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Abstract

Let g be a simply laced Lie algebra, bg1 the corresponding affine Lie algebra at level one,
and W(g) the corresponding Casimir W-algebra. We consider W(g)-symmetric conformal
field theory on the Riemann sphere. To a number of W(g)-primary fields, we associate a
Fuchsian differential system. We compute correlation functions of bg1-currents in terms
of solutions of that system, and construct the bundle where these objects live. We argue
that cycles on that bundle correspond to parameters of the conformal blocks of the W-
algebra, equivalently to moduli of the Fuchsian system.
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1 Introduction

In recent years, it has been found that two-dimensional conformal field theory with the central
charge c = 1 can be formulated in terms of Fuchsian differential systems. In particular, this has
led to the expression of Virasoro conformal blocks in terms of solutions of Painlevé equations
[1], and to a new derivation of the three-point structure constant of Liouville theory [2].

A natural generalization would be that Fuchsian differential systems associated to a Lie al-
gebra g provide a formulation of conformal field theory based on the corresponding W-algebra
W(g) with the central charge c = rankg. The Virasoro algebra with c = 1 would then be
the special case g = sl2. We call a W-algebra with the central charge c = rankg a Casimir
W-algebra, because it coincides with the Casimir subalgebra of the affine Lie algebra bg1 at
level one [3]. (For generic central charges, that Casimir subalgebra is much larger than W(g),
except in the special case g = sl2.) This natural generalization has been illustrated by the
analysis of conformal blocks in the case g = slN [4]. And if Fuchsian systems describe W(g)
conformal blocks, then presumably they can also describe the corresponding generalizations
of Liouville theory, namely conformal Toda theories.

Our motivation for investigating this natural generalization is to gain a structural under-
standing of two-dimensional CFT, which could be the basis for new computational techniques
and for finding non-trivial duality relations. Of course, the interesting applications would
mostly be confined to the case g = sl2 of the Virasoro algebra, since most interesting CFTs
have no larger W-algebra symmetry. But the generalization to W-algebras is essential for under-
standing geometrical structures, which were not discovered in previous work on the Virasoro
case [2].

That previous work nevertheless gave us our starting point: the idea that the relation
between Fuchsian systems and conformal field theory is naturally expressed in terms of objects
that we will call amplitudes. Following [5], we will define amplitudes in terms of solutions of
a differential system

∂

∂ x
M = [A, M] , (1)

where A and M are g-valued functions of a complex variable x . In particular, by definition of a
Fuchsian system, A is a meromorphic function of x with finitely many simple poles z1, . . . , zN ,
and such that A(x) =

x→∞
O( 1

x2 ). In conformal field theory, the amplitudes correspond to cor-

relation functions of N primary fields at z1, . . . , zN , with additional insertions of chiral fields
that we will call currents.

Our main aim in this work is to explore the intrinsic geometry of amplitudes. We will show
that the relevant object is neither the Riemann sphere minus the singularities
Σ = C̄ − {z1, . . . , zN}, nor even its universal cover eΣ, but a bundle bΣ that depends on the
Lie algebra g and on the function A. We will study cycles of bΣ, and conjecture a relation
between correlation functions and integrals of a certain form over certain cycles.

On the conformal field theory side, we will provide an interpretation of amplitudes and
currents in terms of the affine Lie algebra bg1 at level one. In contrast to W(g), the algebra bg1
is not a symmetry algebra of the theory, and our fields are not primary with respect to bg1. This
is the reason why the amplitudes are not single-valued on Σ, and actually live on bΣ.
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2 The bundle and its amplitudes

2.1 Definition of the bundle

Assuming we know the g-valued function A, we first consider the Fuchsian differential system

∂

∂ x
Ψ = AΨ , (2)

where Ψ is a function that takes values in a reductive complex Lie group G whose Lie algebra
is g. In other words, Ψ is a section of a principal G-bundle over Σ with the connection d−Ad x .

As a G-valued function, Ψ has nontrivial monodromies, and therefore lives on the universal
cover eΣ of Σ = C̄ − {z1, . . . , zN}. Given a closed path γ ⊂ Σ that begins and ends at a point
x0 ∈ γ, the monodromy

Sγ = Ψ(x0)
−1Ψ(x0 + γ) ∈ G , (3)

of Ψ along γ is in general nontrivial, and it is invariant under homotopic deformations of γ.
The monodromy depends neither on the choice of x0 ∈ γ, nor on the positions of the poles z j ,
so x0 and z j are isomonodromic parameters. The monodromy only depends on the residues
of A at its poles.

In terms of a given solution Ψ of eq. (2), the solutions of the equation (1) can be written
as M = ΨEΨ−1, where E ∈ g is constant ∂ E

∂ x = 0, and ΨEΨ−1 denotes the adjoint action of Ψ
on E. The idea is now to consider M as a function not only of x ∈ eΣ, but also of E,

M(x .E) = Ψ(x)EΨ(x)−1 . (4)

While the pair x .E apparently belongs to eΣ × g, the monodromy of Ψ along a closed path γ
can be compensated by a conjugation of E, so that

M((x + γ).(S−1
γ ESγ)) = M(x .E) . (5)

Therefore, M actually lives on the manifold

bΣ=
eΣ× g

π1(Σ)
, (6)

where the fundamental group of Σ= C̄−{z1, . . . , zN} acts on eΣ×g by (5). For X = [x .E] ∈ bΣ,
we call π(X ) = π(x) its projection on Σ.

