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Abstract

We classify all possible allowed constitutive relations of relativistic fluids in a statistical
mechanical limit using the Schwinger-Keldysh effective action for hydrodynamics. We find
that microscopic unitarity enforces genuinely new constraints on the allowed transport
coefficients that are invisible in the classical hydrodynamic description; they are not
implied by the second law or the Onsager relations. We term these conditions Schwinger-
Keldysh positivity and provide explicit examples of the various allowed terms.
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1 Introduction

Relativistic hydrodynamics is an effective theory capable of describing diverse phenomena
relevant in heavy ion collisions, cosmology and astrophysics, and in condensed matter
systems such as graphene. Until recently, the equations of motion of hydrodynamics were
constructed so as to be the most general ones possible compatible with the symmetries of
the problem, a local version of the second law of thermodynamics, and Onsager relations
which encode certain CPT properties of correlation functions.

In the hydrodynamic theory the conserved currents of the underlying microscopic the-
ory may be expressed as local functions of the hydrodynamic variables, provided that their
gradients are small. We may take the hydrodynamic variables to be a local temperature
T , a local velocity uµ satisfying u2 = −1, and when the microscopic theory has a U(1)
global symmetry, a local chemical potential µ. Current and energy-momentum conserva-
tion are then interpreted as the equations of motion for the hydrodynamic variables. The
expressions for the conserved currents in terms of the hydrodynamic variables are referred
to as constitutive relations. When working in a gradient expansion, Lorentz invariance
strongly constrains the tensor structure of the constitutive relations such that the only
undetermined degrees of freedom are scalar functions of T and µ. These scalar functions
are usually referred to as transport coefficients.

The transport coefficients of the theory are not only constrained by Lorentz invariance,
but also by a local version of the second law of thermodynamics. This second law posits
the existence of an entropy current Sµ which, for an ideal fluid, reduces to the entropy flux
current suµ (with s the entropy density) and which satisfies ∇µSµ ≥ 0 under the equations
of motion [1]. This local second law is known to force some of the transport coefficients
to vanish and constrain others to be non-negative [1–3]. The constitutive relations are
also constrained by the Onsager reciprocity relations [4,5]. These relations originate from
the invariance of the microscopic theory under CPT and further constrain the transport
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coefficients of the fluid.
While the equations of motion so obtained seem to be correct and have successfully

described a variety of phenomena, it is somewhat disturbing that in a textbook treatment
they are not derived by an action principle which would incorporate all the aforementioned
constraints in one sweep. Indeed, given the phenomenological nature of the hydrodynamic
equations, this raises the possibility that some constraints have been overlooked and that
the theory is incomplete. There has been significant progress this decade in putting the
local second law on a more solid footing, using a combination of results from Euclidean
thermal field theory [6–8] and unitarity constraints on spectral functions (see e.g. [9]),
albeit without an action principle. Even more recent developments allow one to construct
effective actions for hydrodynamics in the Schwinger-Keldysh formalism [10–22], at least in
certain limiting regimes. The actions so obtained are more intricate than those in ordinary
effective field theory, but they have the virtue that various microscopic considerations, such
as unitarity and CPT, can be made manifest.

The main goal of this work is to study the effect of these microscopic considerations
on the Schwinger-Keldysh effective actions for hydrodynamics, and in turn the constraints
on the hydrodynamic equations of motion that follow. Our findings are surprising. We
show that the restrictions imposed on the equations of motion from the Onsager relations
and positivity of the divergence of the entropy current are necessary but not sufficient to
account for all the constraints on the transport coefficients of the fluid. In addition to
the Onsager relations and entropy production one must impose an additional constraint
which we refer to as the “Schwinger-Keldysh positivity constraint” which is a byproduct
of unitarity of the underlying microscopic theory.

Throughout we work in a “statistical mechanical limit” (see [14]) in which one system-
atically accounts for thermal fluctuations, but neglects quantum fluctuations. In Section
2 we will review the definition and construction of the Schwinger-Keldysh effective ac-
tion and discuss the statistical mechanical limit in some detail. The formalism discussed
in this Section is slightly different from that in [19] but, as we show in Appendix C,
the actions so constructed are identical. A summary describing the essential features of
the Schwinger-Keldysh effective action in the statistical mechanical limit can be found in
Section 3.

Having gained familiarity with the Schwinger-Keldysh effective actions for fluids, we
show, in Section 4, how they can be used to construct the constitutive relations of an ideal
fluid. This analysis has already been carried out in [14, 15, 18] but we have included it to
familiarize the reader with the notation and formalism of the current work.

After this simple example we turn our attention to the local second law. In a companion
paper [23] we showed how (in a probe limit) the entropy current can be coupled to an
external source and that its divergence is non-negative owing to microscopic unitarity and
the KMS condition (see also [24]). We adapt that construction to the statistical mechanical
limit in Section 5. Our analysis complements that of [25] in that it couples the entropy
current to an external source. This simplifies the computation of the entropy current, its
correlation functions, and the entropy production.

Finally, in Section 6 we discuss the constitutive relations of the hydrodynamic theory
which follow from our formalism. In Section 6.1 we carry out a detailed analysis of the
behavior of the transport coefficients of the theory under CPT. The resulting analysis
also allows us to study the emergence of the Onsager reciprocity relations. We then
proceed in 6.2 to study the explicit form of the constitutive relations of the underlying
theory and match them to the existing literature [26,27]. Barring ’t Hooft anomalies, the
allowed terms in the classification of [26, 27] seem to be related to the ones we find. A
preliminary analysis of anomalies in the context of the Schwinger-Keldysh effective action
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has been carried out in [28]. In the Appendix F we present the effective action for any
’t Hooft anomaly described by an anomaly polynomial. We end Section 6 by identifying
those constraints coming from the Schwinger-Keldysh positivity condition which are not
captured by the entropy current analysis or the Onsager relations.

In Section 7 we carry out explicit computations of the constitutive relations of various
types of fluids from an action. We compute the constitutive relations of parity violating
fluids in 2 + 1 dimensions to first order in derivatives, and the same for parity-preserving
uncharged fluids in d+ 1 dimensions. Our results nicely match [9] and [29]. We urge the
reader who is unfamiliar with the recent formulations of the Schwinger-Keldysh effective
theory and who is interested in a hands-on computation to go through this Section in
detail.

For the reader interested in a summary of our main results without delving in the details
of our analysis we recommend skipping to Section 8 where we present our classification
scheme, especially Table 2. There we compare our findings with the literature [26,27] and
provide a few simple examples. We end this Section with a discussion.

Note: While this manuscript was nearing completion two related works [30, 31] were
posted to the arXiv.

2 The Schwinger-Keldysh effective action

The Schwinger-Keldysh partition function Z[A1, A2] associated with an initial state den-
sity matrix ρ−∞ is given by

Z[A1, A2] = Tr
(
U [A1]ρ−∞U †[A2]

)
, (1)

where A1 and A2 collectively denote doubled sources, and U [A] is the time evolution
operator from the infinite past to the infinite future in the presence of the sources A. Define
the generating functional of connected correlation functions, W = −i lnZ. Varying W
with respect to the doubled sources gives correlation functions of the conjugate operators
in the state ρ−∞ with various time orderings. Letting O denote the operator conjugate to
A, we have

δn+m

δA1(t1) . . . δA1(tn)δA2(τ1) . . . δA2(τm)W
∣∣∣∣∣
A=0

= Tr
(
T (O(t1) . . . O(tn))T (O(τ1) . . . O(τm))

)
, (2)

where T is the time-ordering operator, T is the anti-time-ordering operator, and we have
specified only the time dependence of the fields. Often, it is convenient to use linear
combinations of A1 and A2 to obtain physical observables. For instance, the one point
function of O is given by

Tr(ρ−∞O(t)) = 1
2

δW

δA1(t) −
1
2

δW

δA2(t)

∣∣∣∣∣
A1=A2=0

. (3)

We refer the reader to, e.g., [14] for a modern summary and discussion.
In this work we will be interested in the low-energy Schwinger-Keldysh effective action

of many systems in a thermal initial state. More formally, we would like to find an effective
action Seff (ξ; A1, A2) such that at low energies the Schwinger-Keldysh partition function
is given by

Z[A1, A2] =
∫
Dξe

i
ħhSeff , (4)

4

https://scipost.org
https://scipost.org/SciPostPhys.5.5.053


SciPost Phys. 5, 053 (2018)

for low-energy degrees of freedom ξ. The “slow modes” of most systems at finite temper-
ature are the conserved currents, and with this in mind we write actions such that the
Euler-Lagrange equations for the ξ are simply current and energy-momentum conserva-
tion. These actions will turn out to be effective actions for dissipative hydrodynamics.

In the remainder of this Section we will describe the construction of these effective
actions in the statistical mechanical limit. Our discussion closely follows the analysis
in [18] (see also [14,15]). Our end result for the effective action is identical to that in [19]
though we group our dynamical fields in a slightly different way. We present an analysis
comparing the results of this Section with that of [19] in Appendix C.

To find the low-energy Wilsonian effective action we follow the usual logic of identifying
low-energy degrees of freedom and symmetries, and construct the most general action
compatible with these symmetries. As discussed in [13–15] (see also [18]), the relevant
symmetries are as follows:

1. Doubled diffeomorphism invariance whereby Z[A1, A2] is invariant under indepen-
dent diffeomorphisms that act on the sources. When the microscopic theory has
a flavor symmetry G, one also demands that Z is invariant under doubled flavor
transformations.

2. A topological Schwinger-Keldysh symmetry, which states that when the sources are
aligned (that is, equal to one another A1 = A2 = A) the partition function is trivial,

Z[A, A] = 1 . (5)

3. The generating functional need not be real. It satisfies a reality condition

W [A1, A2]∗ = −W [A∗2, A∗1] . (6)

4. A KMS symmetry of the partition function, which, following [14], can be written as

Z[A1(t1), A2(t2)] = Z[ηAA1(−t1), ηAA2(−t2 − ib)] . (7)

Here the initial state is ρ−∞ ∝ e−bH with H the generator of time translations, and
ηA is the CPT eigenvalue of the operator conjugate to A. The KMS symmetry can
also be written covariantly. We will discuss it shortly in some detail.

In addition to these symmetries, unitarity imposes an additional constraint on the
imaginary part of the Schwinger-Keldysh partition function [14,25],

|Z| ≤ 1, (8a)

or, equivalently,
Im(W ) ≥ 0, (8b)

which we reproduce in Appendix A and refer to as the “Schwinger-Keldysh positivity
condition”. The inequality |Z| ≤ 1 plays a crucial role in deriving the local version of the
second law as we discuss in Section 5 and in providing further constraints on transport
coefficients which we discuss in Section 6. The KMS symmetry is one of the ingredients
which ensures the Onsager relations which we also discuss in Section 6.
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2.1 Degrees of freedom and doubled symmetries
We wish to ensure that the equations of motion of our effective theory are the (doubled)
conservation equations for the energy-momentum tensor. To do so we take the degrees
of freedom to be maps Xµ

1 (σ) and Xµ
2 (σ) between what we refer to as a worldvolume

with coordinates σ and two target, or physical, spaces. The sources are defined in these
target spaces, and are given by A1(x1) and A2(x2). When the microscopic theory has
a continuous global symmetry G, there are additional G-valued fields C1(σ) and C2(σ)
which ensure current conservation. In what follows, we will take G = U(1) in order to
simplify the presentation.

In order for the action to be invariant under the doubled diffeomorphisms and flavor
transformations, we demand that the X’s and C’s always appear in combination with the
target space sources via pullbacks:

Bs i(Xs(σ), Cs(σ)) = Bs µ(Xs(σ))∂iXµ
s (σ) + ∂iCs(σ) ,

gs ij(Xs(σ)) = gs µν(Xs(σ))∂iXµ
s (σ)∂jXν

s (σ) ,
(9)

where s = 1, 2 specifies the target spaces. With theXs’s transforming as coordinates under
target space diffeomorphisms and the Cs’s transforming as phases under U(1) transfor-
mations, the gs ij ’s and Bs i’s are invariant under target space diffeomorphisms and U(1)
transformations. Note, however, that the Bs i’s and gs ij ’s transform as one-forms and
symmetric tensors respectively under worldvolume diffeomorphisms. Likewise the Bs i’s
(through their dependence on the C’s) transform as U(1) connections under a worldvolume
gauge transformation: Bs i → Bs i + ∂iΛ.

In addition to the dynamical degrees of freedom, in order to account for the initial
thermal state, we will introduce a thermal vector βi and a flavor transformation parameter
Λβ. Together they generate a worldvolume time transformation δβ, which we take to be
such that, in the far past, it is the same transformation generated by the grand potential
appearing in the initial state exp(−bH). We will insist that the effective action is invariant
under worldvolume diffeomorphism and flavor transformations, under which the thermal
data βi and Λβ suitably transform.

2.2 The statistical mechanical limit
So far we have described the degrees of freedom and how we impose doubled diffeomor-
phism and (a possible) doubled flavor invariance. As we mentioned in the previous Sub-
section, we have ensured that our action is double-diffeomorphism invariant by combining
the sources gs µν(xs) together with the Xµ

s ’s into pullback fields gs ij(σ). When the micro-
scopic theory has a U(1) flavor symmetry, we have also grouped the external U(1) fields
Bs µ(xs) together with the Cs’s into pullback fields Bs i(σ).

It is challenging to implement the remaining topological Schwinger-Keldysh symme-
try and the Z2 KMS symmetry. In [18] three of us have discussed how to implement
these symmetries in a probe limit, where charge is transported in a fixed thermal back-
ground. The virtue of the probe limit is that it allows one to consider both classical and
quantum fluctuations. This stands in contrast to a statistical mechanical limit introduced
in [14,19,21], or to the (seemingly equivalent) high temperature limit of [13], where the en-
tire system is dynamical but quantum fluctuations are treated perturbatively. One virtue
of the statistical mechanical limit is that the KMS symmetry (7) becomes local. In this
Subsection, we will rederive the statistical mechanical limit, working in a formalism closely
related to that of [18]. In Sections 2.3 and 2.5 we will see how this will help us imple-
ment the Schwinger-Keldysh and KMS symmetries. As mentioned earlier our end result
matches that of [14, 19, 21] as we elaborate on in Appendix C. A full implementation of
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doubled diffeomorphism invariance, Schwinger-Keldysh symmetry, reality condition, and
KMS symmetry at the quantum level is currently unavailable.

Before delving into the statistical mechanical limit, it is helpful to change basis from
the 1 and 2 fields and define so-called average (r) and difference (a) operators and sources,
given schematically by

Or(t) = 1
2(O1(t) +O2(t)) , Oa(t) = O1(t)−O2(t) . (10)

In the r/a basis, the variation of the generating functional is

δW =
∫
ddx (O1δA1 −O2δA2) =

∫
ddx (OrδAa +OaδAr) , (11)

so that r-sources are conjugate to a-operators and a-sources to r operators.1 In terms
of these, the Schwinger-Keldysh symmetry (5) is the statement that Z = 1 when the
a-sources vanish. Equivalently, it is the statement that correlation functions of the a-type
operators identically vanish among themselves,

〈Oa(t1) . . . Oa(tn)〉 = 0 . (12)

In the statistical mechanical limit we restore ħh as a formal expansion parameter and
take a suitable ħh→ 0 limit. In taking this limit there are two observations to keep in mind
which will guide the analysis to follow. The first is that, after restoring ħh, the thermal
density matrix e−bH is an evolution operator by an imaginary time −ħhb. Correspondingly,
the KMS symmetry (7) is non-local, relating the partition function with source A2(t) to
one with source A2(−t− iħhb). As we will see shortly, once we take ħh to be small, the KMS
symmetry will become local. The second, more relevant for us here, is that we restrict our
attention to configurations where the a-type fields, external and quantum, are O(ħh). This
is reminiscent of the non-relativistic limit of certain relativistic field theories, whereby one
restores c and takes a suitable c→∞ limit (see e.g. [32, 33]).

At the level of the effective action, taking the ħh → 0 limit amounts to the following.
Starting with an action Seff of the r- and a-fields, we rescale the a-fields by a power of ħh
so that the r- and a-fields are both O(ħh0) as ħh→ 0. We then expand the effective action
in powers of the a-field, which we schematically represent as

1
ħh
Seff [φr, φa;ħh]→ 1

ħh
Seff [φr,ħhφa;ħh] =

∑
n=1
ħhn−1Sn[φr;ħh]φna , (13)

where the sum on the far right starts at n = 1 due to the Schwinger-Keldysh symmetry.
We posit that that the ħh→ 0 limit is regular. That is, we assume that ħhn−1Sn[φr;ħh] has
a finite ħh→ 0 limit,

lim
ħh→0
ħhn−1Sn[φr;ħh] = Sn[φr] . (14)

The statistical mechanical limit of the effective action is then

SSM [φr, φa] =
∑
n=1

Sn[φr]φna . (15)

Let us now carefully implement the statistical mechanical limit in the effective theory
for fluids. We restrict our attention to sources which, in some choice of target space
coordinates and U(1) gauges, are nearly aligned, i.e.

g1µν(x) = g2µν(x) +O(ħh) , B1µ(x) = B2µ(x) +O(ħh) . (16)
1 We have intentionally omitted the measure from the schematic expression in (11). We will deal with

it in detail later in this Section.

7

https://scipost.org
https://scipost.org/SciPostPhys.5.5.053


SciPost Phys. 5, 053 (2018)

Further, we only consider nearly-aligned configurations of the dynamical fields,

Xµ
1 (σ) = Xµ

r (σ) + ħh2X
µ
a (σ) +O(ħh2) , Xµ

2 (σ) = Xµ
r (σ)− ħh2X

µ
a (σ) +O(ħh2) ,

C1(σ) = Cr(σ) + ħh2Ca(σ) +O(ħh2) , C2(σ) = Cr(σ)− ħh2Ca(σ) +O(ħh2) .
(17)

These equations effectively define r- and a-type combinations of the dynamical fields. Note
that we have rescaled the a-type combinations so that they are finite in the ħh → 0 limit.
With this choice the pullback fields are nearly aligned as well,

g1 ij(σ) = g2 ij(σ) +O(ħh) , B1 i(σ) = B2 i(σ) +O(ħh) . (18)

The full doubled diffeomorphism and flavor invariance is not manifest in the statistical
mechanical limit. A general diffeomorphism and flavor transformation will lead to metrics
and flavor fields which are no longer aligned to O(ħh). For this reason we only demand
invariance under diffeomorphisms and flavor transformations which maintain the near-
alignment Xµ

1 = Xµ
2 + O(ħh) and C1 = C2 + O(ħh). More precisely, we allow infinitesimal

diffeomorphisms ξµ1 (x1) and ξν2 (x2) and U(1) transformations Λ1(x1) and Λ2(x2) which
are nearly aligned, satisfying

ξµ1 (x) = ξµ2 (x) +O(ħh) , Λ1(x) = Λ2(x) +O(ħh) . (19)

Under a general diffeomorphism or flavor transformation, the dynamical fields shift as

δχX
µ
1 (σ) = −ξµ1 (X1(σ)) , δχC1(σ) = −Λ1(X1(σ)) , (20)

while the sources vary as

δχg1µν = Lξ1g1µν , δχB1µ = Lξ1B1µ + ∂µΛ1 , (21)

and similarly for the 2 fields. In the ħh→ 0 limit we define r- and a-type combinations of
the ξµ and Λ to be their O(ħh0) and O(ħh) terms

ξµ1 (x) = ξµr (x) + ħh2 ξ
µ
a (x) +O(ħh2) , ξµ2 (x) = ξµr (x)− ħh2 ξ

µ
a (x) +O(ħh2) ,

Λ1(x) = Λr(x) + ħh2Λa(x) +O(ħh2) , Λ2(x) = Λr(x)− ħh2Λa(x) +O(ħh2) .
(22)

Written this way, it is clear that these transformations are the combination of a “diagonal”
transformation (ξµr ,Λr) as well as a linearized “axial” transformation (ξµa ,Λa). According
to (17) the r-type combinations of the dynamical fields then vary as

δχX
µ
r (σ) = −ξµr (Xr(σ)) ,

δχCr(σ) = −Λr(Xr(σ)) ,
(23)

where we remind the reader that we are in the ħh→ 0 limit.
One may also be tempted to deduce that δχXµ

a (σ) = −Xν
a (σ)∂νξµr (Xr(σ)) − ξµa (Xr(σ))

or δχCa(σ) = −Xµ
a (σ)∂µΛr(Xr(σ)) − Λa(Xr(σ)). However, as we will see in the next

Subsection (in Equation (26)), transformations of the a-type fields must be modified by
ghost terms so as to be consistent with the Schwinger-Keldysh symmetry.
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2.3 Schwinger-Keldysh symmetry and superspace
Recall that the Schwinger-Keldysh symmetry (5) is the statement that Z = 1 when the
a-sources vanish or, equivalently, that

〈Oa(t1) . . . Oa(tn)〉 = 0 (24)

in the absence of sources. That is, the correlation functions of the a-operators are topo-
logical, in that they do not depend on the locations at which the Oa are inserted. This
feature is reminiscent of Witten-type topological field theories in which the correlation
functions of the stress tensor are topological. Adapting the cohomological construction
of Witten-type theories [34,35], the Schwinger-Keldysh symmetry can be implemented in
the effective theory as follows. We posit the existence of a scalar Grassmann-odd operator
Q with Q2 = 0, ensure that the action is Q-closed when the a-type sources vanish, and
require the a-type operators to be Q-exact.

For each bosonic field in the theory we introduce a Grassman-odd ghost partner with
suitable transformation laws under Q so that Q is a symmetry when the sources are
aligned. We include ghost partners Xµ

g and Xµ
ḡ to Xµ

r and Xµ
a , as well as partners Cg

and Cḡ to Cr and Ca. We then define a cohomological supercharge Q to enforce the
Schwinger-Keldysh symmetry. It acts on the dynamical fields as

[Q,Xµ
r ] = Xµ

ḡ , {Q,Xµ
ḡ } = [Q,Xµ

a ] = 0 , {Q,Xµ
g } = Xµ

a ,

[Q,Cr] = Cḡ , {Q,Cḡ} = [Q,Ca] = 0 , {Q,Cg} = Ca ,
(25)

and therefore obeys Q2 = 0. We assume that the thermal data βi and Λβ are inert under
Q. In what follows, we refer to the transformation generated by Q as δQ, so that, e.g.,
δQX

µ
r = Xµ

ḡ .
Having introduced ghosts and a supercharge Q, we will impose an additive ghost

number symmetry on our effective action. We assign (Q,Xµ
ḡ , Cḡ) ghost number +1 and

(Xµ
g , Cg) ghost number −1. We will demand that our effective action has ghost number

0.
Let us denote transformations which involve a diffeomorphism associated with ξa and a

gauge transformation associated with Λa by δa and transformations associated the r-type
fields by δr so that δχ = δr + δa. Requiring (23), [δQ, δr] = 0 and that, in the absence of
ghosts, Xµ

a transforms as a vector under δr strongly constrains the transformation laws of
the ghosts and the a fields in the presence of ghosts under δr. We find

δrX
µ
ḡ = −Xν

ḡ ∂νξ
µ
r (Xr(σ)) , δrX

µ
g = −Xν

g ∂νξ
µ
r (Xr(σ)) ,

δrCḡ = −Xµ
ḡ ∂µΛr(Xr(σ)) , δrCg = −Xµ

g ∂µΛr(Xr(σ)) ,
(26a)

and that the transformations of the bosonic fields in the presence of ghosts are

δrX
µ
r = −ξµr (Xr(σ)) , δrX

µ
a = −Xν

a∂νξ
µ
r (Xr(σ))−Xν

ḡX
ρ
g∂ν∂ρξ

µ
r (Xr(σ)) ,

δrCr = −Λr(Xr(σ)) , δrCa = −Xµ
a ∂µΛr(Xr(σ))−Xµ

ḡX
ν
g ∂µ∂νΛr(Xr(σ)) .

(26b)

We may consistently choose for all but the a-fields to be inert under a-transformations,
and that the variation of the a-fields is given by

δaX
µ
a = −ξµa (Xr(σ)) , δaCa = −Λa(Xr(σ)) . (27)

We refer the reader to Appendix B for details. Observe that if we repackage the X-ghosts
as worldvolume vectors,

ψ̄i = Xµ
ḡ (∂iXµ

r )−1 , ψi = Xµ
g (∂iXµ

r )−1 , (28)
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then ψ̄i and ψj are invariant under target space diffeomorphisms. Later we will also find
it useful to introduce a worldvolume companion for Xµ

a ,

ρia = (∂iXµ
r )−1Xµ

a . (29)

The action of Q (25) and the r/a-transformations (26), (27) on the dynamical fields
can be efficiently represented using superspace. We introduce two Grassmann-odd coor-
dinates θ and θ̄, of ghost number −1 and +1 respectively, and group the supermultiplets
(Xµ

r , X
µ
ḡ , X

µ
g , X

µ
a ) and (Cr, Cḡ, Cg, Ca) into superfields

Xµ = Xµ
r + θXµ

ḡ + θ̄Xµ
g + θ̄θXµ

a ,

C = Cr + θCḡ + θ̄Cg + θ̄θCa ,
(30)

on which Q can be shown to act via the superdifferential operator ∂
∂θ , i.e.

[Q,Xµ] = ∂Xµ

∂θ
, [Q,C] = ∂C

∂θ
. (31)

Note that Xµ and C have ghost number 0.2 In terms of superfields, the action of the
r/a-transformations (26) and (27) can be written as

δχX
µ = −�µ = −

(
ξµr (X) + θ̄θξµa (X)

)
,

δχC = −� = −
(
Λr(X) + θ̄θΛa(X)

)
.

(32)

Recall that we obtained the r-transformation laws of the ghosts by demanding that
[Q, δr] = 0. The vanishing of this commutator is manifest here: when the a-transformations
vanish, the variations of Xµ and C are functions of superfields, and so Q acts on the su-
perfields Xµ and C in the same way as on their r-variations.

In (17) we defined r and a-type combinations of the dynamical fields. Following stan-
dard methods for symmetry breaking in quantum field theory, we would like to construct
r- and a-type combinations of the pulled back sources so that the a-type pulled back
sources vanish when the sources are aligned. A naive choice would be 1

2(g1 ij(σ) + g2 ij(σ))
for the r-type combination and g1 ij(σ) − g2 ij(σ) for the a-type pullback. The virtue of
this choice is that both the r- and a-type fields would then be invariant under independent
target space diffeomorphisms. However, with this definition it is challenging to enforce
the Schwinger-Keldysh symmetry using cohomological techniques. The obstruction is as
follows: microscopically, the statement that the sources are aligned is that there exists
some choice of target space coordinates such that g1µν(x)− g2µν(x) = 0 everywhere (and
a similar equation for the other sources). This microscopic statement is not equivalent to
saying that the naive a-type pullback g1 ij(σ) − g2 ij(σ) vanishes. It is instead equivalent
to saying that there is a particular field configuration Xµ

1 = X
µ
1 (σ) and Xµ

2 = X
µ
2 (σ)

for which this naive a-pullback vanishes, g1 ij(σ) − g2 ij(σ) = 0. But, for a different field
configuration, e.g. Xµ

1 = X
µ
1 and Xµ

2 = X
µ
2 + δX

µ
2 , the pullback metrics will generally

differ and the candidate a-metric is nonzero. So there seems to be a conflict between the
2Note that, in principle, we could have implemented the Schwinger-Keldysh symmetry by a single

superspace coordinate and two superfields, say, Xµr and Xµa , the first with vanishing ghost number and the
second with a non-vanishing one. Instead, we have used two superspace coordinates, θ and θ̄ to group
these into a single superfield with the understanding that the Lagrangian may depend explicitly on θ̄. We
will see later that under the KMS symmetry we will be forced to remove any explicit θ̄ dependence from
the Lagrangian.
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doubled diffeomorphism invariance, having Xµ’s as the low-energy degrees of freedom, and
using cohomology to enforce the Schwinger-Keldysh symmetry.3

In [18] this conflict was evaded by appealing to a probe limit where the Xµ’s are, for all
intents and purposes, inert. In the statistical mechanical limit this conflict is evaded since
doubled diffeomorphism invariance is effectively broken down to the diagonal subgroup
that acts simultaneously on the 1 and 2 fields, while the “axial” subgroup survives as a
linearized invariance.4

In equations, we define r- and a-metrics in the ħh→ 0 limit via

gr ij(Xr(σ)) = lim
ħh→0

1
2
(
g1µν(Xr(σ)) + g2µν(Xr(σ))

)
∂iX

µ
r ∂jX

ν
r

= lim
ħh→0

1
2 (g1 ij(σ) + g2 ij(σ)) ,

ga ij(Xr(σ)) = lim
ħh→0

(
g1µν(Xr(σ))− g2µν(Xr(σ))

)
∂iX

µ
r ∂jX

ν
r

ħh
,

(33)

and we remind the reader of the expansion (16), (17) and (18). Observe that, if the
metrics are aligned, g1µν(x) = g2µν(x), then this a-combination vanishes for all field con-
figurations. So we can consistently demand that our effective action is Q-closed when the
a-combinations vanish, and therefore use cohomology to enforce the Schwinger-Keldysh
symmetry. Both gr ij and ga ij are tensors under worldvolume diffeomorphisms. We simi-
larly define the r- and a-flavor fields to be

Br i(Xr(σ), Cr(σ)) = lim
ħh→0

[1
2
(
B1µ(Xr(σ)) +B2µ(Xr(σ))

)
∂iX

µ
r + ∂iCr

]
= lim
ħh→0

1
2 (B1 i(σ) +B2 i(σ)) ,

Ba i(Xr(σ)) = lim
ħh→0

(
B1µ(Xr(σ))−B2µ(Xr(σ))

)
∂iX

µ
r

ħh
.

