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Abstract

We consider the dimerized spin-1 XXZ chain with single-ion anisotropy D. In absence
of an explicit dimerization there are three phases: a large-D, an antiferromagnetically
ordered and a Haldane phase. This phase structure persists up to a critical dimerization,
above which the Haldane phase disappears. We show that for weak dimerization the
phases are separated by Gaussian and Ising quantum phase transitions. One of the Ising
transitions terminates in a critical point in the universality class of the dilute Ising model.
We comment on the relevance of our results to experiments on quasi-one-dimensional
anisotropic spin-1 quantum magnets.
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1 Introduction

It is well established that quantum effects in one-dimensional antiferromagnetic (AFM) spin
systems lead to interesting physical phenomena. While a uniform Heisenberg chain is gapless
for half-integer spins, an exotic ground state with a finite gap appears for integer spins [1]. For
spins S = 1, this Haldane phase can be understood in the framework of the Affleck-Kennedy-
Lieb-Tasaki model [2, 3], whose exact ground state can be constructed in terms of valence
bonds, i.e., singlet pairs of S = 1/2 spins. Meanwhile, the Haldane phase is recognized as a
symmetry-protected topological (SPT) state [4,5] and attracts continued attention from both
theoretical and experimental points of view. For instance, the Haldane gap was confirmed
experimentally in a compound with Ni?* ions Ni(C,HgN,),NO,(ClO,4) [6,7], in which a small
value of the single-ion anisotropy D was reported [8]. A minimal model for the description of
such anisotropic spin-1 chains is

Hyxzp :JZ(gj '§j+1)A +DZ(§§)2, (D
j j

where (.§j . §j+1)A = §]’.‘§]’F+1 + 3}3@}21 + A§JZ.§JZ.+1. Assuming a positive exchange parameter
J > 0 and A > 0, the ground-state phase diagram exhibits three gapped phases [9]. At the
isotropic point (D = 0 and A = 1) the model is in a Haldane phase. A sufficiently strong
single-ion anisotropy D/J induces a Gaussian quantum phase transition (QPT) with central
charge ¢ = 1 to a topologically trivial large-D (LD) phase. On the other hand, increasing A for
fixed D = 0 from the isotropic point leads to a Ising QPT with ¢ = 1/2 to a long-range ordered
AFM phase. At larger values of A and D there is a first order transition between the LD and
AFM phases.

A natural extension of the spin-1 XXZ chain (1) is the introduction of an explicit bond
alternation

H:HXXZ,D +J25(_1)](§]'§]+1)A' (2)
J

Interestingly this model realizes dimerized versions of the same three phases as the one de-
scribed by Eq. (1), namely, dimerized Haldane (D-H), AFM (D-AFM) and LD (D-LD) phases.
The case D = 0 has been studied previously [10, 11] and it was found that the D-H to D-LD
transition is again of the Gaussian type, but the entire D-AFM-phase boundary, including the
transition to the D-LD phase, belongs to the Ising universality class. A key question is how the
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criticality at the phase boundary changes, if both D and 6 are finite. Earlier studies of half-
filled Hubbard-type models realizing SPT insulating and long-range ordered (charge-density-
wave) phases [12-14] indicated a transition line that is separated into continuous Ising and
first-order QPTs. The meeting point of these lines belongs to the tricritical Ising universality
class with ¢ = 7/10, which can be described by the second minimal model of conformal field
theory [15,16].

In this paper, we determine and analyze the ground-state phase diagram of the extended
model (2) by means of field theory and matrix-product-state based density-matrix renormal-
ization group (DMRG) [17, 18] techniques, focusing on the quantum criticality at the phase
boundaries. By calculating the central charge c, we provide compelling evidence for the ex-
istence of a critical point in the tricritical Ising universality class. Field-theory predictions
for the phases and the nature of the phase boundaries of the model (2) with both single-ion
anisotropy D and bond alternation 6 are shown to be in excellent agreement with numeri-
cal simulations. Finally, we discuss the relevance of our results to experiments on dimerized
spin-1 materials [19].

2 Ground-state phase diagram

Let us first describe the numerical method we have used to determine the phase boundaries of
the model (2). By means of the infinite DMRG (iDMRG) [20] a characteristic correlation length
&, can be calculated. While this &, is always finite for fixed bond dimension y, it strongly
peaks at a critical point and therefore allows for an accurate determination of QPT points, see
Appendix B. This approach was already applied to half-filled Hubbard-type models [12-14].