Although our bundle bΣ has complex dimension 1 + dimg, we will only consider func-
tions of X = [x .E] that depend linearly on E, and the space of linear functions on g is finite-
dimensional. So the space of functions on bΣ that we will consider has the same dimension as
the space of functions on a discrete cover of Σ. When viewed as bundles over Σ, the main dif-
ference between bΣ and a discrete cover such as eΣ is that the fibers of bΣ have a linear structure:
they are like discrete sets whose elements could be linearly combined.

2.2 Amplitudes

We assume that g is semisimple, and write its Killing form as



E, E′
�

= Tr EE′, where the trace
is taken in the adjoint representation. (Taking traces in an arbitrary faithful representation
would not change the properties of amplitudes, but would kill the relation with conformal
field theory that we will see in Section 3.)
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For X1, . . . , Xn ∈ bΣ whose projections π(X i) are all distinct, let us define the connected and
disconnected n-point amplitudes Wn(X1, . . . Xn) and cWn(X1, . . . Xn) as [5]

Wn(X1, . . . , Xn) = (−1)n+1
∑

σ∈Scircular
n

Tr
∏

i∈{1,...,n}

M(X i)
π(X i)−π(Xσ(i))

, (7)

cWn(X1, . . . , Xn) =
∑

σ∈Sn

(−1)σ
∏

c cycle of σ

Tr
∏

i∈c

M(X i)
π(X i)−π(Xσ(i))

, (8)

where Scircular
n is the set of permutations that have only one cycle of length n, and the factors

in the products over i are ordered as (i0,σ(i0),σ2(i0), . . . ). For cycles of length one, we define
Tr M(X )
π(X )−π(X ) = Tr A(π(X ))M(X ), so that in particular

W1(X1) =cW1(X1) = Tr A(π(X1))M(X1) . (9)

Writing for short W ({i1, . . . , ik}) =Wk(X i1 , . . . , X ik), the disconnected amplitudes are expressed
in terms of connected amplitudes as

cW ({1, . . . , n}) =
∑

partitions tk Ik={1,...,n}

∏

k

W (Ik) , (10)

for example cW2(X1, X2) =W2(X1, X2) +W1(X1)W1(X2).
Let us study the behaviour of amplitudes near their singularities at coinciding points. To

do this, it is convenient to rewrite the amplitudes in terms of the kernel

K(x , y) =
π(y)6=π(x)

Ψ(x)−1Ψ(y)
π(y)−π(x)

, (11)

where x , y ∈ eΣ. For two points whose projections on Σ coincide, we define the regularized
kernel

K(x , y) =
π(x)=π(y)

Ψ(x)−1A(π(x))Ψ(y) = lim
y ′→y

�

K(x , y ′)−
Ψ(x)−1Ψ(y)
π(y ′)−π(x)

�

. (12)

For X i = [x i .Ei], the amplitudes can then be written as

Wn(X1, . . . , Xn) = (−1)n+1
∑

σ∈Scircular
n

Tr
∏

i∈{1,...,n}

EiK(x i , xσ(i)) , (13)

cWn(X1, . . . , Xn) =
∑

σ∈Sn

(−1)σ
∏

c cycle of σ

Tr
∏

i∈c

EiK(x i , xσ(i)) . (14)

Using our regularization (12), these expressions actually make sense even if some points X i
have coinciding projections π(X i) on Σ, and we take these expressions as definitions of am-
plitudes at coinciding points. We can now write the behaviour of amplitudes in the limit
π(X1)→ π(X2). Choosing representatives X i = [x i .Ei] such that x1→ x2, we find

cWn(x1.E1, x2.E2, . . . ) =
x1→x2

〈E1, E2〉
x2

12

cWn−2(. . . ) +
1

x12

cWn−1(x2.[E1, E2], . . . ) +O(1) , (15)

where we used the notation x12 = π(x1)−π(x2).
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Let us study how amplitudes behave near the poles of A(x). To the pole z j , we associate
Aj ∈ g and Ψ j ∈ G such that

A(x) =
x→z j

Aj

x − z j
+O(1) , (16)

Ψ(x) =
x→z j

�

Id+O(x − z j)
�

(x − z j)
AjΨ j , (17)

M(x .E) ∼
x→z j

(x − z j)
AjΨ j EΨ

−1
j (x − z j)

−Aj , (18)

and the monodromy of Ψ(x) around z j is

S j = Ψ
−1
j e2πiAjΨ j . (19)

Assuming that Aj is a generic element of g, its commutant is a Cartan subalgebra that we
call h j . Let R j be the corresponding set of roots of g = h j ⊕

⊕

r∈R j
gr , and let us write the

corresponding decomposition of Ψ j EΨ
−1
j as

Ψ j EΨ
−1
j = E j +

∑

r∈R j

Er . (20)

