ t1/3, to the Tracy-
Widom (TW) distribution associated to the Gaussian Symplectic Ensemble (GSE) of random
matrices [33]. For A= 0, which corresponds to a reflecting wall (a.k.a. the symmetric case),
the large time limit of the PDF also corresponds to the TW-GSE distribution [34]. For A= −1

2 ,
i.e. the critical case, the large time PDF in the typical regime is given by the Tracy Widom dis-
tribution associated to the GOE [35]. These exact solutions can be used to calculate the large
deviations both in the short time and the large time regime. Concerning the large time, the
tails of the PDF of the height in the typical regime H ∼ t1/3 are summarized in the following
Table 1.

Table 1: Tails of the PDF of the centered height H for large time t � 1 in the typical
fluctuation regime H ∼ t1/3 in the various cases.

ensemble droplet IC left tail H �−t1/3 right tail H � t1/3

GUE full-space e−
1
12 H3/t e−

4
3 H3/2/t1/2

GOE A= −1/2 e−
1
24 H3/t e−

2
3 H3/2/t1/2

GSE A= 0,∞ e−
1
24 H3/t e−

4
3 H3/2/t1/2

As we discuss below these tails in typical regime are distinct from, but should match the
large deviation tails discussed below. We now turn again the short time large deviations.

In this paper we use these exact solutions to establish (2) for the half-space problem and
to calculate the large deviation rate function Φ(H) at short time for the above three cases. The
method developed here generalizes the one introduced in [36] and applied there to the full
space problem at large and short time respectively, and to the half-space critical case A= −1/2
in the large time regime. It is much simpler than the one used previously in [28,30]. It is based
on the representation of a generating function of the KPZ field as an expectation value of a
"Fermi factor" over a determinantal or Pfaffian point process. This expectation value can be
expanded in cumulants, and its truncation to the first cumulant already yields the exact rate
function Φ(H) at short time. Here we present this method in its most general formulation,
so it can be applied readily to a variety of problems (including e.g. multicritical fermions,
see [37]).

Our main results are listed in the following section and can be summarized as follows.
The definition of the properly centered height H (such that E[H] = 0) in terms of h(0, t) is
given in Table 2 for each of the three cases. The rate function Φ(H) is determined from an
auxiliary function Ψ, equivalently from (i) an implicit equation (11) (ii) a parametric system
(12) and (13). The function Ψ, which is the large deviation rate function of the Fredholm
determinant (or Pfaffian) itself, is determined by the density of the associated point process
ρ∞ via equation (9). The density ρ∞ is given explicitly in the Table 2 for each of the three
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cases (the factor χ is also given there). From these formula one can derive the explicit behavior
around the center of the distribution, i.e. for small |H|, which is Φ(H) ' H2/(2C2) and the
second cumulant E[H2]' C2

p
t where C2 is given in the Table 2. Higher orders in the power

series expansion of Φ(H) and the higher cumulants of H are also given in the Table 2.
The tails of the large deviation rate function are given in the Table 2. We find that the left

tail exhibits the 5/2 exponent, Φ(H) 'H→−∞
2

15π |H|
5/2, with an amplitude which is half of

the amplitude of the full space solution with droplet initial conditions. For the right tail we
find the usual 3/2 exponent, with two distinct cases for the amplitude. For A= +∞ we find
Φ(H)'H→+∞

4
3 H3/2 while for A= 0,−1/2 we find Φ(H)'H→+∞

2
3 H3/2 as indicated.

Furthermore, we find that for both values A= −1/2 and A= 0 the full rate function Φ(H)
is equal to 1

2Φfull−space(H) (both for droplet initial conditions)3. In the two tails, this agrees
with the result given in the previous paragraph, together with the formula given [23, 28] for
the tails of the full space problem. Only the rate function for A= +∞ is unrelated to the ones
found in previous studies. Moreover, a perturbative expansion of the stochastic heat equation,
equivalent to the KPZ equation, shows that the relevant parameter is A

p
t, hence at short time

we expect that any finite A has identical rate function. This is in agreement with the cases
A= 0 and A= −1/2 explicitly solved here.

In addition to the interest in the large deviations of the KPZ equation at short time, re-
cent works have studied the large deviations at large time t � 1 [36, 38–41]. The left tail
was argued quite generally to take the form log P(H, t) 't�1 −t2Φ−(H/t) for large negative
fluctuations −H ∼ t. [38]. In recent works the explicit expression of Φ−(z) for droplet ini-
tial conditions in the full space was obtained (i) using a WKB type approximation [39] on a
non local Painleve type equation representation of the exact solution derived in [11] (ii) using
Coulomb gas methods [41]. It exhibits a crossover between a cubic tail Φ−(z)' z3/12 (match-
ing the Tracy Widom distribution [38]) and a 5/2 tail exponent Φ−(z) '

4
15πz5/2. The latter

can be readily obtained [36] using the method of truncation to the first cumulant described
above, and is identical to the tail behavior at short time (a signature that the left tail remains
identical at all times [41]). A similar result was obtained for the half-space with droplet ini-
tial condition and A = −1/2 in [41] with the result that Φhalf−space

− (z) = 1
2Φ

full−space
− (z) (see

also [36]). In this paper we extend some of these results to the cases A= 0 and A= +∞. We
establish that in all cases log P(H, t) 't�1 −

2
15πH5/2/t1/2 in the regime −H/t � 1. Further

arguments leads us to conjecture that Φhalf−space
− (z) = 1

2Φ
full−space
− (z) for all A> −1/2. One can

check that the small z cubic behavior of these large deviation predictions matches perfectly
the left tails of the typical regime see Table 1.

Finally one can ask how the tails evolve in time. From the results mentionned in the two
previous paragraphs we see that the |H|5/2 left tails have identical prefactor at short and large
times for all cases. For the right |H|3/2 tails we can compare the above results for short time
and the tail behavior in the typical region in Table 1. The prefactors are identical for for
A = −1/2 and A = +∞ suggesting that the right tail is established at early times and does
not change after that. However for A= 0 it has prefactor 2/3 for short time and 4/3 for large
time, suggesting some evolution with time, or a more complex tail structure (which may be
associated to A= 0 not being a critical fixed point)4.

In the case of the hard wall, we have obtained a new useful representation of the exact
solution at all times in terms of a Fredholm Pfaffian with a matrix valued kernel which we
show is equivalent to the solution of [33] expressed in terms a Fredholm determinant with
a scalar valued kernel. The interest of this representation is to provide a connection with
a Pfaffian point process that converges at large time to the GSE. In addition, we have also

3Note for A= 0 a similar result was mentionned (without details) in [27] on the basis of WNT.
4We also rely on the conjectured exact solution in [34]

5

https://scipost.org
https://scipost.org/SciPostPhys.5.4.032


SciPost Phys. 5, 032 (2018)

generalized this connection to a broader class of matrix valued kernels which should be useful
to study further properties of determinantal point processes.

The outline of the paper is as follows. Two types of new results for the solutions of the
KPZ equation in half space for the droplet IC are provided here. In Sections 3 and 4 we
develop a unifying method to study the exact large deviation rate function Φ at short time,
valid whenever a Pfaffian or determinantal representation of the exact solution is available.
We apply this framework in Sections 5, 6 and 7 to the three cases A= +∞,−1

2 , 0. We provide
in Section 5 a new kernel representation for the hard wall case A= +∞ in terms of a Fredholm
Pfaffian. In Section 8, we study the short time perturbation theory of the KPZ equation in half-
space and argue that at short time there exists only two fixed points for the large deviation rate
function Φ given by the A =∞ case and the A = 0 case. Finally, in Section 9, following the
approach of [36,41], we show that the left tail, i.e. the left asymptotics of Φ remains valid at
all times. In addition to some technical details present in Appendix A, C and D, we present in
Appendix B our connection mentionned above between Fredholm Pfaffians with matrix valued
kernels and Fredholm determinants with scalar valued kernels.

2 Presentation of the main results

We give in this section a summary of the new results of this paper. Firstly, we exhibit a new
kernel representation for the hard wall case A = +∞. Secondly, we present some general
mathematical rules to obtain properties about the short time distribution of the KPZ solution.
A visual summary is given in Table 2.

2.1 A new kernel for the hard wall

A new identity for the moment generating function of the Cole-Hopf solution of the KPZ equa-
tion for the hard wall A= +∞ case is given for z ≥ 0 as

EKPZ

�

exp
�

−zeH1
�

�

= 1+
∞
∑

ns=1

(−1)ns

ns!

ns
∏

p=1

∫

R
drp

z

z + e−t1/3rp
Pf
�

K(ri , r j)
�

ns×ns
, (5)

where H1 = h(ε, t) + t
12 − 2 logε for ε� 1, the expected value of the l.h.s of (5) is taken over

the realization of the KPZ white noise, and K is a 2× 2 block matrix with elements

K11(r, r ′) =

∫

Cv

∫

Cw

dvdw

(2iπ)2πt
1
3

v −w
v +w

Γ (2vt−
1
3 )Γ (2wt−

1
3 ) cos(πvt−

1
3 ) cos(πwt−

1
3 )e−rv−r ′w+ v3+w3

3 ,

K22(r, r ′) =

∫

Cv

∫

Cw

dvdw

(2iπ)2πt
1
3

v −w
v +w

Γ (2vt−
1
3 )Γ (2wt−

1
3 ) sin(πvt−

1
3 ) sin(πwt−

1
3 )e−rv−r ′w+ v3+w3

3 ,

K12(r, r ′) =

∫

Cv

∫

Cw

dvdw

(2iπ)2πt
1
3

v −w
v +w

Γ (2vt−
1
3 )Γ (2wt−

1
3 ) cos(πvt−

1
3 ) sin(πwt−

1
3 )e−rv−r ′w+ v3+w3

3 ,

K21(r, r ′) = −K12(r
′, r).

(6)

The contours Cv and Cw must both pass at the right of 0 because of the Γ functions as
Cv,w =

1
2 av,w + iR for av,w ∈]0, t1/3[ and they must be such that Re(v + w) > 0 for the de-

nominators to be well defined. We additionally have the Pfaffian point process identity for

6
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z ≥ 0

EKPZ

�

exp
�

−zeH1
�

�

= EK





∞
∏

i=1

1

1+ zet1/3ai



 , (7)

where the r.h.s of (7) is an average over the Pfaffian point process with kernel K that generates
the set {ai}i∈N. Note that it can also be written as a Fredholm Pfaffian, see Section 3.1. For
the definition of a Pfaffian point process see [42–44]. For the definition and properties of
Fredholm Pfaffians see Sec. 8 in [42], as well as e.g. Sec. 2.2. in [45], Appendix B in [46]
and Appendix G in [12,13]. These results are shown in Section 5.1.

2.2 A unifying method for the large deviations at short time

Whenever a Pfaffian or determinantal representation exists for the moment generating func-
tion of the partition function Z = eH1 as in (7), we present a general method and general
mathematical rules to obtain the exact distribution of H1 at short time. This method extends
the ones used in [28] and [30] for the droplet and stationary initial conditions respectively in
the full space.

Result 1 (Short time large deviations properties). We suppose that the KPZ equation has been
solved and yields for the moment generating function of the partition function the following
Fredholm Pfaffian point process representation for z ≥ 0

EKPZ

�

exp

�

−
zα
p

t
eH1

�

�

= EK





∞
∏

i=1

1

[1+ zet1/3ai ]χ



 , (8)

for some α > 0, χ > 0 and a set of points {ai}i∈N forming a Pfaffian point process with a 2×2
kernel (Ki j)i, j=1,2. We suppose the following properties on the off-diagonal kernel

1. K12(at−1/3, at−1/3) 't�1 t−1/6ρ∞(a)θ (a ≤ Ξ) for some finite Ξ <∞ where θ is the
Heaviside function.

2. ρ∞ is positive real-valued and strictly decreasing on ]−∞,Ξ] and grows towards −∞
as ρ∞(a)'−a�1 β1[−a]γ1 for some β1 > 0 and γ1 > 0.

3. ρ∞ vanishes algebraically at the right edge Ξ as ρ∞(a) 'a→Ξ (Ξ − a)ν for some
0< ν≤ 1.

4. The extension of ρ∞ on the interval ]Ξ,+∞[ is purely imaginary-valued and grows
toward +∞ as ρ∞(a) 'a�1 β2[−a]γ2 for some β2 > 0 and γ2 > 0. It requires γ2 to be
half-integer as discussed below.

We introduce the functions Ψ defined on
�

−e−Ξ,+∞
�

and f defined on ]0,+∞[

Ψ(z) = χ

∫ Ξ

−∞
da log(1+ zea)ρ∞(a), f (y) = χ

∫ Ξ

− log y
dvρ∞(v). (9)

Then, the random variable defined as H = H1 + logα− logΨ′(0) is centered, i.e. E[H] = 0,
and its probability density function takes the large deviation form at short time

log P(H, t) '
t�1
−
Φ(H)
p

t
. (10)
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Introducing the “branching field" Hc = log[Ψ′(−e−Ξ)/Ψ′(0)], see Section 4.2, Φ is the solution
of the implicit equations

∀H ≤ Hc , Φ(H)−Φ′(H) = Ψ(−
e−HΦ′(H)
Ψ′(0)

),

∀H ≥ Hc , Φ(H)−Φ′(H) = Ψ(−
e−HΦ′(H)
Ψ′(0)

) + 2iπ f (
e−HΦ′(H)
Ψ′(0)

),
(11)

or equivalently of the parametric equations

• ∀H ≤ Hc , or equivalently, ∀z ∈ [−e−Ξ,+∞[ (see Section 4.1)

Ψ′(0)eH = Ψ′(z),

Φ(H) = Ψ(z)− zΨ′(z).
(12)

• ∀H ≥ Hc , or equivalently, ∀z ∈ [−e−Ξ, 0[ (see Section 4.2)

Ψ′(0)eH = Ψ′(z)− 2iπ f ′(−z),

Φ(H) = Ψ(z)− zΨ′(z) + 2iπ f (−z) + 2iπz f ′(−z).
(13)

The properties of Φ are the following :

1. Φ is analytic, i.e. infinitely differentiable everywhere on the real line, see Section 4.8.

2. Φ is quadratic for small argument, i.e. Φ(0) = Φ′(0) = 0, Φ′′(0) = −Ψ′(0)2/Ψ′′(0) so
that the distribution of H is gaussian for small H around 0. The second cumulant of H
is E[H2] = − Ψ

′′(0)
Ψ′(0)2

p
t and the higher ones are provided in Section 4.3 Eq. (45).

