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Abstract

The Eisenbud-Wigner-Smith (EWS) time delay of photoemission depends on the phase
term of the matrix element describing the transition. Because of an interference process
between partial channels, the photoelectrons acquire a spin polarization which is also
related to the phase term. The analytical model for estimating the time delay by mea-
suring the spin polarization is reviewed in this manuscript. In particular, the distinction
between scattering EWS and interfering EWS time delay will be introduced, providing
an insight in the chronoscopy of photoemission. The method is applied to the recent
experimental data for Cu(111) presented in M. Fanciulli et al., PRL 118, 067402 (2017),
allowing to give better upper and lower bounds and estimates for the EWS time delays.
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1 Introduction

The description of time in quantum mechanics poses several fundamental difficulties, ulti-
mately because the operators that can be associated to the variable of time are Hermitian, but
not self-adjoint [1]. As a consequence, the corresponding eigenvalues are not necessarily real
quantities, which is a requirement for physical observables. Therefore time is often consid-
ered just as a classical parameter of the quantum mechanics equations. In the experiments,
one usually takes into account the time duration only when looking at "macroscopic” classi-
cal time scales, in the sense of dynamical behaviour of complex collective phenomena, as in a
pump and probe experiment. The flow of time can then be seen as in classical daily experience.
On the other hand, when considering very basic quantum processes, time is just not explicitly
taken into account, and changes of states of a system are considered to be instantaneous. In-
deed, down to the picosecond (10712 5) or even femtosecond (107 1° s) regime, processes such
as tunneling, radiation-matter interaction, or the wavefunction collapse itself, can be safely
considered to be instantaneous. This pragmatic solution has been the workaround of the issue
for many decades, since it was anyway impossible to try to measure such extremely short time
durations.

However, apart from the fact that the instantaneousness of a process is not satisfactory,
advances in laser technology in the past fifteen years have opened up the possibility to in-
vestigate electron dynamics in matter at a fundamental level, in a new field called attosecond
physics [2—6]. Attoseconds (as, 1078 s) are the natural time scale of fundamental atomic pro-
cesses. Very naively, in 1 as light travels for about 3 A, which is of the order of an atomic size.
Also, it is instructive to consider the unit of time in atomic units t,, = ﬁ A 24 as, which
corresponds to the time it takes an electron to perform one orbit of the Hyderogen atom in the
Bohr model.

The processes that are tackled in attosecond physics involve radiation-matter interaction,
and can be divided mainly into two families: radiation-driven tunneling ionization, and photon
absorption. In the first case, the interaction with the light electric field bends the atomic
potential so that electronic bound states are allowed to tunnel outside the atom. This allows
to study the equivalent travel time of an electron during the tunneling process, a fundamental
question in the history of quantum physics [ 7] that has not yet a fully accepted answer [8-13].
In the second case, the photon provides enough energy to an electron to escape from the
bound state, a process that is usually called photoionization in the case of atomic systems, and
photoemission in the case of condensed matter targets, which is the process considered in this
publication.

All the current attosecond-resolved photoemission techniques are based on pump-probe
setups that rely on a ~ 100 as ultraviolet (UV) laser pump and a phase-controlled few-cycle
femtosecond infrared (IR) laser probe, which are temporally closely correlated because of
the high harmonic generation process they rely on [14-16]. There exist two main different
techniques: attosecond streaking [14, 16-19], and "reconstruction of attosecond beating by
interference of two-photon transitions” (RABBITT) [15, 20-22]. Several variation of these
techniques are possible, with different proposed algorithms for the data analysis. In partic-
ular, it is crucial to be able to disentangle the time information of the probed material from
additional time delays introduced by the specific measurements, which are of different kind,
and not always easy to identify. Here it is only important to underline the following: because
of their pump-probe nature, all the attosecond-resolved spectroscopy experiments can only
probe a relative time delay between some electronic state under consideration and some other
experimental reference. Such reference could be a different electronic state of the system [18],
or a different system [23], or the same state under a different experimental condition [24],
but no information can be directly extracted about the absolute time delay, because of the
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nature of a pump-probe experiment. Only recently, a way to access absolute time delays has
been proposed, which however has to rely on theoretical result as an input [25,26]. The word
"absolute" should not generate confusion: a time delay 7 describes a time duration, i.e. the
interval in time with respect to time-zero. In particular, time-zero will be the instant when
the considered process begins, and is not necessarily easy to define in the experiment [19].
Still, the point is that attosecond-resolved experiments can directly measure only time delay
differences AT between different processes. The concept of time delay that is used to describe
the time scale of the photoemission process will be summarized in Section 1.1. In particular
it will be shown how it depends on the phase term of the matrix element associated to the
photoemission transition under consideration.

In conventional photoemission spectroscopy one measures the energy of the emitted elec-
trons from a material after the interaction with electromagnetic radiation. An energy-resolved
measurement exploits the Fermi golden rule, for which the photoemission intensity is given by
I o< IMfilz. My; is the matrix element of the interaction Hamiltonian My; = <¢f Him|¢i),
with |¢;) the initial Bloch state and |1,b f> a time-reversed LEED state in the one-step descrip-
tion of photoemission. The matrix element is a complex quantity My; = Re'? but because
of the modulus square in the Fermi golden rule the information about the phase term is lost.
From this, it looks like the only way to access phase shifts and therefore time delays would be
to use pump and probe setups, where one does not look at the eigenstates of a system, but
at all its possible time-dependent responses. However, if other quantum numbers do depend
on the phase of the matrix elements, it will still be possible to access the phase information
and thus the time information by measuring the corresponding physical observables without
explicit time resolution. Here it will be argued that this is indeed the case.

An example is the momentum of the photoelectrons: it can be shown [27] that the differ-
ential photoemission cross-section, i.e. the angular distribution of the electrons, does actually
depend on the phase term. Therefore one can, in principle, extract the phase information by
measuring the angular distribution of the emitted electrons. This is a complex experiment,
but can be performed for atomic and molecular levels [28-30]. UV photoelectron diffrac-
tion (UPD) experiments show that it is possible to retrieve the phase information by circular
dichroism in orbitals from non-chiral molecules [31,32]. However it is intrinsically very dif-
ficult for dispersive states of a solid, since in this case the angular distribution unavoidably
also depends on the energy-momentum dispersion relationship. In fact, in angle-resolved
photoemission spectroscopy (ARPES) experiments one measures the angular and energetic
distribution of the photoelectrons in order to reconstruct the band structure of the material,
but any modulation and asymmetry of intensity where the phase term plays a role are often
simply disregarded as "matrix element" effects.

Another quantum number that carries the phase information is the spin of the photoelec-
trons. Indeed, also the spin polarization of a beam of electrons emitted at a certain angle is a
function of the phase of the matrix elements [27,33]. Therefore it is in principle possible to re-
trieve the phase information from the spin polarization in photoemission from spin-degenerate
states. The dependence of the spin polarization on the phase term will be summarized in Sec-
tion 1.2.

The determination of the phase information from the measurement of spin polarization
has been extensively performed in atomic photoionization (see Refs. [34,35] and references
therein). To some extent also the case of photoemission from solids has been considered [36,
37], but the lack of energy and momentum resolution has been a limitation in the past. With
the development of setups with better resolution, then, the focus has been put mainly on the
study of materials where the spin polarization is an interesting physical property of the initial
state. However, the possibility to extract information on time delays from the determination
of phases has been recently proposed in the literature [38]. The estimate of EWS time delays
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in photoemission without a direct time-resolution in the experiment from the measurement of
the spin polarization of electrons emitted from spin-degenerate dispersive states of a solid has
been performed only very recently [39,40]. However, the analytical relationship between spin
polarization and time delay introduced in Ref. [39] lacked detail and, more importantly, no
clear distinction between scattering and interfering time delays was made. Here we expand
this model and discuss the physical nature of the time delays.