This allows us to rewrite the behaviour of M(x .E) as

M(x .E) ∼
x→z j

E j +
∑

r∈R j

(x − z j)
r(Aj)Er . (21)

Using



Aj , Er

�

= 0, we deduce

W1(x .E) =
x→z j




Aj , E j

�

x − z j

�

1+O(x − z j)
�

+
∑

r∈R j

(x − z j)
r(Aj) ×O(1) , (22)

and more generally

cWn(x .E, . . . ) ∼
x→z j




Aj , E j

�

x − z j

�

cWn−1(. . . ) +O(x − z j)
�

+
∑

r∈R j

(x − z j)
r(Aj) ×O(1) . (23)

2.3 Casimir elements and meromorphic amplitudes

Let {ea} be a basis of g and {ea} the dual basis such that



ea, eb
�

= δb
a . The center of the

universal enveloping algebra U(g) is generated by Casimir elements of the type

Ci =
∑

a1,...,ai

ca1,...,ai
ea1 ⊗ · · · ⊗ eai , (24)

where the rank i of the invariant tensor ca1,...,ai
is called the degree of Ci . In particular, the

quadratic Casimir element is

C2 =
∑

a

ea ⊗ ea . (25)

For x ∈ eΣ, we define an amplitude that involves the Casimir element Ci by

cWi+n(Ci(x), X1, . . . , Xn) =
∑

a1,...,ai

ca1,...,ai
cWi+n(x .ea1 , . . . , x .eai , X1, . . . , Xn) . (26)
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Amplitudes involving several Casimir elements can be defined analogously. Let us study how
such amplitudes depend on x . We first consider the simple example

cW2(C2(x)) =
∑

a

�

− Tr
�

eaΨ
−1AΨeaΨ−1AΨ

�

(x) + Tr
�

eaΨ
−1AΨ

�

(x)Tr
�

eaΨ−1AΨ
�

(x)
�

.

(27)

The Casimir element, and the corresponding amplitudes, do not depend on the choice of the
basis {ea} of g. Let us use the x-dependent basis ea = Ψ(x)−1 faΨ(x), where { fa} is an arbitrary
x-independent basis. This leads to

cW2(C2(x)) =
∑

a

�

− Tr ( faA(x) f aA(x)) + Tr ( faA(x))Tr ( f aA(x))
�

. (28)

This now depends on x only through A(x). Similarly, cWi+n(Ci(x), X1, . . . , Xn) depends on Ψ(x)
and {ea} only through the combinations M(x .ea) = Ψ(x)eaΨ(x)−1, although these combina-
tions may hide in expressions such as K(x , x)eaK(x , x i). Therefore, using our x-dependent
basis eliminates all dependence of cWi+n(Ci(x), X1, . . . , Xn) on Ψ(x). The only remaining de-
pendence on x is through the rational function A(x).

Therefore, amplitudes that involve Casimir elements are rational functions of the corre-
sponding variables. In particular they are functions on Σ rather than on eΣ as their definition
would suggest, more specifically they are meromorphic functions with the same poles as A(x).
This is equivalent to the loop equations of matrix models [6], if we identify our amplitudes
with the matrix models’ correlation functions. For generalizations of this important result,
see [7].

In order to ease the later comparison with conformal field theory, we will now tweak this
result by changing the regularization of amplitudes at coinciding points. Instead of the regu-
larization (12), let us use normal ordering, and define

cWi+n(Ci(x), X1, . . . , Xn) =
1

(2πi)n−1

∑

a1,...,ai

ca1,...,ai

×

� i−1
∏

i′=1

∮

x

d x i′

x i′ − x

�

cWi+n(x1.ea1 , . . . , x i−1.eai−1 , x .eai , X1, . . . , Xn) . (29)

For example, let us compute cW2(C2(x)). From the definition, we have

cW2(C2(x)) =W1(x .ea)W1(x .ea) +
1

2πi

∮

x

d y
(y − x)3

Tr M(y.ea)M(x .ea) . (30)

We expand M(y.ea) near y = x using M ′ = [A, M] and M ′′ = [A′, M] + [A, [A, M]], and we
find

cW2(C2(x)) =
∑

a

�

− Tr
�

eaΨ
−1AΨeaΨ−1AΨ

�

(x) + Tr
�

Ψ−1A2Ψeaea
�

(x)

+ Tr
�

eaΨ
−1AΨ

�

(x)Tr
�

eaΨ−1AΨ
�

(x)
�

. (31)

This differs from cW2(C2(x)) (27) by one term. However, this difference does not affect the
proof that the dependence on x is rational, because the extra term still depends on Ψ(x) and
{ea} only through M(x .ea). More generally, amplitudes that involve the Casimir elements
Ci(x) are rational functions of their positions.
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3 The Casimir W-algebra and its correlation functions

3.1 Casimir W-algebras and affine Lie algebras

For any Lie algebra g and central charge c ∈ C, there exists a W-algebra Wc(g). If g is simply
laced and c = rankg, this algebra is a subalgebra of the universal enveloping algebra U(bg1)
of the level one affine Lie algebra bg1. The elements of U(bg1) that corresponds to the gener-
ators of Wrankg(g) can actually be written using the Casimir elements of U(g), and we call
Wrankg(g) =W(g) the Casimir W-algebra associated to g. (See [3] for a review.)