(34)

They are one-forms under worldvolume diffeomorphisms while under worldvolume U(1)
transformations Br i transforms as a connection and Ba i is invariant.

The various fields in (33) and (34) are obviously not tensors under general target
space diffeomorphisms and U(1) transformations. However, we do not consider general
transformations in the statistical mechanical limit, but only nearly-aligned transformations
(22). Under them, the r-pullbacks are invariant, which follows from the fact that they are
the ħh→ 0 limit of invariant pullbacks.

In contrast to the r-pullbacks, the a-pullbacks are not invariant under target diffeo-
morphisms. They transform as

δχga ij(σ) = Lξagr ij(σ) ,
δχBa i(σ) = Lξa(Br i(σ)− ∂iCr) + ∂iΛa(Xr(σ)) ,

(35)

3 The authors of [14] have proposed a method for defining a cohomological supercharge Q which becomes
a symmetry whenever the sources are aligned regardless of the configuration of the X’s. In the current
language it involves adding to the difference fields g1 ij(σ) − g2 ij(σ) a Q-exact term which compensates
for the mismatch associated with different field configurations. At this point, it is unclear if that proposal
is capable of satisfying the doubled diffeomorphism invariance. Regardless, the authors of [14] eventually
resorted to the statistical mechanical approximation described below in order to resolve yet another problem
once the KMS symmetry was to be implemented.

4It may be helpful to think about this in analogy with the non-relativistic limit of relativistic field
theories. In that limit, one typically takes a Lorentz-invariant massive field theory with a U(1) global
symmetry, tunes the chemical potential to threshold, µ = mc2, and then sends c → ∞ while zooming in
on field configurations with finite energies and momenta [32, 33]. After taking that limit the full Poincaré
symmetry is no longer manifest, and it is effectively contracted to Galilean symmetry.
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where the Lie derivatives are taken along the worldvolume vector

ξia(σ) = ξµa (Xr(σ))(∂iXµ
r )−1 . (36)

We would like to find diffeomorphism and flavor-invariant completions of ga ij and Ba i.
Given the transformation laws of theX-supermultiplet and C-supermultiplet (26) and (27),
we find the following combinations are invariant under target space transformations:

δχ

(
ga ij + Lρagr ij + 1

2
(
[Lψ̄,Lψ]− L[ψ̄,ψ]

)
gr ij

)
= 0 ,

δχ

(
Ba i + Lρa(Br i − ∂iCr) + ∂iCa + 1

2
(
[Lψ̄,Lψ]− L[ψ̄,ψ]

)
(Br i − ∂iCr)

)
= 0 ,

(37)

where the Lie derivatives are taken along ψ̄i, ψj , and ρka defined in (28) and (29), and

[ψ̄, ψ]i = ψ̄j∂jψ
i − ψj∂jψ̄i . (38)

Next we would like to package the r- and a-metric into a superfield on which Q acts
simply, i.e. a super-pullback metric. We define

gij = gr ij(X) + θ̄θ ga ij(X) (39)

= gr ij + θLψ̄gr ij + θ̄Lψgr ij + θ̄θ

(
ga ij + Lρagr ij + 1

2
(
[Lψ̄,Lψ]− L[ψ̄,ψ]

)
gr ij

)
,

where

gr ij(X) = lim
ħh→0

1
2
(
g1µν(X) + g2µν(X)

)
∂iX

µ∂jX
ν ,

ga ij(X) = lim
ħh→0

(
g1µν(X)− g2µν(X)

)
∂iXµ∂jXν

ħh
.

(40)

The super-pullback gij is invariant under r- and a-type diffeomorphisms: its bottom and
middle components are manifestly invariant, and the top component is the diffeomorphism-
invariant completion of ga ij given in (37). The invariance is also visible in superspace.
The r/a-transformations act on the external metrics as

δχg1µν(X) = Lξr(X)+ ħh2 ξa(X)+O(ħh2)g1µν(X) , δχg2µν(X) = Lξr(X)− ħh2 ξa(X)+O(ħh2)g2µν(X) ,
(41)

and on the dynamical fields as δχXµ = −�µ. It follows that

δχgr ij(X) = lim
ħh→0

[1
2Lξr(X)

(
g1µν(X) + g2µν(X)

)
∂iX

µ∂jX
ν

+ 1
2L−�

(
g1µν(X) + g2µν(X)

)
∂iX

µ∂jX
ν
]

= lim
ħh→0

1
2
[
Lξr(X)−�

(
g1µν(X) + g2µν(X)

)]
∂iX

µ∂jX
ν

= −θ̄θLξagr ij(σ) ,

(42)

where in the last line the Lie derivative is along ξia as defined in (36). The first line of (42)
is the variation of the metrics, and the second comes from δχXµ = −�µ. Combined with
the non-invariance of ga ij (35),

δχga ij(σ) = Lξagr ij(σ) , (43)
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it follows that gij = gr ij(X) + θ̄θga ij(X) is invariant under δχ. Furthermore, observe that
when the a-metric vanishes, gij is a function of the superfield Xµ, in which case Q acts on
gij in the same way as on Xµ itself, that is,

[Q, gij ]
∣∣∣∣
ga ij=0

= ∂gij
∂θ

∣∣∣∣
ga ij=0

. (44)

By the same sort of logic we write the super-flavor field

Bi = Br i(X,C) + θ̄θBa i(X)

= Br i + θ
(
Lψ̄(Br i − ∂iCr) + ∂iCḡ

)
+ θ̄ (Lψ(Br i − ∂iCr) + ∂iCg) (45)

+ θ̄θ

(
Ba i + Lρa(Br i − ∂iCr) + ∂iCa + 1

2
(
[Lψ̄,Lψ]− L[ψ̄,ψ]

)
(Br i − ∂iCr)

)
,

where

Br i(X,C) = lim
ħh→0

[1
2
(
B1µ(X) +B2µ(X)

)
∂iX

µ + ∂iC
]
,

Ba i(X) = lim
ħh→0

(
B1µ(X)−B2µ(X)

)
∂iXµ

ħh
.

(46)

The super-flavor field is also invariant under the r- and a-transformations, and varies
as a connection under worldvolume U(1) transformations. As before, when the a-source
vanishes, Q acts on Bi as ∂

∂θ ,

[Q,Bi]
∣∣∣∣
Ba i=0

= ∂Bi
∂θ

∣∣∣∣
Ba i=0

. (47)

Recall that, to account for the initial thermal state, we introduced the bosonic fields βi
and Λβ. We may regard βi, Λβ, and the transformation they generate, δβ, as superfields
with no middle or top component, e.g.,

�i = βi . (48)

By assumption, βi and Λβ are inert under Q, and so we may consistently write the (van-
ishing) action of Q on βi and Λβ as [Q, βi] = ∂βi

∂θ = 0 and [Q,Λβ] = ∂Λβ
∂θ = 0, that is, the

same action as on Xµ, C, and on the super-pullbacks (when the a-sources vanish).
We can now use the super-pullbacks gij and Bi together with the thermal data βi and

Λβ to construct an effective action. In order for the effective action to be invariant under
worldvolume diffeomorphisms and flavor transformations, we must construct invariant
combinations of the superpullbacks and thermal data. Toward this end, let us collect
a number of objects that can be constructed from gij and Bk which can appear in the
action. From the super-metric gij we construct an inverse super-metric gij , which satisfies
gikgjk = δij . Neglecting the ghosts for simplicity, this inverse super-metric is given by

gij = gijr − θ̄θ gikr gjlr (ga kl + Lρagr kl) , (49)

where gijr is the inverse of gr ij . With the super-metric gij and its inverse, we construct a
super-Christoffel connection and Riemann curvature, by the usual formulae,

�ijk = 1
2g

il(∂jgkl + ∂kgjl − ∂lgjk
)
,

Rijkl = ∂k�
i
jl − ∂l�ijk + �imk�

m
jl − �iml�

m
jk .

(50)
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Similarly, from Bi we construct a super-field strength,

Gij = ∂iBj − ∂jBi . (51)

The super-connection �ijk is invariant under target space diffeomorphisms and varies as
a connection under worldvolume diffeomorphisms. So, we use �ijk to build a worldvolume
covariant derivative which we notate as ∇∇i. It acts on worldvolume tensors in the usual
way, e.g.

∇∇iβj = ∂iβ
j + �jkiβ

k , (52)

and, under it, the super-metric is covariantly constant,

∇∇igjk = ∂igjk − �ljiglk − �lkigjl = 0 . (53)

Apart from the field strengths and covariant derivatives, there are two important objects
that we may construct out of the superpullbacks and the initial data,

T = 1√
−βiβjgij

, and � = βiBi + Λβ , (54)

which are scalars under worldvolume diffeomorphisms and U(1) transformations (using
that Λβ varies under U(1) transformations as δΛΛβ = −βi∂iΛ). We will see later that
the bottom components of these superfields are the local temperature and the reduced
chemical potential of the fluid.

Crucially, when the a-fields vanish, Q acts as ∂
∂θ on the basic superfields gij and Bi,

as well as on the other objects constructed from them, including �ijk, Rijkl, Gij , and
∇∇i. To ensure that our action is invariant under Q when the a-fields vanish, we demand
invariance under ∂

∂θ , even when the a-sources are nonzero, and do so from here on. That
is, we impose invariance under a spurionic symmetry, which we denote as δQ, which acts
as ∂

∂θ on Xµ, gij , etc. By construction, the spurionic symmetry δQ becomes a genuine
symmetry when the a-fields vanish. In the remainder of this Section we will parameterize
the most general such action.

There are four basic Grassmann-odd objects { ∂∂θ ,
∂
∂θ̄
, θ , θ̄} at hand. All but θ anti-

commute with ∂
∂θ and so may appear in our action. With some foresight, we package them

into the three quantities

Dθ ≡
∂

∂θ
− iθ̄δβ , Dθ̄ ≡

∂

∂θ̄
, (55)

and θ̄. Here Dθ and θ̄ have ghost number −1, and Dθ̄ ghost number +1. As a result, the
most general action invariant under the transformation ∂

∂θ is of the form

S =
∫
ddσdθdθ̄

√
−gL(gij ,Bk,∇∇l;Dθ, Dθ̄, θ̄;β

i,Λβ) . (56)

2.4 The reality condition
Having accounted for target and worldvolume diffeomorphism and flavor invariance and
the Schwinger-Keldysh symmetry, it remains to impose the reality condition (6) and the
KMS symmetry (7). With a Lagrangian at hand, it is straightforward to impose the reality
condition, which is equivalent to

W [A1, A2] = −W [A∗2, A∗1]∗ . (57)
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Following our previous work [18], we impose this condition on our effective action by
defining a transformation R which includes complex conjugation and whose action on the
sources is given by A1 → A∗2 and A2 → A∗1. We then demand that Seff is odd under R.
For our theory of fluids, the dynamical fields transform under R as

R(Xµ
1 ) =Xµ

2 , R(Xµ
2 ) = Xµ

1 , R(Xµ
ḡ ) = −Xµ

ḡ , R(Xµ
g ) = Xµ

g ,

R(C1) =C2 , R(C2) = C1 , R(Cḡ) = −Cḡ , R(Cg) = Cg ,
(58a)

the external fields as

R(g1µν(x)) = g2µν(x) , R(g2µν(x)) = g1µν(x) , (58b)

and the Grassmannian coordinates as

R(θ) = −θ , R(θ̄) = θ̄ . (58c)

So defined, the dynamical superfields and super-pullbacks are invariant under R

R(Xµ) = Xµ , R(C) = C , R(gij) = gij , R(Bi) = Bi , (58d)

as are the Grassmann-odd objects

R(iDθ) = iDθ , R(Dθ̄) = Dθ̄ , R(θ̄) = θ̄ . (58e)

Demanding the effective action to be odd under R and writing the action as a superspace
integral,

Seff =
∫
ddσdθdθ̄

√
−gL , (58f)

we see that the reality condition implies that L is invariant under R.
Putting the pieces together, we find that the most general action which respects target

and worldvolume diffeomorphism/flavor invariance, the Schwinger-Keldysh symmetry, and
the reality condition, (i.e., all the symmetries of the problem except for KMS), takes the
form

Seff =
∫
ddσdθdθ̄

√
−gL

(
gij ,Bk,∇∇l; iDθ, Dθ̄, θ̄;β

i,Λβ
)
, (59)

where now L is a real function of its arguments, is invariant under worldvolume diffeo-
morphisms and flavor transformations, and has ghost number 0. It remains to impose the
KMS symmetry. This is the subject of the next Subsection.

2.5 The KMS symmetry
The KMS symmetry (7) is a Z2 symmetry. A natural way to impose a Z2 symmetry is to
construct a Lagrangian L which satisfies all other symmetries of the problem and add to
it its Z2 image which we denote by L̃. This way, the action

∫
L + L̃ will be Z2-invariant

and satisfy all other symmetries of the problem as long as L̃ does. As it turns out, the
KMS Z2 symmetry does not commute with the Schwinger-Keldysh symmetry associated
with δQ. Demanding that the group axioms are satisfied, we infer the existence of a
second, emergent Grassmann-odd symmetry δQ, which is exchanged with δQ under KMS.
Towards the end of this Section we will see that the appearance of this new symmetry
implies that the Lagrangian L defined (59) should be further modified so that it does not
depend explicitly on θ̄. Once we do so, actions of the form

∫
L+ L̃ will be invariant under

all symmetries of the problem.
This Section is structured as follows. In 2.5.1 we derive the KMS symmetry (7) for

Lagrangian theories, and further show that symmetry is best thought of as a family of Z2
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symmetries. We then implement the KMS symmetry by imposing a single Z2 symmetry
on the worldvolume. (The authors of [14,21] used a similar mechanism for ensuring KMS
symmetry, which they termed a dynamical KMS symmetry.) We work out the action of
this worldvolume KMS symmetry on bosonic and ghost fields in 2.5.2. In 2.5.3, we proceed
to demonstrate the existence of an emergent Grassmann-odd symmetry δQ. Finally in 2.5.4
we put all the pieces together and write effective actions invariant under all symmetries.

2.5.1 A family of Z2 symmetries

We begin with the derivation of the KMS symmetry (7) for Lagrangian theories in Minkowski
space. Given an initial state density matrix ρ−∞ ∝ e−bH with H the Hamiltonian, the
Schwinger-Keldysh partition function Z = tr

(
U1ρ−∞U

†
2

)
may be written as a functional

integral
Z[A1, A2] =

∫
[dφ1][dφ2] exp

(
i

ħh
(S[φ1;A1]− S[φ2;A2])

)
, (60)

where φ collectively represents the quantum fields, A the external fields, and S[φ;A] is
the action. We assume that this action is real, diffeomorphism- and flavor-invariant, and
CPT-invariant. All fields, quantum and external, obey boundary conditions at future and
past infinity,

lim
t→∞

(
φ1(t, ~x)− φ2(t, ~x)

)
= 0 ,

lim
t→−∞

(
φ1(t, ~x)− φ2(t− iħhb, ~x)

)
= 0 .

(61)

We now define KMS-conjugated fields as

φK1 (t, ~x) = ηφφ1(−t,−x1, ~x⊥) , φK2 (t, ~x) = ηφφ2(−t− iħhb,−x1, ~x⊥) , (62)

where ηφ is the CPT-eigenvalue of φ. These tilde’d fields are obtained after the combination
of CPT 5, complex conjugation, and, for φK2 , a translation in imaginary time. The fact
that the microscopic action S is real, diffeomorphism-invariant, and CPT-invariant implies
that

S[φ1;A1] = S[φK1 ;AK1 ] , S[φ2;A2] = S[φK2 ;AK2 ] , (63)

where

AK1 (t, ~x) = ηφA1(−t,−x1, ~x⊥) , AK2 (t, ~x) = ηφA2(−t− iħhb,−x1, ~x⊥) , (64)

so that
Z[A1, A2] =

∫
[dφK1 ][dφK2 ] exp

(
i

ħh
(S[φK1 ;AK1 ]− S[φK2 ;AK2 ])

)
. (65)

To obtain (7) it remains to deduce the boundary conditions on the KMS-conjugated fields
that follow from those of the ordinary fields, c.f, (61). We find

lim
t→∞

(
φK1 (t, ~x)− φK2 (t, ~x)

)
= ηφ lim

t→∞

(
φ1(−t,−x1, ~x⊥)− φ2(−t− iħhb,−x1, ~x⊥)

)
= ηφ lim

t′→−∞

(
φ1(t′, ~x′)− φ2(t′ − iħhb, ~x′)

)
= 0 ,

(66a)

5We can take the action of CPT on Minkowski spacetime in any dimension to be the combination of
t→ −t and x1 → −x1 while leaving the other coordinates invariant.
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where we have defined t′ = −t and ~x′ = (−x1, ~x⊥). Similarly,

lim
t→−∞

(
φK1 (t, ~x)− φK2 (t− iħhb, ~x′)

)
= ηφ lim

t→−∞

(
φ1(−t,−x1, ~x⊥)

− φ2(−(t− iħhb)− iħhb,−x1, ~x⊥)
)

= ηφ lim
t′→∞

(
φ1(t′, ~x′)− φ2(t′, ~x′)

)
= 0 . (66b)

These boundary conditions are precisely those appropriate for a Schwinger-Keldysh par-
tition function with initial state e−bH . Combined with (65), we find the KMS symmetry

Z[A1(t, ~x), A2(t, ~x)] = Z[AK1 (t, ~x), AK2 (t, ~x)]
= Z[ηAA1(−t,−x1, ~x⊥), ηAA2(−t− iħhb,−x1, ~x⊥)] . (67)

Acting with this series of manipulations twice, we end up back where we started. The
KMS symmetry is Z2. Further, we note that because the initial state exp (−bH) is CPT-
invariant, the KMS symmetry relates Z to a partition function with KMS-conjugated
sources in the same state.

It is straightforward to write this result covariantly in a more general spacetime. The
most general thermal initial state ρ−∞ ∝ exp(−bH) is characterized by a grand potential
bH which acts on fields via a combination of a Lie derivative along a timelike vector bµ
and a flavor gauge transformation Λb. We denote this combined transformation by δb.
See e.g. [18, 36] for details. In this language, the thermal translation t → t − iħhb is a
translation along the integral curves of bµ by an affine parameter −iħh, enacted by the
differential operator e−iħhδb .

The KMS transformation includes a CPT-flip. A general initial state is not CPT-
invariant. For example, a chemical potential flips sign under CPT. We refer to the CPT-
flipped grand potential as bHCPT, and the corresponding generator as δCPT

b . The covariant
KMS symmetry relates the partition function in the initial state e−bH to one in the initial
state e−bHCPT . Additionally, on a more general spacetime, CPT does not necessarily act as
(t, ~x)→ (−t,−x1, ~x⊥). In what follows we denote the action of a CPT transformation on
spacetime as Θ.

As before, for a theory with a functional integral description we have

Z[A1, A2] =
∫

[dφ1][dφ2] exp
( i
ħh

(S[φ1;A1]− S[φ2;A2])
)
, (68)

with the boundary conditions

lim
t→∞

(
φ1 − φ2

)
= 0 ,

lim
t→−∞

(
φ1 − e−iħhδbφ2

)
= 0 .

(69)

The only place δb appears is in the infinite past, and so, in fact, we can take the past
boundary condition to be

lim
t→−∞

(
φ1 − e−iħhδb′φ2

)
= 0 , (70)

where δb′ is any transformation which smoothly asymptotes to δb in the far past. A
covariant expression for the KMS-conjugated fields (62) is

φK1 = ηφΘ
∗φ1 , φK2 = ηφΘ

∗(e−iħhδb′φ2) , (71)

where Θ∗ specifies a CPT transformation followed by complex conjugation of its argument.
With some prescience, we find it useful to define a linear operation K such that

φK1 = Θ∗K(φ1) , φK2 = Θ∗K(φ2) , (72)
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i.e.,
K(φ1) = ηφφ1 , K(φ2) = ηφe

−iħhδb′φ2 , (73)

so that KMS conjugation is given by the action of K followed by the linear operation Θ∗.
We define K so that it acts on (b′µ,Λb′) and derivatives as

K(b′µ) = −ηµb′µ , K(Λb′) = −Λb′ , K
∂

∂xµ
= ηµ

∂

∂xµ
. (74)

In Minkowski spacetime, where CPT acts by flipping x0 and x1, we have

ηµ =
{
−1 µ = 0, 1 ,
1 otherwise

. (75)

More generally, they are such that

K(δb′) = −δb′ . (76)

So defined, K squares to the identity,

K2(φ1) = K(ηφφ1) = φ1 , K2(φ2) = K(ηφe−iħhδb′φ2) = K(e−iħhδb′ )K(ηφφ2) = φ2 ,
(77)

as it ought: the KMS transformation is the combination of K and Θ∗, and since the KMS
transformation and Θ∗ each square to the identity, so must K.

As before the underlying diffeomorphism, flavor, and CPT invariance of the action
imply that

S[φ1;A1] = S[φK1 ;AK1 ] , S[φ2;A2] = S[φK2 ;AK2 ] . (78)

Furthermore, the boundary conditions in the far past and future (69) imply that the
KMS-conjugated fields obey the boundary conditions appropriate for a thermal partition
function in an initial thermal state exp(−bHCPT),

lim
t→∞

(
φK1 − φK2

)
= ηφΘ

∗ lim
t→−∞

(
φ1(x)− e−iħhδb′φ2(x)

)
= 0 ,

lim
t→−∞

(
φK1 − e

iħhδCPT
b′ φK2

)
= ηφΘ

∗ lim
t→∞

(
φ1(x)− φ2(x)

)
= 0

(79)

(In the second line it should be noted that, with our conventions, exp(iħhδCPT
b′ ) acts on

the reversed time as t→ t− iħhb′, and so this is the appropriate past boundary condition
corresponding to the initial state ρ−∞ ∝ exp(−bHCPT).) This implies

Z[A1, A2; δb′ ] = Z[AK1 , AK2 ; δCPT
b′ ] , (80)

for any δb′ which asymptotes to δb. Acting with the KMS transformation twice brings us
back to the original partition function, and so each of these symmetries is Z2.

Ultimately, the existence of this infinite family of Z2 symmetries is due to diffeomor-
phism and flavor-invariance. For two different transformations δCPT

b1
and δCPT

b2
which both

asymptote to δCPT
b in the far past, there is a diffeomorphism and flavor transformation

which vanishes at infinity and which sends δCPT
b1
→ δCPT

b2
, giving

Z[AK1 , AK2 ; δCPT
b1 ] = Z[AK1 , AK2 ; δCPT

b2 ] , (81)

where the conjugated field AK2 on the left hand side is obtained from the ordinary one
using δb1 , AK2 = ηAΘ

∗(e−iħhδb1A2), and the one on the right hand side using δb2 . Thus, it
is possible to implement the KMS symmetry in the effective action by imposing (80) for
a particular b′ together with target-space diffeomorphism/flavor-invariance.
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2.5.2 Worldvolume KMS symmetry

In this work we implement the KMS symmetry (80) by imposing a Z2 KMS symmetry on
the worldvolume. A priori, it is not clear that a worldvolume KMS symmetry will impose
the proper KMS symmetry (80), which is stated in the physical space. Towards the end
of this Section, we will provide a perturbative proof that indeed our worldvolume KMS
symmetry imposes the KMS symmetry for a particular δb′ (80).

Let us start by introducing a vector field βi and flavor gauge transformation Λβ, which
together generate a worldvolume transformation δβ. We impose boundary conditions on
the Xµ’s and C’s so that they are trivial in the far past,

lim
σ0→−∞

Xµ
s = δµi σ

i , lim
σ0→−∞

Cs = 0 . (82)

We choose the worldvolume δβ to be such that, in the far past, it coincides with δb when
it is pushed forward to the physical space. Next, we will use the worldvolume δβ to define
KMS-conjugated versions of our dynamical fields and pullbacks. As in (73), we find it
convenient to split the action of KMS conjugation into two: we denote the worldvolume
CPT transformation as ϑ, and it acts on the worldvolume coordinates as

σi → (ϑσ)i , (83)

and define KMS conjugation as ϑ∗K.
Note that an action which is invariant under K will also be invariant under a world-

volume KMS transformation. To see this consider

S =
∫
ddσ
√
−gr L(φ,A) , (84)

with real L. We find

K

(∫
ddσ
√
−gr L(φ;A)

)
=
∫
ddσ

√
−K(gr)L(K(φ);K(A))

=
∫
ddσϑ∗

(√
−K(gr)L(K(φ);K(A))

=
∫
ddσ

√
−ϑ∗K(gr)L(ϑ∗K(φ);ϑ∗K(A))

=
∫
ddσ

√
−gKr L(φK ;AK) .

(85)

Thus, ∫
ddσ
√
−gr L(φ,A) =

∫
ddσ

√
−gKr L(φK ;AK) (86a)

if and only if
S = K(S) . (86b)

Let us now state more precisely our strategy for constructing a KMS invariant action,
outlined at the beginning of this Section. Given a Lagrangian L we construct an action
S =

∫
ddσ (

√
−gL+K(

√
−gL)). Such an action will clearly be KMS invariant due to (86)

and will have the same symmetries as
∫
ddσ
√
−gL as long as

∫
ddσK(

√
−gL) retains those

symmetries. The action (59) satisfies all the symmetries of the problem but for the KMS
symmetry. To proceed we wish to construct an appropriate K, identify its action on the
other symmetries of

∫
ddσ
√
−gL and then tune the action in (59) so that worldvolume

and target-space diffeomorphism/flavor invariance, the Schwinger-Keldysh symmetry, and
the reality condition are retained after acting on it with K.
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Let us start by defining the action of K on the dynamical bosonic fields following (73).
Throughout we restrict our attention to spacetimes that are asymptotically flat, so that
we can write CPT transformations explicitly. However, our final effective action may be
written on more general spacetimes (e.g., a cylinder, R× Sd−1). Our strategy is to define
K such that ϑ∗K(A(x)) = AK(x) when acting on target space sources, with AK given
by (64). We further define the action of K on the external data βi and Λβ and on the
dynamical fields Xµ and C in a way which is commensurate with its action on the sources.
Let us denote

K(φ) = ηφφ̃ , (87)

where φ is a source, thermal parameter or dynamical field. Given (64) we define the action
of K on sources as

K(g1µν(x)) = ηµηνg1µν(ηx) , K(g2µν(x)) = ηµηνg2µν(ηx) ,
K(B1µ(x)) = ηµB1µ(ηx) , K(B2µ(x)) = ηµB2µ(ηx) ,

(88)

where
(ηx)µ = ηµx

µ , (89)

and

K(Xµ
1 ) = ηµX

µ
1 , K(Xµ

2 ) = ηµe
−iħhδβXµ

2 .

K(C1) = C1 , K(C2) = e−iħhδβC2 ,
(90)

and define the action of K on the thermal data and worldvolume derivatives to be

K(βi) = −ηiβi , K(Λβ) = −Λβ , K

(
∂

∂σi

)
= ηi

∂

∂σi
, (91)

so that K(δβ) = −δβ. So defined K squares to the identity K2 = 1.
Recall that in order to implement the Schwinger-Keldysh symmetry we have switched

from the 1/2 basis to the r/a basis. In this basis we find that

K(Xµ
r ) = ηµX̃

µ
r , K(Xµ

a ) = ηµX̃a , K(Cr) = C̃r , K(Ca) = C̃a , (92)

where

X̃µ
r (σ) = lim

ħh→0

X̃µ
1 + X̃µ

2
2 = lim

ħh→0

Xµ
1 (σ) + e−iħhδβXµ

2 (σ)
2

= Xµ
r (σ) ,

X̃µ
a (σ) = lim

ħh→0

X̃µ
1 − X̃

µ
2

ħh
= lim
ħh→0

Xµ
1 (σ)− e−iħhδβXµ

2 (σ)
ħh

= Xµ
a (σ) + iδβX

µ
r (σ) = Xµ

a (σ) + iβi∂iX
µ
r (σ) ,

(93)

and

C̃r(σ) = lim
ħh→0

C̃1 + C̃2
2 = lim

ħh→0

C1(σ) + e−iħhδβC2(σ)
2

= Cr(σ) ,

C̃a(σ) = lim
ħh→0

C̃1 − C̃2
ħh

= lim
ħh→0

C1(σ)− e−iħhδβC2(σ)
ħh

= Ca(σ) + iδβCr(σ) = Ca(σ) + i
(
βi∂iCr(σ) + Λβ(σ)

)
.

(94)
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Note that X̃µ
r = Xµ

r and C̃r = Cr, and so the r- and r̃-combinations are equal in the
ħh→ 0 limit. Using the CPT-eigenvalues of the Xµ and C, we find that,

K(Xµ
r ) = ηµX

µ
r , K(Cr) = Cr , (95)

and that K exchanges the a-combination with the ã-combination,

K(Xµ
a ) = ηµX̃

µ
a , K(X̃µ

a ) = ηµX
µ
a , K(Ca) = C̃a , K(C̃a) = Ca . (96)

Since the action (59) depends on the dynamical fields only through the pullbacks of
the sources, our goal is to study the action of K on such pullbacks. We find that

K(gr ij) = ηiηj g̃r ij , K(ga ij) = ηiηj g̃a ij , (97)

where

g̃r ij(σ) = lim
ħh→0

1
2
(
g1µν(Xr(σ)) + e−iħhδβg2µν(Xr(σ))

)
∂iX

µ
r ∂jX

ν
r

= gr ij(σ) ,

g̃a ij(σ) = lim
ħh→0

(
g1µν(Xr(σ))− e−iħhδβg2µν(Xr(σ))

)
∂iX

µ
r ∂jX

ν
r

ħh
=
(
ga ij(σ) + iδβgr ij(σ)

)
.