In order to identify the different continuous phase transitions occurring in the model (2),
we calculate the corresponding central charges c via the entanglement entropy. For a critical
system with L sites and periodic boundary conditions, the von Neumann entanglement entropy
of a contiguous block of £ sites with the rest of the system is S; (¢) = 5 In [% sin (”Te)]+sl, where
s, is a non-universal constant [21]. An accurate determination of the central charge is possible
by using the relation [13,22]

3[S,(L/2—2)—S;(L/2)]
In{cos[7/(L/2)]} ’

where in view of the explicit dimerization the doubled unit cell has been taken into account.
Calculating the central charge numerically via Eq. (3), the universality classes of the QPT
points are confirmed; this is demonstrated in Appendix B.

For iDMRG simulations typical truncation errors are 10~'2, using bond dimensions y up to
1600. In the case of finite-system DMRG calculations with periodic boundary conditions, e.g.,
by estimating the central charge via Eq. (3), the maximal truncation errors are about 10~°,
with y up to 6000.

Figure 1(a) shows the ground-state phase diagram of the model (2) for 6 = 0.1. For weak
dimerization, the D-H phase survives between the D-LD and D-AFM phases. In contrast to the
model without dimerization, however, the transition between the D-LD and D-AFM phases is
continuous below a critical end point (A, D../J)~(3.90, 3.64). Like the D-H=D-AFM line,
this part of the transition belongs to the Ising universality class with central charge ¢ = 1/2,
except for the critical end point, which belongs to the universality class of the tricritical Ising
model with ¢ = 7/10. A tricritical Ising point at which the transition becomes first order
is not observed in the dimerized model without single-ion anisotropy, simply because in this
case the transition between the D-LD and D-AFM phases is always continuous. At the phase
boundaries involving the Haldane phase, the universality classes are the same as in the non-

c*(L) =

(3)
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Figure 1: (a): Ground-state phase diagram of the model (2) for 6 = 0.1. The error
bar of the tricritical (Ising) point is smaller than the symbol size. (o) denotes the
third Ising order parameter, determining the Ising QPT between the D-H or D-LD
phase and the D-AFM phase. (b): Numerically obtained central charge c¢*(L) on
various phase transition lines from Eq. (3) with L = 128 and periodic boundary
conditions.

dimerized model. Now the tricritical point, where the Haldane phase vanishes, is at (A,
D /J)~(2.58, 2.22). For 6 # 0, the central charge at this point is ¢ = 1.

In the following, combining field theory and DMRG, we discuss various QPTs, including
the direct Ising transition from the D-LD to the D-AFM phase.

3 Field-theory approach

In order to obtain a field-theory description of the model in the vicinity of the various phase
transition lines we consider the Hamiltonian

Hee = H-JY (1-a)8;-8;:1)%, 4
J

which differs from Eq. (2) by an additional biquadratic exchange term. A field-theory descrip-
tion of the model (4) can be constructed in the vicinity of the Takhtajan-Babujian point [23,24]
(a=0,6=0,D=0,A=1and A’ = 1) following Ref. [25]. This leads to a Hamiltonian
density of the form
N R A oA A 2 ag A
o= > S Ladilo R R, ) —imeRo L + D g JU+ 2616262, (5)
a=1 a=1
where L, and R, are left and right moving Majorana fermions, &¢ are three Ising order pa-
rameter fields and
J¢=—(i/2)e®*[L L. + RyR ). 6)

The parameter A in # is proportional to the dimerization & and by virtue of the U(1) symmetry
of the microscopic Hamiltonian (4) we have v; = v,, m; = my = m, and g; = g, = g.