The generators of the affine Lie algebra bg1 can be written as currents, i.e. as spin one
chiral fields onΣ. Then the commutation relations of bg1 are equivalent to the operator product
expansions (OPEs) of these currents. The currents are usually denoted as J a(x) where x is a
complex coordinate on the Riemann sphere and a labels the elements of a basis {ea} of g, and
their OPEs are

J a(x1)J
b(x2) =




ea, eb
�

x2
12

+

∑

c




[ea, eb], ec

�

J c(x2)

x12
+O(1) . (32)

Let us introduce the notation J(x .ea) = J a(x). The OPEs then read

J(x1.E1)J(x2.E2) =x1→x2

1

x2
12

〈E1, E2〉+
1

x12
J(x2.[E1, E2]) +O(1) . (33)

The Casimir subalgebra of U(bg1) is generated by fields W i that correspond to the Casimir
elements Ci (24) of U(g),

W i(x) =
∑

a1,...,ai

ca1,...,ai

�

J(x .ea1)
�

J(x .ea2)
�

· · · J(x .eai )
���

, (34)

where the large parentheses denote the normal ordering
�

AB
�

(x) = 1
2πi

∮

x
d x ′

x ′−x A(x ′)B(x). We
could define the fields W i for arbitrary values of the central charge, but they form a subalgebra
of U(bg1) only if c = rankg or i = 2. If c 6= rankg and i 6= 2, their OPEs actually involve
other fields (with derivatives of currents). There is some arbitrariness in the construction of
our generators W i , starting with the choice of a basis of Casimir elements Ci . The quadratic
Casimir C2 is uniquely determined by the requirement that T = W2 generates a Virasoro
algebra: then eq. (34) is called the Sugawara construction. Different choices of the Casimir
elements Ci≥3 can lead to different properties of the fields W i , which in particular may or may
not be primary with respect to T . This arbitrariness does not affect the property that W i(x)
depends meromorphically on x , which is all that we need.

We are interested in correlation functions
¬

∏N
j=1 Vj(z j)

¶

of W(g)-primary fields. Inserting

W i(x) in such a correlation function produces an (N+1)-point function which is meromorphic
on Σ as a function of x , with a pole of order i at x = z j . Equivalently, the OPE of W i with the
primary field Vj is

W i(x)Vj(z j) =x→z j

qi
j

(x − z j)i
Vj(z j) +O

�

1
(x − z j)i−1

�

, (35)

where the charge qi
j is assumed to be a known property of the field Vj . The OPE JVj is con-

strained, but not fully determined, by the OPEs W iVj and the definition of the fields W i .
One way to satisfy this constraint would to assume that the fields Vj are affine primary

fields, i.e. that there is a representation ρ j of g on a space where Vj lives, and that we have
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the OPE i.e. J(x .E)Vj(z j) =
π(x)→z j

ρ j(E)
π(x)−z j

Vj(z j) + O(1). In order to recover the OPE (35), the

only constraints on the representation ρ j are then ρ j(Ci)Vj = qi
jVj . However, in the presence

of affine primary fields, the current J would be meromorphic on Σ, and the symmetry algebra
of our CFT would be the full affine Lie algebra bg1 rather than W(g). We would therefore have
too much symmetry, plus a large indeterminacy in the choice of the representations ρ j .

We will now introduce a simpler assumption for the OPE JVj , such that J is not meromor-
phic on Σ, and lives on the bundle bΣ of Section 2.1. Then the symmetry algebra of our theory,
which is generated by the meromorphic fields, will be only W(g). This will in principle enable
us to describe CFTs such as conformal Toda theories.

3.2 Free boson realization

Let g= h⊕
⊕

r∈R gr be a root space decomposition of g, where h is a Cartan subalgebra, er ∈ gr ,
and r∗ ∈ h. The W-algebra Wc(g) has a free boson realization, i.e. a natural embedding into
the universal enveloping algebra U(bh). Now if g is simply laced, then U(bh) is not only a
subalgebra, but also a coset of U(bg1) by the nontrivial ideal I that is generated by relations of
the type [8]

J(x .er)∝
�

exp

∫

J(x .r∗)

�

, (36)

where the large parentheses indicate that the exponential is normal-ordered. Modulo these
relations, the Casimir W-algebra W(g) ⊂ U(bg1) coincides with Wrankg(g) ⊂ U(bh):

W(g) ,→ U(bg1)

←
-

�

U(bh) ' U(bg1)/I
(37)

This diagram must commute modulo an automorphism of W(g). In general, W-algebras have
nontrivial automorphisms: for example, W(sln) has an automorphism that takes the sim-
ple form W i → (−1)iW i for a particular definition of the generators W i . Correspondingly,
specifying the OPEs between the generators W i of W(g) only determines the embedding
W(g) ,→ U(bg1) (34) modulo an automorphism. We can therefore assume that the embed-
ding is chosen so that the diagram commutes.