3. The left tail of Φ is Φ(H)'H→−∞
χβ1

(γ1 + 1)(γ1 + 2)
|H|γ1+2, see Section 4.6.

4. The right tail of Φ is Φ(H)'H→+∞
2πχβ2

γ2 + 1
Hγ2+1, see Section 4.7.

Remark 2.1 (Determinantal point process). This unifying method is also valid for a determinan-
tal point process with Kernel K up to the replacement of K12(at−1/3, at−1/3) in the Hypothesis
1 by K(at−1/3, at−1/3).

Remark 2.2 (Dynamical phase transition). Under our set of hypothesis, as Φ is analytic, there
cannot be a dynamical phase transition for the large deviation statistics. In Ref. [30], it was
shown exactly for the Brownian initial condition that Φ exhibits a singularity in its second
derivative. The reason for that is that in the Brownian case, the Hypothesis 4 about the growth
of ρ∞ is violated. This phase transition was unveiled in the context of WNT [24,26].

This very general framework is then applied to specific examples: we summarize below the
results and properties obtained for the half-space droplet KPZ solution for A= +∞,−1

2 , 0 re-
spectively in Sections 5, 6 and 7. The general features have been discussed in the Introduction
and the details are summarized in the following Table 2.

8

https://scipost.org
https://scipost.org/SciPostPhys.5.4.032


SciPost Phys. 5, 032 (2018)

Table 2: Summary of results

Properties A= +∞ A= 0 A= − 1
2

Fermi factor power χ 1 1 1
2

ρ∞(a)
1

2π [
p

−W−1(−ea)−
p

−W0(−ea)] 1
2π

p
−a 1

π

p
−a

Edge Ξ -1 0 0

Left asymptotics of ρ∞
1

2π

p
−a 1

2π

p
−a 1

π

p
−a

Edge cancellation of ρ∞
p
−1− a

p
−a

p
−a

Right asymptotics of ρ∞ i 1
π

p
a i 1

2π

p
a i 1

π

p
a

Centered field H h(ε, t) + t
12 − log ε2

p
4πt3/2 (ε→ 0+) h(0, t) + t

12 +
1
2 log(πt)

Second cumulant E[H2]c 3
2

q

πt
2

p
2πt

Third cumulant E[H3]c
�

160
27
p

3
− 27

8

�

πt 2
9 (16
p

3− 27)πt

Fourth cumulant E[H4]c 5
144

�

567+ 486
p

2− 512
p

6
�

π3/2 t3/2 8
3

�

18+ 15
p

2− 16
p

6
�

π3/2 t3/2

Fifth cumulant E[H5]c
�

− 10296145
23328 −

4725
8
p

2
8

225 (−39625− 27000
p

2

+400
p

3+ 1161216
3125

p
5

�

π2 t2

+36000
p

3+ 6912
p

5)π2 t2

Branching field Hc 0.9795 0.9603

Left tail of Φ 2
15π |H|

5/2 2
15π |H|

5/2

Right tail of Φ 4
3 H3/2 2

3 H3/2

Is Φ analytic ? yes yes

Note that W0 and W−1 are the two real branches of the Lambert function, i.e. W (z)eW (z) = z,
see Appendix A for more details and [47] for a review about the Lambert function.

3 Large deviation of the moment generating function from the
first cumulant

3.1 Introduction to the cumulant method

Throughout this section we assume that the KPZ equation has been solved and yields for the
moment generating function of the partition function the following Fredholm Pfaffian repre-
sentation for z ≥ 0

EKPZ

�

exp

�

−
zα
p

t
eH

�

�

= EK





∞
∏

i=1

1

[1+ zet1/3ai ]χ



 , (14)
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for some α > 0, χ > 0 and properly shifted height field H, where the set {ai}i∈N forms a
Pfaffian point process

EK





∞
∏

i=1

1

[1+ zet1/3ai ]χ



= Pf
�

J −σt,zK
�

, (15)

with the 2× 2 kernels K and J , the generalized Fermi factor σt,z being defined as

J(r, r ′) =
�

0 1
−1 0

�

1r=r ′ , K =
�

K11 K12
K21 K22

�

, σt,z(a) = 1−
1

[1+ zet1/3a]χ
. (16)

K should be anti-symmetric, therefore K21(r, r ′) = −K12(r ′, r). The expectation value on the
l.h.s of (14) is taken over the realization of the KPZ white noise and the one on the r.h.s of
(14) is taken over the Pfaffian point process.

Remark 3.1. The coefficient α accounts for an eventual shift in the solution of the KPZ equation
to center its distribution around 0.

Remark 3.2. For the solved cases of the KPZ equation which fulfill the Pfaffian representation
(14), we have χ = 1 or χ = 1

2 .

Introducing the function ϕt,z(a) = χ log(1+ zet1/3a) (and subsequently dropping the sub-
script), using the identities Pf [J −σK]2 = Det [1+σJK], log Det = Tr log and series expand-
ing log(1− x), we write the logarithm of (15) as

logEK



exp

 

−
∞
∑

i=1

ϕ(ai)

!



= −
1
2

∞
∑

p=1

1
p

Tr
�

(e−ϕ − 1)JK
�p

. (17)

Expanding this series in powers of ϕ leads to the cumulant expansion of the Pfaffian

−
1
2

∞
∑

p=1

1
p

Tr
�

(e−ϕ − 1)JK
�p
=
∞
∑

n=1

κn

n!
. (18)

where the n-th cumulant κn is defined as n! times the term of order ϕn in this expansion. The
idea to introduce the cumulant expansion at short time originates from Refs. [36] where it
was observed that the first cumulant yields the entire large deviation function for the moment
generating function (14), previously calculated in [28,30] for the droplet and stationary ICs in
full-space, through an involved resummation of traces arising from expanding Fredholm de-
terminants. Here and below, we follow this approach that we call the cumulant approximation
which states that at short time

logEK



exp

 

−
∞
∑

i=1

ϕ(ai)

!



 '
t�1

κ1. (19)

The validity of this approximation can be understood as follows. As seen from Eq.
(17), the cumulants κn are the ones of the random variable X =

∑∞
i=1ϕ(ai) where

ϕ(a) = χ log(1 + zet1/3a) and the set {ai} forms a Pfaffian point process. In the limit t � 1
many of the ai ’s contribute to the sum, and by a law of large number, the fluctuations of X
around the mean value are subdominant. This is confirmed by an explicit calculation of higher
order cumulants n ≥ 2 in Ref. [48] where cancellations occur leaving only subdominant
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powers of t.

The first cumulant reads

κ1 =
1
2

Tr(ϕJK) = −Tr(ϕK12)

= −χ
∫

R
da log(1+ zet1/3a)K12(a, a).

(20)

We define the density ρ(a) = K12(a, a) and rescale the integration variable by t−1/3

κ1 = −
χ

t1/3

∫

R
da log(1+ zea)ρ(at−1/3). (21)

As stated in Section 2.2, we suppose the following properties on the asymptotic density

• ρ(at−1/3) 't�1 t−1/6ρ∞(a)θ (a ≤ Ξ) for some finite Ξ <∞ where θ is the Heaviside
function.

• ρ∞ is positive real-valued and strictly decreasing on ]−∞,Ξ] and grows towards −∞
as ρ∞(a)'−a�1 β1[−a]γ1 for some β1 > 0 and γ1 > 0.

• ρ∞ vanishes algebraically at the right edge Ξ as ρ∞(a)'a→Ξ (Ξ− a)ν for some ν > 0.

• The extension of ρ∞ on the interval ]Ξ,+∞[ is purely imaginary-valued and grows
toward +∞ as ρ∞(a) 'a�1 β2[−a]γ2 for some β2 > 0 and γ2 > 0. It requires γ2 to be
half-integer as discussed below.

Remark 3.3. The reason for the extension of ρ∞ to be purely imaginary valued above Ξ comes
from its derivation from the off-diagonal kernel element K12. In the cases studied, K12 is be
defined through a contour integral in the complex plane and ρ∞(a)will be given by the saddle
point of the integrand at short time. The threshold Ξ will be defined by the frontier where
ρ∞(a) turns from being real strictly positive to being purely imaginary. In our cases of interest,
the fact that ρ∞(a) becomes purely imaginary corresponds to an exponential decay for the
kernel K12(at−1/3, at−1/3) for a ≥ Ξ, which we can approximate by a θ function for the density
at short time.

3.2 Large deviation of the moment generating function

Making use of the properties of ρ∞ stated in Section 3.1, we are now able to introduce the
large deviation expression κ1 = −

Ψ(z)p
t

with Ψ defined as

Ψ(z) = χ

∫ Ξ

−∞
da log(1+ zea)ρ∞(a). (22)

Defining the integrated density f (y) = χ
∫ Ξ

− log y dvρ∞(v) and the strictly positive variable

ζ= e−Ξ, we rewrite Ψ using an integration by part and a change of variable y = e−a

Ψ(z) =

∫ +∞

ζ

dy f (y)
z
y

1
y + z

. (23)

To summarize, the cumulant approximation allows to introduce the Large Deviation Principle
for the moment generating function (14) for z ≥ 0

logEKPZ

�

exp

�

−
zα
p

t
eH

�

�

'
t�1
−
Ψ(z)
p

t
. (24)
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Remark 3.4. The moment generating function, i.e. the l.h.s. of (24) is infinite for z < 0, hence
(24) holds only for z ≥ 0. The function Ψ(z) however is also defined for some negative values
of z (i.e. in the interval z ∈ I = [−ζ,+∞[ see below). Accordingly (24) also holds as a power
series in z around z = 0 (and allows to extract the moments EKPZ[enH] see below).

3.3 Analytic properties of f and Ψ

From the definitions of f and Ψ in Eq. (22), one deduces some analytic properties

• f (ζ) = f ′(ζ) = Ψ(0) = 0.

• f is purely imaginary-valued on the interval ]0,ζ].

• Ψ is defined on the interval I = [−ζ,+∞[, is strictly increasing and strictly concave on
I and is infinitely differentiable on

�

−ζ,+∞
�

.

• Ψ has a branch cut in the complex plane along the
�

−∞,−ζ
�

axis.

• Recalling that ρ∞ vanishes algebraically as ρ∞(a) 'a→Ξ (Ξ − a)ν and defining n the
least integer greater than ν, then for all k ≤ n, Ψ(k)(−ζ) are finite, and for all k > n,
Ψ(k)(−ζ) are infinite. The reason for this is that

Ψ(k)(−ζ) = χ(−1)k−1(k− 1)!

∫ Ξ

−∞
da

eka

(1− ea−Ξ)k
ρ∞(a). (25)

Expanding the integrand near the right edge as a = Ξ− ε, we obtain

eka

(1− ea−Ξ)k
ρ∞(a) 'a=Ξ−ε

ek(Ξ−ε)εν−k, (26)

which is integrable if ν+1> k. In particular, as ν is strictly positive, Ψ(−ζ) and Ψ′(−ζ)
are finite.

Remark 3.5. In all studied cases, we have ν≤ 1, hence only the first two orders of Ψ are finite,
i.e. Ψ(−ζ)<∞,Ψ′(−ζ)<∞ and Ψ′′(−ζ) =∞.

3.4 Asymptotics of Ψ at z→ +∞

We investigate the asymptotic properties of Ψ for large positive argument starting from (23).
As it will be discussed in Section 4.6, these asymptotics provide the left tail of the distribution
of the KPZ solution.

Ψ(z) =

∫ +∞

ζ

dy
f (y)

y
1

y
z + 1

. (27)

The denominator of the integrand is close to one for y � z and very large for y � z which
suggests splitting the range of integration at y = z, giving

Ψ(z) =

∫ z

ζ

dy
f (y)

y
−
∫ z

ζ

dy
f (y)

y
1

z
y + 1

+

∫ +∞

z
dy

f (y)
y

1
y
z + 1

. (28)

Similarly to the computation of the asymptotics of the polylogarithm function [49] one shows
that the first integral is the leading term for large argument

Ψ(z) '
z→+∞

∫ z

ζ

dy
f (y)

y
= χ

∫ log z

−Ξ
dr

∫ r

−Ξ
dvρ∞(−v). (29)
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Recalling that ρ∞ has a polynomial growth for large negative argument
ρ∞(v) '−v�1 β1[−v]γ1 for some β1 > 0 and γ1 > 0, the integral (29) is asymptotically
equal to

Ψ(z) '
z→+∞

χβ1

(γ1 + 1)(γ1 + 2)
[log z]γ1+2. (30)

Remark 3.6. For all observed cases, we found that ρ∞ has a square root divergence for large

negative argument, ρ∞(a)'−a�1 β1

p

|a|, i.e γ1 =
1
2

, hence Ψ(z) '
z→+∞

4χβ1

15
[log z]

5
2 .

3.5 Analytic continuation of Ψ

As Ψ exhibits a branch cut along the interval
�

−∞,−ζ
�

, one can define its extension from the
complex plane to a Riemann surface. Starting from the formulation (23)
Ψ(z) =

∫ +∞
ζ

dy f (y) z
y

1
y+z , one uses the following expression that makes sense in distribu-

tion theory to study the jump of Ψ across the branch cut
�

−∞,−ζ
�

lim
ε→0

1
y + z ± iε

=P (
1

y + z
)∓ iπδ(−z), (31)

and defines ∆ to be the jump of Ψ across the branch cut
�

−∞,−ζ
�

.

∆(z) = lim
ε→0
[Ψ(z + iε)−Ψ(z − iε)] = 2iπ f (−z). (32)

We consequently define the continuation of Ψ as a multi-valued function Ψcontinued defined
on [−ζ, 0[ and consider the multi-valuation as the projection of Ψ, viewed as a function on a
Riemann surface, onto the complex plane.

∀z ∈ [−ζ, 0[, Ψcontinued(z) = Ψ(z) + 2iπ f (−z). (33)

The imaginary valuation of f on ]0,ζ] makes sense as Ψcontinued should be real-valued for
physical reasons. The regularity of the continuation Ψ → Ψcontinued will be controlled by the
behavior of f around ζ.