4
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The masses m and m5 are functions of D and a. The functional form of this dependence is
only known in the vicinity of the Takhtajan-Babujian point and in what follows we therefore
take my and m as free parameters, which we adjust in order to recover the structure of the
phase diagram obtained by DMRG. Our main working assumption is that the field theory (4)
remains a good description of the low-energy degrees of freedom in the vicinity of the various
phase transition lines in the microscopic model even far away in parameter space from the
Takhtajan—-Babujian point. We note that an alternative way of deriving a field theory proposed
by Schulz [26] leads to equivalent results. A third approach would be to develop a field-
theory description around the SU(3) symmetric point of the spin-1 chain [27-30], but we do
not pursue this here. The relation between lattice spin operators and continuum fields is

§Ja ~ M%(x) + (1Y A%(x), 7

where x = ja, (ag is the lattice spacing). The smooth components of the spin operators are
proportional to the currents M%(x) o< J%(x), while A%(x) are expressed in terms of Ising order
and disorder operators as

A%(x) o< SO)RA)R3(x), (8)
AY(x) o< Al(x)62(x)a3(x), 9
A*(x) o< AR (x)63(x). (10)

In order to facilitate comparisons between field-theory and iDMRG results for the lattice model
it is useful to define lattice operators

$o 482 S — 8¢

ra J j+1 po (. 1NjJ j+1

i =S, = (1Y (an
At long distances we have
e ~ M%(x), A~ A%(x) . (12)
It is convenient to use the U(1) symmetry to bosonize
A A . a ~ a 1 . .

Ll + 1L2 ~ 6_11/4_11-471“ B R]_ + j'RZ ~ —elm%‘ . (13)

v/ 7Ta0 v/ Tfao

In terms of the corresponding canonical Bose field & = (3; + ¢ and the dual field © = ¢ —¢;
the field theory (5) reads:

H o= Hy+Hp+Hine, (14)
A 1V 4 A R N A
Hy = ?S[L:saxLa* —R30,R3]—im3R3Ls, (15)
A vI[1 A9 Ao m A
Hy = —|—=(0,9)+K(0,0) |- ——cosv4and, (16)
21K Ta,
A 2i Aen A N
Hine = 218 cos(V4nd)L,R; + A’ sin(vd)63, 17)
may

where K is the Luttinger liquid (LL) parameter.

3.1 Renormalization group analysis

The most relevant perturbation is always the dimerization, and concomitantly at weak cou-
pling the A’ term reaches strong coupling first under the renormalization group (RG) flow.
This results in a non-zero dimerization

A 1 A A ‘A oa
j

5
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For later convenience we define a lattice version of the normal-ordered dimerization operator

d. = Di*Djn _ (

g 2

To see what happens after the dimerization perturbation has reached strong coupling we con-

sider the next most relevant operators, which are the Majorana mass term and the cos-term

in the bosonic sector. Assuming that we have m > 0, what happens then depends on the sign

of the Majorana mass term mg. If it is positive the third Ising model is in its disordered phase

(63(x)) = 0, while m3 < 0 implies that (63(x)) # 0. In the latter case the strong coupling

RG fixed point is amenable to a mean-field analysis. The term %, coupling the bosonic and
fermionic sectors can be decoupled, e.g.

d). (19)

&3 (x)sin (vV7d(x)) — (63(x)) sin (v7d(x)) + 6> (x)(sin (V7d(x))) . (20)

This leads to a mean-field description in terms of an Ising model in a longitudinal field and a
double sine-Gordon model [31,32]

Far = 2lhad oy~ Rod, ]~ ifaRoly +h6% + 2 [Il{(axcﬁ)z +K(8xé))2]
_rciao cos(V4nd) + Asin(v/7d) , (21)
where
A = A(6%, h=2Acos(vVand)),
M o= m+2ig(Rsls) nTg=m3+j—i(cos(1/4_7’t<f>)). 22)

The classical ground state of the double sine-Gordon model is obtained by solving
% sin(v4nd,) + Acos(vd,) =0 . (23)
Importantly, this tells us that for m > 0 we have
(cos(vd(x))) #0, (24)
which in turn implies that
(A% (x)) o< (6°(x) cos(v/md)) #0 . (25)

Hence the strong coupling RG fixed point describes a phase where antiferromagnetic order
coexists with dimerization. This is the D-AFM phase identified above by the DMRG.

In the other phases the RG fixed points again occur at strong coupling but cannot be ana-
lyzed in terms of a simple mean-field argument. However, the field theory nevertheless allows
for a description of the various transition lines as shown in what follows.

3.2 Quantum phase transitions

3.2.1 D-LD = D-AFM phase transition line

This corresponds to the situation where the bosonic sector remains gapped, while the third
Ising model undergoes a transition between a disordered phase (63) = 0 on the D-LD side
and an ordered phase (63) # 0 on the D-AFM side of the phase diagram. As a result the D-
LD=D-AFM phase transition is in the universality class of the two-dimensional Ising model.