(98)

Here, when δβ acts on g2µν we are using (Xr,Λr) to map the worldvolume transformation
δβ to one in the target space. Note that while K maps the dynamical fields Xµ

r and Xµ
a

to their tilde’d versions, X̃µ
r and X̃µ

a , it maps the r- and a-metrics gr ij and ga ij to their
tilde’d versions up to an overall sign. Similarly we have

K(Br i) = ηiB̃r i , K(Ba i) = ηiB̃a i , (99)

where

B̃r i(σ) = lim
ħh→0

[1
2
(
B1µ(Xr(σ)) + e−iħhδβB2µ(Xr(σ))

)
∂iX

µ
r + ∂iC̃r(σ)

]
= Br i(σ) ,

B̃a i(σ) = lim
ħh→0

(
B1µ(Xr(σ))− e−iħhδβB2µ(Xr(σ))

)
∂iX

µ
r

ħh

=
(
Ba i(σ) + iδβBr i(σ)

)
= ηBi

(
Ba i(σ) + i

(
LβBr i(σ) + ∂iΛβ

))
.

(100)

Let us turn our attention to the ghost fields. A priori, there seems to be much freedom
in the possible action of K on ghosts. However, we may constrain K by demanding that
it be commensurate with the ghost number symmetry. That is, we require that K either
preserves or flips the ghost number. On bosonic fields we have K2 = 1, but on ghosts
we allow for the possibility that it squares to either +1 or −1, so that K2 = 1 when
acting on the effective action. In the first case, we have that K2 = 1, and in the second
that K2 = (−1)g where g is ghost number. We will see shortly that the former is more
restrictive than the latter.

The possible actions of K on X and C which preserve ghost number are of the form,
K(Cḡ) = ±Cḡ and K(Cg) = Cg. The possible actions of K on the dynamical fields which
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flip ghost number are K(Cḡ) = ±λCg and K(Cg) = λ−1Cḡ. While we could carry out a
full analysis of all these possibilities, we focus here on two,

K(Xµ
g ) =

{
Xµ
g K2 = 1

Xµ
ḡ K2 = (−1)g

, K(Xµ
ḡ ) =

{
Xµ
ḡ K2 = 1
−Xµ

g K2 = (−1)g

K(Cg) =
{
Cg K2 = 1
Cḡ K2 = (−1)g

, K(Cḡ) =
{
Cḡ K2 = 1
−Cg K2 = (−1)g

,

(101a)

which are compatible with

K(θ) =
{
θ K2 = 1
−θ̄ K2 = (−1)g

, K(θ̄) =
{
θ̄ K2 = 1
θ K2 = (−1)g

. (101b)

Thus,
K(Xµ) = X̃µ , K(C) = C̃ , (102)

where we have defined

X̃µ = Xµ
r + θXµ

ḡ + θ̄Xµ
g + θ̄θX̃µ

a ,

C̃ = Cr + θCḡ + θ̄Cg + θ̄θC̃a .
(103)

Acting with K on the super-pullbacks gij and Bk, we find

K(gij) = ηiηj g̃ij , K(Bi) = ηiB̃i , (104)

where

g̃ij = gr ij(X̃) + θ̄θ ga ij(X̃) = g̃r ij(X) + θ̄θ g̃a ij(X) ,
B̃i = Br i(X̃, C̃) + θ̄θ Ba i(X̃) = B̃r i(X,C) + θ̄θB̃a i(X) .

(105)

The other possibilities for actions of K on the dynamical fields will be ruled out later on
account of the group structure associated with the KMS symmetry and the Schwinger-
Keldysh symmetry.

With the action of K on the dynamical fields and sources at hand, our next task is
to study its compatibility with the other symmetries we have discussed, namely doubled
diffeomorphism/flavor invariance, the reality condition and the Schwinger-Keldysh sym-
metry. In the remainder of this Section we will show that K is commensurate with the
former two but incompatible with the Schwinger-Keldysh symmetry. We will resolve this
mismatch in Section 2.5.3.

Given (58), it is straightforward to check that the reality condition commutes with K,
ensuring that the K transformation of (59) still satisfies the condition (6). The tilde’d
super-pullbacks are invariant under target space transformations. To see this we require
the r-transformations (26) and a-transformations (27) of Xµ and C from which

δχX̃
µ = −�̃ = −

(
ξµr (X̃) + θ̄θξµa (X̃)

)
,

δχC̃ = −�̃ = −
(
Λr(X̃) + θ̄θΛa(X̃)

) (106)

follows. Using the same sort of superspace argument in (42) that we used to show that gij
is an invariant pullback, it follows that g̃ij and B̃i are invariant under r/a-transformations.
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We can also check this invariance by expanding in components. We find
g̃ij = gr ij + θLψ̄gr ij + θ̄Lψgr ij

+ θ̄θ

(
ga ij + Lρ̃agr ij + 1

2
(
[Lψ̄,Lψ]− L[ψ̄,ψ]

)
gr ij

)
,

= gr ij + θLψ̄gr ij + θ̄Lψgr ij

+ θ̄θ

(
g̃a ij + Lρagr ij + 1

2
(
[Lψ̄,Lψ]− L[ψ̄,ψ]

)
gr ij

)
,

(107a)

and similarly,

B̃i =Br i + θLψ̄Br i + θ̄LψBr i + θ̄θ
(
B̃a i(σ) + Lρa(Br i(σ)− ∂iCr(σ)) + ∂iCa(σ)

+ 1
2
(
[Lψ̄,Lψ]− L[ψ̄,ψ]

)
(Br i(σ)− ∂iCr(σ))

)
, (107b)

where ρ̃ia = X̃µ
a (∂iXµ

r )−1. In Subsections 2.2 and 2.3 we showed how r- and a- transfor-
mations act on the various fields. Because the r̃-combinations equal the r-combinations
as ħh→ 0, they transform in the same way as before. Thus, all but the top components of
g̃ij and B̃i are manifestly invariant. The variations of the ã-combinations of the dynamical
fields follow from (26) and (27) and are given by

δχX̃
µ
a (σ) = −X̃ν

a (σ)∂νξµr (Xr(σ))− ξµa (Xr(σ))−Xν
ḡX

ρ
g∂ν∂ρξ

µ
r (Xr(σ)) ,

δχC̃a(σ) = −X̃µ
a (σ)∂µΛr(Xr(σ))− Λa(Xr(σ))−Xµ

ḡX
ν
g ∂µ∂νΛr(Xr(σ)) .

(108)

The ã-pullbacks vary in the same way as the a-combinations, (35),

δχg̃a ij(σ) = Lξagr ij(σ) ,
δχB̃a i(σ) = Lξa(Br i(σ)− ∂iCr(σ)) + ∂iΛa(Xr(σ)) ,

(109)

where the Lie derivatives are taken along ξia(σ). As in (37), the ã-pullbacks may be
combined with r-fields into invariant pullbacks. We find that these pullbacks may be
written in two equivalent ways. The invariant metric is

g̃a ij(σ)+Lρagr ij(σ) + 1
2
(
[Lψ̄,Lψ]− L[ψ̄,ψ]

)
gr ij(σ)

= ga ij(σ) + Lρ̃agr ij(σ) + 1
2
(
[Lψ̄,Lψ]− L[ψ̄,ψ]

)
gr ij(σ) ,

(110)

where we have defined ρ̃ia = X̃µ
a (∂iXµ

r )−1, and the invariant flavor field is

B̃a i(σ) + Lρa(Br i(σ)− ∂iCr(σ)) + ∂iCa(σ) + 1
2
(
[Lψ̄,Lψ]− L[ψ̄,ψ]

)
(Br i(σ)− ∂iCr(σ))

= Ba i(σ) + Lρ̃a(Br i(σ)− ∂iCr(σ)) + ∂iC̃a(σ) + 1
2
(
[Lψ̄,Lψ]− L[ψ̄,ψ]

)
(Br i(σ)− ∂iCr(σ)) .

(111)

Thus, the top components of g̃ij and B̃i are the invariant completion of g̃a ij .
Our final task is to check for the compatibility of K with δQ. Recall that we en-

force the Schwinger-Keldysh symmetry by demanding that our action is invariant under
a Grassmann-odd transformation δQ (which acts on superfields as ∂

∂θ ). Consider

K(δQXµ
g ) = K(Xµ

a ) = X̃µ
a = Xµ

a + iδβX
µ
r . (112)

It is straightforward to check that the right-hand side of (112) is not δQ closed, let alone
δQ exact. Thus,

[δQ, K]Xµ
g 6= 0 . (113)

Since K and δQ do not commute then in order for them to form a group, there must exist
an additional generator. This is the topic of the next Subsection.
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2.5.3 Reconciling the KMS and Schwinger-Keldysh symmetries

Since KδQ 6= δQK, the group axioms imply the existence of an additional, emergent
Grassmann-odd symmetry δQ′ obeying

KδQ = −δQ′K . (114a)

Put differently, since K and δQ do not commute when we add to (59) its image under K,
that image will not be δQ invariant unless we ensure that (59) is invariant under both δQ′
and δQ. To understand the action of δQ′ on the superfields, we note that (114a) leads to

KδQ′ = −
{
δQK , K2 = 1 ,
(−1)gδQK , K2 = (−1)g .

(114b)

Using the transformation laws of the X- and C-supermultiplet under δQ, the ghost number
symmetry, and assuming that δQ′ acts linearly on those supermultiplets, we are able to
solve the intertwining conditions (114) for δQ′ and K. We find that there are exactly two
solutions, depending on whether δQ′ has ghost number +1 or −1 given by (101). The
other possible actions of K on the fields, specified in the discussion prior to (101), are not
allowed.

In the first solution where K2 = 1, δQ′ acts on Xµ and C as

δQ′ →
∂

∂θ
− iθ̄δβ = Dθ . (115)

The Grassmann-odd objects which anticommute with δQ are Dθ, Dθ̄, and θ̄, and so the
most general effective action invariant under δQ had a super-Lagrangian (59) which could
depend upon these three objects. Imposing δQ′ as a spurionic symmetry, the super-
Lagrangian may now only depend on Dθ and θ̄, but not Dθ̄. However, both Dθ and θ̄
have ghost number +1, and, because all other available superfields have ghost number-0,
a ghost number-0 super-Lagrangian cannot depend on either. We conclude that the most
general effective action invariant under double diffeomorphisms, the Schwinger-Keldysh
symmetry, the reality condition and δQ′ (in the statistical mechanical limit) takes the
form

S =
∫
ddσdθdθ̄

√
−gL(gij ,Bk,∇∇l;βi,Λβ) . (116)

An action of this sort is not only invariant under δQ and δQ′ but also under ∂
∂θ̄

and θ.
For the second solution where K2 = (−1)g, we find that δQ′ , which we henceforth

notate as δQ to distinguish it from the first solution, acts on superfields as

δQ →
∂

∂θ̄
+ iθδβ . (117)

The Grassmann-odd objects which anticommute with δQ and δQ are justDθ andDθ̄, which
may then be interpreted as superderivatives. Thus, the most general action invariant under
all of the symmetries but KMS takes the same form as in (59), but now it cannot depend
on θ̄:

S =
∫
ddσdθdθ̄

√
−gL(gij ,Bk,∇∇l; iDθ, Dθ̄;β

i,Λβ) . (118)

Note that actions of the type (116) are contained in (118) upon removing the depen-
dence of the latter on the superderivatives Dθ and Dθ̄. Therefore, we may consider both
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types of symmetries in what follows.6
The spurionic symmetry δQ defines a Grassman-odd operator Q which only acts on

the dynamical fields, and whose action on them is given by that of δQ. We find

[Q,Xµ] ≡
(
∂

∂θ̄
+ iθδβ

)
Xµ , [Q,C] ≡

(
∂

∂θ̄
+ iθδβ

)
C , (120)

or equivalently,

[Q,Xµ
r ] = Xµ

g , {Q,Xµ
g } = [Q, X̃µ

a ] = 0 , {Q,Xµ
ḡ } = −X̃µ

a ,

[Q,Cr] = Cg , {Q,Cg} = [Q, C̃a] = 0 , {Q,Cḡ} = −C̃a .
(121)

The operator Q becomes a symmetry whenever the sources become aligned (i.e. the a-
sources vanish),

[Q, gij ]
∣∣∣
ga ij=0

=
(
∂

∂θ̄
+ iθδβ

)
gij

∣∣∣∣
ga ij=0

, [Q,Bi]
∣∣∣
Ba i=0

=
(
∂

∂θ̄
+ iθδβ

)
Bi

∣∣∣∣
Ba i=0

.

(122)
The emergent Grassman-odd spurionic symmetry δQ was first observed in [14] and later
elaborated on in [19]. An emergent Grassman-odd generator δQ̄ which becomes a genuine
symmetry once the ã-fields vanish was argued for in [15] and also [18], the latter valid
only in the probe limit when the X-fields become non-dynamical. It would be interesting
to better understand the interplay between these emergent symmetries.

We end this discussion with an observation. A simple computation shows that Q and
Q act on the tilde’d superfields by ∂

∂θ + iθ̄δβ and ∂
∂θ̄

respectively, e.g.

[Q, X̃µ] =
(
∂

∂θ
+ iθ̄δβ

)
X̃µ , [Q, X̃µ] = ∂X̃µ

∂θ̄
. (123)

With these definitions one may easily verify that δQ and δQ intertwine as they ought
according to (114): when acting on a ghost-number-0 superfield they satisfy

KδQ = −δQK , KδQ = δQK . (124)

The spurionic symmetries δQ and δQ act on tilde’d superfields as

δQ →
∂

∂θ
+ iθ̄δβ , δQ →

∂

∂θ̄
. (125)

Along the lines of our analysis in Subsection 2.3, we may define other superfields from
g̃ij and B̃i. These include an inverse super-metric g̃ij , a super-Christoffel connection �̃ijk,
Riemann curvature R̃ijkl, flavor field strength G̃ij , and covariant derivative ∇̃∇i.

In Eq. (118) we wrote down effective actions out of the ordinary superfields which were
invariant under all of the symmetries of the problem except the KMS symmetry. Here,
using the tilde’d superfields, we could also write down effective actions invariant under

6 For those familiar with the Schwinger-Keldysh contour we note that the action (116) exhibits no
“cross-contour” terms at tree-level: after performing the superspace integral, changing basis from r- and
a-fields back to 1 and 2 fields, and setting the ghosts to vanish, this action takes the form

S

∣∣∣
ghosts=0

= lim
ħh→0

1
ħh

[∫
ddσ

(√
−g1 L(g1 ij , B1 k,∇l;βi,Λβ)−

√
−g2 L(g2 ij , B2 k,∇l;βi.Λβ)

)]
. (119)

So an action of this sort cannot be an effective action for a dissipative fluid, which exhibits cross-contour
correlations by virtue of the fluctuation-dissipation theorem.
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all symmetries (including δQ) but KMS. There are two Grassmann-odd objects which
anticommute with δQ and δQ,

D̃θ ≡
∂

∂θ
, D̃θ̄ ≡

∂

∂θ̄
− iθδβ . (126)

We note in passing that not only does K intertwine δQ with δQ, but the D’s with the D̃’s
as

KDθ = −D̃θ̄K , KDθ̄ = D̃θK , KD̃θ = −Dθ̄K , KD̃θ̄ = DθK . (127)

In Subsection 2.3 we defined a symmetry R which implements the reality condition (57)
on the effective action. The tilde’d superfields are invariant under R, as are iD̃θ and D̃θ̄.
Then an action of the form

S =
∫
ddσdθdθ̄

√
−g̃ L̃(g̃ij , B̃k, ∇̃∇l; iD̃θ, D̃θ̄;β

i,Λβ) , (128)

is invariant under all but the KMS symmetry.

2.5.4 Imposing the KMS symmetry

We now impose a worldvolume KMS symmetry, which is the combination of K and world-
volume ϑ∗. As we mentioned at the beginning of Section 2.5.2, the KMS symmetry
becomes an invariance of the effective action under K alone. Under K, the various objects
that can appear in the effective action are transformed as

K(gij) = ηiηj g̃ij , K(Bi) = ηiB̃i , K(βi) = −ηiβi , K(Λβ) = −Λβ ,
K(∇∇i) = ηi∇̃∇i , K(Dθ) = −D̃θ̄ , K(Dθ̄) = D̃θ .

(129)

Here g̃ij and B̃i are defined in (105), ηi is the worldvolume CPT eigenvalue associated with
derivatives (e.g., in Minkowski space in Cartesian coordinates, we have η0 = −1, η1 = −1
and the remaining components unity), ∇̃∇i is the covariant derivative whose connection is
associated with g̃ij , and the tilde’d superderivatives are given in (126).

Acting with K on an effective action (118) built from the ordinary superfields gives∫
ddσdθdθ̄

√
−gL(gij ,Bk,∇∇l; iDθ, Dθ̄;β

i,Λβ)

→
∫
ddσdθdθ̄

√
−g̃ L̃(g̃ij , B̃k, ∇̃∇l; iD̃θ̄, D̃θ;βi,Λβ) ,

(130)

where L̃ is determined by L as

L̃(g̃ij , B̃k, ∇̃∇l; iD̃θ̄, D̃θ;βi,Λβ) = L(ηiηj g̃ij , ηkB̃k, ηl∇̃∇l − iD̃θ̄, D̃θ;−ηiβi,−Λβ) . (131)

Note that the KMS transformation maps an action of ordinary superfields (118) to one
with tilde’d superfields (128).

We then see that KMS conjugation acts on the action by the combination of three
operations: exchange superfields by their tilde’d versions (or, equivalently, superpullbacks
by their tilde’d version), exchange the superderivatives Dθ and Dθ̄ with −D̃θ̄ and D̃θ,
and multiply the various fields by their CPT eigenvalue. It is then clear how to render
the effective action invariant under worldvolume KMS. Given any action constructed from
ordinary superfields as in (118), we add it to its image under K, which we call its KMS
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partner term. In an equation, effective actions invariant under all symmetries take the
form:7

Seff =
∫
ddσdθdθ̄

{√
−gL(gij ,Bk,∇∇l; iDθ, Dθ̄;β

i,Λβ)

+
√
−g̃ L̃(g̃ij , B̃k, ∇̃∇l; iD̃θ̄, D̃θ;βi,Λβ)

}
,

(132)

where L̃ was defined in (131).
Eq. (132) is the main result of this Section. It describes actions which, in the statistical

mechanical limit, are invariant under the doubled symmetries, the reality condition, the
Schwinger-Keldysh symmetry and a Z2 worldvolume KMS symmetry. (Our result is ulti-
mately identical to that of [19,21], as we demonstrate in Appendix C.) However, we have
not yet argued that a worldvolume KMS symmetry implies the target KMS symmetry (80)
that we sought to impose. We conclude this Section with such an argument.

In the classical limit, the equations of motion of our effective theory are solved by some
profile for the bosonic fields,

Xµ
r = Xµ

r c , Xµ
a = Xµ

a c , Cr = Cr c , Ca = Ca c , (133)

and setting the ghosts to vanish. Plugging this solution back into the effective action (132)
gives the tree-level approximation to the generating functional W . We use the classical
solution (Xµ

r c(σ), Cr c(σ)) to push forward the worldvolume δβ to a target space transfor-
mation δb′ , and the transformation of the target space sources under K, to a target space
CPT transformation Θ. Then the worldvolume KMS symmetry implies

Wtree[Ar, Aa; δb′ ] = Wtree[ηAΘ∗Ar, ηAΘ∗Ãa; δCPT
b′ ] , (134)

where Ar(x) = limħh→0
1
2(A1(x) + A2(x)) and Aa(x) = limħh→0

A1(x)−A2(x)
ħh represents all

target sources. But this is nothing more than the covariant KMS symmetry (80) for the
particular transformation δb′ and CPT transformation Θ, in the statistical mechanical
limit.

This argument can be generalized to account for loop contributions to W . Expanding
Seff around the classical solution and formally treating the coefficients of its non-Gaussian
part as small parameters, one may in principle construct a loop expansion for a 1PI effective
action S1PI for the X- and C-supermultiplets. Barring an anomaly, this 1PI action will
also be invariant under the same symmetries of the effective action, including the Z2
worldvolume KMS symmetry. Recall that to go from S1PI to the loop-approximation to
W , Wloop, one solves the equations of motion that follow from variation of S1PI, and then
plugs the solution back into S1PI. Using this solution, we pushforward the worldvolume
KMS symmetry to the target space, as we have done for the tree level approximation.
Thus, Wloop is also invariant under the target space KMS symmetry (80).

3 Summary and the relation to hydrodynamics

Let us summarize our findings so far. In the statistical mechanical limit we are working
in, we assume that there exists a coordinate system where the external metric and flavor

7We caution the reader that δQ and δQ act on the first term in a different way than on the second. On
the first, δQ acts as ∂

∂θ
and on the second as ∂

∂θ
+ iθ̄δβ . Nevertheless the total action is invariant under δQ

and δ
Q
, since both terms in Seff are separately invariant.
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fields are almost aligned,

g1µν(x) = gr µν(x) + ħh2 gaµν(x) +O(ħh2) , g2µν(x) = gr µν(x)− ħh2 gaµν(x) +O(ħh2) .

B1µ(x) = Br µ(x) + ħh2Baµ(x) +O(ħh2) , B2µ(x) = Br µ(x)− ħh2Baµ(x) +O(ħh2) .
(135)

In this limit, the Schwinger-Keldysh effective action takes the form

Seff =
∫
ddσdθdθ̄

{√
−gL(gij ,Bk,∇∇l; iDθ, Dθ̄;β

i,Λβ)

+
√
−g̃ L̃(g̃ij , B̃k, ∇̃∇l; iD̃θ̄, D̃θ;βi,Λβ)

}
,

(136)

where the various terms are defined below.
The superfields gij and Bi are referred to as superpullbacks and are given by

gij = gr ĳ(X) + θ̄θga ij(X) , Bi = Br i(X, C) + θ̄θBa i(X) , (137)

with

gr ij(X) = gr µν(X)∂iXµ∂jX
ν , ga ij(X) = gaµν(X)∂iXµ∂jX

ν ,

Br i(X, C) = Br µ(X)∂iXµ + ∂iC , Ba i(X) = Baµ(X)∂iXµ ,
(138)

and
Xµ = Xµ

r + θXµ
ḡ + θ̄Xµ

g + θ̄θXµ
a , C = Cr + θCḡ + θ̄Cg + θ̄θCa , (139)

where θ and θ̄ are Grassmann-odd coordinates. The operator∇∇i is the covariant derivative
taken using the Christoffel connection associated with gij . The superderivatives Dθ and
Dθ̄ are given by

Dθ = ∂

∂θ
− iθ̄δβ , Dθ̄ = ∂

∂θ̄
,

and βi and Λβ are external parameters associated with the thermal state of the system in
the infinite past.

The tilde’d Lagrangian L̃ is defined as

L̃(g̃ij , B̃k, ∇̃∇l; iDθ̄, D̃θ;βi,Λβ) = L(ηiηj g̃ij , ηkB̃k, ηi∇̃∇i;−iD̃θ̄, D̃θ;−ηiβi,−Λβ) , (140)

with tilde’d fields defined as follows. The super-pullbacks are given by

g̃ij = gr ĳ(X) + θ̄θ (ga ij(X) + iδβgr ij(Xr)) ,
B̃i = Br i(X) + θ̄θ (Ba i(X) + iδβBr i(Xr)) + ∂iC + θ̄θiδβ∂iCr .

(141)

Tilde’d covariant derivatives ∇̃∇i are taken using the Christoffel connection generated by
g̃. Tilde’d superderivatives are given by

D̃θ = ∂

∂θ
, D̃θ̄ = ∂

∂θ̄
− iθδβ .

The η’s correspond to CPT eigenvalues of the various terms. In Minkowski space they are
given by

η0 = η1 = −1 , (142)

with the remaining eigenvalues equal to one.
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The tilde’d super-Lagrangian is simple to construct in practice. The super-Lagrangian
L is a worldvolume scalar, which depends on scalar superfields which may be decomposed
in a basis which are either even or odd under CPT. Let F± denote such a basis of su-
perfields, where the superscript indicates the CPT-eigenvalue. Given a super-Lagrangian
L(F+,F−), the KMS partner super-Lagrangian is simply L(F̃+,−F̃−). It is this last form
that will be most useful to us when constructing actions for fluids.

The Lagrangian Lmust also satisfy the following symmetries. It must be a scalar under
worldvolume diffeomorphisms under which gij , Bi, ∇∇i and βi transform as tensors and
Λβ, Dθ and Dθ̄ transform as scalars. It must also be invariant under worldvolume gauge
transformations under which C transforms as a phase, C → C + Λ, and Λβ transforms
as Λβ → Λβ − βi∂iΛ. The Lagrangian L must be a real function of its arguments. We
also impose an additive ghost number symmetry. Under it, we assign (δQ, Xµ

ḡ , Cḡ, θ̄, Dθ)
ghost number +1 and (δQ, X

µ
g , Cg, θ,Dθ̄) ghost number −1. So defined, the superfields

(Xµ,C, gij ,Bk,∇∇l, βm,Λβ) are all ghost number-0, and we demand that L is ghost number-
0.

By design, the effective action (136) is invariant under a Grassmann-odd symmetry
δQ, which enforces the Schwinger-Keldysh symmetry Z[A,A] = 1. It is also invariant
under a worldvolume KMS symmetry, which exchanges L with L̃ in the action. Together,
invariance under δQ and KMS, mandate a second Grassmann-odd symmetry δQ. For the
interested reader, the action of δQ, δQ, and the worldvolume KMS symmetry is summarized
in Subsection 2.5.3.

Collectively notating the superfields which may be constructed from gij and Bk by FA,
with A a collective index, we expand the super-Lagrangian L as

L = 1
2L0 + 1

2
∑
n=0

in+1LABC1...CnDθFADθ̄FBDFC1 . . . DFCn + Lghost , (143)

where the LABC1... and L′ABC1... are in general super-differential operators constructed
from (F,∇∇i;βj ,Λβ), and we have defined

D = DθDθ̄ . (144)

The terms Lghost are those which vanish identically when setting the ghosts to vanish, e.g.,
DθFADθ̄FBDθFCDθ̄FD. We call L0 a scalar term, and refer to other parts of L as tensor
terms. We will often refer to tensor terms with n powers of DF (or n powers of D′F) as
n+ 2 order tensor terms.

For convenience let us write the KMS conjugate of the Lagrangian explicitly,

L̃ = 1
2 L̃0 + 1

2
∑
n=0

(−i)n+1ηABC1...CnL̃
ABC1...CnD̃θ̄F̃AD̃θF̃BD̃F̃C1 . . . D̃F̃Cn + L̃ghost , (145)

where ηABC1...Cn = ηAηBηC1 . . . ηCn and ηA is the CPT eigenvalue of FA and we have
defined

D̃ = D̃θ̄D̃θ . (146)

The tilde’d components of the Lagrangian are defined as in (140).
In the remainder of this manuscript we will extract the hydrodynamic constitutive

relations from effective actions of the form (136). By constitutive relations, we mean the
tree-level expressions for the stress tensor Tµνr and flavor current Jµr upon setting the
a-sources to vanish. In the absence of a-sources, we may consistently take the ghosts and
dynamical a-fields to vanish, so that the only remaining dynamical fields are Xµ

r and Cr.
As we discussed in [18], we obtain these constitutive relations as follows. We first vary
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the effective action with respect to a-type sources, and then set the ghosts and a-fields to
vanish. This defines a worldvolume stress tensor and flavor current via

T ijr (σ) = 2√
−gr(σ)

δSeff
δga ij(σ)

∣∣∣∣∣
a=ghosts=0

, J ir(σ) = 1√
−gr(σ)

δSeff
δBa i(σ)

∣∣∣∣∣
a=ghosts=0

. (147)

The constitutive relations are then obtained by pushing forward the worldvolume stress
tensor and current using Xµ

r (σ), e.g.,

Tµν(x) = T ijr (σ(x))∂iXµ
r (σ(x))∂jXν

r (σ(x)) . (148)

The remaining equations of motion for Xµ
r (σ) and Cr(σ) are exactly the conservation

equations for Tµν and Jµ,

δSeff
δXµ

a

∣∣∣
a=ghosts=0

= −(∇νTµν −GµνJν) = 0 , δSeff
δCa

∣∣∣
a=ghosts=0

= −∇µJµ = 0 . (149)

Here ∇µ is the covariant derivative associated with the metric gµν(x) = gr µν(x) and Gµν
the field strength of Bµ(x) = Br µ(x). In practice, the physical stress tensor Tµν and
Jµ are given by the worldvolume stress tensor T ijr and current J ir upon replacing the
worldvolume indices with target space ones.