3.6 Behavior of f for small positive argument

We investigate the function f for an argument in the interval ]0,ζ[ and more particularly, we
will characterize the possible divergence of f for small positive argument which provides the
right tail of the distribution of the KPZ equation as discussed in Section 4.7.

f (y) = χ

∫ Ξ

− log y
dvρ∞(v). (34)

Recalling that the extension of ρ∞ on the interval ]Ξ,+∞[ is purely imaginary-valued and
grows toward +∞ as ρ∞(a) 'a�1 β2[−a]γ2 for some β2 > 0 and γ2 > 0, then for small
positive argument y , f will asymptotically be equal to

f (y) '
y→0+

χβ2

γ2 + 1
[log y]γ2+1. (35)

To be purely imaginary, we also require γ2 to be a half-integer of the form m+ 1
2 so that

f (y) '
y→0+

i(−1)1+m χβ2
3
2 +m

[− log y]
3
2+m. (36)
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Remark 3.7. As γ2 > 0, the logarithmic divergence of f will be at least of magnitude
3
2

.

Remark 3.8. If m is odd, we will define the jump of Ψ to be −∆ instead of ∆, accounting for
a jump to the lower Riemann sheet instead of the upper Riemann sheet. Therefore, the factor
(−1)m can be fully ignored.

If f does not exhibit a divergence for small argument, because of the branch cut in the
lower boundary of the integral (34) along the real negative axis, further investigation will be
required on the case by case basis to obtain additional properties on f .

4 Inverting the moment generating function: a general method

4.1 General framework

Let H be the solution of the KPZ equation such that for short times t � 1 we determined the

Large Deviation Principle (24), i.e. logEKPZ

h

exp
�

− zαp
t
eH
�
i

't�1 −
Ψ(z)p

t
for z ≥ 0. We impose

the density P(H, t) at short time to be of the form log P(H, t) 't�1 −
Φ(H)p

t
yielding the large

deviation estimate of the moment generating function for z ≥ 0

logEKPZ

�

exp

�

−
zα
p

t
eH

�

�

'
t�1

log

∫

R
dH exp

�

−
1
p

t

�

zαeH +Φ(H)
�

�

. (37)

Using 1/
p

t as a large parameter, the integral in the r.h.s of (37) can be evaluated by a saddle
point method. It gives for z ≥ 0

Ψ(z) =min
H∈R

�

zαeH +Φ(H)
�

. (38)

and one can invert the resulting Legendre transform to obtain the large deviation rate function
Φ as the solution of an optimization problem

Φ(H) =max
z∈I

�

Ψ(z)− zαeH
�

. (39)

Remark 4.1. As Ψ is strictly concave, (39) has a unique solution.

Remark 4.2. As Φ is the large deviation rate function for a real random variable H centered
around 0, we impose the two properties Φ(0) = 0 and Φ′(0) = 0.

We now solve the optimization problem (39) either parametrically or implicitly

• The parametric solution is obtained by differentiating (39) w.r.t to z and re-injecting the
optimal z in the optimization equation.

(

αeH = Ψ′(z)
Φ(H) = Ψ(z)− zΨ′(z).

(40)

• One can further invert the relation between H and z by taking the total derivative w.r.t

H of (39). One then obtains z = −Φ
′(H)e−H

α and the implicit solution

Φ(H)−Φ′(H) = Ψ
�

−
e−HΦ′(H)

α

�

, (41)

which is the result announced in Section 2.2 Eqs. (11) and (12).

Remark 4.3. The parametric solution is quite useful to plot Φ while the implicit solution is
useful to derive the small argument expansion and large argument asymptotics of Φ.

Remark 4.4. While the moment generating function (24) is defined for z ≥ 0 a priori, we
extend the solution of the optimization problem (39) to z ∈ I = [−ζ,+∞[.
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4.2 Range of solution of the optimization problem and continuation of Φ

Starting from the parametric representation of the field H, αeH = Ψ′(z), using the decrease
of Ψ′ on I from Ψ′(−ζ) to Ψ′(+∞) = 0, one sees that the parametric solution (40) allows to

obtain Φ(H) for H ∈
i

−∞, log[Ψ
′(−ζ)
α ]

i

.

Furthermore, imposing the distribution of H to be centered around 0, i.e. Φ′(0) = 0, and

using the relation z = −Φ
′(H)e−H

α , one sees that H = 0 corresponds to z = 0. As a consequence,
the value of α is determined by α= Ψ′(0).

Under this centering constraint, the critical value of H below which a solution of the op-
timization problem (39) exists is Hc = log Ψ

′(−ζ)
Ψ′(0) . It is strictly positive as ζ is strictly positive

and Ψ′ is strictly decreasing.

Remark 4.5. There is an ambiguity in the relation z = −Φ
′(H)e−H

Ψ′(0) , where z = 0 could correspond
either to H = 0 or H = +∞. This ambiguity is lifted when considering the multi-valuation of
Ψ or equivalently, the multi-valuation of H(z) = log Ψ

′(z)
Ψ′(0) . Note that this does not contradict

the uniqueness of Φ(H).

We may wonder what are the consequences of solving the optimization problem (39) only in
the range H ∈

�

−∞, Hc

�

, and how one can obtain the remaining part of the distribution for
H ∈ [Hc ,+∞[. To answer these questions, we extend the optimization problem (39), or equiv-
alently, its solutions (40) and (41) by proceeding to the minimal replacement Ψ → Ψcontinued,
where Ψcontinued is defined in Section 3.5 Eq. (33) as

∀z ∈ [−ζ, 0[, Ψcontinued(z) = Ψ(z) + 2iπ f (−z). (42)

Remark 4.6. The interpretation of this replacement is that either we consider from the begin-
ning Ψ to be defined on a Riemann surface and then the optimization problem (39) has to be
considered over this surface, or we separate the resolution of this optimization problem for
each valuation Ψ over the real line.

Remark 4.7. As Ψ is the large deviation representation of the moment generating function
(14), considering Ψ on a Riemann surface is equivalent to considering the moment generating
function on the same surface. This feature is quite unusual and it is the first time to our
knowledge it does appear in the literature. We conjecture this to be related to the moment
problem in probability, see [50].

The continued version of the parametric solution (40) reads
(

Ψ′(0)eH = Ψ′(z)− 2iπ f ′(−z)
Φ(H) = Ψ(z)− zΨ′(z) + 2iπ f (−z) + 2iπz f ′(−z).

(43)

The continued version of the implicit solution (41) reads

Φ(H)−Φ′(H) = Ψ(−
e−HΦ′(H)
Ψ′(0)

) + 2iπ f (
e−HΦ′(H)
Ψ′(0)

), (44)

which is the result announced in Section 2.2 Eqs. (11) and (13). The regularity of this contin-
uation will be discussed in Section 4.8. The proof that (43) and (44) allow to obtain Φ(H) for
H > Hc is left on the case by case basis where the relation Ψ′(0)eH = Ψ′(z)−2iπ f ′(−z) has to
be interpreted. A schematic representation of the parametric solution is presented in Fig. 1.
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z

+∞-ζ

H = -∞H =Hc > 0

Ψ(z)

0

H = +∞

Ψ(z) + Δ(z)
branching 

point

H = 0

Figure 1: Schematic representation of the parametric solution of the optimization
problem. For H ≤ Hc one uses the function Ψ in the parametric representation (40)
taking the parameter z to decrease from +∞ to −ζ. At H = Hc or z = −ζ, one needs
to turn around the branching point and replace Ψ by its continuation Ψ +∆ in (43)
to determine all H ≥ Hc by increasing the parameter z from −ζ to 0.

4.3 Expansion for small H and centering

The branching field Hc being strictly positive, the derivatives of Φ at H = 0 are well defined
and one can expand (41) in H to obtain the derivatives of Φ which we provide up to the fifth
order

Φ(2)(0) = −
Ψ′(0)2

Ψ′′(0)
, Φ(3)(0) =

Ψ(3)(0)Ψ′(0)3 − 3Ψ′(0)2Ψ′′(0)2

Ψ′′(0)3
,

Φ(4)(0) =
3Ψ(3)(0)2 −Ψ(4)(0)Ψ′′(0)

Ψ′′(0)5
,

Φ(5)(0) =
−15Ψ(3)(0)3 −Ψ(5)(0)Ψ′′(0)2 + 10Ψ(4)(0)Ψ(3)(0)Ψ′′(0)

Ψ′′(0)7
.

(45)

In order to center the variable H, assume that initially, we obtained the moment generating
function as logEKPZ

�

exp
�

−zα̃eH1
�

�

, defining H = H1 + log α̃ − logΨ′(0) + 1
2 log t, the mo-

ment generating function expressed in terms of H is EKPZ

�

exp
�

− zΨ′(0)p
t

eH
�

�

and therefore,

according to Section 4.2 and as stated in Section 2.2, H is centered around 0.

4.4 Cumulants of the partition function

Defining the partition function Z = eH , we express the moment generating function of Z in
terms of its cumulant expansion

logE

�

exp

�

−
zΨ′(0)Z
p

t

�

�

=
∞
∑

q=1

E [Zq]c

q!

�

−
zΨ′(0)
p

t

�q

. (46)

Using the large deviation expression (24) and expanding Ψ in terms of its Taylor series around
0, Ψ(z) =

∑∞
q=1

zq

q!Ψ
(q)(0), we express the q-th cumulant of Z as

E
�

Zq
�c
= (−1)q+1Ψ

(q)(0)
Ψ′(0)q

t
q−1

2 . (47)

4.5 Cumulants of the height field

Similarly to the computation of the cumulants of the partition function, one can compute the
cumulants of the height field, see Refs. [28,30]. Indeed, the cumulant expansion φ is defined
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as EKPZ

�

e
pHp

t

�

= e
φ(p)p

t and a saddle point expansion at short time yields

φ(p) =max
H∈R

�

pH −Φ(H)
�

. (48)

By definition, E[Hq]c = t
q−1

2 φ(q)(0) and the q-th derivative of φ can be obtained by solving

(48) as φ(q+1)(0) =

�

1
Φ′′(H)

d
dH

�q

H |H=0 for all q ≥ 0. The first five non trivial cumulants are

given by

φ(2)(0) =
1

Φ′′(0)
, φ(3)(0) = −

Φ(3)(0)
Φ′′(0)3

, φ(4)(0) =
3Φ(3)(0)2 −Φ(4)(0)Φ′′(0)

Φ′′(0)5
,

φ(5)(0) =
−15Φ(3)(0)3 −Φ(5)(0)Φ′′(0)2 + 10Φ(4)(0)Φ(3)(0)Φ′′(0)

Φ′′(0)7
.

(49)

Remark 4.8. Note that the equations (45) match the equations (90) of [30] in the limit w̃→∞
and the equations (49) match the equations (106) of [30].

In terms of the rate function Ψ, combining (45) and (49) we obtain

φ(2)(0) = −
Ψ′′(0)
Ψ′(0)2

, φ(3)(0) =
Ψ(3)(0)Ψ′(0)− 3Ψ′′(0)2

Ψ′(0)4
,

φ(4)(0) = −
20Ψ′′(0)3 +Ψ(4)(0)Ψ′(0)2 − 12Ψ(3)(0)Ψ′(0)Ψ′′(0)

Ψ′(0)6
,

φ(5)(0) =
−210Ψ′′(0)4 +Ψ(5)(0)Ψ′(0)3 + 180Ψ(3)(0)Ψ′(0)Ψ′′(0)2

Ψ′(0)8

−
5Ψ′(0)2

�

3Ψ(3)(0)2 + 4Ψ(4)(0)Ψ′′(0)
�

Ψ′(0)8
.

(50)

Remark 4.9. As Ψ′′(0) < 0, by concavity of Ψ, we verify that the second cumulant is indeed
positive which is consistent with our mathematical construction.

4.6 Left tail of Φ, H →−∞

Starting from the implicit representation (41), one uses the asymptotics of Ψ determined

in (30) to study the behavior of the factor Ψ(− e−HΦ′(H)
Ψ′(0) ) for large negative H knowing that

Φ′(H) < 0 for H < 0. As Ψ exhibits logarithmic asymptotics for large positive argument, Φ
exhibits a polynomial growth for large negative argument

Φ(H) '
H→−∞

χβ1

(γ1 + 1)(γ1 + 2)
|H|γ1+2, (51)

where the different coefficients were introduced in Section 3.4. The asymptotics of Ψ therefore
provide the left tail of the KPZ solution as announced in Section 2.2.

4.7 Right tail of Φ, H → +∞

Starting from the continued implicit representation (44), one uses the asymptotics of f deter-

mined in (36) to study the behavior of the factor 2iπ f ( e−HΦ′(H)
Ψ′(0) ) for large positive H knowing

that Ψ(0) = 0. In the case where f exhibits logarithmic asymptotics for small positive argu-
ment, as stated in Section 2.2, Φ exhibits a polynomial growth for large positive argument

Φ(H) '
H→+∞

2πχβ2
3
2 +m

H
3
2+m, (52)
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where the different coefficients were introduced in Section 3.6. If f does not exhibit a logarith-
mic divergence for small positive argument, additional effort will have to be done in the case
by case basis to determine the right tail. An example of this situation is the stationary IC in full
space [30] where two continuations of f had to be defined, leading a more complex Riemann
surface for Ψ and a singular behavior of Φ on the branching point of these continuations.

4.8 Expansion of Φ around its continuation

Starting from the implicit (41) and the continued implicit (44) solutions, we determine which
condition ensures the regularity of the continuation. We first expand the implicit solution (41)
around H = Hc and determine the left derivative expansion

Φ(Hc) = Ψ(−ζ) + ζΨ′(−ζ),

∀k ≥ 1, Φ(k)(Hc) =

�

Ψ′(z)
Ψ′′(z)

d
dz

�k−1
�

−zΨ′(z)
�

|z=−ζ .
(53)

Remark 4.10. Another way to see this relation between the derivatives is to differentiate the
parametric relation αeH = Ψ′(z) which yields dH = Ψ′′(z)

Ψ′(z) dz.

Remark 4.11. Remarkably, Ψ only needs to be C 1 for Φ to have finite derivatives at all orders
at H = Hc . Indeed by induction, if Ψ′′(−ζ) =∞ then for all k ≥ 1, Φ(k)(Hc) = ζΨ′(−ζ)<∞.

Remark 4.12. Note that there is a second solution for the set of derivatives for arbitrary z
coming from the implicit equation (41). For H = Hc it reads Φ(k)(Hc) = ζΨ′(−ζ) which
surprisingly is identical to (53).

One obtains the right derivative expansion by proceeding to the minimal replacement
Ψ → Ψcontinued. We find a sufficient condition for the continuation to be infinitely smooth
{Ψ′′(−ζ) =∞, f (ζ) = 0 and f ′(ζ) = 0}. As discussed in Section 3.3, this sufficient condition
is observed in all existing cases. If this condition is not met, the large deviation rate function
Φ might encounter a singularity leading to a dynamical phase transition.