1.1 The Eisenbud-Wigner-Smith (EWS) time delay in photoemission

The concept of time delay as an observable in the context of elastic scattering of particles was
first heuristically introduced by L. Eisenbud in 1948 [41]. As shown by E. Wigner [42], in the
simple case of single channel scattering one can construct a time delay operator by considering
the incoming and outgoing wave packets and their relative phase shift ¢, and obtain the time
delay

d

This expression was extended by E Smith in order to consider multichannel scattering [43].
For an incoming wavefunction v);,, and an outgoing wavefunction ,,,, the scattering matrix
S is such that Y ,,; = SY;,. The time delay is then given by

t— —iS"(E)%S(E), 2

where the dagger symbol indicates the conjugate transpose of the matrix [6]. The expressions
in Egs. (1) and (2) and related ones historically go under the name of Eisenbud-Wigner-Smith
(EWS) time delay tgys.

The concept of EWS time delay in particle scattering can be extended to describe the pho-
toionization and photoemission processes. The main idea is that photoemission can be con-
sidered as a "half-scattering" process, in the sense that there only is the outgoing electron as a
scattered wave in the continuum after absorption of a photon, whereas there is no incoming
electron wave packet. The fact that the initial state of the particle is a bound state instead of
a scattering state is reflected in the expression for the EWS time delay that is obtained from
Eq. (2) by writing the S matrix from perturbation theory applied to the photoemission process
of a one-electron system [6]. This leads to the expectation value of the EWS time delay, that

is
e ag (Al
EWS dE dE )
where the missing factor of 2 with respect to Eq. (1) reflects the half-scattering. The letter T
has been used instead of t to distinguish the half-scattering from the scattering process. In
this case, the phase term ¢ is the phase (i.e. the argument) of the complex matrix element
Mg = Re!? describing the photoemission transition: ¢ = X {Mfi} =4 { (1,bf H;,, |¢i>}.

An important difference between the presented formulas for scattering and half-scattering
is that Egs. (1)-(2) are strictly speaking well defined only for a short-range (i.e. Yukawa-
like) potential. On the other hand, the half-scattered electron in photoemission will feel a
long-range Coulomb-like potential, because of the interaction with the positive charge left
in the system. Therefore, it is required to extend the discussion to long-range potentials,
which has been done already for the problem of particle scattering [44,45]. In order to do
so, one needs to introduce the Coulomb potential in the scattering matrix S and to explicitly
express the so-called centrifugal potential V.o, ©< Mr;rl), where £ is the orbital quantum
number. This particular dependence on £ has been recently observed in attosecondstreaking

(3)
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on WSe, [46]. The concept of EWS time delay is thus extended to the so-called Coulomb time
delay tgys— tc [6], where one finds

tc=tgws+ct+ Aty - @)

The term t gy, is the actual time delay due to a phase shift because of the scattering process,
in strong analogy with the EWS time delay itself, which does not depend on the position r
of the electron. The additional term Aty is a logarithmic correction that takes into account
an additional phase shift oc In(2kr), which describes the Coulomb "drag" from the positive
charge left behind felt by the electron with wavevector k.

The description of time delays in long-range potentials stays the same when considering
the photoemission process. In this case, a measurement of a relative time delay between
different 7. coincides with the measurement of A7 gys,.c. One should therefore speak of the
Coulomb EWS-like time delay, but literature often refers to it as simply EWS time delay 7 gys
(as in this publication). Also, a possible measurement of an absolute time delay implies that
the measured time duration is not anymore referred to the actual time zero, but to the time
zero corrected by the trivial term A7y,.

Another related quantity, 7%, will be introduced in Section 2. The physical meaning of
these time delays will be discussed in Section 4.

1.2 Spin polarization in photoemission from spin-degenerate states

A beam of electrons produced in some physical process can have the two possible spin states
along a certain direction that are not equally populated. This is called a spin polarized electron
beam, and the ensemble quantity spin polarization along the direction i = x, y, 2 is defined as
NN
Pi=——, (5)
N; +N;

where NT and N! is the number of electrons with spin along i being "up" and "down", respec-
tively. As an average quantity, all three spatial components of the spin polarization vector can
be determined by performing three sets of measurements.

Certain classes of materials have some electronic states where the electrons have a pref-
erential spin orientation. These states are said to be spin-polarized in the sense of Eq. (5). A
typical example are the classical ferromagnets such as Fe, Co and Ni, where the magnetism is
due to their 3d electrons [47,48]. Another example are materials where spin-orbit interaction
plays a role in the definition of the electronic structure, such as Rashba materials [49-57] and
topological insulators [58-61].

In order to probe the spin polarization of photoelectrons emitted from materials with spin-
polarized initial states, it is natural to employ the spin- and angle-resolved photoemission
spectroscopy (SARPES) technique [38,62]. It is however very important to keep in mind that
the measured spin polarization is not necessarily the one of the initial state, but modification
of it can occur during the photoemission process. For example, matrix element effects can
change or even reverse the direction of P as a function of photon energy or light polarization
[63-65]; the diffraction through the surface can be spin-dependent, thus modifying P [66];
the coherent excitation of different spin states can result in spin interference effects [67]. All
these possibilities make SARPES results difficult to interpret not only on a quantitative level,
because of the requirement of sequential measurements with faster detectors or because of the
required sample stability with slower ones, but also on a qualitative level. Nevertheless, the
information that can be extracted is highly valuable once such effects are properly considered.

On top of this, there is another subtle effect that becomes an additional correction to P,
even when spin-degenerate initial states are considered, and which has not often been taken
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Figure 1: (a) Interference of matrix elements in atomic photoionization for the tran-
sition £ — £ £ 1. (b) Two interfering transitions build up the photoemission final
state wavefunction, and their phase shift will determine an angular resolved spin
polarization.

into account recently, despite being known since almost four decades [27,33-35,68-70]: the
fact that photoemission can be described as a spin-dependent "half-scattering" process. When
studying the process of electron elastic scattering by a central field, in order to account for spin-
orbit (SO) coupling one needs to use the relativistic Dirac equation. It is found that SO coupling
allows to change the direction of the electron spin upon scattering because of the interaction
between the electron magnetic moment and the magnetic field of the scatterer in the electron
rest frame, as described by the so-called spin-flip amplitude [33]. As a consequence, it turns
out that the scattering of an unpolarized electron beam by a central field leads to a polarized
beam depending on the scattering direction [33]. Analogously, a spin polarized photoelectron
beam is obtained even in the case when a spin-degenerate initial state is being probed in
photoemission [38], as it will be described in more details in the following.

The photoionization of alkali atoms by means of circularly polarized light leads to the emis-
sion of electrons that are spin polarized, even when integrated in angle [71]. This is know as
the Fano effect, and relies on the SO splitting of the atomic levels and on the selection rule
Am; = +1 (Am; = —1) for ¢ (¢7) light polarization. By using the spin density matrix for-
malism, one can find analytical expressions describing direction and modulus of P that depend
on the geometry of the experiment. Analogously to the electron scattering, the spin polariza-
tion depends on the cross-section for the production of electrons in the two spin channels. As
shown by N. Cherepkov [68], it is possible to extend these results to the case of unpolarized
light or linearly polarized light by combining the results for ¢* and ¢~ light polarization with
incoherent or coherent sum, respectively. The interesting result is that, without integrating
over all the angles, one does find a spin polarization also in this case, even if there is not a net
angular momentum transfer by the incident photon. Also in this case analytical expressions
can be found for the spin polarization in atomic photoionization. In particular, the direction
of P is perpendicular to the plane defined by electron momentum and light electric field for
linearly polarized light (or Poynting vector for unpolarized light), and the modulus of P is
found to be o< Im [MlMg‘]. This proportionality allows to describe the origin of the spin po-
larization as the interference term between two transitions to different degenerate final states,
described by the matrix elements M; and M,, as pictured in Fig. 1(a). For example, starting
from a level £ > 0, the different degenerate final states are the £ +1 and ¢ — 1 levels. This has
been experimentally proven for the first time in Xe atoms [72].