Before closing this Section we note that one often computes the constitutive relations
in a derivative expansion. To this end, we consistently assign scalings whereby gij , Bk,
βi and Λβ are zeroth order in derivatives, ∇∇i is first order in derivatives, and Dθ and Dθ̄

are order one half in derivatives. With this scaling in mind, the expansion (143) (and its
KMS conjugate) should be truncated at order n if we are interested in the constitutive
relations to order n+ 1

4 A simple example: the ideal fluid

In this Section we work out the effective action and constitutive relations for the simplest
possible example, that of ideal hydrodynamics. To leading order in derivatives, the super-
Lagrangian L appearing in the effective action Seff in (136) is merely

L = G(T, �) , (150)

where T and � are the only zeroth order diffeomorphism and U(1) invariant scalars avail-
able,

T = 1√
−gijβiβj

, � = βiBi + Λβ . (151)

They are respectively even and odd under CPT.
According to (136) the total effective action is

Seff =
∫
ddσdθdθ̄

(√
−gG(T, �) +

√
−g̃G(T̃, −�̃)

)
, (152)

with
T̃ = 1√

−βiβj g̃ij
, �̃ = βiB̃i + Λβ . (153)

Using that for a general superfield F,

F̃(X) = F(X) + θ̄θiδβFr(X) , (154)
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the effective action can be written more simply as

Seff =
∫
ddσdθdθ̄

√
−gP (T, �) , (155)

with
P (T, �) = G(T, �) +G(T, −�) . (156)

To efficiently compute T ijr (σ) and J ir(σ), we define a worldvolume stress tensor super-
field, and a worldvolume current superfield by

Tij = 2√
−g

δSeff
δgij

, Ji = 1√
−g

δSeff
δBi

. (157)

Upon setting the ghosts and a-fields to vanish, these superfields become T ijr and J ir,

Tij |a=ghosts=0 = T ijr , Ji|a=ghosts=0 = J ir . (158)

We easily compute the super-stress tensor and current (157) to be

Tij = T3∂P

∂T
βiβj + Pgij , Ji = ∂P

∂�
βi . (159)

Setting the ghosts and a-fields to vanish, we define

T ≡ T|a=ghosts=0 , ν ≡ �|a=ghosts=0 , (160a)

and a normalized velocity uµ via

uµ = Tβi∂iX
µ
r . (160b)

In terms of these, we find that the constitutive relations that follow from the action (152)
are

Tµν =
(
−P + T

∂P

∂T

)
uµuν + P (gµν + uµuν) ,

Jµ = 1
T

∂P

∂ν
uµ ,

(161)

with P = P (T, ν). These are exactly the constitutive relations of an ideal fluid,

Tµν = εuµuν + P (gµν + uµuν) ,
Jµ = ρuµ ,

(162)

with pressure P (T, ν), local temperature T , velocity uµ, reduced chemical potential ν = µ
T

and ε the energy density and ρ the charge density which are related to the pressure via

ε = −P + T

(
∂P

∂T

)
ν
, ρ = 1

T

(
∂P

∂ν

)
T
. (163)

Thus, our effective action (152) describes an ideal fluid as advertised.
Following this example, in the remainder of this work we identify the local temper-

ature T , reduced chemical potential ν, and velocity uµ according to (160). We regard
T as the super-temperature, � as the super (reduced) chemical potential and βi as the
(unnormalized) velocity field.
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5 The entropy current

One of the most interesting aspects of relativistic hydrodynamics is the stipulation of the
existence of an entropy current Sµ whose leading order term in a derivative expansion is

Sµ = suµ +O(∂) , (164)

with s the entropy density, and such that

∇µSµ ≥ 0 . (165)

Recently in [25] and later in [23, 24], it was shown how to obtain the hydrodynamic
entropy current from the Schwinger-Keldysh effective action. In particular, in [23] we
have provided an algorithm for defining the entropy current by coupling it to an external
source AI , which resembles a dynamical U(1)T field postulated in [26,27]. In [23] we have
applied our construction to a probe limit of the Schwinger-Keldysh effective action, valid
to all orders in ħh but where charge was free to move in a fixed thermally equilibrated
background. In what follows we briefly summarize the construction of [23] and adapt it
to the statistical mechanical limit.

Consider first the action of a scalar field φ,

S =
∫
ddx
√
−g L(φ; gµν) , (166)

which depends on an external metric gµν . The variation of the action with respect to φ
and gµν ,

δS =
∫
ddx
√
−g

(
Eφδφ+ 1

2T
µνδgµν

)
, (167)

defines the stress tensor Tµν and the equation of motion Eφ. Consider the particular vari-
ation δβ, which is generated by an infinitesimal coordinate transformation xµ → xµ + βµ,
under which φ and gµν vary by a Lie derivative along βµ,

δβφ = Lβφ , δβgµν = Lβgµν . (168)

In general, δβ is not a symmetry of the action in the sense that δβS does not necessarily
vanish on-shell. However, we can impose invariance of the action under a suitably “gauged”
version of δβ once we incorporate an appropriate connection.

Consider the transformation

δTφ = ΛT δβφ , δT gµν = ΛT δβgµν , (169)

with a spacetime dependent parameter ΛT . In general we will refer to transformations δT
of a quantity F as homogeneous if δT acts on F as δTF = ΛT δβF . Clearly, derivatives of
φ and gµν will not transform homogeneously under δT . However, introducing a connection
Aµ and modifying the partial derivative as

∂µ → ∂(A)
µ = ∂µ +Aµδβ , (170)

then ∂(A)
µ φ and ∂(A)

µ gνρ transform homogeneously under δT provided that Aµ varies as

δTAµ = ΛT δβAµ −AµδβΛT − ∂µΛT . (171)

Upon replacing ∂µ → ∂
(A)
µ the Christoffel connection is modified as

Γ (A)µ
νρ = 1

2g
µσ
(
∂(A)
ν gρσ + ∂(A)

ρ gνσ − ∂(A)
σ gνρ

)
, (172)
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which leads to a modified covariant derivative ∇(A)
µ . It acts on, e.g., the metric as

∇(A)
µ gνρ = ∂(A)

µ gνρ − Γ (A)σ
νµgσρ − Γ (A)σ

ρµgνσ = 0 . (173)

After replacing ∂µ → ∂
(A)
µ everywhere, the minimally coupled Lagrangian L(A) trans-

forms homogeneously under δT ,

δTL
(A) = ΛT δβL(A) . (174)

In order to make the action invariant under δT we note that

δT
√
−g = 1

2g
µνΛT δβgµν = ΛT∂µ(

√
−gβµ) , (175)

and
δT

(
1

βµAµ + 1

)
= δβ

(
ΛT

βµAµ + 1

)
. (176)

Thus, the modified action

S(A) =
∫

ddx
√
−g

βµAµ + 1L
(A) , (177)

is invariant under δT ,

δTS
(A) =

∫
ddx ∂ν

( √
−gβν

βµAµ + 1L
(A)
)

= 0 , (178)

on a manifold without a boundary.
We note in passing that one can characterize the transformation properties of fields or

sources, F , under δT by assigning them an additive “charge” n. A field F (n) with charge
n varies under δT as

δTF
(n) = ΛT δβF (n) − nF (n)δβΛT . (179)

Clearly F (n)F (m) will have charge n+m, and fields which transform homogeneously have
charge 0. Using this nomenclature, we construct the Lagrangian L(A) so it has charge 0.
Note that a field of charge −1 varies as a Lie derivative,

δTF
(−1) = ΛT δβF (−1) + F (−1)δβΛT = δβ(ΛTF (−1)) , (180)

and so its integral
∫
ddx
√
−g F (−1) is invariant. The object βµAµ + 1 has charge +1, so

that L(A)

βµAµ+1 is just such a charge −1 object.
We can now define a current Sµ which couples to Aµ via

δS(A) =
∫
ddx

√
−g

1 + βµAµ

(
Eφδφ+ 1

2T
µνδgµν − SµδAµ

)
. (181)

The invariance of S(A) under δT implies the off-shell relation

∇µSµ
∣∣∣
A=0

= 1
2T

µνδβgµν + Eφδβφ . (182)

Indeed, if βµ is a Killing vector then Sµ is the expected conserved current Sµ = Tµνβν .
The above construction may be adapted to the Schwinger-Keldysh effective action (136)

where δβ is the transformation generated by βi and the flavor transformation Λβ. To wit,
δβ acts on the dynamical fields via

δβX
µ = βi∂iX

µ , δβC = βi∂iC + Λβ , (183)
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so that (169) takes the form

δTX
µ = �T δβX

µ , δTC = �T δβC , (184)

where ΛT has been upgraded to a superfield �T . Minimally coupling to an external field
Ai,

∂i → ∂
(A)
i = ∂i + Aiδβ , (185)

so that, e.g.

∂iX
µ → ∂

(A)
i Xµ = (∂i + Aiδβ)Xµ , ∂iC→ ∂

(A)
i C = (∂i + Aiδβ)C , (186)

and defining Ai to vary under δT as

δTAi = �T δβAi − Aiδβ�T − ∂i�T , (187)

then derivatives of Xµ and C transform homogeneously under δT . Our analysis differs
from that in the toy model of a scalar field φ in that the target space sources gs µν(x) and
Bs µ(x) are inert under δβ and therefore also under δT . The transformation properties of,
say, gr ij(X) under δT are solely due to the dependence on Xµ.

The transformation rules (186) imply that the fields F in the Lagrangian (143) should
be replaced by their counterparts F(A) where

g(A)
ij = gkl

(
δki + βkAi

) (
δlj + βlAj

)
, (188)

and
B(A)
i = Bk

(
δki + βkAi

)
, (189)

which transform homogeneously under δT

δT g
(A)
ij = �T δβg

(A)
ij , δTB

(A)
i = �T δβB

(A)
i . (190)

The appropriately modified covariant derivatives ∇∇(A) = ∂(A) + �(A) also transform ho-
mogeneously, where the connection is

�(A) i
jk = 1

2g
(A) im

(
∂

(A)
j g(A)

mk + ∂
(A)
k g(A)

jm − ∂
(A)
m g(A)

jk

)
. (191)

Recall that the Lagrangian (143) contains not only worldvolume derivatives but also
superspace derivatives. In order for the superspace derivatives to transform homogeneously
under δT we must upgrade Ai to a super-connection in superspace. That is, we need to
introduce Aθ and Aθ̄ components such that

Dθ → Dθ + Aθδβ , Dθ̄ → Dθ̄ + Aθ̄δβ , (192)

in addition to the transformation rule

δTAθ = �T δβAθ − Aθδβ�T −Dθ�T , (193)

and an analogous transformation for Aθ̄.
Finally we need to consider a modified measure similar to the discussion around (177).

In our scalar field example we had to modify the measure so that the Lagrangian density
carried charge −1. A straightforward computation shows that in our sigma model, we do
not need to replace the measure at all:

√
−g→

√
−g(A)

βiAi + 1 =
√
−g . (194)
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We have almost completed our construction of a δT -invariant action. Recall, however,
that the Schwinger-Keldysh effective action is invariant under a Z2 KMS symmetry which
results in a KMS partner term (145). To ensure that the KMS partner Lagrangian is also
invariant under δT , we define the action of the Z2 symmetry K on the super-connection
as

K(Ai) = −ηiÃi , K(Aθ) = Ãθ̄ , K(Aθ̄) = −Ãθ , (195)

with
ÃI = AI + θ̄θ iδβAr I . (196)

With this sign choice, we have

K
(
g(A)
ij

)
= ηiηj g̃

(Ã)
ij , g̃(Ã)

ij = g̃kl(δki + Ãiβ
k)(δlj + Ãjβ

l) , (197)

and similarly for the flavor field. We also have

K
(
∇∇(A)
i

)
= ηi∇̃∇

(Ã)
i , K

(
D

(A)
θ

)
= −D̃(Ã)

θ̄
, K

(
D

(A)
θ̄

)
= D̃

(Ã)
θ , (198)

where ∇̃∇(Ã) = ∂ + Ãδβ + �̃(Ã) is the covariant derivative taken with the connection

�̃(Ã) i
jk = 1

2 g̃
(Ã) il

(
∂

(Ã)
j g̃(Ã)

kl + ∂
(Ã)
k g̃(Ã)

jl − ∂
(Ã)
l g̃(Ã)

jk

)
, (199)

and
D̃

(Ã)
θ = ∂

∂θ
+ Ãθδβ , D̃

(Ã)
θ̄

= ∂

∂θ̄
− iθδβ + Ãθ̄δβ . (200)

Defining
�̃T = �T + θ̄θiδβΛT r , (201)

it then follows from (187) and (193) that the components of ÃI vary under the transfor-
mation �T as

δT Ãi = �̃T δβÃi − Ãiδβ�̃T − ∂i�̃T ,
δT Ãθ = �̃T δβÃθ − Ãθδβ�̃T − D̃θ�̃T ,

δT Ãθ̄ = �̃T δβÃθ̄ − Ãθ̄δβ�̃T − D̃θ̄�̃T ,

(202)

and the tilde’d super-pullbacks transform homogeneously

δT g̃
(Ã)
ij = �̃T δβ g̃

(Ã)
ij , δT B̃

(Ã)
i = �̃T δβB̃

(Ã)
i . (203)

Recall that the action

Seff =
∫
ddσdθdθ̄

(√
−gL+

√
−g̃ L̃

)
(204)

was constructed so that it is invariant under all the symmetries of the problem. Having
defined the action of K on AI , we observe that the minimally coupled action

S
(A)
eff =

∫
ddσdθdθ̄

{√
−gL(A) +

√
−g̃ L̃(Ã)

}
(205)

is invariant under all the symmetries of the problem and under δT .
In analogy with (182), the supercurrent

SI = S′ I + θSIḡ + θ̄SIg + θ̄θSIt = − 1√
−g

δS
(A)
eff

δAI

∣∣∣∣∣
AI=0

, (206)
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satisfies the off-shell Ward identity

∇∇iSi +DθS
θ +Dθ̄S

θ̄ + �µ (DνTµν − GµνJ
ν) + �DµJ

µ = 0 . (207)

The terms proportional to �µ and � are the equations of motion for Xµ and C, where
Tµν = Tij∂iXµ∂jXν and Tij is the super-stress tensor conjugate to gij and so on. As a
result, on-shell, the current SI is conserved in superspace,

∇∇iSi +DθS
θ +Dθ̄S

θ̄
∣∣
on-shell = 0 . (208)

The bottom component of (208) is given by

∇iS′ i = −Sθḡ − S θ̄g . (209)

We now argue that S′ i is closely related to the hydrodynamic entropy current, upon
setting the a-fields and ghosts to vanish, and the right-hand side of (209) characterizes its
non-conservation.

Let us compute S at zeroth order in derivatives. The appropriate action for such an
analysis is given by (152) with (156). Coupling this action to A we find

S
(A)
eff =

∫
ddσdθdθ̄

√
−gP

(
T(A), �(A)

)
, (210)

where

T(A) = 1√
−g(A)

ij βiβj
= T
βiAi + 1 ,

�(A) = �(βiAi + 1) ,
(211)

and P is an even function of �(A). Varying with respect to Ai we obtain

Si =
(
∂P

∂T
T− ∂P

∂�
�
)
βi , Sθ = S θ̄ = 0 . (212)

Recalling that the entropy density s is related to the pressure and temperature via

s =
(
∂P

∂T

)
µ
, (213)

we find, using (160) and pushing forward S′ i to a vector S′µ in the physical space, that

S′µ = suµ +O(∂) . (214)

Thus, S′ i coincides with the entropy current at zeroth order in derivatives.
The entropy current Sµ has two defining properties: it must coincide with suµ at ze-

roth order in derivatives, and it must have non-negative divergence. We will now show
that Si may be constructed from S′ i by adding to the latter appropriate higher deriva-
tive corrections. To start, let us first deduce S θ̄g and Sθḡ . A straightforward but tedious
computation gives us

Sθḡ + S θ̄g = 1
2
(
LAB + ηABL̃

AB
)
δβFr AδβFr B

+ 1
2

∞∑
n=1

(−1)nηA...CnL̃ABC1...CnδβFr AδβFr BδβFr C1 . . . δβFr Cn −∇iJ iS , (215)
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where, with some abuse of notation, LAB, L̃AB and L̃ABC1...Cn refer to the bottom com-
ponents of the quantities defined in (143) and (145), and we have set all a-type fields and
ghosts to zero. The divergence of J iS which appears in the last line of (215) comes about
as follows. Recall that the LA...Cn ’s are differential operators. When varying the action
with respect to Aθ or Aθ̄ we may need to integrate by parts. The term ∇iJ iS accounts for
this procedure.

The expression in (215) may be simplified by a relabeling of the terms in the action.
By making the replacement

LAB →LAB − 1
2L

ABC1δβFC1 ,

LABC1...Cn →LABC1...Cn − LABC1...CnCn+1δβFCn+1 n ≥ 1 ,
(216)

in the Lagrangian (143) (and an appropriate replacement in (145)), expression (215) sim-
plifies to

Sθḡ + S θ̄g =1
2
(
LAB + ηABL̃

AB
)
δβFr AδβFr B

− 1
4
(
LABC + ηABCL̃

ABC
)
δβFr AδβFr BδβFr C −∇iJ iS .

(217)

Recall that Im(Seff ) must be non-negative due to unitarity for any field configuration.
As we will see shortly, positivity of the imaginary part of the effective action leads to a
positive entropy production. The imaginary part of the action is given by

Im(Seff ) =− 1
2

∫
ddσ
√
−gr

[ (
LAB + ηABL̃

AB
)
FaAFaB

− 1
2
(
LABC1FaB(2FaCδβFr A + FaAδβFr C)

+ ηABC1L̃
ABC1FaA(2FaCδβFr B + FaBδβFr C)big)

+
∑
n=2

(
(−1)b

n−1
2 cLA...CnFaB . . . FaCn−1αACn

+ (−1)nηA...CnL̃A...CnFaAFaCn
bn2 c∑
j=0
Π2j
B...Cn−1

)]
, (218)

where bmc is the floor of m and we have defined

αACn =
{
FaAFaCn − δβFr AδβFr Cn n even
FaAδβFr Cn + δβFaAFaCn n odd

, (219)

and Π2j
B C1,... Cn−1

gives the sum over all permutations of distinct 2j a-type fields and
distinct n− 2− 2j r-type fields on which δβ acts. For example,

Π0
BC1 = δβFr B (220)

or
Π2
BC1 C2 = FaBFaC1δβFr C2 + FaBFaC2δβFr C1 + FaC1FaC2δβFr B . (221)

The right-hand side of (218) must be non-negative for any field configuration. In the
absence of a non-perturbative expression for the action it is difficult, if not impossible, to
solve the positivity constraint Im(Seff ) ≥ 0 exactly. However, by working perturbatively
in derivatives we may obtain a necessary condition for positivity,

σAB ≡ − lim
∂→0

(
LAB + ηABL̃

AB
)
� 0 . (222)
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Following [2,25] we may use (222) to organize the right-hand side of (217) into a quadratic
form, up to total derivatives, order by order in the derivative expansion. Explicitly,

−Sθḡ − S θ̄g = σ

(
δβFr + 1

2σ
−1
(
Q(2) + . . .+Q(n−1)

))2
+∇J ′S , (223)

with Q(n) an n’th derivative vector and where we have omitted the Latin indices for
brevity.8 With these definitions we find that

Si = S′ i − J iS − J ′iS (224)

satisfies
Si = sui + O(∂) (225)

(since J iS and J ′ iS are at least second order in derivatives) and the on-shell relation

∇iSi
∣∣∣
on−shell

≥ 0 . (226)

We may now identify Si with the entropy current. In Sections 6 and 7 we will see that
up to second order in derivatives, the right-hand side of ∇iSi takes the standard form
1
T ζΘ

2 + 1
T ησ

µνσµν where ζ and η are the bulk and shear viscosities, Θ and σµν are the
divergence of the velocity field and shear tensor and T is the temperature.

Note that the relation (222) which implies the local Second Law, is a necessary but
not sufficient condition for the imaginary part of the effective action to be positive semi-
definite. Looking at the full expression for (218) we find that certain transport coefficients
associated with three-tensor terms (and some associated with two-tensor terms) may be
constrained by positivity of the imaginary part of the effective action but not by positivity
of the entropy current. We will discuss this observation in detail in the remainder of this
work.

6 A panoply of transport coefficients

In what follows we will carry out a detailed analysis of the possible constitutive relations
which can result from the Schwinger-Keldysh effective action and the constraints imposed
on them. In Subsection 6.1 we will discuss the Onsager relations and CPT transformation
properties of the constitutive relations and then in Subsection 6.2 we will classify the
possible resulting transport coefficients. But before proceeding with a detailed analysis
we pause to consider the general structure of the possible transport coefficients. In this
preamble we will focus on how the transport coefficients behave under CPT and whether
or not they are subject to a positivity condition. The main results are Eq. (237), where we
decompose the constitutive relations according to how the various terms transform under
KMS, and Eq. (244), where we compute Im(Seff ) in terms of the coefficients appearing
in the constitutive relations.

Let us denote both the U(1) current and the stress tensor by JAr which is associated
with the field FA such that (147) becomes

JAr = 1√
−gr

δSeff
δFaA

∣∣∣∣∣X=Xr
C=Cr
Fa=0

. (227)

8It is an interesting question whether the divergence of the current S′i is positive (up to a total deriva-
tive) even when the leading order terms in a derivative expansion vanish. We leave this issue open for
future exploration.
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Given the action (136) with (143) and (145) and the replacements (216), we may write

JAr = JAr (0) + JAr (2) + JAr (3) , (228)

where the first term represents the contributions to JAr coming from the scalar terms
L0 + L̃0 in the Lagrangian and the remaining terms represent contributions from 2 and
3-tensor terms. The remaining tensor terms do not contribute to the constitutive relations
on account of (216).

A formal computation gives us

JAr (0) = 1
2

1√
−gr

δ

δFr A

∫
ddσ
√
−gr

(
L0 + L̃0

)∣∣∣
a=ghosts=0

,

JAr (2) = 1
2
(
LBA + ηABL̃

AB
)
δβFr B , (229)

JAr (3) = −1
4
(
LBAC + ηABCL̃

ABC
)
δβFr BδβFC .

We remind the reader that the LAB... is a differential operator so that the right-hand side
of (229) should be thought of as a formal expression where the corresponding term in the
effective action has been integrated by parts.

To make our analysis more explicit let us write out the various tensor terms where the
differential operators are spelled out, viz.,

LABC (DθFA) (Dθ̄FB) (DFC)
= LABC`1...`ai1...ibj1...jc (∇∇`1 . . .∇∇`aDθFA) (∇∇i1 . . .∇∇ibDθ̄FB) (∇∇j1 . . .∇∇jcDFC) , (230)

where LABC is a differential operator but LA...jc is not, and there is a similar definition
for LAB. In Appendix D we show that, after some massaging, any tensor term in the
Lagrangian can be made to take a form similar to (230) up to possible boundary terms. In
what follows, in order to avoid cluttering our equations, we will use LABC{i}abc or LAB{i}ab
to denote the tensor term coefficients and ∇∇c in place of ∇∇i1 . . .∇∇ic . We will treat the
index c to the right of ∇∇ as counting the number of derivatives in the expression. We will
switch to more explicit notation when appropriate.

We now find that (229) takes the form

JAr (0) =1
2

δ

δFr A

∫
ddσ
√
−gr

(
L0 + L̃0

)∣∣∣
a=ghosts=0

,

JAr (2) =1
2∇

a†
[(
LBA{i}ba + ηAB{i}abL̃

AB{i}ab
)
∇bδβFr B

]
,

JAr (3) =− 1
4∇

a†
[ (
LBAC{i}bac + ηABC{i}abcL̃

ABC{i}abc
)

(∇bδβFr B)(∇cδβFr C)
]
,

(231)

where ηABC{i}abc is the CPT eigenvalue associated to
∇∇`1 . . .∇∇`aFA . . .∇∇j1 . . .∇∇jcFC , ∇b = ∇i1 . . .∇ib , ∇a† = (−1)a∇ia . . .∇i1 and L̃0 and
L̃A... are related to L0 and LA... by KMS conjugation

Fr A → ηAFr A , ∇i → ηi∇i , βi → −ηiβi , Λβ → −Λβ , ν → −ν , T → T , (232)

and so

L̃0(Fr A ,∇i ;βi ,Λβ) = L0(ηAFr A , ηi∇i ;−ηiβi ,−Λβ) ,
L̃A...(Fr A ,∇i ;βi ,Λβ) = LA...(ηAFr A , ηi∇i ;−ηiβi ,−Λβ) ,

(233)
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where fields are merely multiplied by their eigenvalues under CPT since we have set the
ghosts and a-fields to vanish. The expressions in (231) are schematic. Each represents a
class of contributions associated with an appropriate tensor term.

In what follows, we will find it useful to characterize the transformation properties of
the various transport coefficients under KMS conjugation. To this end, consider

L
AB{i}ab
± = LAB{i}ab ∓ ηAB{i}abL̃

AB{i}ab ,

L
ABC{i}abc
± = LABC{i}abc ± ηABC{i}abcL̃

ABC{i}abc .
(234)

Under KMS conjugation the term involving LA...± in the current transforms as

∇a†
(
L
A...C{i}a...c
± ∇bδβFr B∇cδβFr C

)
→ ±ηA∇a†

(
L
ABC{i}abc
± ∇bδβFr B∇cδβFr C

)
(235)

(and a similar equation for LAB{i}ab). In obtaining (235) we have used η2 = 1 and the
fact that K(δβ) = −δβ. We refer to the LA...+ terms in the currents as KMS-even, and the
LA...− as KMS-odd. The KMS-even terms transform in same way as the currents, while the
KMS-odd terms transform in the opposite way.

Let us pause to discuss two consequences of KMS conjugation and CPT invariance
which will become important in what follows. First, although the original effective ac-
tion is invariant under KMS, the thermal expectation value of the currents may receive
contributions which are both KMS-even and KMS-odd. The KMS-odd terms arise only
from the tensor terms in the effective action. Second, the tensor terms lead to transport
coefficients whose behavior under CPT is fully determined by the KMS symmetry. The
same holds for the transport coefficients coming from a scalar Lagrangian, as we discuss in
the next Subsection. Given a transport coefficient which multiplies some tensor structure
in the constitutive relations, the CPT-eigenvalue of the coefficient is just the product of
the KMS-parity of the whole term and the KMS-eigenvalue of the tensor structure. Be-
cause we have in mind theories where CPT is only broken by sources, CPT-even transport
coefficients are even functions of chemical potential, while CPT-odd coefficients are odd
functions of chemical potential.

Let us further define the quantities

L
[AB{i}ab]
+ =1

2
(
L
AB{i}ab
+ − LBA{i}ba+

)
,

L
(AB{i}ab)
− =1

2
(
L
AB{i}ab
− + L

BA{i}ba
−

)
,

N
[AB{i}ab]
− =1

2
(
L
ABC{i}abc
− − LBAC{i}bac−

)
∇cδβFr C ,

N
(AB{i}ab)
+ =1

2
(
L
ABC{i}abc
+ + L

BAC{i}bac
+

)
∇cδβFr C .

(236)

The first two lines of (236) correspond to the KMS-even and KMS-odd parts of the 2-tensor
terms, and the last two to the KMS-even and KMS-odd parts of the 3-tensor terms. In
terms of these quantities the constitutive relations for the tensor terms take the somewhat
simple form

JAtensor = 1
2∇

a†
[(
−L[AB{i}ab]

+ + L
(AB{i}ab)
− − 1

2N
(AB{i}ab)
+ + 1

2N
[AB{i}ab]
−

)
∇bδβFr B

]
.

(237)
Parity of the various transport coefficients under an exchange of indices or under KMS
serve as the basis for the Onsager relations, as we demonstrate in Section 6.1. Eq. (237)
is our first main result. We have organized the constitutive relations according to their
KMS-parity as well as their index structure.
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Let us make a comment on notation which we will use extensively throughout this
Section and the remainder of this work. We will find it convenient to decompose tensors
into components whose symmetry under an exchange of A and B or a and b is well defined.
For a general tensor TAB{i}ab we will define circular or square brackets on pairs of indices
to denote symmetrization or antisymmetrization, e.g.,

T [AB]{i}ab = 1
2
(
TAB{i}ab − TBA{i}ab

)
or TAB{i}(ab) = 1

2
(
TAB{i}ab + TAB{i}ba

)
,

(238)
while a square or circular bracket around all four indices implies symmetry under a simul-
taneous exchange of A with B and of a with b. Thus, for instance,

T [[AB]{i}(ab)] = 1
2
(
T [AB]{i}(ab) − T [BA]{i}(ba)

)
= T [AB]{i}(ab) . (239)

With this notation in mind we have, for example,

T [AB{i}ab] = T [[AB]{i}(ab)] + T [(AB){i}[ab]] = T [AB]{i}(ab) + T (AB){i}[ab] . (240)

Note that T [(AB){i}(ab)] = T [[AB]{i}[ab]] = 0.
With our explicit notation, entropy production is given by

∇iSi = −1
2

(
L

(AB{i}ab)
− − 1

2N
(AB{i}ab)
+

)
(∇aδβFr A)(∇bδβFr B) +∇iJ iS

∣∣∣
on−shell

, (241)

positivity of entropy production (226) is guaranteed by

−1
2

∫
ddσ
√
−grL(AB{i}ab)

− ∇aδβFr A∇bδβFr B

∣∣∣∣∣
on−shell

≥ 0 , (242)

and its positivity is guaranteed perturbatively by

− lim
∂→0

1
2L

(AB{i}ab)
− � 0 . (243)

See (222). Schwinger-Keldysh positivity imposes the more stringent constraint

Im(Seff ) =− 1
2

∫
ddσ
√
−gr

[
L

(AB{i}ab)
− ∇aFaA∇bFaB (244)

− 1
2∇

aFaA∇bFaBN (AB{i}ab)
+

−∇aFaB∇bδβFr A
(
N

[AB{i}ab]
− +N

(AB{i}ab)
+

) ∣∣∣
δβFr C→FaC

+
(higher tensor

terms
)
.