We will now use the natural embedding of W(g) into U(bh) for determining how J(x .h)
behaves near a singularity, and then the relations (36) for determining how J(x .g) behaves.
Given a singularity z j , let us identify U(bh) with the abelian affine Lie algebra that corresponds
to the currents (J(x .E))E∈h j

for some Cartan subalgebra h j . In order to reproduce the be-

haviour (35) of W i(x), we assume that Vj(z j) is an affine primary field for that abelian affine
Lie algebra,

J(x .E)Vj(z j) =x→z j




Aj , E
�

x − z j
Vj(z j) +O(1) , (E ∈ h j) . (38)

Here A j is an element of h j such that the leading term in the OPE (35) has the right coefficient
qi

j . The embedding of W(g) into U(bh) indeed induces a map from affine highest-weight rep-

resentations of U(bh) (with parameters A∈ h) to highest-weight representations of W(g) (with
parameters (qi) ∈ Cdimh); in terms of this map A→ (qi(A)) we are requiring qi

j = qi(A j). Then
let g= h j ⊕

⊕

r∈R j
gr be the root space decomposition associated to the Cartan subalgebra h j .

The relations (36) imply

J(x .er)Vj(z j) =x→z j
(x − z j)

r(Aj)Vj(z j)×O(1) . (39)
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Since the field Vj(z j) is an affine primary field for the abelian affine Lie algebra generated by
the currents (J(x .E))E∈h j

, it has a simple expression Vj(z j) = exp
∫ z j J(x .A j) in terms of the

corresponding free bosons (
∫

J(x .E))E∈h j
. The field Vj′(z j′) is in general not an affine primary

field for the same abelian affine Lie algebra, since in general h j 6= h j′ . If we insisted on writing
Vj′(z j′) in terms of the free bosons (

∫

J(x .E))E∈h j
, the resulting expression for Vj′(z j′) would

be complicated.
Let us interpret the behaviour of the currents J(x .E) in terms of the representation of bg1

that corresponds to the field Vj . In the case Aj = 0, the OPE J(x .E)Vj(z j) = O(1) is trivial, and
we simply have the identity representation. Nonzero values of Aj can be reached from that
case by the transformation

¨

J(x .E) → J(x .E) + 〈Aj ,E〉
x−z j

, (E ∈ h j) ,

J(x .er) → (x − z j)
r(Aj)J(x .er) .

(40)

This transformation can be interpreted as a spectral flow automorphism of the affine Lie alge-
bra bg1, associated to the element Aj ∈ g. So Vj belongs to the image of the identity represen-
tation under a spectral flow automorphism. This image is called a twisted module. For almost
all values of A j , the exponents r(A j) are not integer, and the corresponding twisted module is
therefore not an affine highest-weight representation. For Lie algebras g with Dynkin diagrams
of the types An and Dn, twisted modules have simple realizations in terms of free fermions [9].

3.3 Correlation functions as amplitudes

Let us show that the disconnected amplitudes of Section 2.2 are related to correlation functions
of currents as

cWn(X1, . . . , Xn) =
〈J(X1) · · · J(Xn)V1(z1) · · ·VN (zN )〉

〈V1(z1) · · ·VN (zN )〉
, (41)

provided the residues of the function A in our Fuchsian system (1) coincide with the elements
Aj ∈ g that we introduced in eq. (38). By definition, correlation functions are determined by
the OPEs and analytic properties of the involved fields. Therefore, to prove equation (41) it is
enough to perform the following checks:

• Given the self-OPE of J(X ) (33), both sides of the equation have the same asymptotic
behaviour (15) as π(X1)→ π(X2).

• Given the OPE of J(X ) with Vj(z j) (38)-(39), both sides have the same asymptotic be-
haviour (23) as π(X1)→ z j .

• Since J(X ) is locally holomorphic (i.e. ∂
∂ x̄ J(x .E) = 0), both sides have the same analytic

properties away from the singularities.

Let us be more specific on how the OPE (39) constrains J(x .er). The coefficient of the leading
term of this OPE is determined by eq. (36), and can be computed if needed. However, if
r(A j) < −1, this OPE also involves negative powers of x − z j whose coefficients are undeter-
mined. These undetermined singular terms are not a problem, because the missing constraints
are compensated by as many extra constraints on the regular terms of J(x .e−r). Alternatively,
we could prove eq. (41) in a region where A j is close enough to zero, and extend the result
by analyticity in A j .

As an additional check, notice that we have the following relation between correlation
functions of a meromorphic field W i(x) (35), and amplitudes that involve the corresponding
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Casimir element (29),

cWi+n(Ci(x), X1, . . . , Xn) =




W i(x)J(X1) · · · J(Xn)V1(z1) · · ·VN (zN )
�

〈V1(z1) · · ·VN (zN )〉
. (42)

We have shown that the amplitude is a rational function of x , and this agrees with the prop-
erties of the field W i(x).