Remark 4.13. Additionally, as discussed in Section 3.3, Ψ is infinitely differentiable on
]− ζ,+∞[, therefore if the above sufficient condition is verified, Φ will be infinitely differen-
tiable everywhere on the real line as announced in Section 2.2.

5 Hard wall A=∞

Defining the field H1 = h(ε, t)+ t
12 − logε2 for ε = 0+, we determine two new representations

of the moment generating function EKPZ

�

exp
�

−zeH1
�

�

starting from the results of Ref. [33].

5.1 New Fredholm Pfaffian expression for the solution to the hard wall

We start from Eqs. (19,21,23) of Ref. [33] with the definition of the moment generating func-
tion of the Cole-Hopf solution of the KPZ equation and the string-replicated moment Z(ns, z).

1. The moment generating function

EKPZ

�

exp
�

−zeH1
�

�

=
∞
∑

ns=0

1
ns!

Z(ns, z). (54)
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2. The string-replicated moments expressed with the reduced variables X2p−1 = mp +2ikp
and X2p = mp − 2ikp for p ∈ [1, ns]

Z(ns, z) =
ns
∏

p=1

∑

mp≥1

∫

R

dkp

2π
(−z)mp

bmp ,kp

4ikp
e−tmpk2

p+
t

12 m3
p Pf

�

X i − X j

X i + X j

�

2ns×2ns

, (55)

bk,m =
m−1
∏

q=0

(q2 + 4k2) =
2k
π

sinh(2πk)Γ (m+ 2ik)Γ (m− 2ik). (56)

Using the variables X2p and X2p−1 one further re-expresses Z(ns, z) as

Z(ns, z) =
ns
∏

p=1

∑

mp≥1

∫

R

dkp

2π
(−z)mp

sin(π2 (X2p − X2p−1))

2π
Γ (X2p)Γ (X2p−1)

e
t

24 [X
3
2p+X 3

2p+1] Pf

�

X i − X j

X i + X j

�

2ns×2ns

.

(57)

We introduce the Mellin-Barnes resummation expressed in its Fermi form along the contour
C̃ = a + iR for some a ∈]0,1[ to substitute the summation over integers to an integral in the
complex plane.

∑

m≥1

(−z)m f (m) = −
∫

R
dr

z
z + e−r

∫

C̃

dw
2iπ

e−wr f (w). (58)

Here and below we keep the definition of the reduced variables X2p and X2p−1 up to the
substitution m→ w imposed by the Mellin-Barnes formula. We further proceed to the change
of variable (wp, kp) → (X2p, X2p−1) and define the contour C = a

2 + iR so that the string-
replicated moment reads

Z(ns, z) =(−1)ns

ns
∏

p=1

∫

R
drp

z
z + e−rp

∫

C

dX2p−1

4iπ

∫

C

dX2p

4iπ

sin(π2 (X2p − X2p−1))

2π

Γ (X2p−1)Γ (X2p)e
−

rp
2 [X2p−1+X2p]+

t
24 [X

3
2p−1+X 3

2p] Pf

�

X i − X j

X i + X j

�

2ns×2ns

.

(59)

We observe that the integrals are almost separable in X2p−1 and X2p except for the sin function
which couples them. Using the anti-symmetry of the Schur Pfaffian under exchange of X i and
X j for any couple (i, j), i 6= j, the addition formula

sin(
π

2
(X2p − X2p−1)) = sin(

π

2
X2p) cos(

π

2
X2p−1)− sin(

π

2
X2p−1) cos(

π

2
X2p)

and the fact that X2p and X2p−1 share the same integration measure as they share the same
variable rp, we rewrite the string-replicated moment as

Z(ns, z) =(−1)ns

ns
∏

p=1

∫

R
drp

z
z + e−rp

∫

C

dX2p−1

4iπ

∫

C

dX2p

4iπ

sin(π2 X2p) cos(π2 X2p−1)

π

Γ (X2p−1)Γ (X2p)e
−

rp
2 [X2p−1+X2p]+

t
24 [X

3
2p−1+X 3

2p] Pf

�

X i − X j

X i + X j

�

2ns×2ns

.

(60)
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The integrals are now separable, hence we introduce the functions

φ2p(X ) =
1
p
π

sin(
π

2
X )Γ (X )e−

rp
2 X+t X3

24 ,

φ2p−1(X ) =
1
p
π

cos(
π

2
X )Γ (X )e−

rp
2 X+t X3

24 .
(61)

Using a known property of Pfaffians (see De Bruijn [51]), we can rewrite the string-replicated
moment itself as a Pfaffian

2ns
∏

`=1

∫

C

dX`
4iπ

φ`(X`)Pf

�

X i − X j

X i + X j

�

2ns×2ns

= Pf

�

∫

C

∫

C

dv
4iπ

dw
4iπ

φi(v)φ j(w)
v −w
v +w

�

2ns×2ns

. (62)

Proceeding to the rescaling w→ 2w/t1/3 and r → r t1/3, the moment generating function (54)
is finally given by the result announced in Section 2.1 Eqs. (5) and (6).

Remark 5.1. Note that in (5) we must consider matrix kernels as made up of n2
s blocks, each

of which has size 2× 2. Considering 22 blocks of size ns × ns instead, would change the value
of its Pfaffian by a factor (−1)ns(ns−1)/2, see [12,13].

Denotingσt,z(r) =
z

z+e−t1/3 r
, and using the definition of the Fredholm pfaffian (see e.g. Sec.

2.2. in [45] and references therein), we obtain our main new result for the case A = +∞,
namely an expression of the generating function as a Fredholm Pfaffian valid for any time t

EKPZ

�

exp
�

−zeH1
�

�

= Pf
�

J −σt,zK
�

, (63)

where the matrix kernel K is given by (6), and the matrix kernel J has previously been intro-
duced in (16).

Remark 5.2 (Symmetry). We have the freedom to introduce an extra parameter β so that we
redefine the functions φ2p→ βφ2p and φ2p−1→

1
βφ2p−1. This changes the diagonal elements

K11 →
1
β2 K11 and K22 → β2K22 and the off-diagonal elements remain unchanged. A possible

consequence of this symmetry is that the physical relevant quantities are K12 and the product
K11K22.

5.2 New finite time representation as a scalar Fredholm determinant

We can use our Proposition B.2 in the Appendix to rewrite (63) as the square root of a Fredholm
determinant with a scalar valued kernel.

EKPZ

�

exp
�

−zeH1
�

�

=
r

Det
�

I − K̄t,z

�

L2(R+). (64)

The functions fodd and feven defined in (154) read

fodd(r) =

∫

Cv

dv
2iπ3/2

Γ (2v) cos(πv)e−rv+t v3
3 ,

feven(r) =

∫

Cv

dv
2iπ3/2

Γ (2v) sin(πv)e−rv+t v3
3 .

(65)

and the scalar kernel K̄t,z is given for x , y ≥ 0, by

K̄t,z(x , y) = 2∂x

∫

R
dr

z
z + e−r

�

feven(r + x) fodd(r + y)− fodd(r + x) feven(r + y)
�

. (66)

These forms provide an alternative formula to the one obtained at finite time in [33].
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5.3 Long time limit of the matrix kernel

To study the long time limit we choose z = e−st1/3
. Then σt,z(r) → θ (r − s) where θ is the

Heaviside step function. Working first on the matrix kernel of section 5.1, we obtain

lim
t→+∞

Prob
�

H1

t1/3
< s
�

= Pf
�

J − PsK
∞� . (67)

where Ps is the projector for r, r ′ ∈ [s,+∞[. Here K∞ is given by the large time limit of K as
follows. Starting from the definition of the 2× 2 block kernel in (6), one takes the large time
limit of the Γ and trigonometric functions.

K∞11 (r, r ′) =
t1/3

4π

∫

Cv

∫

Cw

dvdw
(2iπ)2

v −w
v +w

1
vw

e−rv−r ′w+ v3+w3
3 ,

K∞22 (r, r ′) =
π

4t1/3

∫

Cv

∫

Cw

dvdw
(2iπ)2

v −w
v +w

e−rv−r ′w+ v3+w3
3 ,

K∞12 (r, r ′) =
1
4

∫

Cv

∫

Cw

dvdw
(2iπ)2

v −w
v +w

1
v

e−rv−r ′w+ v3+w3
3 .

(68)

Using the above symmetry argument by taking β = t1/6/
p
π, one can get rid of the time

prefactors in the diagonal elements of the kernel, and we obtain that it is equivalent to the
GSE kernel K∞ ≡ KGSE as given in Lemma 2.7. of [45]. This provides a new, independent
way to show the convergence of the height distribution to the GSE at large time.

Remark 5.3. In Ref. [33] an alternative formula was obtained at large time, involving a (scalar)
kernel KGLD defined as

KGLD(x , y) = KAi(x , y)−
1
2

Ai(x)

∫ +∞

0

dz Ai(y + z). (69)

As we now discuss, it is possible to prove directly that the GSE Pfaffian has indeed the alter-
native form

Pf[J − PsK
∞] =

Æ

Det(I − PsKGLD), (70)

so that both results are consistent.

5.4 Long time limit of the scalar kernel

We now compute the large time limit of the scalar kernel K̄t,z where z = e−st1/3
. Rescaling the

integration variables of fodd and feven by t−1/3, the integration measure of K̄ by t1/3, one has
for the auxiliary functions

fodd(r)→t�1 f∞odd(r) =

∫

Cv

dv
4iπ3/2

1
v

e−rv+ v3
3 =

1
2
p
π

∫ +∞

0

dzAi(r + z),

t1/3 feven(r)→t�1 f∞even(r) =

∫

Cv

dv
4iπ1/2

e−rv+ v3
3 =
p
π

2
Ai(r),

(71)

21

https://scipost.org
https://scipost.org/SciPostPhys.5.4.032


SciPost Phys. 5, 032 (2018)

and for the scalar kernel K̄t,z

K̄∞,s(x , y)' 2∂x

∫

R
dr

1

1+ et1/3(s−r)

�

f∞even(r + x) f∞odd(r + y)− f∞odd(r + x) f∞even(r + y)
�

'
1
2
∂x

∫ +∞

s
dr

�

Ai(r + x)

∫ +∞

0

dz Ai(r + y + z)−
∫ +∞

0

dz Ai(r + x + z)Ai(r + y)

�

'
∫ +∞

s
dr Ai(r + x)Ai(r + y)−

1
2

Ai(x + s)

∫ +∞

0

dz Ai(y + s+ z)

= KAi(x + s, y + s)−
1
2

Ai(x + s)

∫ +∞

0

dz Ai(y + s+ z).

(72)

Hence we recover

lim
t→+∞

Prob
�

H1

t1/3
< s
�

=
Ç

Det
�

I − PsKGLD
�

. (73)

5.5 Short-time limit of the off-diagonal kernel

As required from Section 3, we now study at short time the off-diagonal element

K12(
r

t
1
3

,
r ′

t
1
3

) =

∫

Cv

∫

Cw

dvdw

(2iπ)2πt
2
3

v −w
v +w

Γ (2vt−
1
2 )Γ (2wt−

1
2 )

cos(πvt−
1
2 ) sin(πwt−

1
2 )e−

1p
t
[rv+r ′w− v3+w3

3 ].

(74)

We present the result obtained by a saddle point approximation applied on (74). Since the
calculations are quite long, we leave the details for the Appendix C. In the short time regime,
to have a non trivial correlation, we require the distance between r and r ′ to be of order

p
t

and we find

K12(
r

t
1
3

,
r +κ

p
t

t
1
3

)'
1

2πκt1/6

�

sin(κ
s

−W−1(−
t
4

er))− sin(κ
s

−W0(−
t
4

er))

�

, (75)

where W0 and W−1 are the two real branches of the Lambert function, see [47]. Taking κ= 0,
we obtain the density which is positive for r + log( t

4) ≤ −1 and vanishes for r + log( t
4) = −1

which corresponds to evaluating the Lambert functions W (z) at z = −e−1. More details about
the Lambert W function can be found in Appendix A.

ρ(r t−1/3)'
1

2πt1/6

�
s

−W−1(−
t
4

er)−
s

−W0(−
t
4

er)

�

θ (r + log(
t
4
)≤ −1). (76)

We substitute r + log( t
4)→ r which accounts to replace z→ t

4z as seen from the definition of
σt,z in (16). Hence, we obtain Ξ = −1, ρ∞(a) =

1
2π(
p

−W−1(−ea)−
p

−W0(−ea)) and we
now list useful properties of ρ∞.

1. Near the edge at a = −1, ρ∞(a) vanishes as
p
−1− a.

2. The left asymptotics is ρ∞(a)'−a�1

p
−a

2π .

3. The right asymptotics is ρ∞(a)'a�1 i
p

a
π .
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5.6 Large deviations of the moment generating function

Taking into account the z→ t
4z replacement, by (24) we have the large deviation principle

logEKPZ

�

exp

�

−
tzeH1

4

�

�

'
t�1
−

1

2π
p

t

∫ −1

−∞
dv log

�

1+ zev
�

�
Æ

−W−1(−ev)−
Æ

−W0(−ev)
�

.

(77)
Defining H = H1 + log(2

p
πt3/2), we obtain our first main result for the short time LDP for

A= +∞ in terms of the centered field H (see Section 4.3 for the discussion about the centering
of H1)

logEKPZ

�

exp

�

−
zeH

8
p
πt

�

�

'
t�1
−
Ψ(z)
p

t
, (78)

where Ψ(z) is defined on [−e,+∞[ as

Ψ(z) =
1

2π

∫ +∞

0

dy

�

1−
1
y

�

log
�

1+ z ye−y
�p

y . (79)

To obtain (79) from (77) we performed the change of variable y = −W (−ev), so that ye−y = ev

and dv = dy( 1
y −1). Although Eq. (77) contains the two branches of the Lambert function, af-

ter the change of variable only one integral remains in (79), the branch W0 indeed contributes
to the range y ∈ [0,1] and the branch W−1 to the range y ∈ [1,+∞[ which leads to the final
range of integration [0,+∞[ in (79). The minus sign in (77) disappears in the change of
variable as the two branches W0 and W−1 have opposite monotonicity.