The effects seen in atomic photoionization are found also in photoemission from crystals.
Angular integrated photoemission by using circularly polarized light, for instance, yields spin
polarized electrons when the electronic states involved are influenced by SO coupling, equiva-
lently to the atomic Fano effect. This is, for example, the famous case of the GaAs crystal [73].
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Also the use of linearly polarized or unpolarized light can yield spin polarized electrons from
spin-degenerate states. As in photoionization, two interfering transitions sensitive to SO cou-
pling are required. This can occur either in a high symmetry setup [74,75] or also when there
is a symmetry breaking in the experiment [36,69,76]. In this case in particular, as long as light
impinges on the sample surface with off-normal incidence, the photoelectrons are spin polar-
ized both in the case of normal emission and off-normal emission. An intrinsic complication
is the fact that with off-normal emission further effects such as diffraction through the surface
might play a role; but on the other hand it is necessary to probe off-normal emission electrons
if dispersive states are being measured, in order to fulfill the energy-momentum dispersion
relationship.

An interesting complementary approach to the study of spin polarization is the use of spin-
resolved inverse photoemission, which is the time-reversal process of photoemission where spin
polarized electrons are sent on a crystal and UV light is emitted upon deexcitation [77, 78].
In this case the similarity with a half-scattering process are even clearer, and similar effects to
the ones described in this Section have been observed in the unoccupied states [79].

Analogous to the atomic case, one finds that the spin polarization in photoemission from
solids is given by the following expression adapted from Refs. [69, 76,80]:

P =1, (Qf (DIm[M, - M;In = P(r, $,)n. 6)
The term Q is a set that contains all the relevant angles describing the actual photoemission
geometry. Only the case of linearly polarized light is considered here. As usual, the definition
of polarization requires the normalization term I ;)1“ which will depend on Q. Also in pho-
toemission from solids, the spin polarization of photoelectrons from spin-degenerate states is
given by the interference term Im[M, - M; ] between (at least) two photoemission channels,
described by the matrix elements M; and M, (see Appendix B for a discussion on multiple
channels). In particular, the modulus of the polarization P depends on the quantities r and
¢,, i.e. the ratio of the radial part of the two matrix elements r = R,/R; and the difference
between the two phase terms ¢; = ¢, — ¢;. The phase shift has the subscript s since it is at
the origin of the spin polarization, not to be confused with the phase term ¢ of Eq. (3).

As for the direction n, it will not only be due to the direction of E and k, but it will also
depend on the symmetry of the particular crystal and state under consideration. This occurs
also for photoionization of molecules, where the direction n is influenced by the symmetry of
the molecule [81]. Some specific equations have been derived for certain cases in solids [80],
but it is more useful here to consider the generic direction n, not necessarily known a priori but
in principle accessible in an experiment by measuring the three spatial components P, , . [39].
The proportionality constant f will also depend on the actual crystal and geometry, and it can
be seen as a geometrical correction term that depends on £ [39] (see Section 2.1).

This effect was theoretically demonstrated by E. Tamura and R. Feder, who showed that a
necessary ingredient is the use of a one-step photoemission model [69,74,76]. In fact without
the translational symmetry breaking at the crystal surface, the three-step model cannot take
into account the interference since both initial and final states are Bloch states. If compared to
atomic photoionization, however, the matrix elements are not related to different partial waves
in the final state, but to the projection of the linear light polarization electric field vector onto
the crystal surface, which will have a parallel and a perpendicular component. The reason is
that the two components will allow a transition from or to different spatial parts of the double
group symmetry representation of the electronic states, which is necessary to introduce when
considering the SO coupling [36,69,82,83]. In a more general sense, the expression in Eq. (6)
can be considered as the result for any situation where SO coupling allows the mixing of spin
channels and two degenerate transitions are possible in the experiment, either because of
different final states or initial states [36]. For instance, in nonmagnetic crystals with inversion
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symmetry every state is twofold degenerate [84,85]. The situation is pictured in Fig. 1(b),
where the wavefunction of the measured free photoelectron is build up by the interference
of two different transitions and has a phase term that is the phase difference between the
two matrix elements. In a multiple scattering picture as in KKR calculations, without further
developments of the theory, one can still consider as a simplification that the spin polarization
comes out of all the possible interference paths as if dependent on a "net" phase shift ¢ (see
also Appendix B).

This effect has been experimentally investigated in the past by using circular polarized
light [83,86,87], unpolarized light [88] as well as linearly polarized light [36,75,82,83], but
only on localized states or dispersive states with poor angular and energy resolution. Recently,
this effect has been studied in the dispersive sp bulk state of a single crystal of Cu(111) [39],
without integrating in energy or angle but maintaining the angular and energy resolution that
are typical in ARPES. This has allowed to access the phase information via the spin polarization,
and thus to make a link to the time delay in the photoemission process. In this manuscript the
analytical model that allows this estimate is presented in detail, with all the explicit expressions
and with the introduction of two different time delays. For clarity, the values of parameters
due to the experimental setup are chosen for the COPHEE end station at the Swiss Light Source
[89-91], and the experimental data are the one for Cu(111) [39].

2 Phase shift as a common term

In Section 1.1 it was shown how the Eisenbud-Wigner-Smith (EWS) scattering time delay de-
pends on the phase term ¢ of the matrix element [Eq. 3]. In Section 1.2, on the other hand, it
was discussed how the spin polarization in photoemission from spin-degenerate states arises
from an interference process between two different channels of the matrix elements. In par-
ticular, P o< Im [MIM;‘] (r,¢,) [Eq. (6)], which depends on the ratio of the radial terms
r =R, /R; and the phase shift ¢, = ¢, — ¢;.

The two phases ¢ and ¢, are closely related. In fact, given the two interfering channels 1
and 2, one has My; = Rel® = <¢f |I§Iint|1,bi> = <1/Jf |I:\I-1 + H? ~¢1> = M;+M, =R,e!?14+R,ei?2,

int int

and by making the sum of complex numbers in polar form one obtains:
Rosi _ .
¢ = +arctan( 25in (¢ = ¢1) ):arctan(%) > 7
Ry +Rycos(¢py— 1) 1+ r cos ¢

where in the last step it has been chosen ¢; = 0, since it is necessary to set a reference given
that the two phases ¢, , are not absolutely determined [see discussion in Section 4]. It is
useful to note that r > 0 since the radial terms are positive, and ¢ and ¢, are defined within
[-5.+3]

At this point the possibility of accessing the time information by the measurement of the
spin polarization is investigated. In fact, Eq. (7) shows how the measurement of P in photoe-
mission can in principle lead, via ¢,, to an estimate of ¢, and therefore of 7,5 by varying the
kinetic energy of the photoelectron E;. In particular:

d¢ (r (Ek),(ps (Ek)) ~ d¢5 ) r(r + cos ¢s) L .
dEy thEk 14 2rcose, + 12 EWS w(r, §s), (8)

Tews =

where the approximation consists in considering jTrk ~ 0 (see Section 3.1). The EWS time
delay of the interfering channels
_ 7495

TEws dE, ©
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has been introduced, and the rational function w = w(r, ¢;) has been defined. The physical
meaning of T, and 7 gy will be discussed in Section 4. Before proceeding with the evalua-
tion of the two EWS time delays from the measured spin polarization, it is useful to write the
explicit dependence of P in Eq. (6) on r and ¢,, which is done in the following subsection.