In comparing (244) with (242) we find that the on-shell value of L(AB{i}ab)
− andN (AB{i}ab)

+
is constrained by the positivity of entropy production and that their off-shell value is con-
strained by the Schwinger-Keldysh positivity condition. In classifying the various trans-
port we will find it useful to further separate L(AB{i}ab)

− and N (AB{i}ab)
+ into two disjoint

sets,

P
(AB{i}ab)
− =

{
L

(AB{i}ab)
−

∣∣∣L(AB{i}ab)
− ∇aδβFr A∇bδβFr B

∣∣∣
on−shell

= 0
}
, (245)

such that
L

(AB{i}ab)
− = M

(AB{i}ab)
− + P

(AB{i}ab)
− , (246)
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and

P
(AB{i}ab)
+ =

{
N

(AB{i}ab)
+

∣∣∣N (AB{i}ab)
+ ∇aδβFr A∇bδβFr B

∣∣∣
on−shell

= 0
}
, (247)

such that
N

(AB{i}ab)
+ = M

(AB{i}ab)
+ + P

(AB{i}ab)
+ . (248)

Eq. (244) is the second main result of this Section. Note that only the 2- and 3-tensor
terms contribute to the constitutive relations, but all of the tensor terms contribute to
Im(Seff ). It is now straightforward to classify the transport coefficients appearing in (237)
according to how they contribute to entropy production (242), or to Schwinger-Keldysh
positivity (244). We divide the tensor terms into four classes: we call theM (AB{i}ab)

± terms
dissipative (as they determine the entropy production), the P (AB{i}ab)

± pseudo-dissipative
(as they do not), the L[AB{i}ab]

+ terms non-dissipative since they do not contribute to
entropy production and they are unconstrained by the Schwinger-Keldysh positivity con-
dition, and N

[AB{i}ab]
− as exceptional (since they are constrained by (244) but do not

produce entropy).
In the remainder of this Section we will first expand on the interplay between CPT

and KMS transformation properties of the constitutive relations where we will also see
how the underlying KMS symmetry implies the Onsager reciprocity relations. We will
then turn our attention to the various classes of transport as described above and work
out some simple examples of each.

6.1 The Onsager reciprocity relations and CPT
In the context of hydrodynamics, the Onsager reciprocity relations [4, 5] imply certain
correlations between transport coefficients. These relations follow from transformation
properties of correlation functions under CPT and are independent of the constraints
generated by positing the existence of an entropy current.

The Schwinger-Keldysh effective action is not invariant under CPT. It is, however,
invariant under the Z2 KMS symmetry, which includes a CPT-flip. For this reason the
KMS symmetry implies that certain transport coefficients are even under CPT, and others
odd, but the map is not immediate. In the previous Subsection we saw that the CPT-
eigenvalue of transport coefficients is equal to the KMS parity of the term it appears
in, times the KMS-eigenvalue of the tensor structure it multiplies. CPT-even transport
coefficients are even functions of chemical potential, and CPT-odd coefficients are odd
functions of chemical potential. In this way the Onsager relations are enforced by the
structure of the Schwinger-Keldysh effective action. In the remainder of this Subsection
we illustrate this interplay between KMS and CPT in more detail.

We begin with the scalar terms. From the formal expression (229) for the currents, it is
manifest that the scalar part of the action is CPT-even. This generalizes an earlier result
that the action for ideal hydrodynamics is a pressure term

∫
ddσdθdθ̄

√
−gP with P an even

function of chemical potential. Beyond ideal hydrodynamics, transport coefficients which
multiply CPT-even scalars in the action are themselves even under CPT, while transport
coefficients which multiply CPT-odd scalars are themselves odd under CPT. Moreover,
the contribution of the scalar terms to the current, which we called JAr(0), transforms under
KMS (232) as

JAr(0)(∇, Fr) = ηAJ
A
r(0)(η∇, ηFr) , (249)

and so in the language we used in the last Subsection, the scalar contribution to the current
is KMS-even.

42

https://scipost.org
https://scipost.org/SciPostPhys.5.5.053


SciPost Phys. 5, 053 (2018)

Next consider the 2-tensor terms. Recall that their contribution to the constitutive
relations is given by (237), which we may write as

JAr (2) = JA(2) + + JA(2)− , (250)

with

JA(2) + = −1
2∇

a†
(
L

[AB{i}ab]
+ ∇bδβFr B

)
, JA(2)− = 1

2∇
a†
(
L

(AB{i}ab)
− ∇bδβFr B

)
, (251)

and LA...± were defined in (234) and (236). Using (235) we obtain

JA(2)±(∇, Fr) = ±ηAJA(2)±(η∇, ηFr) . (252)

So the 2-tensor terms in the current contain both KMS-even and KMS-odd transport.
From (242) and (244) we see that the former is dissipationless, while the latter includes
dissipative contributions.

Note that in the above example, L[AB{i}ab]
+ is odd under a joint exchange of A and a

with B and b respectively, while L(AB{i}ab)
− is even under such an exchange. This statement,

together with (252), encapsulates the Onsager relations. To see how the Onsager relations
emerge in a more familiar form, let us consider the example of the conductivities for a
parity-violating fluid in two spatial dimensions [9]. Consider a fluid with several U(1)
currents labeled by α. There are two conductivity matrices, the longitudinal conductivity
σαβ and the Hall conductivity σ̄αβ, which appear in the constitutive relations as

Jµα = . . .+ σαβV µ
β + σ̄αβεµνρuνVβ ρ , (253)

where

Pµν = gµν + uµuν , Vαµ = Eαµ − TPµν∂ννα = −TP νµ δβBαν , Eαµ = Gαµνu
ν .

(254)
They govern the retarded two-point functions of currents at low frequency ω and zero
wavenumber, e.g.

〈Jxα(ω)Jxβ(−ω)〉 = iωσαβ +O(ω2) , 〈Jxα(ω)Jyβ(−ω)〉 = iωσ̄αβ +O(ω2) . (255)

In this example, the symmetric part of σαβ and the antisymmetric part of σ̄αβ are dissi-
pative. The second Law implies that the symmetric part of σαβ is a non-negative matrix
and that the antisymmetric part of σ̄αβ vanishes. The Onsager relations imply that the
symmetric parts of σαβ and σ̄αβ are CPT-even, and the antisymmetric part of σαβ is
CPT-odd [37–39].

Let us see how these statements arise from the effective action. The tensor term in the
action which accounts for this transport is

L = . . .− i

2T
(
ΣβαPij + Σβα�kjiuk

)
DθBα iDθ̄Bβ j + . . . , (256)

with Pij = gij + uiuj with ui = Tβi the super-velocity, and �ijk the super-Levi-Civita
tensor in three dimensions. This Lagrangian leads to the currents (253) with

σαβ = 1
2
(
Σαβ + Σ̃βα

)
, σ̄αβ = 1

2

(
Σ
αβ + Σ̃

βα
)
. (257)

Clearly the symmetric parts of σαβ and σ̄αβ are CPT-even, while the antisymmetric parts
are CPT-odd. A quick computation shows that the symmetric part of σαβ corresponds to
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a KMS-odd term and its antisymmetric part to a KMS-even term. This is consistent with
our earlier result that the CPT-eigenvalue of a transport coefficient is the product of the
KMS parity of the term it appears in with the KMS-eigenvalue of the tensor structure it
multiplies, as σαβ multiples a KMS-odd tensor structure in (253). Similarly, the symmetric
part of σ̄αβ corresponds to a KMS-even term and the antisymmetric part to a KMS-odd
term. As for Schwinger-Keldysh positivity, it implies that the symmetric part of σαβ is
non-negative and that the antisymmetric part of σ̄αβ vanishes.

In this example the KMS-even transport is non-dissipative and the KMS-odd transport
is dissipative. This is not quite the case when one goes beyond first-order hydrodynamics.
While the KMS-even terms are always dissipationless, KMS-even transport coming from
higher tensor terms contributes to Im(Seff ) as we saw in (244). Furthermore, while all
KMS-odd transport contributes to Im(Seff ), not all of it is dissipative.

The 3-tensor terms can be similarly decomposed into KMS-even and KMS-odd parts.
We decompose them as

JAr (3) = JA+ (3) + JA− (3) , (258)

where

JA(3) + = −1
4∇

a†
(
N

(AB{i}ab)
+ ∇bδβFr B

)
, JA(3)− = 1

4∇
a†
(
N

[AB{i}ab]
− ∇bδβFr B

)
, (259)

and the N± were defined in (236). Using (235), we find

JA(3)±(∇, Fr) = ±ηAJA(3)±(η∇, ηFr) . (260)

Note that N (AB{i}ab)
+ is symmetric under an exchange of the AB and ab indices, is KMS-

even, and contributes to dissipation, while N [AB{i}ab]
− is antisymmetric under the same

exchange of indices, is KMS-odd, does not contribute to entropy production, but is nev-
ertheless constrained by Schwinger-Keldysh positivity.

6.2 Classification of hydrodynamic transport
A full classification of all possible transport coefficients according to their role in entropy
production was carried out in [26, 27] using an off-shell reformulation of the second Law.
The eight classes of transport described in [26, 27] include two types of scalars (hydro-
dynamic and hydrostatic), two types of transport coefficients which are associated with
anomalies (referred to as anomalous transport terms and hydrostatic flux vectors), Berry-
like transport, Hydrodynamic flux vectors, conserved entropy terms and dissipative terms.9
Of all the classes, only the dissipative terms lead to entropy production. In what follows
we will offer a complementary viewpoint on the classification of [26, 27] and show how
different classes of transport arise naturally from the structure of the Schwinger-Keldysh
effective action. Our classification separates the various transport coefficients into scalar
terms, non-dissipative terms, dissipative terms, pseudo-dissipative terms and exceptional
terms.

6.2.1 Scalar terms

Observe that all transport coefficients which arise from the scalar Lagrangian L0 do not
contribute to entropy production (242), nor to the imaginary part of Seff . These terms

9The authors of [26, 27] also included a class of hydrostatically forbidden terms in their classification.
This class is comprised of expressions which will not appear in the constitutive relations. The absence
of such terms is naturally incorporated in the effective action formulation since the Schwinger-Keldysh
partition function reduces to the hydrostatic partition function [6, 7] in the appropriate limit.
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are referred to as scalar terms in the classification of [26,27]. The authors of [26,27] further
separate these into two classes which they refer to as HS and H̄S , differing in whether
they contribute when the system is in hydrostatic equilibrium. Hydrostatic equilibrium is
characterized by the existence of a timelike Killing vector [6, 7]. In the current context,
the hydrostatic limit is obtained by identifying the timelike Killing vector with βi, taking
the a-fields to vanish, and taking the r-sources to be time-independent. Thus, terms in
L0 which do not vanish when δβ = 0 are HS and terms which do vanish are H̄S .

The simplest scalar term is the action for an ideal fluid given in Section 4, which we
briefly reproduce here for convenience. The most general scalar Lagrangian at zeroth order
in derivatives is

1
2
(
L0 + L̃0

)
= G(T, ν) +G(T,−ν) = P (T, ν) . (261)

The constitutive relations resulting from this Lagrangian are the ideal stress-energy tensor
and U(1) current

T ijr =P
(
gijr + uiuj

)
+
((

∂P

∂T

)
µ
T +

(
∂P

∂µ

)
T

µ− P
)
uiuj ,

J ir =
(
∂P

∂µ

)
T

ui ,

(262)

where, as usual, we have defined the rescaled velocity ui = Tβi. The entropy current is
given by

Si =
(
∂P

∂T

)
µ
ui (263)

and satisfies
∇iSi = 0 (264)

on-shell.

6.2.2 Non-dissipative tensor terms

Recall from (244) that Im(Seff ) is determined by the KMS-odd part of the 2-tensor terms,
as well as both the KMS-even and KMS-odd parts of the 3-tensor and higher-tensor terms.
Moreover, the entropy production (242) arises from KMS-odd 2-tensor transport and from
KMS-even 3-tensor terms. Thus the KMS-even part of 2-tensor terms,

JAr (2) = −1
2∇

a†
(
L

[AB{i}ab]
+ ∇bδβFr B

)
, L

[AB{i}ab]
+ = 1

2
(
L
AB{i}ab
+ − LBA{i}ba+

)
, (265)

is the unique part of the tensor terms which is not subject to the Schwinger-Keldysh
positivity constraint Im(Seff ) ≥ 0. We refer to these terms as non-dissipative tensor
terms.

Using (240), we may write

L
[AB{i}ab]
+ = L

[AB]{i}(ab)
+ + L

(AB){i}[ab]
+ . (266)

In the language of [26, 27], Berry-type terms are closest to L[AB]{i}(ab)
+ and H̄V -terms are

closest to L(AB){i}[ab]
+ terms. Note that both of these terms are non-dissipative and KMS-

even, similar to the scalar terms described in the previous Subsection. We will refer to
terms of the form L

[AB]{i}(ab)
+ as non-dissipative antisymmetric and to terms of the form

L
(AB){i}[ab]
+ as non-dissipative symmetric.
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The most general constitutive relations for the L[AB]{i}(ab)
+ type terms take the form

JAr (2) = −1
4∇

a†
(
L

[AB]{i}ab
+ ∇bδβFr B

)
− 1

4∇
a†
(
L

[AB]{i}ba
+ ∇bδβFr B

)
. (267)

These relations can be simplified for special configurations. In the case where a = b = 0,
i.e., there are no derivatives acting on either DθFA or on Dθ̄FB in the action, we find

JAr (2) = −1
2L

[AB]
+ δβFr B . (268)

If a+ b = 1 we obtain
JAr (2) = 1

4(∇iL[AB]i
+ )δβFr B . (269)

Other values of a and b do not seem to take a particularly simple form.
The constitutive relations for the L(AB){i}[ab]

+ type terms take a form similar to (267)

JAr (2) = −1
4∇

a†
(
L

(AB){i}ab
+ ∇bδβFr B

)
+ 1

4∇
a†
(
L

(AB){i}ba
+ ∇bδβFr B

)
. (270)

This expression vanishes when a = b = 0 and takes the form

JAr (2) = 1
4(∇iL(AB)i

+ )δβFr B + 1
2L

(AB)i
+ ∇iδβFr B (271)

for a + b = 1. Otherwise, we have not been able to bring (270) to a particularly simple
form.

We presented two examples of antisymmetric non-dissipative transport in Subsec-
tion 6.1 in the form of the antisymmetric part of the ordinary conductivity σαβ as well
as the matrix of Hall conductivities. We briefly reprise the Hall conductivity term for a
single U(1) current. This transport arises from the Lagrangian

L = . . .− i

2Σ(T, �) �kjiukDθBiDθ̄Bj , (272)

leading to
L

[ij]
+ = −2σ̄+εijkuk , σ̄+ = 1

2
(
Σ(T, ν) + Σ(T,−ν)

)
, (273)

which yields
J ir(2) = σ̄+εijkujVk , (274)

where Vk was defined in (254). The entropy current is modified as

Si = . . .− µ

T
J ir(2) , (275)

but its divergence is unmodified.
An example of symmetric non-dissipative transport is

L = . . .
i

2χ(T, �)Pijuk (∇∇kDθBiDθ̄Bj −DθBi∇∇kDθ̄Bj) . . . , (276)

where Pij = gij + uiuj , which yields

L
(ij)k
+ = 2χ+P ijuk , (277)

with χ+(T, ν) = 1
2 (χ(T, ν) + χ(T,−ν)). The corresponding current is

J ir(2) =− 1
2T∇k(χ

+P ijuk) (Ej − T∂jν)− χ+P ijuk∇k
(
Ej
T
− ∂jν

)
, (278)

and the entropy current is modified to be

Si = . . .− µ

T
J ir(2) + 1

2χ
+ui

(
Ej
T
− ∂jν

)2
. (279)

One may check that χ+ does not contribute to entropy production.
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6.2.3 Dissipative terms

Recall that the divergence of the entropy current (242) is given by

∇iSi = −1
2

(
M

(AB{i}ab)
− − 1

2M
(AB{i}ab)
+

)
(∇aδβFrA)(∇bδβFrB)

∣∣∣
on−shell

≥ 0 , (280)

where we have used the decompositions (246), (248) and the definitions (236). Using
(240), we may write

M
(AB{i}ab)
± = M

(AB){i}(ab)
± +M

[AB]{i}[ab]
± . (281)

We will refer to M (AB){i}(ab)
± and M [AB]{i}[ab]

± as dissipative symmetric or dissipative an-
tisymmetric respectively. The former corresponds to the dissipative transport defined
in [26, 27]. Notice also that at first order in derivatives, only KMS-odd dissipative trans-
port M (AB{i}ab)

− is allowed. KMS-even dissipative contributions appear at second order in
derivatives and onwards.

The constitutive relations for M (AB){i}(ab)
− and M [AB]{i}[ab]

− are similar in structure to
those of KMS-even terms, viz.,

JAr (2) = 1
4∇

a†
(
M

(AB){i}ab
− ∇bδβFr B

)
+ 1

4∇
a†
(
M

(AB){i}ba
− ∇bδβFr B

)
, (282)

and
JAr (2) = 1

4∇
a†
(
M

[AB]{i}ab
− ∇bδβFr B

)
− 1

4∇
a†
(
M

[AB]{i}ba
− ∇bδβFr B

)
. (283)

If a = b = 0 the former simplifies to

JAr (2) = 1
2M

(AB)
− δβFr B , (284)

and if a+ b = 1 we obtain

JAr (2) = −1
4(∇iM (AB)i

− )δβFr B , (285)

or
JAr (2) = −1

4(∇iM [AB]i
− )δβFr B −

1
2M

[AB]i
− ∇iδβFr B . (286)

Similar expressions arise for M (AB){i}(ab)
+ and M [AB]{i}[ab]

+ . For example, for a = b = 0, we
have

JAr (3) = −1
4M

(AB{i}ab)
+ δβFr B . (287)

In Subsection 6.1 we gave an example of symmetric dissipative transport, namely the
ordinary conductivity of a charged fluid. We reprise it here. The Lagrangian is

L = . . .− i

2Σ(T, �)TPijDθBiDθ̄Bj , (288)

which leads to

M
(ij)
− = −2σ+TP ij , σ+ = 1

2 (Σ(T, ν) + Σ(T,−ν)) , (289)

and
J ir(2) = σ+V i , (290)
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where V i was defined in (254). The entropy current becomes

Si = . . .− µ

T
J ir(2) , (291)

and its on-shell production is

∇iSi = . . .+ σ+

T
V 2 . (292)

Schwinger-Keldysh positivity and positivity of entropy production both imply σ+ ≥ 0.
We also give an example of antisymmetric dissipative transport, which appears at

second order and higher in the gradient expansion. Consider a parity-violating theory
with a single U(1) current in two spatial dimensions, and a Lagrangian which, apart from
the ideal pressure term includes the 2-tensor term

L = . . .+ i

2ξ(T, �)�ijkukul (∇∇lDθB iDθ̄Bj −DθBi∇∇lDθ̄Bj) , (293)

where ui = Tβi is the velocity. This gives

M
[ij]l
− = 2ξ+ εijkuku

l , (294)

with ξ+(T, ν) = 1
2 (ξ(T, ν) + ξ(T,−ν)), and the corresponding constitutive relations

J ir(2) = 1
2T∇l

(
ξ+εijkuku

l
)

(Ej − T∂jν) + ξ+εijkuku
l∇l

(
Ej
T
− ∂jν

)
. (295)

The entropy current is

Si = sui − ν
( 1

2T∇l
(
ξ+ εijkuku

l
)

(Ej − T∂jν) + ξ+ εijkuku
l∇l

(
Ej
T
− ∂jν

))
, (296)

and its divergence is

∇iSi = −1
2ξ

+ εijkuku
l (∇lδβBr i δβBr j − δβBr i∇lδβBr j) (297)

on-shell. If there were no other contributions to the Lagrangian, i.e. assuming that the or-
dinary conductivity vanishes, positivity of entropy production implies that ξ+ must vanish.
If the conductivity is nonzero, the modified right-hand side of (297) may be perturbatively
organized in a quadratic form. Within the gradient expansion, the positivity of entropy
production is ensured by the positivity of the ordinary conductivity, with no constraint
on ξ+. See e.g. [23, 25,29].

6.2.4 Pseudo-dissipative and exceptional terms

The remaining transport coefficients in our classification are P (AB{i}ab)
± , and the KMS-

odd 3-tensor terms N [AB{i}ab]
− . Both types of transport do not contribute to entropy

production. We call the former pseudo-dissipative, since its index structure is identical to
dissipative transport, and the latter exceptional.

As an example of exceptional transport consider a Lagrangian which has the contri-
bution

L = . . .− i

4γ(T, �)
(
Pm(iPj)nPkl − PijPk(mPn)l

)
δβgmnDθgijDθ̄gkl

− 1
2γ(T, �)

(
Pm(iPj)nPkl − PijPk(mPn)l

)
DθgijDθ̄gklDgmn + . . . .

(298)
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A simple computation yields

N
[(ij)(kl)]
− = 2γ−

(
Pm(iP j)nP kl − P ijP k(mPn)l

)
δβgrmn , (299)

so that the constitutive relations are

T ijr = . . .− γ−

T 2 (P ijσ2 − 2Θσij) , (300)

where σij and Θ are the shear and expansion,

σij = P imP jn
(
∇mun +∇num −

2
(d− 1)Θgmn

)
, Θ = ∇iui , (301)

and σ2 = σijσ
ij .

A straightforward computation shows that γ− contributes neither to the entropy cur-
rent nor to entropy production. Thus the second Law does not constrain it. However,
Schwinger-Keldysh positivity (244) does. If the fluid Lagrangian was given by a pressure
term, the highlighted terms in (298), and nothing else (i.e. if the viscosities vanish), then
Schwinger-Keldysh positivity would become the statement

Im(Seff ) = +1
2

∫
ddσ
√
−gr ga ijδβgr klN

[(ij)(kl)]
−

∣∣∣∣
δβgrmn→gamn

≥ 0 , (302)

or more explicitly

−
∫
ddσ
√
−gr

γ−

T

(
P ijσmn + 2Θ

( 1
(d− 1)P

ijPmn − Pm(iP j)n
))

ga ijgamn ≥ 0 . (303)

Since the quantity in (303) does not have a definite sign, the only way the inequality (303)
can be satisfied is to set γ− = 0.

Our example serves as a demonstration that the Schwinger-Keldysh positivity con-
dition can enforce constraints on transport which the entropy current is indifferent to.
Since we have set the shear and bulk viscosities in this example to zero (or, at least, to
be perturbatively small) it probes the very edges of allowed parameter space. Recall that
within the gradient expansion, once the divergence of the entropy current is arranged into
a complete square, then its positivity is ensured by the positivity of the aforementioned
viscosities. If we restrict ourselves to configurations which satisfy the equations of motion
and have small gradients, then the latter condition is necessary and sufficient to ensure
that the entropy production will be non negative. In contrast, the Schwinger-Keldysh pos-
itivity condition must hold for any field configuration, so while a solution which is valid
in a perturbative gradient expansion is a necessary condition for positivity, it is not a
sufficient one. Regardless of this distinction, it seems that unless the derivative expansion
truncates it is impractical to attempt to solve the Schwinger-Keldysh positivity condition
in its entirety.

As an example of pseudo-dissipative transport let us consider a Lagrangian which
includes the pressure term and the 2-tensor term

L = . . .+ i

2ζ(T, �)
(
ui�jklul + uj�iklul

)
δβBkDθBiDθ̄Bj + . . . , (304)

which leads to a KMS-odd contribution to the constitutive relations

P
(ij)
− = 2ζ−

(
uiεjklul + ujεiklul

)
δβBr k , ζ− = 1

2(ζ(T, ν)− ζ(T,−ν)) . (305)
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This contribution is pseudo-dissipative, on account of

P ij− δβBr iδβBr j = 0 , (306)

and so ζ− does not contribute to entropy production. The resulting flavor current is

J ir(2) = 1
2P

(ij)
− δβBr j = ζ−(ul∂lν)εijkujVk , (307)

where Vi was defined in (254). While ζ− does not contribute to entropy production, it
is constrained by Schwinger-Keldysh positivity, which in the absence of any other tensor
terms in the Lagrangian reads

Im(Seff ) = −
∫
ddσ ζ−

(
uiεjklul + ujεiklul

)
δβBr kBa iBa j ≥ 0 . (308)

As in our example of exceptional transport, the integrand does not have a definite sign
and the only way to satisfy the inequality (308) is to set ζ− = 0.

6.2.5 Additional conserved currents

By definition, we may always add to the entropy current trivially conserved currents J iC
which appear at least at first order in derivatives. The modified entropy current will still
have non-negative divergence and will be proportional to the entropy density at zeroth
order in derivatives. In the effective action these contributions to the entropy current may
be generated in the following way.

Consider a trivially conserved super-current JiC whose bottom component is J iC . An
example of such a current in 2 + 1-dimensions is JiC = �ijkGjk. More generally such a
current will always locally take the form JiC = �ii1...id−1∂i1Vi2...id−1 . Consider the redefined
action ∫

ddσdθdθ̄
√
−gL(A) →

∫
ddσdθdθ̄

√
−g
(
L(A) − 1

2AiJ
i
C +O(A2)

)
. (309)

The redefined action is invariant under δT when setting Ai to vanish due to the conservation
of JiC . If AiJiC is KMS-odd, meaning K(AiJiC) = −ÃiJ̃IC (as is �ijkAiGjk), then this
redefinition disappears after adding the KMS partner term. If, however, it is KMS-even,
then the KMS partner term contributes in the same way as the original and the full
effective action is redefined as

Seff → Seff −
∫
ddσdθdθ̄

√
−g AiJiC +O(A2) . (310)

This redefinition does not affect the constitutive relations of the currents since the latter
are evaluated at Ai = 0. On the other hand the bottom component of the entropy current
is redefined as

Si → Si + J iC , (311)

which is the modification we were after.
If the current JiC can be written as JiC = �ii1...id−1∂i1Vi2...id−1 globally, then this mod-

ification to the entropy current is trivial. The total entropy is unmodified. If however
V can only be written this way locally, as for JiC = �ijkGjk when space is compact and
there is a net flux through it, then the total entropy is modified by this term. This lat-
ter, globally non-trivial, redefinition of the entropy current is class C transport in the
nomenclature of [26, 27]. The physical interpretation given there is that this transport
quantifies topological shifts to ground state degeneracy, as one finds in fractional quantum
Hall states.
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6.2.6 Anomaly-induced transport

The two remaining classes of transport in the “eight-fold way” of [26, 27] are related to
’t Hooft anomalies. In their nomenclature, class A transport refers to those transport
coefficients which are directly governed by ’t Hooft anomalies for continuous symmetries,
in that the Second Law fully determines class A transport in terms of anomaly coefficients.
ClassHV transport, like the T 2 contribution to the chiral vortical effect in four dimensions,
is described by those transport coefficients which are not tied to anomalies by the Second
Law, but which are nevertheless governed by anomalies for many systems [28,40–43].

A proper discussion of anomalies and anomaly-induced transport would take us some-
what far afield. However, building upon the results of [36,44], it is straightforward using the
inflow mechanism to construct effective actions for anomaly-induced transport. We write
down the effective action for class A transport in Appendix F for any ’t Hooft anomaly,
and using [45], those results can be easily generalized to account for HV transport as well.

7 More examples

In Section 4 we worked out the effective action and constitutive relations for an ideal fluid.
In this Section we consider two more examples. The first is the first-order hydrodynam-
ics of a parity-violating fluid in 2+1-dimensions [9], and the second is the second-order
hydrodynamics of a neutral, parity-preserving fluid in any dimension [29].

To proceed, we must construct the most general possible expressions for L0, LAB,
and LABC which is compatible with the symmetries of the problem (e.g., coordinate/U(1)
invariance, and possibly parity). While there are few such terms when working at a
low order in the derivative expansion, the number of possible expressions grows with
the number of derivatives, turning the classification of allowed terms in the Lagrangian
into a formidable task. Luckily, there are a few simplifying considerations which we
can use in order to minimize the number of independent terms in the Lagrangian. These
considerations are not new and should be familiar to practitioners of hydrodynamics. They
include using the equations of motion at lower order in the gradient expansion to simplify
the higher order constitutive relations, and utilizing frame transformations in order to
remove ambiguities associated with out of equilibrium definitions of thermodynamic fields.
Let us spell these out in some detail.

In the context of hydrodynamics we can use the equations of motion at lower order
in the derivative expansion to show that some tensor structures are equivalent on-shell.
Consider the hydrodynamic equations of motion,

∇νTµν = GµνJ
ν , ∇µJµ = 0 , (312)

with Gµν the field strength associated with the flavor field conjugate to the U(1) current
Jµ. At leading order in derivatives the constitutive relations for the stress tensor and
current are those of ideal hydrodynamics, given in (162). Inserting these into the equations
of motion, we find, e.g.,

0 = ∇µJµ = uµ∂µρ+ ρ∇µuµ +O(∂2) , (313)

and similar equations when considering the constitutive relations for the stress tensor.
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With some slight manipulations they can be put into the form(
∂ε

∂T

)
ν

(uµ∂µT ) +
(
∂ε

∂ν

)
T

(uµ∂µν)− (ε+ P )∇µuµ = O(∂2) ,(
∂ρ

∂T

)
ν

(uµ∂µT ) +
(
∂ρ

∂ν

)
T

(uµ∂µν) + ρ∇µuµ = O(∂2) ,

aµ + Pµν∂νT

T
− ρ

ε+ P
V µ = O(∂2) ,

(314)

where Vµ was defined in (254) (Vµ = Eµ−TP νµ∂νν with Eµ = Gµνu
ν), and aµ = uν∇νuµ.