Remark 5.4. There is a way to express (79) in terms of a dilogarithm, defining y = p2 and
integrating the logarithm by part, one obtains

Ψ(z) = −
∫ +∞

−∞

dp
4π

Li2(−zp2e−p2
). (80)

Remark 5.5. An integration by part on (77) leads to the expression of f as

2π f (y) =
2
3

�

−W0(−
1
y
)

�3/2

− 2

�

−W0(−
1
y
)

�1/2

−
2
3

�

−W−1(−
1
y
)

�3/2

+ 2

�

−W−1(−
1
y
)

�1/2

. (81)

Remark 5.6. It is far from obvious that on the interval ]0, e] the function f is purely imaginary
or equivalently that ρ∞(a) is purely imaginary for a ≥ −1. This fact is indeed true and
explained in [47]. The main argument is that for y ≤ −1, W0(y) is conjugated to W−1(y) in
the complex sense.

The derivatives of Ψ at 0 are given by Ψ(q)(0) = (−1)q+1Γ (2q)
2
p
π

q−
3
2−q4−q, allowing to determine

the cumulants of Z = eH , E [Zq]c = (−1)q+1 Ψ(q)(0)
Ψ′(0)q t

q−1
2 . We thus obtain the leading short time

behavior of the cumulants of the partition sum of the directed polymer with the hard wall
A= +∞ as

E
�

Zq
�c
= Γ (2q)q−

3
2−q(4πt)

q−1
2 , q ≥ 1. (82)

One can check that for q = 2, 3 it exactly reproduces the results (12-13) of [33].
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5.7 Large deviations of the distribution of H, Φ(H)

The rate function Φ(H) for the large deviations of the distribution of H is given by the solution
of the optimization problem (39) over the Riemann surface of Ψ

Φ(H) =max
z≥−e

�

−
z

8
p
π

eH +Ψ(z)

�

. (83)

• As the left asymptotics of the density is ρ∞(a) '−a�1

p
−a

2π , by (51) the left tail of the
distribution is Φ(H)'H→−∞

2
15π |H|

5/2.

• Using (50) we obtain the cumulants: the second cumulant of H is E[H2]c = 3
2

q

πt
2 . It

agrees with (14) in [33].

• The third cumulant of H is E[H3]c =
�

160
27
p

3
− 27

8

�

πt. It agrees with (15) in [33].

• The fourth cumulant of H is E[H4]c = 5
144

�

567+ 486
p

2− 512
p

6
�

π3/2 t3/2.

• The fifth cumulant of H is E[H5]c =
�

−10296145
23328 − 4725

8
p

2
+ 400

p
3+ 1161216

3125
p

5

�

π2 t2.

• The branching field above which the continuation of Ψ is required is
Hc = log Ψ

′(−e)
Ψ′(0) ' 0.9795.

• As the right asymptotics of the density ρ∞(a) 'a�1 i
p

a
π , by (52) the right tail of the

distribution is Φ(H)'H→+∞
4
3 H3/2

• Since the density ρ∞(a) vanishes near the edge at a = −1 as
p
−1− a, the rate function

Φ is analytic.

We verify numerically that the parametric equationΨ′(0)eH = Ψ′(z)−2iπ f ′(−z) for z ∈ [−e, 0[
allows to obtain all H in the interval

�

Hc ,+∞
�

so only one continuation to Ψ is required to
obtain the entire rate function Φ.

Remark 5.7. As stated in Ref. [33] Eq. (32), in the A= +∞ case we have the inequality

EKPZ, full−space

�

exp(−zeH)
�

<
�

EKPZ, half−space

�

exp(−zeH)
�

�2
, (84)

where both expectations are taken over the droplet IC. The inequality implies that the left tail
of the full-space is at least twice the one of the half-space, which is consistent with the result
obtained above.

6 Critical case A= −1/2

Recalling the definition of the field H1 = h(0, t) + t
12 , it was obtained in [35] the following

Pfaffian representation for A= −1
2

EKPZ, 1/2 space

�

exp(−
z
4

eH1)
�

= EGOE





∞
∏

i=1

1
p

1+ zet1/3ai



 , (85)

where the set {ai} forms a Pfaffian GOE point process associated to a 2× 2 matrix kernel K .
Its off-diagonal element is defined, see Lemma 2.6 of Ref. [45], as

KGOE
12 (r, r ′) =

∫

Cv

∫

Cw

dvdw
8π2

v −w
v +w

1
w

e−rv−r ′w+ v3+w3
3 , (86)
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where Cv = ε+ iR and Cw = −ε′+ iR and ε < ε′ ∈ ]0,1[. Contrary to the other cases, here we
have χ = 1

2 . Note that (86) is equivalent to the formula (64) used in [36] taking into account
a shift of the contour of w.

6.1 Short time limit of the off-diagonal kernel

As required from Section 3, we evaluate the off-diagonal element. Upon rescaling
(v, w)→ (v, w)t−1/6 one obtains

KGOE
12 (r t−

1
3 , r ′ t−

1
3 ) =

∫

Cv

∫

Cw

dvdw

8π2 t
1
6

v −w
v +w

1
w

e−
1p
t
[rv+r ′w− v3+w3

3 ]. (87)

We define the rate function ϕr(w) = −rw+ w3

3 to write the off-diagonal in a suitable form for
a saddle point approximation

KGOE
12 (r t−

1
3 , r ′ t−

1
3 ) =

∫

Cv

∫

Cw

dvdw

8π2 t
1
6

v −w
v +w

1
w

exp

�

1
p

t
[ϕr(v) +ϕr ′(w)]

�

. (88)

The saddle points are solution of ϕ′r(w) = 0, i.e. w2 = r which yields two solutions

w(c) = ±i
p
−r, ϕ(w(c)) = −

2
3

w(c)3, ϕ′′(w(c)) = 2w(c). (89)

For the saddle points to belong to the contours Cv and Cw, we require r ∈ ]−∞, 0]. In the
overall we have four purely imaginary saddle-point combinations indexed by i, j = 1, 2 whose
expansion yield

KGOE
12 (r t−

1
3 , r ′ t−

1
3 )'

t1/3

8π

2
∑

i, j=1

v(c)i −w(c)j

v(c)i +w(c)j

1

w(c)j

exp
�

1p
t
[ϕr(v

(c)
i ) +ϕr ′(w

(c)
j )]

�

Ç

−v(c)i

r

−w(c)j

. (90)

At the very end we are interested in the r = r ′ limit, hence we write r ′ = r + κ and aim at
taking κ = 0. As κ is small, we expand the critical point and the value of the rate function at
the critical point

w(c)j = v(c)j +
κ

2v(c)j

, ϕr ′(w
(c)
j ) = ϕr(v

(c)
j )− v(c)j κ. (91)

Within the linear regime, the off-diagonal kernel reads

KGOE
12 (

r

t
1
3

,
r + κ

t
1
3

)'
t1/3

8π

2
∑

i, j=1

v(c)i − v(c)j −
κ

2v(c)j

v(c)i + v(c)j +
κ

2v(c)j

1

v(c)j

exp
�

1p
t
[ϕr(v

(c)
i ) +ϕr(v

(c)
j )− v(c)j κ]

�

Ç

−v(c)i

r

−v(c)j

.

(92)
The leading term of this expansion is obtained for v(c)i = −v(c)j as this cancels the ϕ functions
in the exponential and the denominator in the sum is of order κ. We additionally rescale κ by
a factor

p
t to obtain

KGOE
12 (

r

t
1
3

,
r + κ

p
t

t
1
3

)'
1

πκt1/6
sin(κ

p
−r). (93)

Taking κ= 0 yields the following density which vanishes at r = 0 and is strictly positive

ρ(r t−1/3)'
1

πt1/6

p
−rθ (r ≤ 0). (94)

Hence, we obtain Ξ= 0 and ρ∞(a) =
1
π

p
−a and we now list useful properties of ρ∞.
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1. Near the edge at a = 0 ρ∞(a) vanishes as
p
−a.

2. The left asymptotics is ρ∞(a)'−a�1

p
−a
π .

3. The right asymptotics is ρ∞(a)'a�1 i
p

a
π .

6.2 Large deviations of the moment generating function

By (24), we obtain the Large Deviation Principle

logEKPZ

�

exp
�

−
z
4

eH1

�

�

'
t�1
−

1

2π
p

t

∫ 0

−∞
dv log

�

1+ zev
�p
−v. (95)

Defining H = H1 +
1
2 log(πt), we obtain our main result for the short time LDP for A= −1/2

in terms of the centered field H

logEKPZ

�

exp

�

−
zeH

p
16πt

�

�

'
t�1
−
Ψ(z)
p

t
, (96)

where Ψ is defined on [−1,+∞[ as

Ψ(z) =
1

2π

∫ 0

−∞
dv log

�

1+ zev
�p
−v = −

1
p

16π
Li5/2(−z). (97)

Remark 6.1. Integrating (95) by part leads to the expression of f as 2π f (y) = 2
3[log y]3/2.

The derivatives of Ψ at 0 are given by Ψ(q)(0) = (−1)q+1Γ (q)p
16π

q−
3
2 , allowing to determine the

cumulants of Z = eH , E [Zq]c = (−1)q+1 Ψ(q)(0)
Ψ′(0)q t

q−1
2 as E [Zq]c = Γ (q)q−

3
2 (16πt)

q−1
2 .

Remark 6.2. There is a way to express (97) in terms of a dilogarithm , defining y = p2 and
integrating the logarithm by part.

Ψ(z) = −
∫ +∞

−∞

dp
4π

Li2(−ze−p2
). (98)

Note the resemblance between (80) and (98). A similar structure involving a dilogarithm can
also be obtained for the brownian initial condition [30]. This will be further investigated in a
future work.

6.3 Large deviations of the distribution of H, Φ(H)

The distribution of H is given by the solution of the optimization problem (39) over the Rie-
mann surface of Ψ

Φ(H) =max
z≥−1

�

−
z

p
16π

eH +Ψ(z)

�

. (99)

• As the left asymptotics of the density is ρ∞(a) '−a�1

p
−a
π and as χ = 1

2 , by (51) the
left tail of the distribution is Φ(H)'H→−∞

2
15π |H|

5/2.

• The second cumulant of H is E[H2]c =
p

2πt.

• The third cumulant of H is E[H3]c = 2
9

�

16
p

3− 27
�

πt.

• The fourth cumulant of H is E[H4]c = 8
3

�

18+ 15
p

2− 16
p

6
�

π3/2 t3/2.
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• The fifth cumulant of H isE[H5]c = 8
225

�

−39625− 27000
p

2+ 36000
p

3+ 6912
p

5
�

π2 t2.

• The branching field above which the continuation of Ψ is required is
Hc = log Ψ

′(−1)
Ψ′(0) = logζ(3

2)' 0.96026, where ζ is the Riemann zeta function.

• As the right asymptotics of the density is ρ∞(a) 'a�1 i
p

a
π , and as χ = 1

2 , by (52) the
right tail of the distribution is Φ(H)'H→+∞

2
3 H3/2.

• As the density ρ∞(a) vanishes as
p
−a, the rate function Φ is analytic.

We verify numerically that the parametric equation Ψ′(0)eH = Ψ′(z) − 2iπ f ′(−z) for
z ∈ [−1,0[ allows to obtain all H in the interval

�

Hc ,+∞
�

so only one continuation to Ψ is
required to obtain the entire rate function Φ.

Remark 6.3. It turns out that the function Ψ in (97) is exactly half of the large deviation
function for the full space case in Ref. [28] and it leads to

∀H ∈ R, Φhalf−space(H) =
1
2
Φfull−space(H), (100)

where we recall that the half-space is for the critical value A= −1
2 . In particular, we can use

all the results derived in Ref. [28] to recover the cumulants, tails and critical points of H and
P(H) obtained above.

Besides the tails, one can also compute the cumulants of the height using (48) and (100).

We observe that φhalf−space(
p
2
) =

1
2
φfull−space(p) meaning that we have an explicit relation

between the cumulants for the half-space and the full-space problem

H(t)q
c
half−space = 2q−1H(t)q

c
full−space. (101)

Remark 6.4. It is important to note that the coefficient of the right tail, 2
3 H3/2, matches pre-

cisely the right tail of the GOE-TW distribution F1(H), see Ref. [52] Eqs. (1), (25) and (26),
which is the large time limit of the critical case A = −1

2 . Indeed as noted in the Remark 1.1

of [35], taking z = e−st1/3

lim
t→∞
P
�

H(t)≤ st1/3
�

= F1(s). (102)

This strongly suggests that the right tail is also established at short time, a fact previously noted
for the full-space KPZ problem [28,30].

7 Symmetric wall A= 0

Let us now study the case A = 0 for which a solution was proposed in [34]. Note that this
solution is not rigorous, so our results will depend on its validity which we will assume here.
Recalling the definition of the field H1 = h(0, t)+ t

12 , the following Pfaffian representation for
A= 0 was given in [34]

EKPZ

�

exp
�

−
z
4

eH1

�

�

= 1+
∞
∑

ns=1

(−1)ns

ns!

ns
∏

p=1

∫

R
drp

z

z + e−t1/3rp
Pf
�

K(ri , r j)
�

ns×ns
, (103)
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where K is a 2× 2 block matrix with the following elements5

K11(r, r ′) =

∫

Cv

∫

Cw

dvdw

16π2 t
1
3

v −w
v +w

Γ (1
2 − vt−

1
3 )

Γ (1− vt−
1
3 )

Γ (1
2 −wt−

1
3 )

Γ (1−wt−
1
3 )

e−rv−r ′w+ v3+w3
3 ,

K22(r, r ′) =

∫

Cv

∫

Cw

dvdw

16π2 t
1
3

v −w
v +w

Γ (vt−
1
3 )

Γ (1
2 + vt−

1
3 )

Γ (wt−
1
3 )

Γ (1
2 +wt−

1
3 )

e−rv−r ′w+ v3+w3
3 ,

K12(r, r ′) =

∫

Cv

∫

Cw

dvdw

16π2 t
1
3

v −w
v +w

Γ (1
2 − vt−

1
3 )

Γ (1− vt−
1
3 )

Γ (wt−
1
3 )

Γ (1
2 +wt−

1
3 )

e−rv−r ′w+ v3+w3
3 ,

K21(r, r ′) = −K12(r
′, r).

(104)

The contour Cv and Cw must both pass at the right of 0 because of the poles as Cv,w =
1
2 av,w+iR

for av,w ∈]0,1[ and they must be such that v+w> 0 for the denominators to be well defined.
This representation allows can be written in a Fredholm Pfaffian form
EKPZ

�

exp
�

− z
4 eH1

�

�

= Pf[J − σt,zK]. As noted in [34], the large time limit of K is the GSE

kernel, as in the A= +∞ case6.