By the correlation function 〈V1(z1) · · ·VN (zN )〉 we actually mean any linear combination of
N -point conformal blocks, equivalently any solution of the corresponding W(g)-Ward identi-
ties. Let us review these solutions and their parametrization. Ward identities are linear equa-
tions that relate a correlation function of primary fields, and correlation functions of the corre-
sponding descendent fields, which are obtained from primary fields by acting with the creation
modes W i

−1,W i
−2, · · · . Local Ward identities determine the action of the modes W i

n≤−i , and
W i is left with i−1 undetermined creation modes, which appear as the residues of the poles of
orders 1, . . . , i−1 in the OPEs W iVj (35). In total, each field Vj is left with 1

2(dimg−rankg) un-
determined creation modes. (The identification of L−1 =W2

−1 with a z-derivative is irrelevant,
as we do not know the z-dependence of our correlation function at this point.) The correla-
tion functions are further constrained by the dimg global Ward identities, and the number of
independent undetermined creation modes is

NN ,g =
1
2

�

(N − 2)dimg− N rankg
�

. (43)

For example, in the case N4,sl2 = 1, we can choose the undetermined creation mode to be
L−1 acting on the last field, and Ward identities reduce arbitrary descendents to linear com-
binations of




V1(z1)V2(z2)V3(z3)Ln
−1V4(z4)

�

with n ∈ N. Similarly, in the case N3,sl3 = 1, a
basis of independent descendents is

�


V1(z1)V2(z2)
�

W3
−1

�n
V3(z3)

�	

n∈N. A conformal block is
an assignment of values for all elements of such a basis, equivalently a conformal block is an
analytic function f (θ ) =

¬

V1(z1)V2(z2)eθW
3
−1 V3(z3)

¶

. Now a basis of a space of functions of
NN ,g variables comes with NN ,g parameters. For example, in the case N4,sl2 = 1, there is a
well-known basis called s-channel conformal blocks, whose elements are parametrized by the
s-channel conformal dimension. For an example of a distinguished basis in the case N3,sl3 = 1
and in the limit c→∞, see [10].

Let us sketch how the conformal blocks’ parameters are related to our function A. This
function encodes the charges qi

j eq. (35), plus other parameters. Let us count how many. We
have

A(x) =
N
∑

j=1

Aj

x − z j
with

N
∑

j=1

Aj = 0 , (44)

as a consequence of A(x) =
x→∞

O( 1
x2 ). Taking into account the invariance of amplitudes under

conjugations of A by elements of the Lie group G, we therefore have a total of (N − 2)dimg

parameters. Each field has rankg independent charges, for a total of N rankg charges. There-
fore, the number of other parameters is 2NN ,g. From the case g= sl2 [1], we expect that these
parameters of A are the NN ,g parameters of conformal blocks, plus NN ,g conjugate parameters.
We will propose a geometrical interpretation of these parameters in Section 4.

4 Cycles of the bundle

4.1 Definition of cycles

Let an arc in bΣ be an equivalence class Γ = [γ.E] under the action of π1(Σ), where γ is
an oriented arc in eΣ and E ∈ g. To define the boundary of Γ , it would be natural to write
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∂ [(x , y).E] = [y.E]− [x .E]. We will rather adopt the equivalent definition

∂ [(x , y).E] = π(y).M(y.E)−π(x).M(x .E) , (45)

i.e. a formal linear combination of elements of Σ × g, rather than bΣ. In other words, this
boundary is a g-valued divisor of Σ.

Let a cycle be a formal linear combination of homotopy classes of arcs, whose boundary
is zero. For example, if γ is an arc that starts at x0 ∈ eΣ, such that π(γ) is a closed loop, then
using eq. (3) we find

∂ [γ.E] = x0.M
�

x0.(E − SγES−1
γ )
�

. (46)

Therefore, [γ.E] is a cycle if and only if E commutes with the monodromy Sγ of Ψ around γ.
In particular, if γ = γ j is a small circle encircling z j and no other singularity, then using eq.
(19) we see that [γ j .E] is a cycle if and only if E ∈ Ψ−1

j h jΨ j . But there exist many cycles that
are not of that type.

We recall that the intersection number of two oriented arcs γ,γ′ ⊂ Σ is the integer

(γ,γ′) =
∑

x∈γ∩γ′
(γ,γ′)x , (47)

where (γ,γ′)x is +1 (resp. −1) if the tangents of the two arcs at the intersection point x form
a basis with positive (resp. negative) orientation, so that (γ,γ′)x = −(γ′,γ)x . We define the
intersection form of two arcs in bΣ as

(Γ , Γ ′) =
∑

x=π(X )=π(X ′)∈π(Γ )∩π(Γ ′)

(π(Γ ),π(Γ ′))x



M(X ), M(X ′)
�

. (48)

We have (Γ , Γ ′) = −(Γ ′, Γ ). The intersection is stable under homotopic deformations, and thus
extends to linear combinations of homotopy classes. We consider two arcs as equivalent if they
have the same intersection form with all cycles. Then the intersection form is non-degenerate,
and is therefore a symplectic form on the space of cycles.