2.1 Geometrical correction

In Eq. (6), the geometrical correction term f(£2) depends on the set Q of relevant angles
describing the symmetry of the system. As mentioned in Section 1.2, in the case of atomic
photoionization with linearly polarized light the direction n of the spin polarization is per-
pendicular to the reaction plane defined by the light electric field vector E and the outgoing
electron momentum k. The only relevant angle that determines the spin polarization magni-
tude in atomic photoionization is the angle y between E and k. It can be shown [33] that the
proportionality coefficient in this case is f = 4siny cosy.

Also as mentioned in Section 1.2, in photoemission from solids the reaction plane can
vary, depending on the symmetry of the crystal under consideration [69, 76]. For localized
states, one would expect a similar behaviour as for atomic levels, but for dispersive states
the situation is different because of an intrinsic symmetry reduction. Whereas it should be in
principle possible to determine such direction for specific crystals by symmetry arguments, it
is however very difficult in practice. A different approach consists in determining the reaction
plane a posteriori, by considering it as the one perpendicular to the measured spin polarization
vector. The geometrical correction term becomes f = 4siny’ cosy’, where y’ is the angle
between the projections of E and k in the reaction plane, and thus depends on the set of
relevant angles Q = (y, 0,4, 6) defined in Fig. 2. In the following, the expression for f will be
derived as a function of these angles. As an example, the experimental setup of the COPHEE
endstation at the Swiss Light Source will be considered, where: the angle between incident
light and outgoing photoelectron is fixed (at 45°); 7 polarized light is used; in order to access
different points of reciprocal space, a momentum distribution curve (MDC) is measured by
rotating the sample normal (dotted line) by the polar angle 6 in the plane (E, k).

(a) (b) Z4

\
\
AN

\
-t )

\
\ -
\
\
y -

Figure 2: Definition of the relevant symmetry angles: (a) v, 0, a, ¥ and (b) ¢, 5. See
the text for details.

In Fig. 2(a) the angles v, 6, y = (y—0) and a = (y/2— 0) are shown. Also the sample
coordinate system is shown. Since the angle between incident light and outgoing photoelec-
tron is chosen as fixed, also y is fixed (y = 45°). The angles y and 6 can be used to evaluate
the ratios E,./E, = tan y and k,/k, = tan 6. In Fig. 2(b) the angles 1) and 6 are shown. They
are the elevation angles of the measured P from the xy and yz planes, respectively, and thus
are always between 0° and 90°. Accordingly, the three components of the spin polarization

vector can be written as: (Px, p, PZ) = (P sin&,P4/cos2 & —sin? ), P sint,b). It is important
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to underline that the deviation of v and & from the atomic case (6 = ¢y = 0°) intrinsically
depends on the orientation of the crystal planes and the orbital symmetry of the state under
consideration, but here they are only considered as the outcome of a measurement.

It is useful to rewrite the correction term f in terms of the parameter t (not time) de-
fined as t = tan(}f’ / 2), which is commonly known in trigonometry as parametric Weierstrass
substitution. This gives:

1—t2

aroy (10)

f(y")=4siny’ cosy’ =8t

Now it is necessary to evaluate the parameter t = tan[}f’ (y,a,,0) /2] by trigonometric
construction. One obtains

! o
titan(y—)=tan(z)(coswc052a+&sin2 ), 1D
2 2/\ cosod cos

which can be checked by considering separately the cases where v and & are zero, first with
a = 0° and then varying a. Now for a given experiment the coefficient f can be calculated.
It has to be pointed out that apart from exceptional cases, the variation of f with 6, which is
varied in a measurement, is negligibly small if the 0 range is small (i.e. a few degrees, as it is
for an MDC through a band).

In order to explicitly write P = P(r, ¢,) from Eq. 6, two more ingredients are needed: the
interfering term Im |:M1M§] and an expression for I,,,. The interfering term can be expressed
as

Im[M;M; | = Im[R,Rye?1792) | = R\ Ry sin(¢1 — ¢p3) = —R Ry sin ¢ . (12)

The expression for I,,, as a function of matrix elements can be found in Refs. [69, 76] as
Io; = 2R3 sin*y’ + 2R3 cos®y/, (13)

which has been modified here with the angle y” instead of y, and where the channels 1 and
2 are specified as the two cases of light polarization vector components perpendicular and
parallel to the sample surface, respectively. These two components will select different spatial
terms of the double group symmetry representation of the state under consideration. Combin-
ing Egs. (10)-(13), finally Eq. (6) can be written as

—2siny’ cosy’RyR, sin —2tany’r sin —4t(1—t? ,
P= _Y Y RiR, Sing, _ i s _ ( r sing,=c(r, t)sing,, (14)
R?sin®y’ + RZ cos2y’ tan2y’ + r2 462 +r2(1—t2)2
where the parametrization t = tan(y' / 2) and the trigonometric duplication formula
2tan(y’/2)

tan (Y/ ) = el have been used in the second to last step, and the rational function
¢ =c(r,t) has been defined.

For a fixed value of r one has max(c) = 1 for a certain value t = t’, and min(c) = —1 fora
certain value t = t”. The measured value of t depends on the direction n, which is described
by the angles 1) and 6, dictated by symmetry requirements, and by the angles y and «a, given
by the experimental geometry. At fixed y and a, there are several possible combinations of v
and 6 for which t = t’ or t = t”. The experimental values of 1 and & for the measurements
on the sp bulk band of Cu(111) presented in Ref. [39], which are currently the only available
precise measurement for the determination of t, are one of these combinations for which t
and r (the estimate of r is presented in the next Section) give max|c| = 1. Such coincidence
might suggest that the symmetry requirements of the crystal are such that the function |c(r, t)|
[and thus P(r, t)] is maximized.

10
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3 Estimate of time delays

In this Section it will be shown how to estimate the interfering EWS time delay 7%, and
the scattering time delay 7y in photoemission from a dispersive state by measuring the
spin polarization as a function of binding energy. At the end of the Section, a scheme that
summarizes the model can be found.

From Egs. (8) and (14), it is clear that knowledge of the parameter r is required in order
to directly estimate 7}, and T gys, even if it has already been considered to be constant with
kinetic energy. In fact, since P depends on both r and ¢, an independent measurement of r
would be required in order to evaluate ¢,.

In principle, this should be accessible by UV photoelectron diffraction (UPD), where one
measures the angular distribution of photoelectrons, which also depends on both r and ¢,.
This approach however is experimentally very difficult to perform on dispersive states, and
for the moment it works sufficiently well only on molecular orbitals [31,32]. Furthermore, it
would be required to combine spin resolution with UPD. Another way to obtain r would be a
careful quantitative analysis of linear dichroism, which however is not often feasible because
of difficult control of light intensity for different light polarizations. Therefore one needs to
estimate the value of r = Ry/R;, and a possibility is r = E||/E,, where it is assumed that the
weights of the two interfering terms in the state under investigation are the same. Else, if
they are known for example from calculations, they could be taken into account to modify the
estimate of r.