7.1 New finite time representation as a scalar Fredholm determinant

We can now use our Proposition B.2 in the Appendix to rewrite (103) as the square root of a
Fredholm determinant with a scalar valued kernel.

EKPZ

�

exp
�

−
z
4

eH1

�

�

=
r

Det
�

I − K̄t,z

�

L2(R+). (105)

The functions fodd and feven defined in (154) read

fodd(r) =

∫

Cv

dv
4π

Γ (1
2 − vt−1/3)

Γ (1− vt−1/3)
e−rv+ v3

3 ,

feven(r) =

∫

Cv

dv
4πt1/3

Γ (vt−1/3)

Γ (1
2 + vt−1/3)

e−rv+ v3
3 .

(106)

and the scalar kernel K̄t,z is given for x , y ≥ 0, by

K̄t,z(x , y) = 2∂x

∫

R
dr

z
z + e−t1/3r

�

feven(r + x) fodd(r + y)− fodd(r + x) feven(r + y)
�

. (107)

7.2 Long time limit of the scalar valued kernel

To study the long time limit we choose z = e−st1/3
. Then 1

1+et1/3(s−r)
→ θ (r − s) where θ is the

Heaviside step function. Working with the scalar valued kernel (107), we show that

lim
t→+∞

Prob
�

H1

t1/3
< s
�

=
Ç

Det
�

I − PsKGLD
�

, (108)

5 Compared to Ref. [34], we have changed (r, r ′) to (−r,−r ′).
6The large time kernel K̃∞, given in Ref. [34], coincides with Eq. (68) of this paper, up to the change

K∞11 → −K̃∞22 , K∞22 → −K̃∞11 and K∞12 → −K̃∞21 . This is equivalent in terms of Pfaffian since it amounts to the
permutation of the columns and lines of the 2× 2 block Pfaffian and an addition of a minus sign.
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where Ps is the projector for r, r ′ ∈ [s,+∞[. In the large time regime, the auxiliary functions
are given by

fodd(r)→t�1 f∞odd(r) =

∫

Cv

dv
4π1/2

e−rv+ v3
3 =

i
p
π

2
Ai(r),

feven(r)→t�1 f∞even(r) =

∫

Cv

dv
4π3/2

1
v

e−rv+ v3
3 =

i
2
p
π

∫ +∞

0

dzAi(r + z),

(109)

and the scalar kernel K̄t,z converges to K̄∞,s given by

K̄∞,s(x , y) = KAi(x + s, y + s)−
1
2

Ai(x + s)

∫ +∞

0

dz Ai(y + s+ z). (110)

Hence we recover

lim
t→+∞

Prob
�

H1

t1/3
< s
�

=
Ç

Det
�

I − PsKGLD
�

. (111)

7.3 Short time limit of the off-diagonal kernel

As required from Section 3, we evaluate the off-diagonal element

K12(r t−
1
3 , r ′ t−

1
3 ) =

∫

Cv

∫

Cw

dvdw

16π2 t
2
3

v −w
v +w

Γ (1
2 − vt−

1
2 )

Γ (1− vt−
1
2 )

Γ (wt−
1
2 )

Γ (1
2 +wt−

1
2 )

e−
1p
t
[rv+r ′w− v3+w3

3 ]. (112)

By Stirling’s approximation and defining the rate function ϕr(w) = −rw + w3

3 , we write the
off-diagonal in a suitable form for a saddle point approximation

K12(r t−
1
3 , r ′ t−

1
3 ) =

∫

Cv

∫

Cw

dvdw

16π2 t
1
6

v −w
v +w

1
p
−v
p

w
exp

�

1
p

t
[ϕr(v) +ϕr ′(w)]

�

. (113)

The saddle points are solution of ϕ′r(w) = 0, i.e. w2 = r which yields two solutions

w(c) = ±i
p
−r, ϕ(w(c)) = −

2
3

w(c)3, ϕ′′(w(c)) = 2w(c). (114)

For the saddle points to belong to the contour Cw, we have the constraint r ∈ ]−∞, 0]. In the
overall we have four purely imaginary saddle-point combinations indexed by i, j = 1, 2 whose
expansion yield

K12(r t−
1
3 , r ′ t−

1
3 )' −

t1/3

16π

2
∑

i, j=1

v(c)i −w(c)j

v(c)i +w(c)j

exp
�

1p
t
[ϕr(v

(c)
i ) +ϕr ′(w

(c)
j )]

�

|w(c)j |v
(c)
i

. (115)

At the very end we are interested in the r = r ′ limit, hence we write r ′ = r + κ and aim at
taking κ = 0. As κ is small, we expand the critical point and the value of the rate function at
the critical point

w(c)j = v(c)j +
κ

2v(c)j

, ϕr ′(w
(c)
j ) = ϕr(v

(c)
j )− v(c)j κ. (116)

Within the linear regime, the off-diagonal kernel reads

K12(
r

t
1
3

,
r +κ

t
1
3

)' −
t1/3

16π

2
∑

i, j=1

v(c)i − v(c)j −
κ

2v(c)j

v(c)i + v(c)j +
κ

2v(c)j

exp
�

1p
t
[ϕr(v

(c)
i ) +ϕr(v

(c)
j )− v(c)j κ]

�

|v(c)j |v
(c)
i

. (117)
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The leading term of this expansion is obtained for v(c)i = −v(c)j as this cancels the ϕ functions
in the exponential and the denominator in the sum is of order κ. We additionally rescale κ by
a factor

p
t to obtain

K12(
r

t
1
3

,
r +κ

p
t

t
1
3

)'
1

2πκt1/6
sin(κ

p
−r). (118)

Taking κ= 0 yields the following density which vanishes at r = 0 and is strictly positive

ρ(r t−1/3)'
1

2πt1/6

p
−rθ (r ≤ 0). (119)

Hence, we obtain Ξ= 0 and ρ∞(a) =
1

2π

p
−a and we now list useful properties of ρ∞.

1. Near the edge at a = 0, ρ∞(a) vanishes as
p
−a.

2. The left asymptotics is ρ∞(a)'−a�1

p
−a

2π .

3. The right asymptotics is ρ∞(a)'a�1 i
p

a
2π .

7.4 Large deviations of the distribution of H

By (24), we obtain the Large Deviation Principle

logEKPZ

�

exp
�

−
z
4

eH1

�

�

'
t�1
−

1

2π
p

t

∫ 0

−∞
dv log

�

1+ zev
�p
−v. (120)

Defining H = H1 +
1
2 log(πt), we obtain our main result for the short time LDP for A = 0 in

terms of the centered field H

logEKPZ

�

exp

�

−
zeH

p
16πt

�

�

'
t�1
−
Ψ(z)
p

t
, (121)

where Ψ is defined on [−1,+∞[ as

Ψ(z) =
1

2π

∫ 0

−∞
dv log

�

1+ zev
�p
−v = −

1
p

16π
Li5/2(−z). (122)

The large deviation function in (122) for A= 0 is strictly identical to the one in (97) for A= −1
2 ,

therefore the distribution of the solutions for both cases will be identical, i.e.

ΦA=0(H) = ΦA=1/2(H) =
1
2
Φfull−space(H). (123)

8 Perturbation theory of the stochastic heat equation in half-space
at short time

8.1 Half-space SHE and its solution

We consider in this Section the perturbation theory of the half-space KPZ problem with droplet
IC and Neumann b.c.

∀τ > 0, ∂xh(x ,τ) |x=0= A. (124)
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Defining the partition function Z = eh, we map the KPZ equation and its boundary condition
to the stochastic heat equation (SHE) for x ≥ 0

∂τZ(x ,τ) = ∂ 2
x Z(x ,τ) +

p
2ξ(x ,τ)Z(x ,τ), (125)

along with a delta IC Z(x , 0) = δ(x − ε) and Robin b.c. ∂x Z(x ,τ) |x=0= AZ(0,τ) where ε > 0
is introduced to regularize the solution and will be taken to 0+ at the end. Let G be the heat
kernel, i.e. G(x , t) = 1p

4πt
exp(− x2

4t )θ (t) along with G(x , 0) = δ(x), then the propagator of
the half-space heat equation from (y,τ′) to (x ,τ), see Appendix D, is

G (y, x ,τ′,τ) = G(x− y,τ−τ′)+G(x+ y,τ−τ′)−2A

∫ +∞

0

dz e−AzG(x+ y+z,τ−τ′). (126)

The propagator allows us to extract the general solution of the SHE where the multiplicative
noise is seen as a source term.

Z(x ,τ) =

∫ τ

0

∫ +∞

0

dsdy G (y, x , s,τ)
�

ξ(y, s)Z(y, s) +δ(y − ε)δ(s)
�

= G ? (ξZ +δδ).

(127)

We hereby define ? as the space-time convolution.

8.2 Perturbative rescaling of the SHE at short time

Starting from the SHE (125), we choose the rescaling τ = tτ̃, ε =
p

t ε̃ and x =
p

t x̃ so that
the tilde variables are of order one and the short time expansion is made in terms of powers
of t. The equation becomes (dropping the tilde for x and τ)

∂τZ(x ,τ) = ∂ 2
x Z(x ,τ) + t1/4

p
2ξ(x ,τ)Z(x ,τ) + t−1/2δ(x − ε̃)δ(τ). (128)

In particular, the Robin b.c. is written as

∂x Z(x ,τ) |x=0= A
p

tZ(0,τ). (129)

At short time, we observe that the problem only depends on the rescaled variable Ã= A
p

t. As
t tends to zero, there are only two fixed points in this regime Ã= +∞ and Ã= 0. It does imply
the existence of two fixed points for the boundary conditions : the Dirichlet (A = +∞) and
the Neumann (A finite) boundary conditions. A large deviation distribution will be associated
to each of these boundary conditions. It explains why the half-space droplet KPZ cases A= 0
and A = −1

2 have the exact same large deviation distribution at short time, and it yields the
generalization of the large deviation distribution to all A finite.

Additionally, it has been observed in Ref. [27] using weak noise theory (WNT) that for any
deterministic initial condition which is mirror-symmetric around x = 0, the short-time large
deviation distribution of the full-space problem is twice the one of the half-space problem with
the same initial condition along with the presence of a symmetric wall (i.e. A= 0). Using our
fixed point argument, we extend this result to any finite A. It would be interesting to observe
predictions from WNT for the other fixed point, i.e. the hard wall A= +∞.

8.3 First two cumulants

To obtain the two first cumulants of Z(ε̃,τ= 1), we express the solution of the SHE

Z(ε̃,τ= 1) = G ? (
p

2t1/4ξZ + t−1/2δδ). (130)
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and define successively the two first orders of the perturbation
Z0 = t−1/2G ?δδ and Z1 =

p
2t1/4G ?ξZ0. In the same spirit as the perturbative expansion in

Ref. [30], the leading order of the first moment is E[Z(ε̃,τ= 1)] = Z0(ε,τ) and the leading or-
der of the second moment is E[Z(ε̃,τ= 1)2]c = E

�

(Z0 + Z1)2(ε̃,τ= 1)
�c
= E

�

Z1(ε̃,τ= 1)2
�

.

8.3.1 First moment

The zeroth order of the expansion Z0 is given by the fundamental solution of the half-space
heat equation as the initial condition is a Dirac.

Z0(ε̃,τ= 1) =
1
p

4πt
+

1
p

4πt
exp(−ε̃2)−

Ã
p

t
eÃ(Ã+2ε̃)Erfc

�

Ã+ ε̃
�

. (131)

We see that the first moment is a scaling function of both variables Ã and ε̃, they therefore are
the relevant parameter to distinguish the following regimes :

1. A finite and ε = 0 so that Ã� 1, ε̃ = 0 and Z0(0, t) =
1
p
πt
− A+O (A2).

2. A= +∞ and 0<ε�1 so that Ã= +∞, ε̃ is finite and Z0(ε, t) =
ε2

p
4πt3/2

+O (ε4).

8.3.2 Second moment

We calculate the second moment of Z1,

E
�

Z1(ε̃,τ= 1)2
�

= 2t1/2E
�

(G ? ξZ0)(G ? ξZ0)(ε̃,τ= 1)
�

.

Using the delta correlations of the white noise, the integrals is simplified as

E
�

Z1(ε̃,τ= 1)2
�

= 2t1/2

∫ 1

0

∫ +∞

0

dsdy G (y, ε̃, s, 1)2Z0(y, s)2, (132)

and as in Section 8.3.1, we consider the two regimes at short-time

1. Ã� 1 and ε̃ = 0, up to the order 0 in A, E
�

Z1(0, t)2
�

=
q

2
πt +O (A).

We conclude that the rescaled second moment, up to order 0 in A, is

E
�

Z(ε̃,τ= 1)2
�

E
�

Z(ε̃,τ= 1)
�2 =

p
2πt +O (At). (133)

2. Ã= +∞ and ε̃ finite, up to the first non zero order in ε, E
�

Z1(ε̃,τ= 1)2
�

= 3ε4

8
p

2πt5/2 .

We conclude that the rescaled second moment, up to order 0 in ε, is

E
�

Z(ε̃,τ= 1)2
�

E
�

Z(ε̃,τ= 1)
�2 =

3
2

s

πt
2

. (134)
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9 Long time results

We can additionally obtain some information about the tails of the KPZ solution at large time
from the limiting behavior of the off-diagonal kernel K12(r, r) when the variable is rescaled as
r = r̃ t2/3 for large t � 1. Indeed, it was showed in [36, 41], that at large time the cumulant
approximation is still valid to obtain the far left tail of the height distribution. Indeed, defining
z = e−st1/3

, we have
logP(H(t)< st1/3) '

t�1,s<0
κ1, (135)

where κ1 = −χ
∫

R da log(1+ et1/3(a−s))K12(a, a). At large time, we additionally approximate

log(1+ et1/3(a−s))' t1/3 max(0, a− s) leading to

logP(H(t)< st1/3) '
t�1,s<0

−t1/3χ

∫ +∞

s
da (a− s)K12(a, a). (136)

This integral is dominated by the large negative argument of K12 in the same fashion as the
short-time case. Indeed, if K12(a, a)'−a�1 β1|a|γ1 , then

logP(H(t)< st1/3) '
t�1,s<0

−t1/3 χβ1

(γ1 + 1)(γ1 + 2)
|s|γ1+2. (137)

In the large time large deviation regime where s = s̃ t2/3, with s̃ fixed, this expression takes

the form logP(H(t) < s̃ t) '
t�1,s<0

−t
5+2γ1

3
χβ1

(γ1+1)(γ1+2) |s̃|
γ1+2. In all observed cases, we have

γ1 =
1
2 . For the rest of this section, we apply (137) to the half-space droplet KPZ case with

A= −1
2 , 0,+∞ and argue that for all cases, we have

logP(H(t)< s̃ t) '
t�1,s̃<0

−t2 2
15π
|s̃|5/2. (138)

As the cases A= +∞ and A= 0 share the same kernel at large time, i.e. the GSE kernel, we
will study them together.