Let us consider an arc [δ j .E] = [(x0, z j).E] that ends at a singularity z j . Given the be-
haviour (18) of M(X ) near z j , the boundary (45) of this arc makes sense only if E com-
mutes with the monodromy S j i.e. E ∈ Ψ−1

j h jΨ j . However, any element of g has an or-
thogonal decomposition into an element that commutes with S j , and an element of the type
E = F − S j FS−1

j . With an element of this type, [δ j .E] is equivalent to [γ j .F], where γ j is our
arc around z j . For example, [δ j .E] and [γ j .F] have the same intersection with any arc [γ′.E′]
such that γ′ passes between x0 and z j ,

([γ j .F], [γ
′.E′]) =




F, E′
�

−
¬

S j FS−1
j , E′

¶

= ([δ j .E], [γ
′.E′]) . (49)

δ j z j
x0 γ j

γ′

(50)

Therefore, without loss of generality, we can assume that arcs that end at z j are of the type
[δ j .E] with E ∈ Ψ−1

j h jΨ j . We define generalized cycles to be combinations Γ of arcs such that

∂ Γ ∈
N
∑

j=1

�

z j .Ψ
−1
j h jΨ j

�

. (51)
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4.2 Integrals of W1 on cycles

Since the correlation functions Wn live on bΣ, they can be integrated on arcs and cycles of bΣ.
In particular, for any arc Γ = [γ.E], we define the integral

∫

Γ

W1(X )dX =

∫

γ

W1(x .E)d x . (52)

A regularization is needed if the arc ends at a singularity z j . If E = Ψ−1
j E jΨ j with E j ∈ h j , we

define
∫

[(x0,z j).E]
W1(X )dX =

∫ z j

x0

�

W1(x .E)−




Aj , E j

�

x − z j

�

d x −



Aj , E j

�

log(x0 − z j) . (53)

Since we have a symplectic intersection form, there exist symplectic bases of generalized cycles
{Aα, Bα}, such that

(Aα, Aβ) = 0 , (Bα, Bβ) = 0 , (Aα, Bβ) = δαβ . (54)

We conjecture that, for any function A and parameters {θα} of conformal blocks, there exists
a symplectic basis such that

1
2πi

∫

Aα

W1(X )dX = θα , (55)

1
2πi

∫

Bα

W1(X )dX =
∂

∂ θα
log 〈V1(z1) · · ·VN (zN )〉 . (56)

That basis should respect the invariance of the correlation function 〈V1(z1) · · ·VN (zN )〉 under
conjugations of A with elements of eg, and its independence from the choice of a solution Ψ of
eq. (2).

Let us evaluate the plausibility of our conjecture. To begin with, let us count cycles. For any
singularity z j , the cycles [γ j .E] with E = Ψ−1

j E jΨ j ∈ Ψ−1
j h jΨ j are the A-cycles that correspond

to the components of Aj along the Cartan subalgebra h j ,

1
2πi

∫

[γ j .Ψ
−1
j E jΨ j]

W1(X )dX =



E j , Aj

�

, (E j ∈ h j) . (57)

Then the corresponding B-cycles must include terms of the type [δ j .E]. Such cycles account
for the N rankg parameters that are equivalent to the charges qi

j of the fields Vj(z j). Let us
determine the dimension of the space of the rest of the cycles. Let us build these cycles from
N loops with the same origin x0, with each loop going around one singularity:

x0

z1 z2 zN
· · · · · ·

(58)

The resulting combination of arcs belongs to
∑N

j=1[γ j .g], with a boundary in [x0.g]. Requir-

ing that the boundary vanishes, and imposing the topological relation
∑N

j=1 γ j = 0, we have
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(N − 2)dimg independent cycles. After subtracting our N rankg A-cycles around the singu-
larities, the number of independent cycles is twice the number NN ,g (43) of parameters of
conformal blocks, in agreement with our conjecture.

Next, let us test our conjecture in the case g = sl2 and N = 3. In this case, the correlation
function is the explicitly known Liouville three-point function at c = 1, and we have found a
suitable basis [2]. However, this basis is ad hoc and cannot easily be generalized.

Let us compare our conjecture with the more general results of Bertola [11] on isomon-
odromic tau functions. To a derivation δ, for instance δ = ∂

∂ θα
, we will now associate a cycle

Bδ. We choose an oriented graph Γ ⊂ Σ such that Σ− Γ is simply connected:

z1 z2 z3 z4 z5 · · ·
zN

e

(59)

Given a representative Σ0 ⊂ eΣ of Σ− Γ , we define

Bδ =
∑

e∈Γ

�

e.δSeS
−1
e

�

, (60)

where e is an edge of Γ when accessed from the right in Σ0, and Se is the monodromy from the
right to the left of e in Σ0. Then Bδ is a generalized cycle in the sense of eq. (51). Moreover,
in our notations, Malgrange’s form and its exterior derivative can be written as

ω(δ) =
1

2πi

∫

Bδ

W1(X )dX , dω(δ1,δ2) = (Bδ1
, Bδ2
) . (61)

This suggests that our formalism is well-suited for dealing with Malgrange’s form. However,
this also shows that we cannot have Bα = B ∂

∂ θα

as one might naively have expected, because

Malgrange’s form is not closed, and differs from the logarithmic differential of the tau function
by a term that does not depend on the positions z j of the poles [11]. Therefore, the cycle B ∂

∂ θα

might be an important term of the eventual cycle Bα.