Once r is estimated, it is possible to proceed to calculate the EWS time delays in the fol-
lowing way. The measurement of P gives information on both P and n, which determines t.
Now c(r, t) is given, and from Eq. (14) one can calculate ¢; = arcsin(P/c). In order to vary
E;, one could think of varying the incident photon energy hv, as it has been routinely done
for atomic photoionization [34, 35]. For a dispersive band of a solid, however, this leads to
the complication of accessing a different point of the Brillouin zone, since it corresponds to
varying the probed k,, and it can be an issue when looking at dispersive bands along k,. In
general, matrix element effects related to cross-section can lead to strong variations of photoe-
mission intensity with photon energy. Furthermore, there are technical limitations in varying
the photon energy in an experiment where high accuracy is required. Changing the photon
energy requires the change of many experimental parameters and introduces changes in the
photon beam (energy, intensity, polarization, focus, position) as an additional error source. In
practice, the set of different photon energies can only be precisely determined if one measures
the position of the Fermi level. Nevertheless, there is another way of changing the kinetic
energy E; of the photoelectrons from a dispersive state, that is by looking at different binding
energies E,. This can be performed by changing just one experimental parameter with high
accuracy. In this manuscript only this approach will be considered. Henceforth a dot will rep-
resent the derivative with binding energy: " — ddTb = —ddi. Under the assumption that r is a
constant with Ej, any change of P(E}) directly corresponds to a change of ¢,(Ey).

At this point one can thus evaluate ¢, for various Ej, and then compute the interfering
EWS time delay as 75, = —H¢,. Now, by using Eq. (8), it is possible to compute w (r, ¢,(Ej))
and finally obtain the scattering EWS time delay Tgys. Noticeably, since w depends on Ej,
also 7 gy will. However, given that the value of P and its variation with E; is expected to be
relatively small, such dependence will not be large.

It is insightful to now consider a different approach, where an estimate for a finite lower
limit of 7%,,¢ can be found without relying on the knowledge of the value of r. Starting from
the expression of P = P(r, ¢, ), multiplying by i and applying the chain rule in order to evaluate

11
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the derivative with binding energy gives

hP:hfl—l:f+h;—(i¢s, (15)
where the derivative with respect to the relevant angles Q has been neglected (since the vari-
ation of f(0) is negligible in a small 6 range, as already discussed). Since T4, = —f1¢,, this
leads to

T e = - ( _h p

EWS ™ dp/d ¢, dP/d¢, "’
where in the last step the usual approximation i ~ 0 has been used (see Section 3.1). The ex-
plicit expressions of dP /dr and dP/d ¢, evaluated from Eq. (14) can be found in Appendix A.
The result of Eq. (16) will yield to a similar value of 77, as with the direct method discussed
before, by estimating r = E|/E, and evaluating dP/d ¢4(r, ¢, t). However, in order to only
evaluate a lower limit for 77, one can proceed in the following way. First, the absolute value
of both sides of Eq. (16) is taken. The signs of P and dP/d ¢; determine the sign of 73,,;, which
in general can be positive or negative, simply meaning a positive or negative delay of the in-
terfering channel 2 with respect to 1. This distinction is however not very interesting, and it is
very difficult to make sure that all the possible contributions to signs are properly taken into
account, in the formalism as well as in the experiment. It is therefore more useful to look only
at absolute values. Then, it is possible to write

P—idpP/dr)~ (16)

h

[ Fos| = = "
|dP/d ¢l

[P]= max |dP/d ] [Pl=n]P[. an
since |dP/d¢,| < max|dP/d¢,| = 1, where, in particular, the maximum |dP/d¢,| = 1 occurs
for ¢, = nm with n integer and |c(r, t)| = max|c| = 1 (see the discussion of Eq. (14) and the
expression of dP/d ¢, in Appendix A).

This procedure can be extended to the estimate of a finite lower limit for the scattering
EWS time delay |7 gyl from Eq. (8) in the following way:

o1 e P
m(r, ¢, t)| ~ max|m|

; (18)

|TEWS| = |ngws| |W(T‘, ¢’s)| = |

where m = (dP/d¢,) /w. The explicit expression of m(r, ¢, t) can be found in Appendix A.
In this case, though, this function cannot be maximized for every possible value of r and ¢,
since |m| — +oo for (r,t) — (0,0), and therefore it is not possible to directly set a finite lower
limit for |7 gys| from the measurement of P. However, for given values of r and t which will
be different from O (r = 0 in fact means that there is no interfering transitions, and t = 0 is
geometrically pathological), it is possible to evaluate max|m(¢;)| and thus find a finite lower
limit for |Tgys|. Also, by estimating ¢(Ep) = arcsin[P (Ep) /c] from Eq. (14) as previously
discussed, one can find the actual value of [m(Ey)|, and therefore estimate |7 gy s(Ep)| itself.

It can be useful to consider a way to find also an upper limit to the estimates. This is
possible by rewriting Eq. (14) as

=|sing| < 1. (19)

c(r,t)

This inequality can be used to find the range of allowed possible values of r for given P and
t from the measurements, without being limited to the assumption r = E/E,. Therefore one
can use these different values of r in Egs. (17) and (18) to find the largest possible values of
|T%wsl and |Tgwsl|. These values are the upper limits to the estimate of EWS time delays from
the measured values of P and t without any assumption on r.

12
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Noticeably, from Eq. (8) it can be seen that the function |w| is always limited between O
and 1 for ¢, € [—%, +%:|, with the curious consequence that |7 gys| < |T%cl- This might be
counter-intuitive at first; however, as discussed in Section 4, the suggested physical interpreta-
tion of the two EWS time delays is the following: 7y is a purely (half-)scattering time delay,
whereas 7%, accounts for the time delay of the photoemission process. This is because the
two interfering partial channels do not correspond to two separate events, but they together
form the final photoelectron. In addition to this interpretation, it is worth to consider more
carefully the allowed range for ¢,, as discussed in the following.

Previously, it has been mentioned that ¢ and ¢, are defined within [—%, +%] Whereas
this is true for ¢ from Eq. (7), there is no univocal choice for ¢, which only has to be in a
range of 7. If one chooses [0, 7], the function |w| can have values larger than 1, and therefore
it can occur that |Tgys| > [T%,cl. Also, the estimate of max|m(¢;)| is not straightforward
anymore, since for a given r and t there is now a certain ¢, for which |m| still diverges. A
further complication involves the estimate of ¢, itself from Eq. (14), which is not anymore
univocal either, since also the solution ¢, = 7 — arcsin(P/c) becomes possible. It has to be
noted, however, that since My; = R, + Ryel®s from Eq. (7) the choice of the range [—%, +§:|
seems more natural, since it allows the two interfering channels to be combined in a way that
Im [M fl-] can be both positive and negative. Whereas this issue deserves further theoretical
investigation, it will not be considered anymore in the following for simplicity, and only the
range [—Z,+% | will be considered.

In Fig. 3 a summary of the model presented so far can be found. In particular it shows that
by measuring the spin polarization modulus and direction as a function of binding energy for a
certain dispersive state, and with the assumption i ~ 0, one can estimate the lower and upper
limit of the interfering EWS time delay |7},,s|. With the further assumption r = E,/E,, or
knowing r from calculations or other experiments such as UV photoelectron diffraction, then
one can evaluate |13, | itself. Using Eq. (8) also the scattering EWS time delay |7 | can be
obtained.

3.1 Influence of the radial terms on the estimate

In order to find a good estimate of the time delays, in the previous Section it has been discussed
how a reasonable choice for the value of r would be r = E;/E,, but other estimates of r are
possible. In Fig. 4 the dependence of |13,,¢| and |7 gys| on r is shown for a given value of P
and for different values of t and ¢,, whereas in Fig. 5(a) the values of P, t and ¢, are the
ones found in the experiment on the sp bulk band of Cu(111) presented in Ref. [39]. Since
¢, varies with E;, the different plots of Fig. 4 for different ¢, should be considered when the
values of |73,,s| and |7 gyg| are evaluated for different Ej,.