9.1 A= +∞ and A= 0

It has been shown in the Appendix of [36] that the large negative behavior of the GOE kernel

is the edge of Wigner’s semi-circle KGOE
12 (a, a) '

−a�1

p
|a|
π . The off-diagonal GSE kernel (68)

differs from the off-diagonal GOE kernel (86) by two aspects

• There is an extra factor 1
2 in the GSE kernel.

• In the GSE kernel, both integrals in the definition have their contour at the right of 0
while in the GOE kernel, one contour is on the left and the other one is on the right.

In the large deviation regime, the position of the contour with respect to zero is without im-
portance as both (68) and (86) are evaluated through a saddle point method where the saddle
points is located on the imaginary axis. This implies that

KGSE
12 (a, a) '

−a�1

p

|r|
2π

θ (−r). (139)

Therefore, by (137), we obtain the left tail of the distribution

logP(H(t)< s̃ t) '
t�1,s<0

−t2 2
15π
|s̃|5/2. (140)
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9.2 A= −1
2

For the critical case for droplet initial condition, we have obtained in [41] the full large devi-
ation rate function for the left tail which describes the crossover between the 5/2 tail and the
cubic tail of GOE Tracy-Widom. Indeed at large time, we have the large deviation principle for
s̃ < 0

− lim
t→∞

1
t2

logP(H(t)< s̃ t) = Φhalf−space
− (s̃) =

1
2
Φ

full−space
− (s̃), (141)

where Φfull−space
− (s̃) was obtained explicitely in Refs. [39, 41]. The limiting behavior of

Φ
half−space
− are

Φ
half−space
− (s̃)'−s̃�1

1
24
|s̃|3, Φ

half−space
− (s̃)'−s̃�1

2
15π
|s̃|5/2. (142)

The small s̃ behavior indeed matches the GOE Tracy-Widom behavior given in Table 1.

9.3 Further conjecture

In view of the coefficients obtained for the two limiting behavior of Φhalf−space
− (s̃) for A= 0 and

A=∞ in Eq. (140) (H5/2 tail ) and in Table 1 (H3 tail), it is tempting to conjecture that the
full large deviation rate function for the left tail does not depend on A for A> −1

2 . Note that
this is also consistent with the bound of Eq. (84).

10 Conclusion

We have developed a mathematical framework enabling to easily derive the short time proper-
ties of the large deviations of the distribution of the height of the KPZ solutions. Notably, when
there exists a Pfaffian representation for the moment generating function of the KPZ solution,
the short time large deviation rate function only depends on the asymptotics density of the
associated Pfaffian point process. We have exploited this method to study KPZ in a half-space
with three different boundary conditions A= 0,−1/2,+∞.

Furthermore, we have obtained a new Pfaffian representation of the KPZ solution for the
hard wall boundary condition which is valid at all times and also allows to study easily the
short time properties. We have additionally extended the cumulant approximation that was
previously introduced in [36, 41] to obtain the left tail of the distribution at large time. This
approximation allows in the short-time context to obtain the entire height distribution of the
KPZ solution. It is quite remarkable that this method, i.e. the truncation to the first cumulant,
also contains all the information in the short time limit.

On a more technical side, we have obtained a general method to transform a class of Fred-
holm Pfaffians with a 2 × 2 block kernel into a Fredholm determinants with a scalar valued
kernel. This extends some of the results of Refs. [53,54].

We hope that this effort will motivate further bridges with different theoretical methods
such as Weak Noise Theory or with numerical simulations.
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A The Lambert function W

We introduce the Lambert W function [47]which we use throughout this paper to study the so-
lution with droplet initial condition and hard wall boundary condition. Consider the function
defined on C by f (z) = zez , the W function is composed of all inverse branches of f so that
W (zez) = z. It does have two real branches, W0 and W−1 defined respectively on [−e−1,+∞[
and [−e−1, 0[. On their respective domains, W0 is strictly increasing and W−1 is strictly de-
creasing. By differentiation of W (z)eW (z) = z, one obtains a differential equation valid for all
branches of W (z)

dW
dz
(z) =

W (z)
z(1+W (z))

. (143)

Concerning their asymptotics, W0 behaves logarithmically for large argument
W0(z) 'z→+∞ ln(z) − ln ln(z) and is linear for small argument W0(z) 'z→0 z − z2 + O (z3).
W−1 behaves logarithmically for small argument W−1(z) 'z→0− ln(−z) − ln(− ln(−z)). Both
branches join smoothly at the point z = −e−1 and have the value W (−e−1) = −1. These re-
marks are summarized on Fig. 2. More details on the other branches, Wk for integer k, can be
found in [47].

0 1 2 3 4 5 6

-4

-3

-2

-1

0

1

2

z

W
(z
)

Figure 2: The Lambert function W . The dashed red line corresponds to the branch
W0 whereas the blue line corresponds to the branch W−1.
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B Representation of a 2×2 block Fredholm Pfaffian as a Fredholm
determinant

In this Appendix, we present a new representation of a class of 2 × 2 block Fredholm Pfaf-
fian with a matrix valued kernel in terms of a Fredholm determinant with a scalar valued
kernel. This Appendix is an extension to arbitrary time of the arguments presented by G. Bar-
raquand [55] for the case of the GSE kernel where the associated scalar valued kernel is the
one found in [33].

Consider a measure µ on a contour C ∈ C and another measure νz on the real line R,
depending on a real parameter z. Consider the quantity Q(z) defined by

Q(z) = 1+
∞
∑

ns=1

(−1)ns

ns!
Z(ns, z) (144)

and

Z(ns, z) =
ns
∏

p=1

∫

R
νz(drp)

∫

C
µ(dX2p−1)

∫

C
µ(dX2p)

φodd(X2p−1)φeven(X2p)e
−rp[X2p−1+X2p] Pf

�

X i − X j

X i + X j

�2ns

i, j=1

.

(145)

Then we have the two following lemma and proposition.

Lemma B.1. Q(z) is equal to a Fredholm Pfaffian with a 2 × 2 matrix valued skew-symmetric
kernel

Q(z) = Pf [J − K]L2(R,νz) . (146)

For r, r ′ ∈ R the matrix kernel K is given by

K11(r, r ′) =

∫

C

∫

C
µ(dv)µ(dw)

v −w
v +w

φodd(v)φodd(w)e
−rv−r ′w,

K22(r, r ′) =

∫

C

∫

C
µ(dv)µ(dw)

v −w
v +w

φeven(v)φeven(w)e
−rv−r ′w,

K12(r, r ′) =

∫

C

∫

C
µ(dv)µ(dw)

v −w
v +w

φodd(v)φeven(w)e
−rv−r ′w,

K21(r, r ′) =

∫

C

∫

C
µ(dv)µ(dw)

v −w
v +w

φeven(v)φodd(w)e
−rv−r ′w.

(147)

and the matrix kernel J is defined by

J(r, r ′) =
�

0 1
−1 0

�

1r=r ′ . (148)

Proof. Using a known property of Pfaffians (see De Bruijn [51]),

2ns
∏

p=1

∫

C
µ(dXp) φ̃p(Xp)Pf

�

X i − X j

X i + X j

�

2ns×2ns

=

Pf

�

∫

C

∫

C
µ(dv)µ(dw) φ̃i(v)φ̃ j(w)

v −w
v +w

�

2ns×2ns

(149)
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and specifying the functions φ̃ as

φ̃2p−1(X ) = φodd(X )e
−rpX , φ̃2p(X ) = φeven(X )e

−rpX , (150)

we rewrite Z(ns, z) as

Z(ns, z) =
ns
∏

p=1

∫

R
νz(drp)Pf

�

K(ri , r j)
�ns

i, j=1
. (151)

Noticing that each couple (ri , r j) appears in 2 × 2 block, the definition of the matrix valued
kernel K in (147) follows. Note that in (151) we must consider matrix kernels as made up of n2

s
blocks, each of which has size 2×2. Considering 22 blocks of size ns×ns instead, would change
the value of its Pfaffian by a factor (−1)ns(ns−1)/2, see [12,13]. Note that K21(r, r ′) = −K12(r ′, r)
so the kernel is skew-symmetric. Finally, from [42] Section 8, Q(z) is by definition a Fredholm
Pfaffian

Q(z) = Pf [J − K]L2(R,νz) . (152)

Proposition B.2. Q(z) is equal to the square root of a Fredholm determinant with scalar valued
kernel

Q(z) =
r

Det
�

I − K̄
�

L2(R+), (153)

where L2(R+) is considered with the uniform measure. Introducing the functions defined on R by

fodd(r) =

∫

C
µ(dv)φodd(v)e

−rv , feven(r) =

∫

C
µ(dv)φeven(v)e

−rv , (154)

the scalar kernel K̄ is given, for x , y ∈ R+, by

K̄(x , y) = 2

∫

R
νz(dr)

�

f′even(r + x)fodd(r + y)− f′odd(r + x)feven(r + y)
�

(155)

and the scalar kernel I is the identity kernel I(x , y) = 1x=y .

Proof. We start back from the definition of the matrix valued kernel K in Eq. (147) and use
the following identity

v −w
v +w

=
w
w
−

2w
v +w

, (156)

along with the identities valid for Re(w)> 0 and Re(v +w)> 0

1
w
=

∫ +∞

0

dxe−xw,
1

v +w
=

∫ +∞

0

dxe−x(v+w), we−r ′w = −∂r ′e
−r ′w. (157)

These identities are used to separate the integrals w.r.t the variables v and w. One can now
introduce the odd and even functions

fodd(r) =

∫

C
µ(dv)φodd(v)e

−rv , feven(r) =

∫

C
µ(dv)φeven(v)e

−rv , (158)
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to write the elements of the kernel K as

K11(r, r ′) =

∫ +∞

0

dx
�

2fodd(r + x)f′odd(r
′ + x)− fodd(r)f

′
odd(r

′ + x)
�

,

K22(r, r ′) =

∫ +∞

0

dx
�

2feven(r + x)f′even(r
′ + x)− feven(r)f

′
even(r

′ + x)
�

,

K12(r, r ′) =

∫ +∞

0

dx
�

2fodd(r + x)f′even(r
′ + x)− fodd(r)f

′
even(r

′ + x)
�

,

K21(r, r ′) =

∫ +∞

0

dx
�

2feven(r + x)f′odd(r
′ + x)− feven(r)f

′
odd(r

′ + x)
�

.

(159)

Consider the notation for the matrix valued kernel

K(r, r ′) =

�

K11(r, r ′) K12(r, r ′)
K21(r, r ′) K22(r, r ′)

�

. (160)

One of the two main steps of the proof is to notice that the kernel K can be factorized as a
product of a matrix that depends only on r and another matrix that depends only on r ′.

K(r, r ′) =

∫ +∞

0

dx

�

2fodd(r + x)− fodd(r)
2feven(r + x)− feven(r)

��

f′odd(r
′ + x)

f′even(r
′ + x)

�T

. (161)

We now write this matrix product as an operator product

K(r, r ′) =

∫ +∞

0

dx A(1)(r, x)A(2)(x , r ′), (162)

where the Hilbert-Schmidt operator A(1) : L2(R,νz)→ L2(R+) is defined by

A(1)(r, x) =

�

2fodd(r + x)− fodd(r)
2feven(r + x)− feven(r)

�

. (163)

and A(2) : L2(R+)→ L2(R,νz) is defined by

A(2)(x , r ′) =

�

f′odd(r
′ + x)

f′even(r
′ + x)

�T

. (164)

We have,
Pf [J − K]L2(R,νz) = Pf

�

J − A(1)A(2)
�

L2(R,νz)
. (165)

Using that for a skew-symmetric kernel K , Pf[J − K]2 = Det[I + JK], (see [42], Lemma 8.1),
where the scalar kernel I is the identity kernel I(x , y) = 1x=y , this gives

Pf [J − K]2L2(R,νz)
= Det

�

I + JA(1)A(2)
�

L2(R,νz)
. (166)

Following [53,56], one uses the "needlessly fancy" general relation det(I + AB) = det(I + BA)
for arbitrary Hilbert-Schmidt operators A and B. They may act between different spaces as long
as the products make sense. In the present context det(I+AB) is the Fredholm determinant of
a matrix valued kernel whilst det(I + BA) is a Fredholm determinant of scalar valued kernel.

Pf [J − K]2L2(R,νz)
= Det

�

I + A(2)JA(1)
�

L2(R+)
. (167)
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Let us compute the scalar valued kernel of the operator A(2)JA(1) : L2(R+)→ L2(R+).

A(2)JA(1)(x , y) =

∫

R
νz(dr)A(2)(x , r)JA(1)(r, y) =K (x , y)−

1
2
K (x , 0), (168)

where K : L2(R+)→ L2(R+) is defined by

K (x , y) = 2

∫

R
νz(dr)

�

f′odd(r + x)feven(r + y)− f′even(r + x)fodd(r + y)
�

. (169)

We observe that K can be written as a partial derivative w.r.t its first variable
K (x , y) = ∂x k(x , y) where k is a skew-symmetric scalar kernel given by

k(x , y) = 2

∫

R
νz(dr)

�

fodd(r + x)feven(r + y)− feven(r + x)fodd(r + y)
�

. (170)

The operator (x , y) 7→ K (x , 0) is of rank 1 and can be written asK |δ〉 〈1| where all products
have to be taken in the sense of Hilbert-Schmidt integral operator products. Here δ is the δ-
function at x = 0 and 1 denotes the function 1(x) = 1 for all x ≥ 0. This leads to the equality

Pf [J − K]2L2(R,νz)
= Det

�

I +K
�

I −
1
2
|δ〉 〈1|

�

�

L2(R+)
. (171)

As |δ〉 〈1| is of rank 1, by the matrix determinant lemma, we have

Pf [J − K]2L2(R,νz)
= Det [I +K ]L2(R+)

�

1−
1
2
〈1|K (I +K )−1 |δ〉

�

. (172)

We now want to prove the following identity to be able to conclude

〈1|K (I +K )−1 |δ〉= 0. (173)

The main ingredient to prove this is the remarkable fact that K is expressed as a product
K = Dk, where D = ∂x and k is a skew-symmetric kernel as introduced in (170). For this
type of kernels, (173) was proven in [12,13] Appendix H, and we re-derive the proof here for
completeness. We first expand (I +K )−1 as a series

〈1|K (I +K )−1 |δ〉= −
+∞
∑

n=1

(−1)n 〈1|K n |δ〉 . (174)

A sufficient condition for (173) to hold is that for all n ≥ 1, 〈1|K n |δ〉 = 0. We introduce the
notation Qn = 〈1|K n |δ〉, show explicitly for n= 1 that this is true and we will finally proceed
by induction.