5 Conclusion

Our main technical result is the construction of the bundle bΣ, which we believe describes
the intrinsic geometry of a Fuchsian system. This in principle allows us to avoid splitting the
surface Σ in patches, with jump matrices at boundaries, as is otherwise done for describing so-
lutions of the Fuchsian system [11]. Our construction also works for more general differential
systems, in particular if A(x) has poles of arbitrary order rather than the first-order poles that
we need in conformal field theory. The important assumption is that A(x) is meromorphic.

In our application to conformal field theory with a W-algebra symmetry, our construction
is particularly useful for computing correlation functions that involve currents. The applica-
tion to correlation functions of primary fields, i.e. to the tau functions of the corresponding
integrable systems, is still conjectural.

Let us consider the classical limit of the Fuchsian system (2), ∂
∂ x → ε

∂
∂ x and then ε→ 0.

This limit can be defined so that our bundle bΣ tends to a Riemann surface, namely a |Weyl(g)|-
fold cover of Σ called the cameral cover associated to A [12]. The cameral cover can be under-
stood as containing as much information as all the spectral curves
Σρ = {(x , y) ∈ T ∗Σ|detρ(y − A(x)) = 0}, for any representation ρ of g.

13

https://scipost.org
https://scipost.org/SciPostPhys.5.5.051


SciPost Phys. 5, 051 (2018)

Acknowledgments

We are grateful to Taro Kimura for collaboration at early stages of this work. We thank Leonid
Chekhov, Jorgen Andersen, Gaëtan Borot, Oleg Lisovyy, Pasha Gavrylenko, and Ivan Kostov
for discussions. We are grateful to Pasha Gavrylenko and Oleg Lisovyy for helpful comments
on the draft of this text. We also thank the anonymous SciPost reviewers (and especially the
second reviewer) for their valuable suggestions. BE was supported by the ERC Starting Grant
no. 335739 “Quantum fields and knot homologies” funded by the European Research Council
under the European Union’s Seventh Framework Programme. BE is also partly supported by
the ANR grant Quantact : ANR-16-CE40-0017.

References

[1] O. Gamayun, N. Iorgov and O. Lisovyy, Conformal field theory of Painlevé VI, J. High Energ.
Phys. 10, 038 (2012), doi:10.1007/JHEP10(2012)038.

[2] B. Eynard and S. Ribault, Lax matrix solution of c = 1 conformal field theory, J. High
Energ. Phys. 02, 059 (2014), doi:10.1007/JHEP02(2014)059.

[3] P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rep. 223,
183 (1993), doi:10.1016/0370-1573(93)90111-P.

[4] P. Gavrylenko, Isomonodromic τ-functions and WN conformal blocks, J. High Energ. Phys.
09, 167 (2015), doi:10.1007/JHEP09(2015)167.

[5] M. Bergére, G. Borot and B. Eynard, Rational differential systems, loop equations,
and application to the qth reductions of KP, Ann. Henri Poincaré 16, 2713 (2015),
doi:10.1007/s00023-014-0391-8.

[6] B. Eynard, T. Kimura and S. Ribault, Random matrices (2015), arXiv:1510.04430.

[7] B. Eynard, R. Belliard and O. Marchal, Loop equations from differential systems (2016),
arXiv:1602.01715.

[8] P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer (1997),
ISBN 038794785X.

[9] M. Bershtein, P. Gavrylenko and A. Marshakov, Twist-field representations of W-algebras,
exact conformal blocks and character identities, J. High Energ. Phys. 08, 108 (2018),
doi:10.1007/JHEP08(2018)108.

[10] V. Fateev and S. Ribault, The large central charge limit of conformal blocks, J. High Energ.
Phys. 02, 001 (2012), doi:10.1007/JHEP02(2012)001.

[11] M. Bertola, CORRIGENDUM: The dependence on the monodromy data of the isomonodromic
tau function (2016), arXiv:1601.04790.

[12] R. Belliard, Geometry of integrable systems : from Lax systems to conformal field theories,
PhD Thesis, École doctorale Physique en Île-de-France, Paris (2017).

14

https://scipost.org
https://scipost.org/SciPostPhys.5.5.051
http://dx.doi.org/10.1007/JHEP10(2012)038
http://dx.doi.org/10.1007/JHEP02(2014)059
http://dx.doi.org/10.1016/0370-1573(93)90111-P
http://dx.doi.org/10.1007/JHEP09(2015)167
http://dx.doi.org/10.1007/s00023-014-0391-8
https://arxiv.org/abs/1510.04430
https://arxiv.org/abs/1602.01715
http://dx.doi.org/10.1007/JHEP08(2018)108
http://dx.doi.org/10.1007/JHEP02(2012)001
https://arxiv.org/abs/1601.04790

	Introduction
	The bundle and its amplitudes
	Definition of the bundle
	Amplitudes
	Casimir elements and meromorphic amplitudes

	The Casimir W-algebra and its correlation functions
	Casimir W-algebras and affine Lie algebras
	Free boson realization
	Correlation functions as amplitudes

	Cycles of the bundle
	Definition of cycles
	Integrals of  on cycles

	Conclusion
	References