Furthermore, in the previous Section the assumption that the parameter r = R,/R; does
not vary with binding energy (+ ~ 0) has been made. In the following, this assumption will be
discussed. The ratio r = R, /R, depends both on the geometry, i.e. on the projection of the E
field vector onto the crystal surface, and on the electronic state composition in terms of double
group symmetry representation. In order to measure spin-resolved MDCs through a dispersive
band at different binding energies, the angle 6 will be different by only a few degrees within
the whole band. Thus, since E|/E, = tany = tan(45°—0), a small change of 6 will not
sensibly affect r for different E;. As for the state composition, in principle one could have a
strong variation of matrix elements within the band under special circumstances, for instance
along very low symmetry directions or where states are hybridized with neighbouring bands.
However, for a well defined band within a small E; range, it is reasonable to assume that its
double group symmetry representation does not sensibly vary when the state is considered
along a certain high symmetry direction. Experimentally, a good hint to make the assumption
i = 0 is to observe I,,, ~ 0 [see Eq. (13)].
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P = P(¢s(Ep), T(Ep), t(Ep) )A(Ep)

From measurements, t and 7 do not vary with E},
Assumption: 77 = 0

. [P(E)
» ¢s = arcsin [c(r,lz)]

I P(¢S(Eb)'r' t)n = C(T' t) Sln(¢s(Eb)) n :::“--..) |P/c(r,0)] = |sin(ps)] < 1> values of r are limited in the
l range R = {F: < 1}

. dP .
e AP =~ hrqbs(l)s

P
c(r,t)

Interfering EWS time delay: 75, = —hds

Lower limit:
[tews| = 7|P|

Evaluate:

—hP

Tpws =
EWS dP/dd)s

) Assumption: 7 = 2! = tan(y — 6),
hP| v

ITewsl ~ 755 or value from calculations
Measure: : |E(r, t, ¢s) or other experiments
P(Ep) — find P s
fl — find t —
Upper limit:
M p—

min
TER

5 68

Figure 3: Summary scheme for the estimate of |7},,| from the measurement of P.
Modulus and direction of P are determined by both crystal properties and experi-
mental setup. Measuring P(E;) and assuming 7 ~ O one can estimate the lower and
upper limits of |7%,;,s|. With a further assumption for r, one can evaluate |13, | itself.
See the text and also Ref. [91] for more details.

On the other hand, it is still possible to consider the more general case where 7 # 0. In
such a case, a variation of P with Ej, is due to a time delay (¢,), but also to a change of matrix
elements ratio within the band (), as shown by Eq. (15). Also, Eq. (8) is modified as in the
following:

) N ki (dP/dr —w'm)

m

TEws = Trws* W, ¢5) —fii - w(r, ¢5) = (20)
where the last step is obtained by inserting the full form of Eq. (16). The explicit expression of
the function w'(r, ¢,) is reported in Appendix A, together with all the other functions that have
been introduced. In Fig. 5(b) the effect of i on the estimate of time delays is shown, where
| 735l and | T gys| are plotted as a function of 7 for given values of r, P, t and ¢,. Noticeably,
in this case there are values for which the time delays are zero, which means that the variation
of P with E; is entirely due to variation of the radial part of the matrix elements. The most
general situation will correspond to variations in both phase shifts (i.e. time delays) and radial
parts. Also, it is important to point out that there exist values of 7 for which |7 gysl > |T%l-

3.2 Spurious effects

In the case of photoemission from solids there might be additional effects other than the in-
terference described in this publication that will modify the spin polarization vector. These
spurious effects can be due to diffraction through the surface, or to scattering with defects of
the crystal during the transport to the surface. The formalism described until here will be mod-
ified in the following way. The spurious effects are modeled by a spin polarization term 7, such
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Figure 4: Time delays |7}, [(2), (c)] and [T gys| [(D), (d)] plotted as a function
of r for two values of t: t = 0.28 [(a), (b)] and t = 0.6 [(c), (d)]. Every figure
shows several plots for different values of ¢, ranging from 0 to /2 (same trend for
¢, ranging from 0 to —m/2). The value of P is P = 0.04 eV 1.

that the measured spin polarization vector P,, is given by P,, = P + 1), where P = Pn is the
actual spin polarization given by the interference effects under consideration. The vectorial
sum could lead to a rotation of the direction of P, with respect to n, thus making it difficult
to determine both the relevant quantity P and the direction n itself, which is used to evaluate
the parameter t. In fact, one should now write the two components of P,, as P, = P + 7"
and P = nP, where n and p stand for along and perpendicular to n, respectively. Clearly, in
general the results presented in the previous Sections are not valid anymore; however, it is
possible to make the following two considerations.

o First, one can at least use Eq. (17), where only the derivative of P with binding energy
appears, and consider the fact that spurious effects related to scattering will not strongly
depend on kinetic energy. Thus it will be possible to proceed with an estimate of the

lower limit of [T}l

e Second, diffraction effects will strongly depend on experimental geometry. It is possi-
ble to exclude an influence of these effects by measuring the spin polarization from a
state of the crystal which is expected not to be dependent on experimental geometry,
and showing that there is no variation. This is the case of core levels of the crystal,
which will behave as in the case of photoionization of atomic levels [37] so that the
spin polarization will not depend on the actual orientation of the crystal with respect to
the incoming light. Therefore if this spin polarization does not change when measured
with different orientations, it is possible to conclude that the surface does not affect the
spin polarization signal with diffraction effects. This situation has been shown for the
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Eigure 5: (a) Plot of |Tgys| (blue) and |T§5WS| (red) as a function of r, for

P =0.04eV!, t =0.28 and ¢, = 0.1, where in this case 7 = 0. (b) Plot of | gyl
(blue) and |T§5WS| (red) as a function of 7, for r = 0.67 and same values as in (a) for
the other parameters [from Egs. (26) and (27)].

experiment on Cu(111) presented in Ref. [39] by looking at the Cu 3p core levels.

In the discussion above we have considered all possible influences for the sake of complete-
ness. However, in a carefully designed experiment most of these effects can be eliminated or
reasonable assumptions can be made.

3.3 The case of a spin polarized initial state

The results presented in the previous Sections concern the spin polarization arising from in-
terfering channels in the matrix elements in the case of a spin-degenerate initial state. The
situation is in close analogy with the case of scattering of an unpolarized beam of electrons,
which acquires spin polarization because of the interference of the different partial wave com-
ponents. However, there exist certain classes of materials with an initial state that is already
spin-polarized, so that there is a preferential direction in space where the spin of the electrons
will point. The question is, how will this spin behave during the photoemission process. There
is a number of cases where it has been shown that, indeed, the spin polarization that is mea-
sured does not directly reflect the one in the initial state, but it is affected by the particular
experimental conditions [65,92]. It is natural to ask how the interference effect previously
presented will affect a spin-polarized state, a question which has not been much investigated
in the literature.

A proposal to address the issue of spin polarized initial states is the following. Along
the lines of the electron scattering picture, one should consider the case of the scattering
of a spin-polarized electron beam. It is reasonable to assume that the spin polarization of
photoelectrons will be modified in a similar fashion as in the case of scattering. The behaviour
of spin-polarized electrons in elastic scattering is well known in literature [33]. In general,
the spin polarization vector of an electron beam rotates and also changes its modulus upon
scattering. However, in the particular case where P = 1, it will only rotate without modifying
its modulus. This is very interesting when considering the analogous case of photoemission
as a half-scattering process. It shows that if the photoelectron beam is expected to have a spin
polarization P = 1, as is often the case [93], the interference effect of the different channels
in the matrix elements will not modify the modulus of P, but it will only rotate its direction
from the expected one. Indeed, in a real experiment, the measured spin polarization very
rarely points exactly along the direction that is expected from theory, but it is often canted
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by small angles in different directions depending on the actual experimental geometry. Such
observation could be explained by taking into account the interference effect described in this
publication.