Q1 =

∫

R+,⊗2

dx1dx2K (x1, x2)δ(x2) =

∫

R+
dx1 ∂x1

k(x1, 0) = 0, (175)

where we used that k(0,0) = 0. The general term Qn is given by

Qn =

∫

R+,⊗(n+1)

dx1 . . . dxn+1K (x1, x2)
n
∏

i=2

�

K (x i , x i+1)
�

δ(xn+1)

=

∫

R+,⊗(n−1)

dx2 . . . dxn k(x2, 0)
n−1
∏

i=2

�

∂x i
k(x i , x i+1)

�

∂xn
k(xn, 0),

(176)
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where in the last line, we have integrated w.r.t x1 and xn+1. We shall prove that Qn verifies
the following identity for any n≥ 2

Qn =
1
2

n−1
∑

p=1

QpQn−p. (177)

To do so, we use two observations. Due to the skew-symmetry of k, for any x , we have
∂x k(x , y) = −∂x k(y, x). Besides, all derivatives are applied on the first variable of k in the
definition of Qn, so we use the integration by part identity (coupled to the skew-symmetry of
k)

∫

y
∂x k(x , y)∂y k(y, z) = ∂x k(x , 0)k(z, 0) +

∫

y
∂x∂y k(y, x)k(y, z). (178)

The idea is to push all derivatives from the right to the left in the second line of (176) by
successive integrations by part. The boundary terms in (178) will cut the integral into two
parts, giving the discrete convolution term QpQn−p. The very last term not coming from the
boundaries will be

∫

R+,⊗(n−1)

dx ∂x2
k(0, x2)

n−1
∏

i=2

�

∂x i+1
k(x i+1, x i)

�

k(xn, 0). (179)

Up to the relabeling x i → xn+1−i one recognizes that this is equal to −Qn leading to

Qn = −Qn +
n−1
∑

p=1

QpQn−p, (180)

which is exactly (177). Finally, from (177) and the fact that Q1 = 0, by induction we have for
all n≥ 1, Qn = 0. And therefore (173) is verified so that the Fredholm Pfaffian reads

Pf [J − K]2L2(R,νz)
= Det [I +K ]L2(R+) . (181)

Defining K̄ = −K and taking the square root on both side of (181) ends the proof.

Remark B.1. By expanding on powers of τ, one can check that

Det

�

I +τ

∫ +∞

0

dx

�

g1(r, x)
g2(r, x)

�

�

g3(x , r ′) g4(x , r ′)
�

�

L2(R,νz)

=

Det

�

I +τ

∫

R
νz(dr)

�

g3(x , r) g4(x , r)
�

�

g1(r, y)
g2(r, y)

�

�

L2(R+)

.

(182)

It is easy to see that the traces of arbitrary powers of the two operators of (182) coincide.

Remark B.2. A shorter version of the proof concerning the identity 〈1|K (I+K )−1 |δ〉= 0 can
be given as follows. Since K = Dk, we rewrite this identity as

Q = 〈1|K (I +K )−1 |δ〉= −〈δ| k(I + Dk)−1 |δ〉 . (183)

where we used for any function f that 〈1|D f = −〈δ| f . Note also the commutation relation
k(I + Dk)−1 = (I + kD)−1k. We recall that D is the derivative operator defined by its matrix
element 〈 f |D |g〉=

∫

R+ dx f (x)g ′(x). By integration by part, the adjoint of D is

DT = −D− |δ〉 〈δ| . (184)
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Taking the adjoint of the operator k(I + Dk)−1, we have

Q = −〈δ| (I + kT DT )−1kT |δ〉= 〈δ|
�

I + kD+ k |δ〉 〈δ|
�−1

k |δ〉 . (185)

We can use the Sherman-Morrison identity since the last term in the inverse is a rank 1 operator.

Q = 〈δ| (I + kD)−1 k |δ〉 −
〈δ| (I + kD)−1 k |δ〉 〈δ| (I + kD)−1 k |δ〉

1+ 〈δ| (I + kD)−1 k |δ〉
= −Q−

Q2

1−Q
, (186)

which implies Q = 0 or Q = 2. Since the amplitude of k can be increased continuously from
0 to any value, by continuity, the solution is Q = 0. This agrees with the previous calculation
using a power series expansion.

Remark B.3. As these proofs did not depend on the measures ν and µ, we can apply these
lemmas to the solution of the KPZ equation at all times.

C Short time limit of the A=∞ kernel

As required from Section 3, we study at short time the off-diagonal element

K12(r t−
1
3 , r ′ t−

1
3 ) =

∫

Cv

∫

Cw

dvdw

(2iπ)2πt
2
3

v −w
v +w

Γ (2vt−
1
2 )Γ (2wt−

1
2 )

cos(πvt−
1
2 ) sin(πwt−

1
2 )e−

1p
t
[rv+r ′w− v3+w3

3 ]. (187)

We rewrite the pre-factors of the exponential in the integrand of K12 using the following con-
tinuations in the complex plane and their associated Stirling asymptotics

Γ (2w) sin(πw) =
22wpπ

2

Γ (w+ 1
2)

Γ (1−w)
'
|w|�1

√

√−π
4w

exp
�

(log(−4w2)− 2)w
�

,

Γ (2v) cos(πv) =
22vpπ

2
Γ (v)

Γ (1
2 − v)

'
|v|�1

s

π

4v
exp

�

(log(−4v2)− 2)v
�

.
(188)

Within these approximations and continuations, the off-diagonal kernel reads

K12(r t−
1
3 ,r ′ t−

1
3 ) =

∫

Cv

∫

Cw

dvdw

4(2iπ)2 t
1
6

v −w
v +w

1
p
−w

1
p

v

exp

�

−
1
p

t
[(r + 2− log(

−4v2

t
))v + (r ′ + 2− log(

−4w2

t
))w−

v3 +w3

3
]

�

.

(189)

We define the rate function ϕr(w) = (−r + log(−4w2

t )−2)w+ w3

3 to write the off-diagonal in a
suitable form for a saddle point approximation

K12(r t−
1
3 , r ′ t−

1
3 ) =

∫

Cv

∫

Cw

dvdw

4(2iπ)2 t
1
6

v −w
v +w

1
p
−w

1
p

v
exp

�

1
p

t
[ϕr(v) +ϕr ′(w)]

�

. (190)

The saddle points are solution of ϕ′r(w) = 0, i.e. w2+ log(−w2) = r+ log( t
4) which yields four

solutions expressed with the two real branches of the Lambert function W0,−1, see [47]

w(c) = ±i
s

−W0,−1(−
t
4

er), ϕ(w(c)) = −
2
3

w(c)3 − 2w(c), ϕ′′(w(c)) = 2[w(c) +
1

w(c)
]. (191)

41

https://scipost.org
https://scipost.org/SciPostPhys.5.4.032


SciPost Phys. 5, 032 (2018)

For the saddle points to belong to the contour Cw, one needs − t
4 er ∈ [−1

e , 0], and up to
redefinition of r by a shift of t

4 , we have the constraint r ∈ ]−∞,−1]. This accounts to a
redefinition of the initial condition H → H + log( t

4). For w2 ∈ [−1, 0], we choose the branch
W0 and for w2 ∈ ]−∞,−1], we choose the branch W−1. In the overall we have 16 purely
imaginary saddle-point combinations, four for each variable which we denote by an index
i ∈ [1,4]. A saddle-point expansion yields

K12(r t−
1
3 , r ′ t−

1
3 )'

t1/3

16πi2

4
∑

i, j=1

v(c)i −w(c)j

v(c)i +w(c)j

1
Ç

v(c)i

1
r

−w(c)j

√

√

√

√

−v(c)i

1+ v(c)2i

√

√

√

√

−w(c)j

1+w(c)2j

exp

�

1
p

t
[ϕr(v

(c)
i ) +ϕr ′(w

(c)
j )]

�

.

(192)

The square roots are not simplified as there exist different branches in the complex plane. At
the very end we are interested in the r = r ′ limit, hence we write r ′ = r +κ and aim at taking
the κ= 0. As κ is small, we expand the critical point and the value of the rate function at the
critical point

w(c)j = v(c)j +
1
2

v(c)j κ

1+ v(c)2j

, ϕr ′(w
(c)
j ) = ϕr(v

(c)
j )− v(c)j κ. (193)

Within the linear regime, the off-diagonal kernel reads

K12(
r

t
1
3

,
r + κ

t
1
3

)'
t1/3

16πi2

4
∑

i, j=1

v(c)i − v(c)j −
1
2

v(c)j κ

1+v(c)2j

v(c)i + v(c)j +
1
2

v(c)j κ

1+v(c)2j

1
Ç

v(c)i

1
r

−v(c)j

√

√

√

√

−v(c)i

1+ v(c)2i

√

√

√

√

−v(c)j

1+ v(c)2j

exp

�

1
p

t
[ϕr(v

(c)
i ) +ϕr(v

(c)
j )− v(c)j κ]

�

.

(194)

From there, either we have three different combinations W0 ×W−1, W0 ×W0 and W−1 ×W−1.
The leading term of this expansion is obtained for v(c)i = −v(c)j , i.e. the saddle points are of the
same Lambert branch but with opposite sign. This cancels the ϕ functions in the exponential
and the denominator in the sum is of order κ. We additionally rescale κ by a factor

p
t to

obtain

K12(
r

t
1
3

,
r +κ

p
t

t
1
3

)'
2
∑

i=1

1+ v(c)2i

κ4πt1/6

1
Ç

v(c)i

1
Ç

v(c)i

√

√

√

√

−v(c)i

1+ v(c)2i

√

√

√

√

v(c)i

1+ v(c)2i

exp
�

v(c)i κ
�

. (195)

Noticing that 1 + v(c)2j is positive for the branch W0 and negative for the branch W−1 and
that whenever we take opposite saddle points we cross the branch cut of the square root, the
off-diagonal kernel K12 simplifies into the difference of two sine kernels

K12(
r

t
1
3

,
r + κ

p
t

t
1
3

)'
1

2πκt1/6

�

sin(κ
Æ

−W−1(−er))− sin(κ
Æ

−W0(−er))
�

. (196)

Taking κ= 0 yields the following density which vanishes at r = −1 and is strictly positive

ρ(r t−1/3)'
1

2πt1/6

�
Æ

−W−1(−er)−
Æ

−W0(−er)
�

θ (r ≤ −1). (197)
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D Half-space propagator for the heat equation

We derive here the propagator of the heat equation in half-space(126). To do so, we shall
find its fundamental solution for a point source, and as the heat equation is invariant by time-
translation, we consider the problem

∂t Z(x , t) = ∂ 2
x Z(x , t), (198)

along with a delta IC Z(x , t = 0) = δ(x − ε), ε > 0 and Robin b.c. ∂x Z(x , t) |x=0= AZ(0, t).

We introduce the functions v = ∂x Z−AZ , φ(x) = δ′(x−ε)−Aδ(x−ε) and the heat kernel
G(x , t) = 1p

4πt
exp(− x2

4t )θ (t) along with G(x , 0) = δ(x). As v verifies the heat equation with
Dirichlet b.c., i.e. v(x = 0, t) = 0, with φ as IC, we obtain its expression by the image method,
i.e. the anti-symmetrization of the full-space kernel

v(x , t) =

∫ +∞

0

dy
�

G(x − y, t)− G(x + y, t)
�

φ(y)

= ∂x G(x − ε, t) + ∂x G(x + ε, t)− A
�

G(x − ε, t)− G(x + ε, t)
�

.

(199)

We solve the ODE v = ∂x Z−AZ to obtain the partition function. For this, we need to introduce
two constants a and C so that

Z(x , t) =

∫ x

a
dy eA(x−y)v(y, t) + CeAx

=
�

(G(y − ε, t) + G(y + ε, t))eA(x−y)
�x

a
+ 2A

∫ x

a
dy eA(x−y)G(y + ε, t) + CeAx .

(200)

The determination of a and C should enforce the matching with the IC of Z . Indeed, at t = 0,
choosing a = +∞ and C = 0 one obtains

Z(x , 0) = δ(x − ε) +δ(x + ε) + 2AeAx

∫ x

+∞
dy e−Ayδ(y + ε). (201)

Two of the three δ functions, δ(x + ε) and δ(y + ε), are zero as we define the partition
function over the positive real line and as their support is on the negative real line. Therefore,
the fundamental solution of the heat equation with Robin b.c. is

Z(x , t) = G(x − ε, t) + G(x + ε, t)− 2A

∫ +∞

0

dy e−Ay G(y + x + ε, t). (202)

Remark D.1. If A= 0, then we find back the solution for the Neumann b.c. ∂x Z(x , t) |x=0= 0
which is Z(x , t) = G(x − ε, t) + G(x + ε, t)

Remark D.2. The infinite A limit, i.e. the Dirichlet b.c. Z(0, t) = 0, and its first 1/A corrections
are obtained by solving the integral in (202) exactly and expanding the result

Z(x , t) = G(x − ε, t) + G(x + ε, t)− AeA(At+x+ε)Erfc

�

2At + x + ε
2
p

t

�

. (203)

The expansion for large A gives

Z(x , t) = G(x − ε, t)− (1−
x + ε

At
+

x2 + 2xε+ ε2 − 2t
2A2 t2

+O (
1
A3
))G(x + ε, t). (204)
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We finally interpret the solution as the propagator from a source point situated at ε at time
τ = 0 going to the point x in a time t, hence we define the propagator from (y, t ′) to (x , t),
using the time-translation invariance.

G (y, x , t ′, t) = G(x − y, t − t ′)+G(x + y, t − t ′)−2A

∫ +∞

0

dz e−AzG(x + y + z, t − t ′), (205)

which is the propagator announced in (126).
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