These relations imply that, on-shell, only one of the three a priori independent one-
derivative scalars (uµ∂µT, uν∂νν,∇ρuρ) are independent of each other, and correspond-
ingly that the vector Taµ + Pµν∂νT may be eliminated in favor of V µ.

Next, we can use field redefinitions to remove some terms from the constitutive rela-
tions. Recall that the constitutive relations are inherently ambiguous. Within the deriva-
tive expansion one may use a field redefinition of the hydrodynamic variables, e.g.,

T → T +O(∂) , (315)

which leaves the leading order constitutive relations invariant, but modifies them at first
and higher order in the derivative expansion. Like all field redefinitions, this change
modifies the equations of motion but not physical observables such as correlation functions
of the stress tensor or current. The field redefinition ambiguity is well-known in the context
of hydrodynamics and is often referred to as a choice of frame [1]. Perhaps the most
commonly used frame is the Landau frame, where the hydrodynamic variables are fixed
by the conditions

uνTµν = −ε uµ , uµJµ = −ρ , (316)

where ε is the thermodynamic energy density satisfying ε = −P + T
(
∂ρ
∂T

)
µ

+ µ
(
∂P
∂µ

)
T

with P the pressure and the charge density is ρ =
(
∂P
∂µ

)
T
. (See (163).)

More operatively, we can begin with the most general frame and decompose the stress
tensor and current into components parallel to, and transverse to the velocity,

Jµ = Nuµ + νµ ,

Tµν = Euµuν + PPµν + uµqν + uνqµ + τµν ,
(317)

where N = ρ+O(∂), E = ε+O(∂),P = P +O(∂), uµqµ = uµνµ = Pµντµν = 0, uµτµν = 0,
and (νµ, qν , τρσ) are all at least first order in derivatives. Redefining the hydrodynamic
variables as

µ→ µ+ δµ , T → T + δT , uµ → uµ + δuµ , (318)

with (
∂νρ ∂Tρ
∂νε ∂T ε

)(
δµ
δT

)
= −

(
N − ρ
E − ε

)
, (319)

and
δuµ = −qµ (320)

will bring us into the Landau frame (i.e. set the quantities N − ρ, E − ε, and qµ to vanish
at first order in derivatives),

uνTµν = −ε uµ +O(∂2) , uµJµ = −ρ+O(∂2) . (321)
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Once the constitutive relations have been brought to Landau frame at first order in deriva-
tives, reiterating this procedure allows one to enforce the Landau frame condition (316)
to all orders in gradients.

In our Schwinger-Keldysh effective theory we may also use the leading order equations
of motion to eliminate unphysical terms from the action and super-constitutive relations.
Recall that deforming the action by a term proportional to the equations of motion does
not affect any observable. The super-equations of motion are

∇∇jTij = GijJ
j , ∇∇iJi = 0 . (322)

In Section 4 we found the super-stress tensor and super-current at leading order in deriva-
tives

Tij = εuiuj + PPij +O(∂) , Ji = ρui +O(∂) . (323)

The equations of motion at leading order in derivatives are then supersymmetrized versions
of the ordinary equations of ideal hydrodynamics (314),(

∂ε

∂T

)
�

(ui∂iT) +
(
∂ε

∂�

)
T

(ui∂i�)− (ε+ P )∇∇iui = O(∂2) ,(
∂ρ

∂T

)
�

(ui∂iT) +
(
∂ρ

∂ν

)
T

(ui∂i�)− ρ∇∇iui = O(∂2) ,

ai + Pij∂jT
T

− ρ

ε+ P
Vi = O(∂2) ,

(324)

with
ai = uj∇∇jui , Vi = Giju

j − TPi
j∂j� , (325)

and we remind the reader that ε, P and ρ are functions of T and �. Within the action we
may then eliminate the a priori independent scalars ui∂iT and ui∂i� in favor of ∇∇iui and
so on.

One might also be tempted to use superfield redefinitions to eliminate couplings from
the effective action. Redefining

Xµ → Xµ + δXµ , C→ C + δC , (326)

where δXµ and δC are at least zeroth order in derivatives, we find that the change in the
action is of the form

Seff → Seff −
∫
ddσdθdθ̄

√
−g
{

(∇∇νTµν − GµνJ
ν) δXµ + (∇∇iJi)δC

}
, (327)

where Tµν = Tij∂iXµ∂jXν , ∇∇µ = (∂iXµ)−1∇∇i, and so on. However, as we will see shortly,
it seems that these redefinitions are not useful—shifting the action by a term proportional
to the equation of motion and then using the equation of motions to eliminate redundant
tensor data will bring us back to our starting point.

Let us attempt to put these tools to work. Consider for definiteness the most general
scalar Lagrangian for a parity-preserving fluid at first order in derivatives,

L0 = G+ p1(ui∂iT) + p2(ui∂i�) + p3∇∇iui +O(∂2) , (328)

where the pi are functions of T and �. The leading order equations of motion (324) may
be used to eliminate the two scalars ui∂i� and ∇∇iui in favor of ui∂iT. The most general
scalar Lagrangian becomes

L0 = G+ p1(ui∂iT) +O(∂2) , (329)
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and the scalar part of the effective action becomes

Seff =
∫
ddσdθdθ̄

√
−g
(
P + p−1 (ui∂iT) + (tensor terms) +O(∂2)

)
, (330)

with p−1 = 1
2(p1(T, �)− p1(T,−�)). Consider the field redefinition

Xµ → Xµ + αuµ , (331)

where α is a function of T and �. According to (327), the action (330) is modified as

Seff → Seff +
∫
ddσdθdθ̄

√
−g
(
ui∂iε+ (ε+ P )∇∇iui

)
α+O(∂2) . (332)

Using (324) to replace the scalars ui∂i� and ∇∇iui in favor of ui∂iT the new term in (332)
simply vanishes and the action is left invariant. While we cannot remove the one-derivative
term p−1 from the action, it can be removed from the super-constitutive relations by a
suitable redefinition of T, ui, and �, which one might call a super-frame transformation.
We leave such a study for future work.

In the examples to follow, we use the ideal equations of motion (324) to remove various
couplings from the effective action. We then compute the constitutive relations, and use
a frame transformation to put the stress tensor and flavor current into Landau frame.

7.1 Parity-violating first-order hydrodynamics in 2+1 dimensions
Let us consider a 2 + 1 dimensional, parity violating, charged fluid to first order in deriva-
tives. The most general Lagrangian for such a fluid is given by

L = 1
2L0(g,B;∇∇) + i

2L
ij(g,B;∇∇)DθBiDθ̄Bj + i

2L
ijkl(g,B;∇∇)DθgijDθ̄gkl

+ i

2L
ijk(g,B;∇∇)DθBiDθ̄gjk + i

2 L̄
ijk(g,B;∇∇)DθgijDθ̄Bk ,

(333)

and we have suppressed the dependence on T and �. We consider the most general L0 to
first order in derivatives and the two-tensor terms at zeroth order in derivatives. In Table
1 we have listed all possible tensor and scalar structures which may contribute to these
terms, where �ijk is the super-Levi-Civita tensor,

�012 = 1√
−g

, (334)

and we have defined the super-projector

Pij = gij + uiuj , (335)

where ui = Tβi is the normalized super-velocity and T = 1√
−gijβiβj

is the super-temperature.

We raise and lower indices using gij and its inverse. For example, �i = gijβj .
Let us start with the scalar action. The most general action we may write down is

composed of a leading term which we have seen in Section 4 contributes to the pressure
and five additional terms coming from the five scalar quantities appearing in table 1. Of
these, one can be removed via integration by parts, and another by using the equations of
motion, so we end up with

1
2
(
L0 + L̃0

)
= P + p−βi∂iT +M+

Ω �
ijk�i∂j�k +M−B �

ijk�i∂jBk (336)
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Table 1: Possible contributions to the tensor structures specified by (333). In
writing down the entries we have omitted possible permutations of indices. The
super Levi-Civita tensor �ijk is defined in (334) and the super projection Pij is
defined in (335). Terms which do not involve the Levi-Civita term are present
in an expansion action to first order in derivatives in any spacetime dimension.
Those terms involving �ijk are specific to 2 + 1 dimensional fluids.

L0 Lij Lijk Lijkl

∇∇iβi Pij βiβjβk βiβjβkβl

βi∂iT βiβj Pijβk Pijβkβl

βi∂i� �ijm�m �ijmPmk PijPkl

�ijk�i∇∇j�k �ijm�mβk �ikm�mPjl

�mjkβm∇∇jBk εikm�mβjβl

up to a total derivative. The KMS partner terms imply that P andM+
Ω are even functions

of � while M−B and p− are odd functions of �.
Carrying out the variation with respect to Ba i and ga ij we find that

Jkr (0) =∂P

∂ν
βk +

(
∂p−

∂ν
β · ∂T + ∂M+

Ω

∂ν
εijmβi∂jβm + ∂M−B

∂ν
εijmβi∂jBm

)
βk

−
(
∂M−B
∂ν

∂jν + ∂M−B
∂T

∂jT

)
εijkβi −M−B ε

ijk∂jβi ,

T ijr (0) =gijP + ∂P

∂T
T 3βiβj + gijp−β · ∂T −

(
p−∂ · β + ∂p−

∂ν
β · ∂ν

)
T 3βiβj

+M+
Ω ε

nk(iβj)∂nβk +M+
Ω ε

mn(iβm∂nβ
j) +M−B ε

nk(iβj)∂nBk ,

(337)

where indices are lowered and raised with gr ij and its inverse.
To understand the structure of the tensor terms it is convenient to recast (333) in the

form
L = 1

2L0(g,B;∇∇) + i

2Dθ

(
B
g

)
LABDθ̄

(
B
g

)
, (338)

with
LAB =

(
Li` Limn

L̄jk` Ljkmn

)
. (339)

The constitutive relations for the tensor terms can be read off of (237) and are given by(
J i(2)
1
2T

jk
(2)

)
= 1

2 (L− − L+)
(

∂`ν −G`pβp
∇mβn +∇nβm

)
, (340)

where we have defined the matrices

L− =
(
L

(i`)
− Limn−

LT jk`− L
((jk)(mn))
−

)
, L+ =

(
L

[i`]
+ Limn+

−LT jk`+ L
[(jk)(mn)]
+

)
, (341)
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with

Li`± = Li` ∓ ηiη`L̃i` ,

Limn± = 1
2
(
Limn ∓ ηiηmηnL̃imn

)
∓ 1

2
(
L̄mni ∓ ηiηmηn ˜̄Lmni) ,

LT jk`± = L`jk± ,

L
(ij)(mn)
± = L(ij)(mn) ∓ ηiηjηmηnL̃(ij)(mn) .

(342)

To compute these expressions explicitly, let us denote

Lij =− s1P
ij − s2β

iβj − s3�
ijk�k ,

Lijk =− q1P
i(jβk) − q2β

iPjk − q3β
iβjβk − q4�n�

ni(jβk) ,

L̄jki =− q̄1P
i(jβk) − q̄2β

iPjk − q̄3β
iβjβk − q̄4�n�

ni(jβk) ,

L(ij)(kl) =− r1β
iβjβkβl − r2

(
Pijβkβl + Pklβiβj

)
− r3

(
Pijβkβl − Pklβiβj

)
− r4β

(iPj)(kβ`)

− r5P
ijPkl − r6P

i(kP`)j − r7�n
(
�ni(kP`)j + �nj(kP`)i

)
− r8�nβ

(i�j)n(kβ`) .

(343)

Rewriting (340) in a more traditional form,

J ir (2) = ηij
(
∂jν −Gjkβk

)
+ ηijk (∇jβk +∇kβj) ,

1
2T

jk
r (2) = η̄jki

(
∂iν −Gilβl

)
+ 2ηjkmn(∇mβn +∇nβm) ,

(344)

we find

2ηij =− s+
1 P

ij − s+
2 β

iβj + s+
3 ε

ijkβk ,

4ηijk =− (θ−1 − θ̄
+
1 )P i(jβk) − (θ−2 − θ̄

+
2 )βiP jk − (θ−3 − θ̄

+
3 )βiβjβk − (θ+

4 − θ̄
−
4 )βnεni(jβk) ,

4η̄jki =− (θ−1 + θ̄+
1 )P i(jβk) − (θ−2 + θ̄+

2 )βiP jk − (θ−3 + θ̄+
3 )βiβjβk − (θ+

4 + θ̄−4 )βnεni(jβk) ,

2ηijkl =− r+
1 β

iβjβkβl − r+
2

(
P ijβkβl + P klβiβj

)
− r+

4 β
(iP j)(kβ`) − r+

5 P
ijP kl − r+

6 P
i(kP `)j

− r−3
(
P ijβkβl − P klβiβj

)
− r+

7 βn
(
εni(kP `)j + εnj(kP `)i

)
− r+

8 βnβ
(iεj)n(kβ`) ,

(345)

where the ± superscript on the coefficients si, and ri specifies whether it is even or odd
under CPT,

s±i = si(T, ν)± si(T, −ν) , r±i = ri(T, ν)± ri(T, −ν) , (346)

and

θ±i = (qi(T, ν)± qi(T,−ν)) + (q̄i(T,−ν)± q̄i(T,−ν)) ,
θ̄±i = (qi(T, ν)± qi(T,−ν))− (q̄i(T,−ν)± q̄i(T,−ν)) .

(347)

Note that terms associated with the coefficients r+
1 , r

+
2 , r

+
4 , r

+
5 , r

+
6 , θ

−
i , θ

+
4 , s

+
1 and s+

2
contribute to LAB− whereas those associated with r−3 , θ̄

+
i , θ̄

−
4 , r

+
7 , r

+
8 and s+

3 contributes
to LAB+ .

To unpackage (337) and (345) let us decompose the fields into scalars vectors and
tensors of the SO(2) symmetry which is preserved under rotations around the directions
of βi. Traceless symmetric representations of SO(2) are given by the combination

P i`P
j
kT

`k − 1
2P

ijP`kT
`k = −ησij + η̃σ̃ij , (348)

56

https://scipost.org
https://scipost.org/SciPostPhys.5.5.053


SciPost Phys. 5, 053 (2018)

with
η = r+

6
T
, η̃ = 1

T 2 (M+
Ω − 2r+

7 ) , (349)

where we have defined

∇kβq
(
P iqP jk + P ikP jq − P ijP kq

)
= T−1σij ,

βn∇kβq
(
P jqεnik + P jkεniq + P iqεnjk + P ikεnjq

)
= −2T−2σ̃ij .

(350)

We identify η with the shear viscosity and η̃ with the Hall viscosity.
There are two SO(2) invariant vectors

P j iJ
i =s+

1
V j

2T −
1
4(θ−1 − θ̄

+
1 )P jk

(
∂kT

T 3 + βi∂iβk

)
+
(
s+

3
2 + ∂M−B

∂ν

)
Ṽ j

T 2 −
1
T 2

∂M−B
∂ν

Ẽj

+
(1

4
(
θ+

4 + θ̄−4

)
− T 2M−B

)
εjmkβm

(
∂kT

T 3 + βi∂iβk

)
+
(

2M−B
T
− ∂M−B

∂T

)
εjmkβm∂kT ,

(351)

and

P j iT
ikβk = − 2

T 3

(
θ−1 − θ̄

+
1

)
V j + r+

2T 2P
jk
(
∂kT

T 3 + βi∂iβk

)
− 1

4T 4

(
θ+

4 + θ̄−4

)
Ṽ j

− M−B
T 2 Ẽ

j +
(
M+
Ω −

r+
8

2T 2

)
εjnkβn

(
∂kT

T 3 + βi∂iβk

)
−M+

Ω ε
jmkβm

∂kT

T 3 ,

(352)

where we have used

εimlβmβ
k∇kβl = εkmlβmβ

i∇kβl + εiklβmβ
m∇kβl + εimkβmβ

l∇kβl , (353)

and
βl∇kβl = ∂kT/T

3 , (354)

and the definitions

V i = Ei − TP ij∂jν , Ṽ i = TεijkβjVk , Ẽi = TεijkβjEk . (355)

The three SO(3) invariant scalars are given by

βiT
ijβj = ε

T 2 −
2r+

1
T 7 β · ∂T +

Σ−
(
θ−3 − θ̄

+
3

)
2T 4 β · ∂ν

− (2(r+
2 + r−3 ) + p−T 3)

T 5 Θ + 2M−B
T 3 B − 2M+

Ω

T 4 Ω ,

βiJi = 1
2T 3

(
θ−2 − θ̄

+
2

)
Θ + Σ+ (θ−3 − θ̄

+
3 )

2T 5 β · ∂T + s+
2

2T 2β · ∂ν −
1
T 2

∂M−B
∂ν

B

+ 1
T 4

(
M−BT

2 − ∂M+
Ω

∂ν

)
Ω ,

PijT
ij =2P − 4

(
θ−2 − θ̄

+
2

)
β · ∂ν − 8

T

(
r+

5 + r+
6

)
Θ − 2

T 3

(
4(r+

2 + r−3 )− p−T 3
)
β · ∂T

+ 2M−Ω
T 2 Ω ,

(356)

57

https://scipost.org
https://scipost.org/SciPostPhys.5.5.053


SciPost Phys. 5, 053 (2018)

with
Σ

2 = ∂p+

∂T
T 3 − p+T 2 − ∂p−

∂ν
T 3 , (357)

and where we have defined

Ω = T 2εijkβi∇jβk , B = −Tεijkβi∂jBk , Θ = TP ij∇iβj . (358)

We are interested in the on-shell constitutive relations. Since we are working to first
order in derivatives, we may use the zeroth order equations of motion to obtain on-shell
relations between first order scalars and vectors. To this end, we recast (314) in the form

β·∂T = −
(
∂P

∂ε

)
ρ
Θ, β·∂ν = − 1

T 2

(
∂P

∂ρ

)
ε

Θ ,
1
T 3P

ij∂jT+P ijβk∇kβj = −R0
T
V i ,

(359)
where R0 = ρ/(ε + P ) and ρ and ε were defined in (163). As should be clear from direct
inspection, the vectors and scalars slightly simplify under (359).

Further simplification of the constitutive relations can be obtained by switching to
frame invariant variables. In [46] it was shown that, to first order in the derivative ex-
pansion, the vector combination PijJ j + R0TPijT

jkβk is frame invariant as is the scalar
combination 1

2
(
PijT

ij − 2P
)
−
(
∂P
∂ε

)
ρ
T 2
(
βiT

ijβj − ε
T 2

)
+
(
∂P
∂ρ

)
ε
T
(
βiJ

i + ρ
T

)
. We find

PijJ
j +R0TPijT

jkβk = σVi + σ̃Ṽ i + χ̃EẼ
i + χ̃TTε

ijkβj∂kT , (360)

with

σ = R2
0r

+
4

2T 3 −
R0θ

−
1

2T 2 + s+
1

2T ,

χ̃E = −R0M
−
B

T
− 1
T 2

∂M−B
∂ν

,

χ̃T = −R0M
+
Ω

T 3 + 2M−B
T 2 −

1
T

∂M−B
∂T

,

σ̃ = 1
T

(
R2

0

(
M+
Ω

T
− r+

8
2T 3

)
−R0

(
M−B + θ̄−4

2T 2

)
+ ∂M−B

∂ν

1
T

+ s+
3
T

)
,

(361)

and
1
2
(
PijT

ij − 2P
)
−
(
∂P

∂ε

)
ρ
T 2
(
βiT

ijβj −
ε

T 2

)
+
(
∂P

∂ρ

)
ε

T

(
βiJ

i + ρ

T

)
= −χ̃BB − χ̃ΩΩ− ζΘ , (362)

with

χ̃B = 1
T

((
∂P

∂ρ

)
ε

∂M−B
∂ν

+ 2
(
∂P

∂ε

)
ρ
M−B

)
,

χ̃Ω =− 1
T

(∂P∂ρ
)
ε

(
M−B −

1
T 2

∂M+
Ω

∂ν

)
+

(
1 + 2

(
∂P
∂ε

)
ρ

)
M+
Ω

T

 ,

ζ = 1
T

(
2r+

5 + r+
6 + 2

T 4

(
∂P

∂ε

)2

ρ
r+

1 −
4
T 2

(
∂P

∂ε

)
ρ
r+

2 + 1
2T 2

(
∂P

∂ρ

)2

ε

s+
2

− 1
T 3

(
∂P

∂ρ

)
ε

(
T 2θ−2 −

(
∂P

∂ε

)
ρ
θ−3

))
.

(363)
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It is straightforward to enforce positivity of the divergence of the entropy current (242)
which implies, via (340) and

∂jν −Gjkβk = − 1
T
Vj +

(
∂P

∂ρ

)
ε

βjΘ ,

∇iβj +∇jβi =
(
Pij
T
− 2T

(
∂P

∂ε

)
ρ
βiβj

)
Θ −R0 (Vjβi + Viβj) + 1

T
σij ,

(364)

that

1
T

(
1
2PijT

ij
(2)− − T

2
(
∂P

∂ε

)
ρ
βiβjT

ij
(2)− + T

(
∂P

∂ρ

)
ε

βiJ
i
(2)−

)
Θ

− Vk
T
Pki

(
J i(2)− +R0T

ij
(2)−βj

)
+ 1
T
σijT

ij ≤ 0 . (365)

Here, T ij(2)− and J ij(2)− represent contributions to the stress tensor and current coming from
L− in (341) or, more specifically, the contribution of terms containing s+

1 , s
+
2 , θ

−
1 , θ

−
2 , θ

−
3 ,

θ+
4 , r

+
1 , r

+
2 , r

+
4 , r

+
5 and r+

6 . Inserting (348), (360) and (362) into (365) we find

−ζΘ
2

T
− VkV

kσ

T
− 4r+

6 σijσ
ij

T 2 ≤ 0 , (366)

implying
ζ ≥ 0 , σ ≥ 0 , η ≥ 0 , (367)

reproducing the expected positivity of the bulk viscosity, conductivity and shear viscosity.
The on-shell condition (365) is necessary but not sufficient to ensure positivity of the

imaginary part of the effective action. Indeed, to complete our analysis of transport it
remains to solve the Schwinger-Keldysh positivity condition L− � 0 which in the current
context takes the form

−
(
Ba ga

)
L−

(
Ba
ga

)
≥ 0 (368)

for any Ba i and ga ij and with L− given in (341). Decomposing

gija = gT 4βiβj − T 2giβj − T 2gjβi + γij , Bi
a = −T 2bβi + bi , (369)

where giβi = 0, biβi = 0 and γijβj = γiτ
ij = 0, we find

γijγijr
+
6 + βnbigjε

nijθ+
4 +

∑
i

(
gi bi

)
V

(
gi

bi

)
+
(
g γii b

)
S

 gγii
b

 > 0 , (370)

with

V =

r+
4

θ−1
2

θ−1
2 s+

1

 , S =


r+

1 r+
2

θ−3
2

r+
2 r+

5
θ−2
2

θ−3
2

θ−2
2 s+

2

 . (371)

Thus, Schwinger-Keldysh positivity implies that

r+
6 ≥ 0 , θ+

4 ≥ 0 , V � 0 , S � 0 . (372)

The last two conditions constrain the transport coefficients to lie in a convex subspace of
parameter space. For example, V � 0 implies

r+
4 > 0 , s+

1 −

(
θ−1

)2

r+
4
≥ 0 . (373)
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Let us collect our results. The constitutive relations for the stress tensor and current
of a 2 + 1 dimensional parity violating fluid in 2 + 1 dimensions satisfies (348), (360) and
(362) which is identical to what was found in [9], but with additional information about
the CPT transformation properties of the transport coefficients: χ̃Ω, ζ, σ, σ̃, χ̃E , η and η̃
are CPT even while χ̃B, χ̃T are CPT odd.

The terms χ̃E , χ̃B, χ̃Ω and χ̃T depend only on M+
Ω and M−B so that these four coeffi-

cients are interdependent. This is not surprising. These relations were observed already
in [6,7] using the equilibrium partition function. Indeed, in our classification scheme M−B
and M+

Ω are scalar terms which survive in the hydrostatic limit where δβF = 0. The other
two coefficients p− and p+ are not hydrostatic but do not contribute to transport; they
vanish when we switch to on-shell frame invariant variables.

We also note that even though we started off with 19 independent coefficients in the
tensor sector, we found only three dissipative transport coefficients, σ, ζ and η and two
non dissipative transport coefficients, η̃ and σ̃ all of which are CPT even. This reduction
may have also been argued for by carrying out a frame transformation to, say, the Landau
frame. The structure (344) implies that after such a transformation 11 of the coefficients,
s+

2 , θ
−
1 − θ̄

+
1 , θ

−
2 + θ̄+

2 , θ
−
3 , θ̄

+
3 , θ

+
4 − θ̄

−
4 , r

+
1 , r

+
2 , r

−
3 , r

+
4 and r+

8 , may be reabsorbed into
a redefinition of the other coefficients and are therefore redundant. In addition, the on-
shell relations (364) together with (344) and (345) imply (among other things) that the
tensor structure associated with θ−1 + θ̄+

1 is the same as that of s+
1 , that of θ

−
2 − θ̄

+
2 is the

same as r+
5 and that of θ+

4 + θ̄−4 is the same as s+
3 . Thus, had we been interested only

in the on-shell constitutive relations it would have been sufficient to use s+
1 , r

+
5 and r+

6
as representatives of transport coefficients associated with dissipation and s+

3 and r+
7 as

representatives of transport coefficients associated with terms in the constitutive relations
which do not generate dissipation.

While it seems that the number of coefficients in our action is overly redundant, we
remind the reader that, our main goal in this work was to study the constitutive relations
for the on-shell stress tensor, expanded perturbatively in derivatives. The Schwinger-
Keldysh effective action is capable of reproducing the hydrodynamic stress tensor but
also contains information on the off-shell stress tensor and on stochastic noise associated
with a-type fields. The multitude of coefficients in the effective action encode this extra
information to which the hydrodynamic stress tensor is oblivious.

7.2 Second order neutral fluid in d dimensions
Having dealt with the parity breaking 2+1 dimensional charged fluid at the one derivative
level, let us consider transport coefficients at the two derivative level. Since the number
of independent transport coefficients increases significantly as the number of derivatives
increases (for instance, there are 38 transport coefficients for a parity breaking charged
conformal fluid in 3+1 dimensions [47]) we will focus in this Subsection on parity preserving
uncharged fluids at second order in derivatives. The Lagrangian in this case takes the form

L = 1
2L0 + i

2L
(ij)(kl)DθgijDθ̄gkl+

i

2L
(ij)(kl)m
` ∇∇mDθgijDθ̄gkl+

i

2L
(ij)(kl)m
r Dθgij∇∇mDθ̄gkl

− i

4L
(ij)(kl)(mn)δβgmnDθgijDθ̄gkl −

1
2L

(ij)(kl)(mn)DθgijDθ̄gklDgmn , (374)

where D = Dθ̄Dθ.
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The most general contribution to the scalar terms can be parameterized as follows
1
2
(
L0 + L̃0

)
=P + p2

(
∇∇iT∇∇iT− T6 (β · ∇∇�n) (β · ∇∇βn)

)
+ p3

(
β · ∇∇βj∇∇jT + 1

T3∇∇iT∇∇
iT + 2T

(
P ′

P ′ + TP ′′

)2
(∇∇ · β)2

)

+ p4

(
βi∇∇iT + TP ′

P ′ + TP ′′
∇∇iβi

)2
+ p5(∇∇iβi)2

+ p6(∇∇iβi)
(
βi∇∇iT + TP ′

P ′ + TP ′′
∇∇iβi

)
+ p7R + p8β

iβjRij

+ p9 (β · ∇∇�n) (β · ∇∇βn) + p10(∇∇mβp)(∇∇m�p) ,

(375)

where the coefficients P, p1, . . . p9 are general functions of the super-temperature T and
a ′ denotes a derivative with respect to T. At leading order in derivatives the single
contribution to the Lagrangian is the pressure term P . At first order in derivatives there
are no contributions to the scalar part of the action since CPT-odd transport coefficients
must vanish. At second order in derivatives there are 9 independent scalar terms up to
total derivatives. To derive the hydrodynamic constitutive relations, it is sufficient to
consider configurations which are inequivalent on-shell as we did in the previous Section.
We have conveniently organized our Lagrangian so that the terms in parenthesis on the
right-hand side of (375) vanish under the equations of motion. Thus, for the purpose of
computing the on-shell constitutive relations it is sufficient to keep track of only five of
the nine second order terms p5, p7, p8, p9 and p10.