4 Discussion and conclusions

The chronoscopy of photoemission is a fundamental topic in modern physics [6]. Time-
resolved photoemission experiments show that the time scale of the process is in the attosecond
(1078 ) domain, which is the natural time scale of atomic processes. The direct measurement
of a finite relative time delay between different photoelectron beams suggests the existence of
a finite absolute time delay of photoemission for each beam, even though this issue has been
experimentally addressed only recently and still relies on comparison with theoretical calcu-
lations [25,26].

A different, complementary approach to the chronoscopy of photoemission has been sug-
gested to be through the spin polarization of the photoelectrons [38]. In fact, attosecond
time delays in the photoemission process and the spin polarization of photoelectrons are both
related to the phase information in the matrix elements!. The relationship between spin po-
larization and time delay in photoemission from solid state targets has been investigated in
this publication, with particular focus on dispersive spin-degenerate states. Both quantities
can been modeled by considering the photoemission process as an electron half-scattering
process, which highlights the central role of the phase shifts. In particular, the relationship
between the two phase terms has been shown: ¢, corresponding to the full matrix element,
and ¢, = ¢, — ¢, corresponding to the relative shift between two interfering channels. Cor-
respondingly, the two time delays 7y and 7%, have been introduced. It has been shown
how to estimate, under certain assumptions, these two quantities for a dispersive band from
the measurement of P, the variation of spin polarization with binding energy, and with an
accurate description of the experimental geometry.

Taking all these points into account we can have a closer look at the experimental data for
Cu(111) presented in Ref. [39] and extract values for Tgys and 7%,,,. The various parame-
ters obtained from the measurement of modulus and direction of the spin polarization vector
as a function of binding energy E; for the sp bulk band of Cu(111) are: |P| ~ 0.04 eV 1,
r =E|/E, = 0.67, t = 0.28 and ¢(E;) varying from 0.1 to 0.2. However it can be checked
[see Eq.(23) ] that this variation leads to a negligible variation in the estimate of the time
delays, therefore only one can be considered. With all these values, from Eq. (17) one can
estimate |T§5WS| > 26 as, but also |T5EWS| A 26 as from Eq. (16) because of the combined op-
timum of r and t yielding ¢ ~ 1. Similarly, from Eq. (18) one obtains |Tgys| ~ 11 as. If one
does not evaluate r = E;/E, but allows different values for r, the estimates of the time delays
will be different. Then it is possible to set an upper limit as discussed in Section 3.1. From
Eq. (19) one finds r,,,,, = 12.1 by using ¢; = 0.1 and r,,,, = 6 by using ¢, = 0.2. Under
the assumption 7 ~ 0O the largest possible value of r is r,,,, = 6, which gives |T§5WS{ <134 as
and |Tgws| < 115 as. It should be mentioned that the estimate of an upper limit for |T%Ws~ as

! The interconnection between time, phase and spin triggers some sort of chicken-or-egg philosophical question.
On one side, one could consider the absolute time delay of photoemission as a fundamental property of the process,
since it is necessary to have some finite time lag between the initial and the final state, even in the one-step model
picture. Then the time delay requires a certain dependence of phases on energy according to Eq. (3), and as a
consequence they determine a certain spin polarization according to Eqs.(7) and (6). On the other hand, one could
think of the phase term of the matrix element describing the transition to be the fundamental quantity determined
by the process, and then, as a consequence, time can be considered as an emergent property, at the same level as
the spin polarization. This second view, even if less intuitive, has some similarities with other descriptions of the
nature of time in different fields [94].
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reported here is more precise than the one in Ref. [39]. To summarize, the following estimates
of EWS time delays for the sp bulk band of Cu(111) have been found: 26 as< |T§EWS’ <134 as
and 11 as< |Tgys| < 115 as. Furthermore, by assuming r = E;/E, one finds ’T%Wsl A 26 as
and |Tppws| ~ 11 as.

For the experimental data for the cuprate superconductor Bi,Sr,CaCu,0Og,5 in Ref. [40]
such a detailed analysis is unfortunately not possible, because accurate values for ’P\ and t
cannot be obtained. Therefore it is only possible to give the following estimates for a lower
limit: |T§5WS| > 85 as and | Tyl = 43 as [91]. These significantly longer time scales compared
to Cu raise the question about the influence of correlations on the time delay. However, this
requires more detailed measurements and is a topic for further research.

Two points need to be clarified about the applicability of the methodology presented here.
First, if in a particular case no interference occurs in the matrix element (for example, r — 0 or
r — 4+090), then no spin polarization is produced in the photoemission process. The phase term
¢s would not be well defined, and therefore 7%, neither. However, a time delay might still
take place, just it would not be accessible by spin-resolved ARPES. Second, whereas this paper
has dealt mainly with the case of spin-degenerate initial states, it is possible to extend this
approach to the case of spin-polarized states, as outlined in Section 3.3. Interference effects
will be concealed though, since they will contribute only to a small degree of polarization when
a spin quantization axis is well defined by the physics of the initial state. This remark explains
why, whereas SARPES measurement very often confirm on a qualitative level the theoretical
predictions made on the physics of the initial state, still a a small rotation of the measured spin
polarization away from the expected one is quite common.

Another important comment about the methodology presented is that it allows to extract
the time information also from non-time-resolved calculations, as long as spin-resolved one-
step photoemission calculations are considered. In fact in this case the photoemission matrix
elements are fully described, and therefore the phase information is calculated and processed.
This can be very powerful when employed on systems that are experimentally difficult to probe
with time-resolved or spin-resolved ARPES, and shows in general that it is possible to improve
the understandings of photoemission calculation outputs. This approach could prompt further
advances in photoemission theory.

It is important to underline the nature of the interfering transitions responsible for the
spin polarization. In the case of atomic photoionization, they correspond to the two final par-
tial waves with orbital quantum number £ — ¢ = 1. In solids, on the other hand, they are
given by two mixed spatial symmetries of the considered state in the double group symmetry
representation, both in the initial and final states [83, 86], that are selected by the in-plane
and out-of-plane components of the electric field of the light [88]. In any case, the interfering
transitions are different photoemission channels which do not correspond to different photoelec-
trons, as in the case of time-resolved experiments, but they together build up the photoelectron
wavefunction. As analogy, one could think of the well-known double slit experiment: also in
this case the interference does not occur for two different particles, but each single particle has
a behaviour that is result of the interference of the different possible paths. A similar interfer-
ence mechanism has been proposed for a double slit experiment in the time domain instead
of the space domain, for below threshold photoemission experiments using phase-stabilized
few-cycle laser pulses [95]. Also in this case the interference is described between different
channels of the same photoelectron passing into different time slits, and not between two
different photoelectrons.

An interesting point of view on time delays in photoemission is given by the so-called time-
dependent configuration-interaction with single excitations (TDCIS) calculations [96]. It has
been shown that the coherence of the hole configurations in atomic attosecond photoionization
is strongly affected by pulse duration and energy, as well as by the interaction of the ion with
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the outgoing electron [97]. This is because the so-called interchannel coupling mechanism
[98], i.e. the interference of different ionization channels mediated by the Coulomb interaction
with the electron, results in a enhanced entanglement between photoelectron and ionic system,
which last for a time delay in the attosecond domain [97]. An equivalent coupling mechanism
should occur in dispersive states of a solid, where in addition intrinsic plasmonic satellites [99]
might play a role.

At this point it is necessary to discuss the physical meaning of time delay in photoemission,
and in particular the two quantities 73,,; and Tgys. In the three-step model of photoemission,
it is easy to identify at least one step where a time delay takes place, that is in the second
one. However, this travel time of the electron during the transport to the surface [99, 100]
should not be considered in the model for the EWS time delays presented here. In fact, the
additional logarithmic correction term corresponding to Aty, in Eq. (4) strongly depends on
the distance traveled by the electron, but it does not give any contribution to the interfering
channels since it takes place only once the photoelectron is formed. This is reflected in the fact
that the measured P does not change for different kinetic energies of the electrons, at least
within the experimental capabilities, as observed for the sp bulk band of Cu(111) in Ref. [39].
In literature, the interpretation of time delays in photoemission is often made in terms of
particle trajectories, since the description of EWS time delays can be made in close analogy
with classical mechanics [46,101]. Whereas this approach elucidates the meaning of the EWS
formalism, ultimately one should consider that the three-step model and classical trajectories
are just a simplification, and as such they should be extended to a fully quantum description.

In this sense, the one-step model is a better candidate, even though it has only been devel-
oped for the description of the energetics of the photoemission process and not its dynamics.
In fact, it is difficult to tell which process among photon absorption, electron virtual transition
and actual photoelectron emission might occur in a finite time. Indeed the influence of the
time evolution of the E field on the phase shifts is under debate [102-104] and there might
exist a time-threshold for light absorption. A finite decoherence time required by the wave-
function to be formed in the final state might also be an issue to consider [105]. Lastly, once
the final state wavefunction is formed above the vacuum level the electron could spend a finite
"sticking" time before reaching the free-particle state. In other words, the final state wavefunc-
tion will evolve in time such that the density of probability will move from the absorber site
towards the outside of the crystal (in analogy with the tunneling process, where the particle
wavefunction is already present on both sides of a potential barrier). The last part seems to
be the one that better matches the half-scattering picture, but this separation is only artificial,
since the process takes place as a whole.

Mathematically, the two EWS time delays 7}, and Tgys correspond to the time delay
between the interfering channels and the time delay of the scattering process in the sense of
EWS, respectively. However, as already mentioned, the two interfering partial channels do
not correspond to two separate events, but they together form the final photoelectron, and
thus the interfering time delay should be associated to the time scale of the whole process. In
Refs. [106,107] it is discussed how an EWS time delay in photoemission only takes into account
the pure scattering delay when the whole phase term is considered. Thus 75 corresponds
to tgwssc of the scattering model [see Eq. (4)]. On the other hand, if an interference phase
term is considered, then the time delay can be seen as a formation/release time and not only
as a scattering delay. In Refs. [106,107] the interference is considered between two photon
transitions. It is speculated here that the same idea holds for the interfering partial channels
of the matrix elements. Therefore, Ty accounts for a time delay that is purely due to the
(half-)scattering part, whereas 73}, is the time delay of the actual photoemission process as
a whole. This argument can explain why, as mentioned in Section 3, |7%,,4| is actually always

larger than |7 gys| for ¢, within the chosen range [—%, +%] On the other hand, as mentioned
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in Section 3.1, there exist the possibility that |7 gys| > |7}l for certain values of 7 # 0,
therefore the relationship between the two time delays certainly deserves further theoretical
investigations. In particular, it is important to notice that in Eq.(7) the choice ¢; = 0 has
been made. Therefore both ¢ and ¢, are defined with respect to the same reference, such
that ¢; = ¢. Thus 73, refers to the time delay between the partial channels that together
build up the final photoelectron, and can be seen as a description of the time scale of the
photoemission process, i.e. the time it takes for the formation of the photoelectron from the
interference of different transitions.

The possible different signs of all the phases lead to time delays that can be positive or
negative. In the electron scattering model, the time delay can indeed be negative, meaning
that the process is such that the actually scattered electron leaves the sticking region earlier
than an electron that would not feel the scatterer potential. This would be correct for the
quantity T gy, whereas 7%, should always be positive given the interpretation presented
here. In fact the meaning of 7%, < O is just that ¢, < ¢;, which does not have a direct
physical significance. Because of this, and because of the difficulties of carefully determining
all the possible sources of a positive or negative sign of the phases in the model and in the
experiment, only the absolute value of the EWS time delays has been considered.

A clear limit of the indirect access to time delay presented in this publication is the necessity
of having quantitative information about the spin polarization for possibly all the three spatial
components. Given the extremely low efficiency of spin detectors, the required experiments
are highly time-consuming, and therefore a systematic approach is rather difficult.

Finally, a possible future development is the following. By combining time-resolved tech-
niques with the measurement of spin polarization, one could cross-compare the different es-
timates of time delays and have a reliable reference for time-zero. An attosecond- and spin-
resolved photoemission experiment could allow to time the formation of the spin polarization
during the photoemission process, tackling the entanglement of the photoelectron with the
photohole left in the system, and thus shedding light on the meaning of time delays in quan-
tum mechanics on a very fundamental level.
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A Expressions for the estimate of time delays

In Sections 2-3 several functions have been defined but not calculated, since they are lengthy
and not very insightful in their explicit form. For completeness, they are reported in the fol-
lowing. By taking the derivative of Eq. (7) with respect to kinetic energy one obtains eq. (20),
where the two functions w(r, ¢,) and w’(r, ¢,) are given by:

. r(r+cosg)
w(r, ) = 1+2rqos¢s+r2 ’ @
Wr, ;) = ——Sn®s (22)

1+2rcosg,+r2’
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In Eq. (14) the function c(r, t) has been defined, such that P = ¢(r, t) sin ¢,, where t = tan(}f’ / 2).
In the expressions for the estimates of the EWS time delays, it is necessary to evaluate the
derivatives dP/d ¢, and dP/dr. They are given by:

dp dsing, ~ —4t(1—¢*)r
i, ‘"4, Taeereaoep P @3)
—at(1— )[4z =2 (1-2)?
dP _de(nt) ;oo — (-2 ( )]sinqbs. 24)

dr—dr (42 +r2(1—e2)° T

The function m = (dP/d¢,) /w is introduced in Eq. (18) for the estimate of |Tgyg|. Its full
expression is given by:
—4t cos ¢, (1 - tz) (1 + 2r cos ¢ + rZ)

mr, ¢ t) = (r +cose,) [4t2 + 12 (1—t2)2]

(25)

Finally, Eqs. (16) and (20) give the expressions for 7%, and Tgys. By combining all the
previous equations, one obtains the following explicit forms:

a4 r2(1- %) 482 —r2(1-¢2)?

e =HP —————"sec¢p, + if ——————————tan ¢, (26)
EWS 4rt(1—1t2) o 462 +r2(1—12)?] #

TEWS =

|:4t2+rZ (1—t2)2](r+cos¢s)sec¢s . .4rt(1—t2)|:4t2—r2 (1—t2)2—2r(1—t2)2 cosd)s]sinqbs
4t (1—t2)(142r cos ps+12) P (r+cos ¢) [4t2+72 (1—t2)2:|2 ’ @7

where the dependence on P and i has been highlighted. As an example, for t = 0.28, r = 0.67
and ¢, = 0.1 [values obtained for the sp bulk band of Cu(111) from Ref. [39]] these last
two equations yield 73, ~ AP — 0.0147 and Tpys ~ 0.47%s as plotted in Fig. 5(b) for
P=0.04ev "

B Multiple channel interference

A more complex scenario can be considered where more than two channels are available and
interfere in the photoemission process. Only two channels have been considered for simplicity,
and the results can still be applied to a more general case with the simplification of consid-
ering two virtual channels that will mimic the actual more complex process. It is in principle
possible to analytically expand the model presented to a multiple channel scenario, however
the expressions would become very heavy. It would require a modification of Egs. (7) and (6)
for the description of the phases and the spin polarization, respectively. Also, a generalization
of Eq. (3) for the definition of the time delay is required [6]:

)| o
Zq n dEf ‘M}ll’
TEws R 3 ) (28)

M,

where the sums are carried out for all the quantum numbers q of the remaining electrons
system in the final state. The approximation consists in neglecting the energy derivative of the
radial part R of the matrix elements (similarly to what it is discussed in Section 3).
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