Contributions from the tensor terms to the transport coefficients have the general
structure

1
2T

ij
(2) =1

2
(
L

((ij)(kl))
− − L[(ij)(kl)]

+

)
(∇kβl +∇lβk)

+ 1
4∇m

(
−L((ij)(kl))m
− − L[(ij)(kl)]m

− + L
[(ij)(kl)]m
+ + L

((ij)(kl))m
+

)
(∇kβl +∇lβk)

+ 1
2
(
−L[(ij)(kl)]m
− + L

((ij)(kl))m
+

)
∇m (∇kβl +∇lβk)

+ 1
4
(
N

[(ij)(kl)]
− −N ((ij)(kl))

+

)
(∇kβl +∇lβk) ,

(376)

with

L
[(ij)(kl)]
+ =

(
L[(ij)(kl)] − ηiηjηkηlL̃[(ij)(kl)]

)
,

L
((ij)(kl))
− =

(
L((ij)(kl)) + ηiηjηkηlL̃

((ij)(kl))
)
,

L
((ij)(kl))m
+ = 1

2
(
L

((ij)(kl))m
` − L((ij)(kl))m

r

)
− 1

2ηiηjηkηlηm
(
L̃

((ij)(kl))m
` − L̃((ij)(kl))m

r

)
,

L
[(ij)(kl)]m
+ = 1

2
(
L

[(ij)(kl)]m
` + L[(ij)(kl)]m

r

)
− 1

2ηiηjηkηlηm
(
L̃

[(ij)(kl)]m
` + L̃[(ij)(kl)]m

r

)
,

L
((ij)(kl))m
− = 1

2
(
L

((ij)(kl))m
` + L((ij)(kl))m

r

)
+ 1

2ηiηjηkηlηm
(
L̃

((ij)(kl))m
` + L̃((ij)(kl))m

r

)
,

L
[(ij)(kl)]m
− = 1

2
(
L

[(ij)(kl)]m
` − L[(ij)(kl)]m

r

)
+ 1

2ηiηjηkηlηm
(
L̃

[(ij)(kl)]m
` − L̃[(ij)(kl)]m

r

)
,

N
((ij)(kl))
+ =

(
L((ij)(kl))(mn) + ηiηjηkηlηmηnL̃

((ij)(kl))(mn)
)

(∇mβn +∇nβm) ,

N
[(ij)(kl)]
− =

(
L[(ij)(kl)](mn) − ηiηjηkηlηmηnL̃[(ij)(kl)](mn)

)
(∇mβn +∇nβm) .

(377)
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Let us decompose the two-tensor terms, L(ij)(kl), into zeroth order and first order
terms in derivatives which contribute to first order and second order constitutive relations
respectively,

L(ij)(kl) = L
(ij)(kl)
1 + L(ij)(kl)

s + L(ij)(kl)
v + L

(ij)(kl)
t . (378)

The zeroth order terms are given by

2L(ij)(kl)
1 =− r1β

iβjβkβl − r2
(
P ijβkβl + P klβiβj

)
− r4β

(iP j)(kβl) − r5P
ijP kl − r6P

i(kP l)j + . . . , (379)

where the . . . include terms which may appear in L(ij)(kl)
1 but will drop out of the action

once we add to it the KMS partner of L(ij)(kl)
1 , in this particular case it would be a term

of the form r3(T )
(
P ijβkβl − P klβiβj

)
.

The first order terms are given by

2L(ij)(kl)
s = −

(
s1Θ + s2

(
β · ∂T +

(
∂P

∂ε

)
Θ

))(
P ijβkβl − P klβiβj

)
+ . . . . (380a)

Note that the s2 contribution vanishes on-shell so if our goal is to obtain the on-shell
constitutive relations then we may omit this term from the Lagrangian. We also have

2L(ij)(kl)
v =− v1

(
a(iβj)βkβl − a(kβl)βiβj

)
− v2

(
a(iβj)P kl − a(kβl)P ij

)
− v3

(
a(iP j)(kβl) − a(kP l)(iβj)

)
+ . . . , (380b)

where terms which vanish on-shell have been omitted, and we have defined

ai = P ikT
2βj∇jβk . (380c)

The tensorial contributions to the first order two-tensor terms are

2L(ij)(kl)
t = −t1

(
P ijσkl − P klσij

)
− t2

(
β(iωj)(kβl) − β(kωl)(iβj)

)
− t3

(
ωi(kP l)j + ωj(kP l)i − ωk(iP j)l − ωl(iP j)k

)
+ . . . , (380d)

with

σij =TP ikP jl (∇kβl +∇lβk)−
2

d− 1TP
ijP kl∇kβl ,

ωij =1
2TP

ikP jl (∇kβl −∇lβk) ,
(381)

and the . . . in (380) refer to expressions which will vanish once the KMS partner Lagrangian
is added. Likewise, we have

−L(ij)(kl)m
` =− d` 1

(
P ijβkβl − P klβiβj

)
βm − d` 2

(
βiβjβ(kP l)m − βkβlβ(iP j)m

)
− d` 3

(
β(iP j)(kP l)m − β(kP l)(iP j)m

)
− d` 4β

iβjβkβlβm

− d` 5
(
P ijβkβl + P klβiβj

)
βm − d` 6β

(iP j)(kβl)βm − d` 7P
ijP klβm

− d` 8P
i(kP l)jβm − d` 9

(
βiβjβ(kP l)m + βkβlβ(iP j)m

)
− d` 10

(
β(iP j)(kP l)m + β(kP l)(iP j)m

)
+ . . . ,

(382)
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and a corresponding term for L(ij)(kl)m
r (which differs from (382) only through its coeffi-

cients which we denote by dr i) and the three-tensor terms

2L(ij)(kl)(mn) = +m1β
iβjβkβlβmβn +m2β

iβjβkβlPmn

+m3
(
P ijβkβl + βiβjP kl

)
βmβn

+m4
(
βiβjβ(kP l)(mβn) + βkβlβ(iP j)(mβn)

)
+m5β

(iP j)(kβl)βmβn

+m6
(
βiβjP kl + P ijβkβl

)
Pmn +m7

(
βiβjP k(mPn)l + βkβlP i(mPn)j

)
+m8

(
P ijβ(kP l)(mβn) + P klβ(iP j)(mβn)

)
+m9

(
β(iP j)(kP l)(mβn) + β(kP l)(iP j)(mβn)

)
+m10P

ijP klβmβn +m11β
(iP j)(kβl)Pmn +m12P

l(iP j)kβmβn

+m13β
(iP j)(mPn)(kβl) +m14P

ijP klPmn

+m15
(
P ijP k(mPn)l + P klP i(mPn)j

)
+m16P

l(iP j)kPnm +m17
(
Pn(iP j)(kP l)m + Pm(iP j)(kP l)n

)
+ . . . ,

(383)

where . . . denote terms which do not contribute to the constitutive relations.
Inserting (379), (380), (382) and (383) into (377) we find that L(ij)(kl)

1 are the only terms
which contribute to L((ij)(kl))

− , L(ij)(kl)
s , L(ij)(kl)

v and L(ij)(kl)
t contribute to L[(ij)(kl)]

+ , L(ij)(kl)
`

and L(ij)(kl)
r contribute to L[(ij)(kl)]m

+ and L(ij)(kl)(mn) contribute only toN ((ij)(kl))(mn)
+ . The

other terms which appear on the left-hand side of (377) vanish.
Placing the theory on-shell and shifting to the Landau frame we find that the stress

tensor takes the form
T ijr = εuiuj + PP ij + τ ij(1) + τ ij(2) , (384)

where τ ij(1), τ
ij
(2) are first and second order in derivative contributions to the stress tensor

given by

τ ij(1) =− ησij − ζP ijΘ ,

τ ij(2) =
[
τ T 〈β · ∇σij〉 + κ1R

〈ij〉 − κ2T
2βkβlRk

〈ij〉
l + λ0Θσ

ij

+ λ1σ
l〈iσ

j〉
l + λ2ω

l〈iσ
j〉
l + λ3ω

l〈iω
j〉
l + λ4a

〈iaj〉
]

(385)

+
[
ζ1(Tβ · ∇)Θ + ζ2R+ ζ3T

2Rijβ
iβj + ξ1Θ

2 + ξ2σ
2 + ξ3ω

2 + ξ4a
2
]
P ij ,

where we have defined the symmetric traceless combination

A〈iBj〉 = 1
2P

ikP jl (AkBl +AjBl)−
1

d− 1P
ijAkBk , (386)

and ω2 = ωijωij . The first order transport coefficients are given by

ζ = 2
T

(
r5 + r6

d− 1 + P ′

T 6(P ′′)2

(
r1P

′ − 2r2T
3P ′′

))
,

η =r6
T
.

(387)
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Second order transport coefficients associated with the traceless part of the constitutive
relations are given by

τ = d8−
2T 2 + p8

T 2 −
p10
T 2 − Tp

′
7 ,

κ1 =− 2p7 ,

κ2 =− 2Tp′7 ,
λ0 =λ0(d2+, d3+, d8−, d9−, d10−, p7, p8, p10, t1, m7, m12, m15, m16, m17, m18) ,

λ1 =− 1
2Tp

′
7 −

m17
T 2 −

m18
T 2 ,

λ2 =− d3+
T 2 + d10−

T 2 −
2p8
T 2 + 2p10

T 2 + 2t3
T
,

λ3 =4p8
T 2 + 4p10

T 2 − 2Tp′7 ,

λ4 =− 2p9
T 4 + 2T 2p′′7 + 4p8

T 2 + 4p10
T 2 + 4Tp′7 −

2p′8
T

,

(388)

and transport which contributes to the trace of the stress tensor is given by

ζ1 =2d4− (P ′)2

T 7 (P ′′)2 −
4d5−P

′

T 4P ′′
+ 2d7−

T
+ d8−

(d− 1)T

+
2p10

(
− T 2

d−1 + 2TP ′
P ′′ −

(P ′)2

(P ′′)2

)
T 3 + 2(d− 2)T 2p′7

d− 1

− 2(d− 2)p8
(d− 1)T + 2p9P

′ (P ′ − TP ′′)
T 5 (P ′′)2 − 2p5 (TP ′′ + P ′)2

T 3 (P ′′)2 ,

ζ2 =p7

(
d− 3
d− 1 + P ′

TP ′′

)
− p′7P

′

P ′′
,

ζ3 =p′7
(2(d− 2)T

d− 1 + 2P ′

P ′′

)
+ p7

( 2P ′

TP ′′
− 2
d− 1

)
− 2p9P

′

T 5P ′′
+ 4p8P

′

T 3P ′′
+ 4p10P

′

T 3P ′′
− 2p′8P ′

T 2P ′′
,

ξ1 =ξ1(d4−, d5−, d7−, d8−, p5, p7, . . . ,

p10, r1, r2, r5, r6, m1, m2, m3, m6, m7, m10, m12, m14, . . . , m17) ,

ξ2 = d2+P
′

4T 5P ′′
+ d9−P

′

4T 5P ′′
+ d3+P

′

4T 3P ′′
− d10−P

′

4T 3P ′′
+ 1

2p
′
7

((d− 2)T
d− 1 + P ′

P ′′

)

+ t1
T

+ m7P
′

2T 5P ′′
− m15

2T 2 −
m17

T 2(d− 1) −
p9P

′

2T 5P ′′
−
p8
(
T − 3P ′

P ′′

)
4T 3

+ p10 (TP ′′ + 5P ′)
4T 3P ′′

− p′8P
′

4T 2P ′′
− p′10P

′

4T 2P ′′
+ η

(
P ′r1

T 8 (P ′′)2 −
r2

T 5P ′′

)
,

ξ3 =
p8
(

(d−5)T
d−1 + P ′

P ′′

)
T 3 +

p10
(

(d−5)T
d−1 + P ′

P ′′

)
T 3

− p′7
(2(d− 2)T

d− 1 + 2P ′

P ′′

)
+ 2p9P

′

T 5P ′′
+ p′8P

′

T 2P ′′
− p′10P

′

T 2P ′′
,

(389a)
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and

ξ4 =
p9
(

(d−3)T
d−1 −

3P ′
P ′′

)
T 5 +

2p8
(
P ′

P ′′ −
(d−3)T
d−1

)
T 3 +

2p10
(
P ′

P ′′ −
(d−3)T
d−1

)
T 3 +

p′8

(
(d−3)T
d−1 −

2P ′
P ′′

)
T 2

+ p′′7

(
−2(d− 2)T 2

d− 1 − 2TP ′

P ′′

)
+ p′7

(
−2(d− 3)T

d− 1 − 4P ′

P ′′

)
+ p′9P

′

T 4P ′′
− 2p′10P

′

T 2P ′′
+ p′′8P

′

TP ′′
,

(389b)

where d± i = d` i±dr i. The expressions for ξ1 and λ0 are exceptionally long and have been
relegated to Appendix E.

An analysis almost identical to the one in the previous Subsection implies that posi-
tivity of the imaginary part of the effective action is ensured perturbatively in derivatives
as long as

r6 ≥ 0 , r4 ≥ 0 ,
(
r1 r2
r2 r5

)
� 0 . (390)

The last inequality implies that ζ ≥ 0 whereas the first one implies that η ≥ 0.
At second order, as noticed by [27,29], the coefficients κ1, κ2, λ3, λ4, ζ2, ζ3, ξ3 and ξ4

are completely determined in terms of p7, p8, p9 and p10 and are therefore not independent.
In fact, five of these transport coefficients can be determined in terms of the other three,

κ2 =Tκ′1 ,

ζ2 =κ1

(
− d− 3

2(d− 1) −
P ′

2TP ′′
)

+ κ′1P
′

2P ′′ ,

ζ3 =κ′1
(
P ′

P ′′
− (d− 2)T

d− 1

)
+ κ1

( 1
d− 1 −

P ′

TP ′′

)
+ Tκ′′1P

′

P ′′
+ λ4P

′

TP ′′
,

ξ3 =1
4λ3

(
d− 5
d− 1 + 3P ′

TP ′′

)
− λ′3P

′

4P ′′ −
3Tκ′′1P ′

4P ′′ + 3
4κ
′
1

(
T − 2P ′

P ′′

)
− λ4P

′

TP ′′
,

ξ4 =− λ4

(
d− 3

2(d− 1) + P ′

2TP ′′
)
− λ′4P

′

2P ′′ −
κ′′′1 T

2P ′

2P ′′ + 1
2Tκ

′′
1

(
T − 3P ′

P ′′

)
.

(391)

We have not found any other relations between transport coefficients.

8 Summary and discussion

In this work, we have classified the possible constitutive relations according to their role
in entropy production and whether they are constrained by an additional unitarity con-
dition which we refer to as Schwinger-Keldysh positivity. We find that certain transport
coefficients which do not generate entropy are nevertheless constrained to be positive semi-
definite due to the latter condition. This is somewhat surprising since it implies that the
set of phenomenological constraints usually imposed on the constitutive relations is neces-
sary but not sufficient to constrain the transport coefficients of the hydrodynamic theory.
In what follows we will briefly summarize our findings and discuss their implications.

8.1 Summary
Our findings can be summarized as follows. The constitutive relations of the conserved
currents may be classified into two main classes: scalar and tensor terms. Scalar terms
are of the form

JA = 1
2

1√
−g

δ

δFA

∫
ddx
√
−g

(
L0 + L̃0

)
, (392)
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with the following definitions. The index A is a multi index. If JA is a conserved charge
current then A specifies a single spacetime index. If JA is the stress tensor then A specifies
a pair of symmetrized spacetime indices. The Lagrangian term L0 is a function of the
metric gµν and possibly an external U(1) field Bµ which we collectively denote by FA. In
addition L0 depends on a temperature field T , a chemical potential µ, a velocity field uµ
and derivatives thereof. In what follows we will use a rescaled velocity field and chemical
potential

βµ = uµ

T
, ν = µ

T
. (393)

We refer to L̃0 as the KMS-partner Lagrangian. It is obtained from L0 by KMS conjugation

FA → ηAFA , βµ → −ηµβµ , ∇µ → ηµ∇µ , T → T , ν → −ν , (394)

where ηX denotes the CPT eigenvalue of X. The variation with respect to FA acts on
(T, ν, βµ) as

∂T

∂gµν
= 1

2T
3βµβν ,

∂ν

∂Bµ
= βµ , (395)

and other variations of the temperature, chemical potential or velocity field with respect to
FA are zero. The scalar contributions to the transport coefficients do not produce entropy
and they coincide with what [26,27] refer to as scalar terms.

We find it convenient to further characterize transport according to its transformation
properties under KMS conjugation (394). We will refer to currents which transform as

JA(∇, F, β, T, ν) = ηAJ
A(η∇ , ηF, −ηβ, T, −ν) , (396)

as having KMS-even parity and ones that transform as

JA(∇, F, β, T, ν) = −ηAJA(η∇ , ηF, −ηβ, T, −ν) (397)

as having KMS-odd parity. The constitutive relations for the scalar terms are such that
the currents constructed from them are always KMS-even. In the language of Section 6,
we say that the scalar terms are KMS-even.

Tensor terms, which may be decomposed into KMS-even terms or KMS-odd terms,
have the structure

JA =(−1)a

4 ∇µa . . .∇µ1

(
σABµ1...µaν1...νb
± ∇ν1 . . .∇νb(δβFB)

)
± (−1)b

4 ∇νb . . .∇ν1

(
σABµ1...µaν1...νb
± ∇µ1 . . .∇µa(δβFB)

)
,

(398)

where the ± subscript on σ specifies the ± sign in the second line of (398) and

δβBµ = ∇µν −
Eµ
T
, δβgµν = ∇µ

(
uν
T

)
+∇ν

(
uµ
T

)
, (399)

where Eµ = Gµνu
ν is the local electric field with Gµν the field strength associated to Bµ.

The various classes of transport are determined according to the KMS parity and index
structure of σ. We stress that even though up until now we have used a ± subscript to
denote KMS-parity of tensor terms, the ± subscript on σ is not associated with KMS-
parity, but rather, with symmetry properties of the indices of σ, as we now explain. Non-
dissipative transport is characterized by σABµ1...νb

± = ∓σBAµ1...νb
± and is KMS-even. Excep-

tional transport is also characterized by σABµ1...νb
± = ∓σBAµ1...νb

± but is KMS-odd. Both
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dissipative and pseudo-dissipative transport are characterized by σABµ1...νb
± = ±σBAµ1...νb

±
and has indefinite KMS-parity, but pseudo-dissipative transport satisfies the additional
constraint

σABµ1...µaν1...νb
± (∇ν1 . . .∇νbδβFB)(∇µa . . .∇µ1δβFa) = 0 . (400)

We summarize the various possible transport coefficients in the first two entries of Table
2.

Table 2: A classification of all possible tensor terms in the constitutive relations
and some of their properties. Here σ refers to the tensor structure appearing in
the constitutive relations, KMS parity to the KMS parity of the tensor structure
of the constitutive relations, ∆S to whether it contributes to entropy production,
SK to whether it is constrained by the Schwinger-Keldysh positivity condition
Im(Seff ) ≥ 0 and Label, to the label of these coefficients in the main text.
Pseudo-dissipative terms are also constrained by (400).

Type σ symmetry KMS parity ∆S SK Label
Non-dissipative σAB...± = ∓σBA...± + 0 7 L

[A...]
+

Dissipative σAB...± = ±σBA...± indefinite ≥ 0 3 M
(A...)
±

Pseudo-dissipative σAB...± = ±σBA...± indefinite 0 3 P
(A...)
±

Exceptional σAB...± = ∓σBA...± − 0 3 N
[A...]
−

The symmetry structure of σ, which appears in the second column of Table 2 specifies
the transformation properties of σ± under a swap of its first two indices, e.g., symmetric
dissipative, or antisymmetric exceptional. In the main text this has allowed us to further
decompose transport into symmetric and antisymmetric subclasses. In the third column
we have noted the KMS parity of the various terms in the constitutive relations. The
KMS parity follows from the underlying KMS symmetry of the action which also leads
to the Onsager reciprocity relations. From the KMS parity we can determine how the
various transport coefficients transform under CPT. The CPT-eigenvalue of a transport
coefficient is simply the KMS parity of the term it appears in, times the KMS parity of
the tensor structure it multiplies. CPT-even coefficients are even functions of chemical
potential, and CPT-odd coefficients are odd functions of chemical potential.

The fourth and fifth column of Table 2 refer to the constraints imposed on the various
transport coefficients. The classification of transport has been carried out with respect
to these constraints. Only dissipative terms contribute to entropy production and are
constrained such that entropy production is positive. All but non-dissipative terms are
constrained by positivity of the imaginary part of the effective action,

Im(Seff ) ≥ 0, (401)

which we have termed Schwinger-Keldysh positivity. Exceptional terms are not con-
strained by the entropy production condition but are nevertheless constrained by the
Schwinger-Keldysh positivity condition. Finally, pseudo-dissipative terms are very similar
in their structure to dissipative terms but do not contribute to entropy production. They
are constrained by the Schwinger-Keldysh positivity condition and satisfy, in addition,
(400).

For ease of reference, we have included in the last column of Table 2 the labels used
in the main text for the various types of transport. Non-dissipative terms were discussed
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in detail in 6.2.2, dissipative terms in 6.2.3 and pseudo-dissipative and exceptional terms
in 6.2.4. We computed the entropy production in (242) and the imaginary part of the
effective action in (244).

The canonical examples of symmetric dissipative terms are the shear viscosity, bulk
viscosity, and conductivity. As far as we know antisymmetric dissipative terms have not
been studied or classified. A relatively simple example of an antisymmetric dissipative
term appears in the second-order hydrodynamics of a charged, parity-violating fluid in
three dimensions. It is given by

Jµ = −1
2∇σ

[
ξ+ εµνρuρu

σ
](

∂ν

(
µ

T

)
− Eν

T

)
− ξ+ εµνρuρu

σ∇σ
(
∂ν

(
µ

T

)
− Eν

T

)
, (402)

where Pµν = gµν+uµuν is the projection operator orthogonal to the velocity field, and εµνρ
is the Levi-Civita tensor. The superscript on the transport coefficient ξ+ indicates that
ξ+(T, ν) = ξ+(T,−ν). An example of a pseudo-dissipative term can be found in Section
6.2.4. The contribution to the U(1) current,

Jµ = ζ−

T
(uα∂αν)εµνρuν

(
Eρ − T∂ρ

(
µ

T

))
, (403)

with ζ− CPT-odd does not generate dissipation but is nevertheless constrained by Schwinger-
Keldysh positivity. This contribution is symmetric pseudo-dissipative. In the particular
example given in Section 6.2.4, where the ordinary conductivity vanishes, Schwinger-
Keldysh positivity sets ζ− = 0.

It is interesting to note that there are KMS-odd dissipative terms, as well as KMS-even
ones. At leading order in derivatives, all dissipative terms are KMS-odd. This well-known
fact is usually attributed to a breaking of time-reversal invariance by dissipation. However,
note that at higher order in derivatives dissipative terms of either KMS-parity are allowed
by the symmetries of the problem. Moreover, our entire analysis did not require any
input on the CPT transformation properties of the currents. Rather, it required a certain
Z2 symmetry which is a combination of the KMS condition and CPT covariance of the
Schwinger-Keldysh generating functional.

Non-dissipative terms do not generate entropy and are unconstrained by the Schwinger-
Keldysh positivity condition. In the language of [26, 27] the symmetric non-dissipative
terms are similar to H̄V and the antisymmetric non-dissipative are similar to Berry-type.
An example of a symmetric non-dissipative term is

Jµ =1
2∇λ(χ+Pµνuλ)

(
∂ν

(
µ

T

)
− Eν

T

)
+ χ+Pµνuλ∇λ

(
∂ν

(
µ

T

)
− Eν

T

)
, (404)

where the superscript on χ+ indicates that it is CPT-even.
The exceptional terms are KMS-odd. These terms do not contribute to the entropy

production but are nevertheless constrained by the Schwinger-Keldysh positivity condi-
tion. An example of an antisymmetric exceptional term is

Tµν = . . .+ γ−
(
Pµνσ2 − 2Θσµν

)
, (405)

with γ− a CPT-odd tranport coefficient. In the particular setup described in 6.2.4,
where the ordinary viscosities vanish, the Schwinger-Keldysh positivity condition enforces
γ− = 0.
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8.2 Discussion
The classification scheme we have presented in the previous Subsection seems to have some
overlap with that of [26, 27]. The scalar terms nicely match the scalar terms of [26, 27],
the non-dissipative terms are somewhat similar to the H̄V and B type transport of [26,27]
and dissipative terms are similarly defined both here and in the work of [26, 27]. To the
best of our knowledge, a discussion of antisymmetric dissipative terms has not appeared
prior to this work. An additional difference between the current work and earlier ones
is that, in addition to the tensor structure of the constitutive relations, we have also
characterized transport according to its transformation properties under CPT and KMS.
The constitutive relations characterized as scalar or non-dissipative are KMS-even while
the dissipative terms can be KMS-even or KMS-odd.

In addition to scalar, dissipative and non-dissipative classes we have demonstrated
that there are two novel classes, which we have referred to as pseudo-dissipative terms
and exceptional terms. Pseudo-dissipative transport can be KMS-even or odd while ex-
ceptional terms are KMS-odd. However, unlike dissipative terms, these expressions do not
produce entropy. Nevertheless, they are constrained by unitarity. This is the first instance
where positivity of the divergence of the entropy current is not sufficient to determine the
sign of transport coefficients. Our analysis so far is very preliminary. We have shown
that in extreme circumstances wherein the ordinary conductivity or viscosities vanish,
the Schwinger-Keldysh positivity condition constrains exceptional transport coefficients
to vanish. It is not yet clear to us whether there exists an example of transport which is
constrained by the Schwinger-Keldysh positivity condition to have a semi-definite sign (as
opposed to being strictly zero). Though, we can demonstrate that certain terms which
contribute to stochastic noise (essentially the Fa type terms which we have not discussed in
this work) are constrained to be sign semi-definite under the Schwinger-Keldysh positivity
condition. We hope to report on progress on this front in the near future.

One cannot help speculate about the realization of the Schwinger-Keldysh positivity
condition in a hydrodynamic context. Perhaps one needs to consider all four components
of the entropy current discussed in Section 5 in order to capture all constraints associated
with unitarity. Likewise, it is not clear how the Schwinger-Keldysh positivity condition
will be realized in holography. There, entropy production is associated with area increase
theorems of the event horizon. While transport is guaranteed to satisfy the Schwinger-
Keldysh positivity condition by unitarity of the dual CFT, it is an open question whether
or not this condition can be geometrized in the gravity dual.

Our treatment of transport, which follows from the Schwinger-Keldysh generating
functional, allows for a direct connection between the standard phenomenological model
of hydrodynamics and the Schwinger-Keldysh effective action. Be that as it may, the
Schwinger-Keldysh effective action provides much more information on the dynamics of
the system than captured by hydrodynamics. Apart from an off-shell formulation, and
a self-consistent incorporation of stochastic noise, it also allows one to study quantum
effects associated with hydrodynamics. The latter requires an effective action which is
valid beyond the statistical mechanical limit discussed in this paper (see however [14,18]).

Given that we have worked in the limit of small ħh, one should query the validity
of the statistical mechanical limit for conformal field theories (CFTs). The statistical
mechanical limit assumes a separation of scales where the inverse temperature (in units
of ħh) is much smaller than the mean free path which is much smaller than the size of the
system. The separation of scales is needed in order to allow for a derivative expansion
(whose control parameter is the mean free path) after setting ħh small. In CFTs the mean
free path is controlled by ħh and the hydrodynamical variables. This implies that there is
no separation of scales which implies, in turn, that one can not implement a consistent
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derivative expansion. Once again, this raises the question of the relation between the
formulation presented in this work and a hydrodynamic description of large N gauge
theories with finite ħh, which in some cases can be computed holographically [52]. Naively,
one may hope that in these instances large N may replace small ħh in order to generate
a co-aligned limit of sources as described in Section 2.2. In this case, the obstruction for
generalizing the analysis from this paper will come from thermal translations associated
with factors of eiħhδβ which do not become infinitesimal.

Since the effective action includes more information about the dynamics of the system
than that captured by the classical hydrodynamics, the number of free parameters in the
Lagrangian exceeds the number of transport coefficients in hydrodynamics at the same
order in the derivative expansion. For instance, in the example presented in Section
7.1 for the first-order hydrodynamics of a 2 + 1 dimensional parity-violating fluid, the
Lagrangian contained 23 parameters but only 9 transport coefficients. Parity-preserving
Lagrangians describing neutral fluids at second order in the derivative expansion, described
in Section 7.2 are characterized by over 40 parameters which should be compared to the
12 independent transport coefficients of the hydrodynamic theory. It would certainly
be of value to be able to identify the parameters of the Lagrangian which contribute to
transport. A partial discussion of such an analysis was carried out in Section 7. A more
robust analysis is certainly called for.
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A Constraints on the imaginary part of the effective action

The Schwinger-Keldysh partition function satisfies the inequality (8a),

|Z| ≤ 1 . (406)

Since this equation plays a central role in our work we reproduce its proof which, as far
as we are aware of, was first carried out in [25].

Consider the quantity
A = Tr

(
U †ρV

)
, (407)

where U and V are unitary operators and ρ is a density matrix. We write ρ in its eigenbasis,
ρ =

∑
n rn|n〉〈n|. Then

A =
∑
m,n

rn〈n|V |m〉〈m|U †|n〉 . (408)
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Using the Cauchy-Schwarz inequality we find

|A|2 ≤
(∑

m

rm
∣∣∣〈m|V V †|m〉∣∣∣2)(∑

m

rm
∣∣∣〈m|U †U |m〉∣∣∣2) = 1 , (409)

where the second equality follows from unitarity of U and V and
∑
n rn = 1.

Given (1),
Z[A1, A2] = Tr

(
U [A1]ρ−∞U †[A2]

)
, (410)

it follows by the above lemma that
|Z| ≤ 1 , (411)

which is what we set out to prove.

B Diffeomorphisms and the action of Q

In this Appendix we obtain the transformation laws for the ghosts Xµ
ḡ , Xµ

g , Cḡ and Cg
under target space diffeomorphisms and U(1) transformations, as well as the modified
transformation laws of the a-type fields due to the ghosts. We assume that Q commutes
with r-type diffeomorphisms and U(1) transformations, whose action we denote by δr, but
not a-type transformations, which we denote by δa.

We begin with the Xµ
ḡ -ghosts. Recall that the action of Q on the X-supermultiplet is

given by

[Q,Xµ
r ] = Xµ

ḡ , {Q,Xµ
ḡ } = [Q,Xµ

a ] = 0 , {Q,Xµ
g } = Xµ

a ,

and that the action of r-type transformations on Xµ
r ,

δrX
µ
r (σ) = −ξµr (Xr(σ)) .

Acting with δr on the first commutator, we find

δrX
µ
ḡ = δr[Q,Xµ

r ] = [Q, δrXµ
r ] = [Q,−ξµr (Xr)] = −Xν

ḡ ∂νξ
µ
r (Xr(σ)) , (412)

where in the second equality we used the assumption that Q is inert under δr.
Let us now turn our attention to the transformation laws for Xµ

a under δr. By as-
sumption is given by

δrX
µ
a = −Xν

a∂νξ
µ
r (Xr(σ)) + ghosts . (413)

By assumption, δr commutes with Q and so [Q, δrXa] = 0. A straightforward computation
yields

[Q,−Xν
a∂νξ

µ
r (Xr(σ))] = −Xν

a∂ν(Xρ
ḡ∂ρξ

µ
r (Xr(σ))) +Xν

a (∂νXρ
ḡ )∂ρξµr (Xr(σ))

= −Xν
ḡX

ρ
a∂ν∂ρξ

µ
r (Xr(σ))

(414)

(The first term in the variation comes from [Q, ξµr (Xr(σ))], and the second from [Q, ∂µ],
on using that ∂µ = ∂

∂Xµ
r
.) A similar computation shows

[Q,−Xν
ḡX

ρ
g∂ν∂ρξ

µ
r (Xr(σ))] = Xν

ḡX
ρ
a∂ν∂ρξ

µ
r (Xr(σ)) , (415)

and so the r-variation of Xµ
a must be

δrX
µ
a = −Xν

a∂νξ
µ
r (Xr(σ))−Xν

ḡX
ρ
g∂ν∂ρξ

µ
r (Xr) + {Q,X µ

g } . (416)

71

https://scipost.org
https://scipost.org/SciPostPhys.5.5.053


SciPost Phys. 5, 053 (2018)

Given [Q,Xµ
g ] = Xµ

a and [δQ, δr] = 0, it is straightforward to compute the r variation
of Xµ

g . We find
δrX

µ
g = −Xν

g ∂νξ
µ
r (Xr(σ)) + X µ

g . (417)

We choose X µ
g = 0. Putting the pieces together, we find that the r-transformation laws of

the ghosts are

δrX
µ
ḡ = −Xν

ḡ ∂νξ
µ
r (Xr(σ)) , δrX

µ
g = −Xν

g ∂νξ
µ
r (Xr(σ)) , (418)

and that the transformations of the a-fields are modified in the presence of the ghosts as

δrX
µ
r = −ξµr (Xr(σ)) , δrX

µ
a = −Xν

a∂νξ
µ
r (Xr(σ))−Xν

ḡX
ρ
g∂ν∂ρξ

µ
r (Xr(σ)) . (419)

The a-fields in (33) vary under a-transformations, and as a result we do not require
that a-transformations commute with Q. In this work we take a simple choice for the
action of a-transformations on the X-supermultiplet: we take the ghosts to be inert, and
the bosonic fields to vary according to

δaX
µ
r = 0 , δaX

µ
a = −ξµa (Xr(σ)) . (420)

A similar computation shows that the C-ghosts vary under r-transformations as

δrCḡ = −Xµ
ḡ ∂µΛr(Xr(σ)) , δrCg = −Xµ

g ∂µΛr(Xr(σ)) , (421)

and the transformation laws of the bosonic C’s are modified as

δrCr = −Λr(Xr(σ)) , δrCa = −Xµ
a ∂µΛr(Xr(σ))−Xµ

ḡX
ν
g ∂µ∂νΛr(Xr(σ)) . (422)

We take the ghosts to be invariant under a-transformations, and for the bosonic fields to
vary as

δaCr = 0 , δaCa = −Λa(Xr(σ)) . (423)

C Comparison with previous work

In this Appendix we compare our construction to the work of [19, 21]. Let us start by
considering the explicit form of the superfields. Expanding in components we have

Bi = Br i + θ(Lψ̄Br µ∂iX
µ
r + ∂iCḡ) + θ̄(LψBr µ∂iXµ

r + ∂iCg) + θ̄θBa i , (424)

where we have defined

Ba i = (LXaBr µ + δψψ̄Br µ +Baµ)∂iXµ
r + ∂iCa ,

∂iX
µ
r δψψ̄Br µ ≡ ∂iX

µ
r ψ̄

jψk∂j∂kBr µ + ψ̄j(∂iXµ
g )∂jBr µ + (∂iXµ

ḡ )ψj∂jBr µ .
(425)

By comparing this result to Eqs. (5.35) and (5.46) of [19], and by substituting
γ ↔ ψ̄, γa ↔ ψ and noticing that δψψ̄ ↔ Lγγa , we see that the equations agree up to
a minus sign of the top component which arises from the fact that the authors of [19] use
a different convention for the Q̄ charge, namely δQ̄ = ∂θ̄ − iθδβ.

Next, let us compare the structure of the KMS symmetry. In the statistical mechanical
limit we have

K(Br i(σ)) = ηiBr i(σ), K(Ba i(σ)) = ηi(Ba i(σ) + iδβBr i(σ)) , (426)
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and for the dynamical variables

K(Xµ
r (σ)) = ηµX

µ
r (σ), K(Xµ

a (σ)) = ηµ
(
Xµ
a (σ) + iβi∂iX

µ
r

)
,

K(Cr(σ)) = Cr(σ), K(Ca(σ)) = Ca(σ) + iβi∂iCr(σ) .
(427)

On the other hand, the dynamical KMS transformations of [19, 21] are given by (using
their notation)

X̃µ
r (σ) = −Xµ

r (−σ), X̃µ
a (−σ) = −Xµ

a (−σ)− iβµ(−σ) + iβµ0 ,

ϕ̃r(σ) = −ϕr(−σ), ϕ̃a(σ) = −(ϕa(−σ) + iβi∂iϕr(−σ)) ,
Ãrµ(x) = Arµ(−x), Ãaµ(x) = Aaµ(−x) + iLβ0Arµ(−x) ,

(428)

where ϕr,a ↔ Cr,a in our notation and β(σ) ≡ β0e
τ(σ), βµ = β(σ)uµ. Clearly the dynamical

KMS transformation differs from our K. However, the dynamical KMS transformation
of [19, 21] includes a PT flip, rather than a CPT flip, and moreover is formulated in even
spacetime dimension where one can take ηi = ηµ = −1. Accounting for these facts, we
find that our K acts on the dynamical fields in the same way as their dynamical KMS
under the integral. The only minor difference is that in our formalism δβ includes a flavor
transformation Λβ aside from the Lie derivative along βi.

Let us turn now to the full KMS invariance of the action. Recall that we constructed
a full KMS invariant action (136). This is in agreement with the analysis of [21] around
equation (5.10), where they show that the following conditions are sufficient to ensure full
KMS invariance

L = 1
2(Lc + L̃c) , (L̃c)Ba=0 = ∂µV

µ
0 . (429)

From the analysis presented in Subsection 2.5, it is not hard to see that our construction
satisfies these two conditions.

D The structure of tensor terms

The most general expression for rank n tensor terms involving derivatives is∫
ddσdθdθ̄LABC1...DθFADθ̄FBDFC1 . . .

=
∫
ddσdθdθ̄L(∇∇mDθ∇∇nF)(∇∇pDθ̄∇∇

qF)(∇∇s1Dθ∇∇s2Dθ̄∇∇
s3F) . . . (430)

where LABC1... is a differential operator and L a scalar and we have refrained from writing
most of the indices on the right-hand side of the equation to avoid clutter. The goal of this
appendix is to show that this structure is redundant and that we may, using integration
by parts, remove most of the derivatives.

Consider the two-tensor term∫
ddσdθdθ̄LABDθFADθ̄FB =

∫
ddσdθdθ̄L(∇∇mDθ∇∇nF)(∇∇pDθ̄∇∇

qF) . (431)

Given
∂θ̄∇∇iFj = ∇∇i∂θ̄Fj + Fk∂θ̄�

k
ij , (432)

we want to show that the rightmost piece in (432) can be absorbed into L(F, ∂). To do
so, it is useful to use the identity

δ�kij = 1
2g

km(∇∇jδgim +∇∇iδgjm −∇∇mδgij) , (433)
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which can be established by direct computation. By taking δ = ∂θ̄ and applying (433) to
(432), we may rewrite (432) as

Dθ̄∇∇iFj = ∇∇iDθ̄Fj + Ls(F,∇∇)Dθ̄gij (434)

with Ls a scalar differential operator. Therefore, one can absorb Ls into a redefinition of
L. Since [Dθ, ∂i] = 0, a similar argument holds for Dθ. Hence, without loss of generality,
a generic rank 2 tensor term with derivatives can be written as∫

ddσdθdθ̄LABDθFADθ̄FB =
∫
ddσdθdθ̄L(∇∇mDθF)(∇∇pDθ̄F)

∼−
∫
ddσdθdθ̄L′DθF(∇∇p′Dθ̄F) .

(435)

To complete this discussion, one should also consider higher tensor terms. These are
generated by introducing the operator D = DθDθ̄. In a generic situation, the differential
operator, say, LABC1 , may act on each of the superderivatives,

LABC1DFC = L∇∇m1Dθ∇∇m2Dθ̄∇∇
m3F , (436)

where we have suppressed unwanted indices. In this case, one can commute the covariant
derivatives past the super-derivatives in a similar fashion to (435). The only terms which
one might worry about in this process are those arising from

∂θ∇∇∂θ̄F = ∇∇(∂θ∂θ̄F) + ∂θ�∂θ̄F = ∇∇(∂θ∂θ̄F) + Ls(F,∇∇)∂θg∂θ̄F . (437)

But recall that higher tensor terms always contain a DθFDθ̄F ∝ θ̄θ factor. This in turn
implies that the rightmost piece of (437) will inevitably produce a pure ghost contribution.
Thus, to summarize, for higher tensor terms, one can restrict the derivative structure to
∇∇mDF without any loss of generality.

E Explicit expressions for ξ1 and λ0

In Section 7.2 we have computed the transport coefficients associated with second order
neutral fluids, as follows from variation of the Schwinger Keldysh effective action. The
expressions for ξ1 and λ0 were rather long and have been omitted from the main text. We
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present them here.

ξ1 =2m1 (P ′)3

T 11 (P ′′)3 −
d′4− (P ′)3

T 8 (P ′′)3 −
p′9 (P ′)3

T 6 (P ′′)3 + 2p′′7 (P ′)2

(P ′′)2 − p′′8 (P ′)2

T 2 (P ′′)2

−
2d5−

(
6P ′′ + TP (3)

)
(P ′)2

T 6 (P ′′)3

+
d4−

(
P ′
(
9P ′′ + 2TP (3)

)
− T (P ′′)2

)
(P ′)2

T 9 (P ′′)4 − 2m2 (P ′)2

T 8 (P ′′)2

− 4m3 (P ′)2

T 8 (P ′′)2 + 2r2
1 (P ′)2

T 16 (P ′′)3 + p′5 (P ′ + TP ′′)2 P ′

T 4 (P ′′)3 +
(
2P ′d′5− − T 3d′7−P

′′)P ′
T 5 (P ′′)2

+
p′10

(
(P ′)2 + T 2(P ′′)2

d−1

)
P ′

T 4 (P ′′)3 +
p′8

(
(d− 4)T (P ′′)2 + (d− 1)P ′

(
5P ′′ + TP (3)

))
P ′

(d− 1)T 3 (P ′′)3

+
p9

(
−2T 2(P ′′)3

d−1 − TP ′ (P ′′)2 + (P ′)2
(
7P ′′ + 2TP (3)

))
P ′

T 7 (P ′′)4

+ 4m6P
′

T 5P ′′
+ 4m7P

′

(d− 1)T 5P ′′
+ 2m10P

′

T 5P ′′
+ 2m12P

′

(d− 1)T 5P ′′

−
d′8−P

′

2(d− 1)T 2P ′′
− 4r1r2P

′

T 13 (P ′′)2 −
2m14
T 2 −

4m15
(d− 1)T 2 −

2m16
(d− 1)T 2

− 4m17
(d− 1)2T 2 + ζ

(
2r1P

′

T 8 (P ′′)2 −
2r2
T 5P ′′

)
+
d7−

(
T + 3P ′

P ′′

)
T 3

+ d8− (3P ′ + TP ′′)
2(d− 1)T 3P ′′

+ p′7

−2
(
P ′′ + TP (3)

)
(P ′)2

T (P ′′)3 + 4P ′

(d− 1)P ′′ + 2(d− 2)T
(d− 1)2


+
p8
(
−(d− 2)T 2 (P ′′)3 + (10− 3d)TP ′ (P ′′)2 − 2(d− 1) (P ′)2

(
4P ′′ + TP (3)

))
(d− 1)T 4 (P ′′)3

−
p5 (P ′ + TP ′′)

(
T 2 (P ′′)3 + 2TP ′ (P ′′)2 + (P ′)2

(
5P ′′ + 2TP (3)

))
T 5 (P ′′)4

+
p10

(
− T 3

d−1 + P ′T 2

(d−1)P ′′ + (P ′)2T

(P ′′)2 −
(P ′)3(5P ′′+2TP (3))

(P ′′)4

)
T 5 + 2r2

2
T 10P ′′

,

(438)

and

λ0 =− d9−P
′

2T 5P ′′
+ d8− (TP ′′ + 3P ′)

4T 3P ′′
+ d10−P

′

2T 3P ′′
−
P ′d′8−
4T 2P ′′

− 4m17
(d− 1)T 2

+ p′7

(
P ′

P ′′
− 2T
d− 1

)
− P ′

(
d2 + + T 2d3 +

)
2T 5P ′′

+ m7P
′

T 5P ′′
+ m12P

′

T 5P ′′
− m15

T 2 −
m16
T 2

+
p8
(

2P ′
P ′′ + T

)
T 3 −

p10
(

2P ′
P ′′ + T

)
T 3 − p′8P

′

T 2P ′′
+ p′10P

′

T 2P ′′
− 2t1

T
.

(439)
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F Anomaly-induced transport

In this Appendix we write down the Schwinger-Keldysh effective action for field theories
with ’t Hooft anomalies for continuous symmetries. There is by now a wealth of literature
concerning anomaly-induced transport in relativistic hydrodynamics, including e.g. [28,
36, 40–45, 59–64]. Here we build upon the results of [44], who proposed a Schwinger-
Keldysh effective action for flavor anomalies at finite ħh and without ghosts. Those authors
used somewhat different fluid variables than ours, and it is not clear how to account for
gravitational anomalies within their formalism. Nevertheless it is easy to follow their lead
and write a proposal for the bosonic part of an anomaly action for any anomaly polynomial
with our fluid variables.

We proceed in three steps. First, we write down such a bosonic effective action for any
anomaly polynomial. Second we show that this action is invariant under the KMS symme-
try. Finally, we take the statistical mechanical limit of this action and “supersymmetrize”
it. The end result is an effective action which correctly reproduces the anomalies as well as
all of the other symmetries of the problem, albeit in the ħh→ 0 limit. Throughout we set
the background field A to vanish. (The results of [45] suggest a connection between some
of the properties of gravitational anomalies and A. Probing this connection is certainly
worthwhile but is beyond the scope of this work.)

By construction the hydrodynamic constitutive relations that follow from this action,
after setting the ghosts and a-fields to vanish, are precisely those previously obtained in
the literature. Since we do not learn anything new about hydrodynamics per se, we con-
sider this Appendix an existence proof, demonstrating that a Schwinger-Keldysh anomaly
effective action exists.

We begin with a review of anomalies. See e.g. [36]. Quantum field theories in even
spacetime dimension d = 2n may possess ’t Hooft anomalies for continuous global sym-
metries. For our purposes, these anomalies are most efficiently described via the inflow
mechanism. To illustrate the idea let us consider a Euclidean field theory on a manifoldMd

of dimension d with no boundary (anomalies on manifolds with boundaries pose special
problems [65] and will not be discussed here). Let B = Bµdx

µ be the background flavor
gauge field and Γµν = Γµνρdxρ the Christoffel connection one-form. Their curvatures are

G = dB + B ∧B = 1
2Gµνdx

µ ∧ dxν ,

Rµ
ν = dΓµν + Γµρ ∧ Γρν = 1

2R
µ
νρσdx

ρ ∧ dxσ ,
(440)

with Rµνρσ the Riemann tensor. The anomalies are encoded in a formal d + 2 form
P = P[G,R] known as the anomaly polynomial. It is a polynomial in the Chern classes
of G and Pontryagin classes of R. The anomaly polynomial is closed,

dP = 0 , (441)

and so can be written as the derivative of a Chern-Simons form

P = dI . (442)

Let Md be the boundary of a d+ 1-dimensional manifold Md+1, and extend the sources
on Md to sources on Md+1. Then the statement of anomaly inflow is most efficiently
stated as the definition of a “covariant generating functional” WE,cov,

WE,cov = WE +
∫
Md+1

I , (443)
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with WE = −i lnZE and ZE the usual Euclidean partition function. The object WE,cov

has the virtue of being invariant under flavor gauge transformations and diffeomorphisms.
The Chern-Simons form is invariant up to a boundary term, and this boundary term is
precisely minus the anomalous variation of WE . Writing the Chern-Simons form as a
function of {B,G,Γ,R}, that variation is given by [36]

δχWE = −
∫
Md

Λ · J + ∂νξ
µT ν

µ , (444)

with
J = ∂I

∂B , T ν
µ = ∂I

∂Γµν
. (445)

The currents obtained by varying WE,cov with respect to the sources are called covariant
currents. They differ from the currents obtained by using WE (known as the consistent
currents) by local polynomials in the sources (known as Bardeen-Zumino polynomials)
which are known and tabulated. We refer the reader to, e.g., [36] for details.

The contribution of ’t Hooft anomalies to hydrostatic response was computed in de-
tail in [36]. Here we would like to account for ’t Hooft anomalies in our Schwinger-
Keldysh effective actions. The reader may think of the terms we write down as Wess-
Zumino terms constructed from the fluid variables. Our starting point is the Schwinger-
Keldysh analogue of the inflow mechanism. Consider a theory with ’t Hooft anomalies
described by an anomaly polynomial P and a Schwinger-Keldysh generating functional
W = W [B1, g1;B2, g2]. The 1 sources live on a manifold Md,1, and the 2 sources on a
manifold Md,2. We extend the sources A1, g1 to sources on a d+ 1-dimensional manifold
Md+1,1 with Md,1 as its boundary, and similarly for the 2 sources. We then define a
covariant Schwinger-Keldysh generating functional Wcov by

Wcov = W +
∫
Md+1,1

I1 −
∫
Md+1,2

I2 , (446)

where I1 is the Chern-Simons form evaluated as a function of the 1 fields, and I2 is
similarly defined. This wayWcov is invariant under the doubled flavor transformations and
diffeomorphisms. In the remainder of this Subsection we will write down fluid effective
actions for Wcov rather than W itself. The virtue of this is that, while W is not flavor
and/or diffeomorphism invariant,Wcov is, and thus our effective action forWcov is invariant
under all of the symmetries of the problem. We can then relate the currents associated
with Wcov to those associated with W by subtracting the appropriate Bardeen-Zumino
polynomial.

We begin by extending the d-dimensional worldvolume Md to a d + 1-dimensional
worldvolume Md+1 with Md as its boundary. We also extend all of the worldvolume fields
to fields on Md+1. In particular, we extend the thermal data (βi,Λβ) to data (βI ,Λβ)
on Md+1, the embeddings Xµ

1 (σ), Xµ
2 (σ) to mappings XM

1 (σ) and XN
2 (σ) from Md+1

to Md+1,1 and Md+1,2, and the phase fields C1(σ) and C2(σ) to phase fields on Md+1.
The embeddings and phase fields allow us to pullback the extended sources on Md+1,i
to sources on Md+1, which we denote as B1I(σ), B2J(σ), and so on. The difference in
Chern-Simons terms in Wcov (446) may also be pulled back to Md+1.

The difference of Chern-Simons forms may be split into an exact term and a bulk term,

I1 − I2 = dW12 + V12 . (447)

By construction W12 is a non-invariant d-form and V12 is a flavor/diffeomorphism-invariant
d + 1-form. There are simple integral expressions for both W12 and V12 given in [36].
Since the covariant generating functional is invariant under flavor transformations and
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diffeomorphisms, our candidate contribution of the anomaly to the effective action of the
covariant Schwinger-Keldysh generating functional Wcov is

Sanom =
∫

Md+1
V12 . (448)

The effective action Sanom is a Wess-Zumino term for the anomalies: it accounts for the
microscopic anomalies, and it is a topological term on a closed manifold as we presently
demonstrate. On a compact manifold the action (448) is just the difference of Chern-
Simons terms, Sanom =

∫
I1 − I2. The flavor and spin currents that follow are [36],

?J1 = ∂P1
∂B1

, ?LNM = ∂P1
∂RM

N
, (449)

and similarly for the 2 fields. Here ? is the Hodge star operator, and the stress tensor is
given by suitable derivatives of the spin current. These currents are identically conserved
on account of the flavor and diffeomorphism invariance of the action Sanom [36]. However,
on a compact manifold the equations of motion for the X and C-fields are the conservation
of these currents, and so those equations of motion are automatically satisfied.

Thus, despite extending the various fields from d-dimensional ones on Md to
d + 1-dimensional ones on Md+1, the equations of motion for X and C that follow from
Sanom only have boundary terms. There are no d+1-dimensional fluid degrees of freedom.
Moreover, the equations of motion for the dynamical fields are precisely the anomalous
Ward identities of the anomalous microscopic theory. (More precisely the equations of mo-
tion become the Ward identities for the covariant stress tensor and flavor current. See [36].)
That is, the anomaly action (448) correctly accounts for the microscopic anomalies (as ex-
plicitly demonstrated in [44] for non-gravitational anomalies).

The action (448) respects the (bosonic) Schwinger-Keldysh symmetry as well as the
reality condition. In the absence of ghosts, the Schwinger-Keldysh symmetry is the state-
ment that the action vanishes when setting the a-fields to vanish, which the action Sanom
clearly does on account of (447). The action is purely real and odd under exchanging 1
and 2 fields, and so it respects the reality condition.

We presently take the statistical mechanical limit of the anomaly action, and then
supersymmetrize it. Before proceeding, it is expedient to break up the action (448) into
a form that appears to be more complicated, but which will be useful when supersym-
metrizing. We define independent velocities, temperatures, and chemical potentials on
Md+1 via

u1I = T1g1IJβ
J ,

T1 = 1√
−g1IJβIβJ

,

µ1 = T
(
βIB1I + Λβ

)
,

(µR1)IJ = T1(D1)JβI ,

(450)

and similarly for the 2 fields. Here µR is the spin chemical potential [36], the gravitational
analogue of the flavor chemical potential µ and D1 the covariant derivative with respect
to g1IJ . We also define “hatted” connections and curvatures,

B̂1 = B1 + µ1u1 ,

Ĝ1 = dB̂1 + B̂1 ∧ B̂1 ,

(Γ̂1)IJ = (Γ1)IJ + (µR1)IJu1 ,

(R̂1)IJ = d(Γ̂1)IJ + (Γ̂1)IK ∧ (Γ̂1)KJ .

(451)
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We then decompose

I1 − I2 =
(
I1 − Î1

)
−
(
I2 − Î2

)
+
(
Î1 − Î2

)
, (452)

where Î1 is the Chern-Simons form evaluated on the “hatted” 1 fields and similarly for
Î2. Each term in parentheses can be written as the sum of a non-invariant boundary term
and an invariant bulk term, i.e.

I1 − Î1 = dW1 + V1 ,

I2 − Î2 = dW2 + V2 ,

Î1 − Î2 = dŴ + V̂ ,

(453)

and so
Sanom =

∫
Md+1

(
V1 −V2 + V̂

)
. (454)

The V1 and V2 are relatively simple and are closely related to the anomaly effective action
in hydrostatics. Decomposing the derivative of u1 into longitudinal and transverse parts,

du1 = −u1 ∧ a1 + 2ω1 , (455)
where (ω1)IJ(u1)J = 0, they are [36]

V1 = u1
2ω1

∧
(
P1 − P̂1

)
, (456)

and similarly for V2. In equation (456) we have divided by a 2-form which may seem a bit
jarring at first sight. This type of notation is explained in detail in [36]. The gist is that
the difference u1∧ (P1− P̂1) is a sum of terms of the form (2ω1)n+1∧Vn with n = 0, 1, ...
Dividing by 2ω1 is an instruction to replace (2ω1)n+1 ∧Vn with (2ω1)n ∧Vn.

Let us now take the ħh→ 0 limit. Recall that in this limit we take the a-type fields to
be O(ħh). Because the coefficients of the anomaly polynomials are numbers, the effect of
the ħh→ 0 limit is, in terms of an expansion in a-type fields, to only keep the leading O(a)
term in the action. A simple computation gives that

SA = lim
ħh→0

Sanom
ħh

=
∫

Md+1

( δVr

δBr I
Ba I+ δVr

δgr IJ
ga IJ+B̂a∧

∂P̂r

∂bGr

+(Γ̂a)IJ∧
∂P̂r

∂(bRr)IJ

)
. (457)

Here we have defined Vr to be the transgression form V in (456) evaluated as a function of
the r-fields, and similarly P̂r to be the anomaly polynomial P as a function of the hatted
r-fields. The first two terms come from the ħh→ 0 limit of V1−V2, and the last two from
V̂12, upon using the explicit formulae for transgression forms given in [36]. These last two
terms may be further simplified, by using that

βIB̂a I = 0 , βK(Γ̂a)IJK = 0 , (458)
and

Ĝr IJβ
J = −δβB̂r I , (R̂r)IJKLβL = −δβ(Γ̂r)IJK . (459)

Because the integrand must have one leg in the β direction and B̂a and Γ̂ do not, it follows
that

SA =
∫

Md+1

{ δVr

δBr I
Ba I + δVr

δgr IJ
ga IJ

− iTrur ∧
(∂2P̂r

∂Ĝ2
r

∧ ˜̂Ba ∧ B̂a + ∂2P̂r

∂(R̂r)IJ∂(R̂r)KL
∧ ( ˜̂Γa)IJ ∧ (Γ̂a)KL

+ ∂2P̂r

∂Ĝr∂(R̂r)IJ
∧ ( ˜̂Ba ∧ (Γ̂a)IJ + ( ˜̂Γa)IJ ∧ B̂a)

)}
,

(460)
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where ˜̂Ba = B̂a + iδβB̂r , ( ˜̂Γa)IJ = (Γ̂a)IJ + iδβ(Γ̂r)IJ . (461)

The virtue of writing the bosonic anomaly action is this. We recognize the first line as
a scalar term, and the rest, because it is linear in both an a-field and a ã-field, as a tensor
term. Written this way it is straightforward to verify that the action respects the bosonic
KMS symmetry, as well as to supersymmetrize the bosonic action, which we do now.

In addition to extending the thermal data and bosonic fields to fields on Md+1, we
extend the ghost partners to ghosts on Md+1. As above, we group the pullback fields into
superfields as

XM = XM
r + θ̄XM

ḡ + θXM
g + θ̄θXM

a ,

C = Cr + θ̄Cḡ + θCg + θ̄θCa ,

BI =
(
BrM (X) + θ̄θBaM (X)

)
∂IX

M + ∂IC ,

gIJ =
(
grMN (X) + θ̄θgaMN (X)

)
∂IX

M∂JX
N ,

�IJK = 1
2g

IL (∂JgKL + ∂KgJL − ∂LgJK) ,

(462)

along with supercurvatures GIJ and RIJKL. We also construct a fluid velocity, tempera-
ture, chemical potential, and spin chemical potential superfield via along with supercurva-
tures GIJ and RIJKL. We also construct a fluid velocity, temperature, chemical potential,
and spin chemical potential superfield via

uI = TβI ,

T = 1√
−gIJβIβJ

,

� = T(βIBI + Λβ) ,
(�R)IJ = T∇∇JβI ,

(463)

as well as hatted superconnections B̂I and �̂IJK and hatted supercurvatures ĜIJ and
R̂IJKL. We define the super anomaly polynomial P and its hatted version P̂ via

P = P(G,RIJ) , P̂ = P(Ĝ, R̂IJ) , (464)

along with a super transgression form V,

V = u
2� ∧

(
P− P̂

)
. (465)

The supersymmetrization of SA in (460) is then

SA =
∫

Md+1
dθdθ̄

{
V − iTu ∧

(∂2P̂

∂Ĝ2
∧DθĜ ∧Dθ̄Ĝ + ∂2P̂

∂R̂IJ∂R̂KL
∧Dθ�̂

I
J ∧Dθ̄�̂

K
L

+ ∂2P̂

∂Ĝ∂R̂IJ
∧ (DθB̂ ∧Dθ̄�̂

I
J +Dθ�̂

I
J ∧Dθ̄B̂)

)}
,

(466)

which is the main result of this Appendix.
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