6
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In the vicinity of the transition we may project onto the low-energy Ising degrees of freedom
following e.g. Ref. [33]. Details are given in Appendix A. This yields

e = A3, 63(x)+..., (26)
T low

i = B&3(x)+..., (27)
T low

d = iCR;(x)L5(x)+... . (28)
low

Along the phase transition line we thus have

(AzAZ,,) = BA V44, (29)
AB
(GAS,) = = (30)
5A2
Ng oAz _ 2 y)-9/4
(mjm]#) = 16£ +..., (31)
and
(didj) =C*2+.... (32)

The predictions (29)—(32) are compared to iDMRG simulations below.

3.2.2 D-H = D-AFM phase transition line

The D-AFM to D-H transition is described by the same scenario as discussed above, since it
also belongs to the Ising universality class with ¢ = 1/2. Accordingly, Egs. (29)-(32) are valid
on this transition line as well.

3.2.3 D-H = D-LD phase transition line

As we cross from the D-AFM into the D-H phase at fixed A by increasing D the (effective)
Majorana mass mj increases. Assuming that this relation continues to hold, the characteristic
energy scale in the Majorana sector can eventually become large compared to that of the
bosonic sector and it is then justified to integrate out the Majorana sector. This leads to an
effective low-energy description in terms of a sine-Gordon model

m*

i = 5 | (@87 +K(8.0P |~ 2 cos(vaTh) (33)

Ty

The main effect of integrating out the Majorana sector is the renormalization of the sine-
Gordon coupling. Importantly, m* can vanish for particular values of D, which corresponds to
a phase transition line described by a LL characterized by the LL parameter K. The low-energy
projections of the lattice spin operators along this line are

&j 1 = Ap cos(«/4n<f>(x))+... , (34)
ow

ﬁjf | = A, sin(«/47t<f>(x))+... , (35)
ow

ﬁj.( = A, cos(ﬁé(x))+... , (36)
low

(5] = AyelVFe® 4 (37)
J low

n ao A
x = —0,® e 38
mJ low ﬁ x (X)+ 8
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This gives the following field-theory predictions for power-law decays of two-point functions

2
(Gh%,,) = Eze—z’w..., (39)
AZ
(AR, = §€_1/2K+--., a=x,y, (40)
(B YG ) = A+, (41)
K
i = —(024..., 2
<meJ+€> 272 (42)
A n A?
d.d, = By 3
( Jj J+€> 2 (4 )

4 DMRG analysis

In this section, we examine various two-point correlation functions of the lattice Hamilto-
nian (2) using iDMRG in order to prove the field-theory predictions described in the last sec-
tion. Then, the topological properties of each phase are discussed by simulating topological
order parameters.

4.1 Quantum phase transitions

ID-LD—D-AFM transition at D/J = 3| D-H—D-AFM transition at D/.J = 1|
1 | ‘ ‘ ‘
" """ O"-@--Q-OO@ _— (a) E (C> ]
[:r~.,u.,,,:’:g““ ]
1072¢
LU
..... Czé*»/-l
""" 03679/1
10°¢
o —2F-e. | | E
| 072 . (d) |
t 4l :.L;L')A’Lgu ) El
ool 10 i e (didjie) ]
-1 105} S~
1 I 10 102
l

Figure 2: The connected longitudinal spin-spin (upper panels) and dimerization
(lower panels) two-point functions at the Ising transition point for fixed D/J = 3
(left panels) and D/J = 1 (right panels) with 6 = 0.1, obtained by iDMRG with
x = 1600. Correlation functions (symbols) show a power-law decay in accordance
with the field-theory predictions Egs. (29)—(32) [lines].

4.1.1 D-LD = D-AFM and D-H = D-AFM Ising phase transition lines

For fixed D/J = 3 and 6 = 0.1 the Ising QPT occurs at A. ~ 3.303 between D-LD and D-
AFM phases as extracted from correlation length £, . At this transition point various two-point

8
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functions can be computed by iDMRG. Here, y = 1600. As shown in Fig. 2(a) field-theory
predictions for diverse two-point functions of z-component spin operators (29)-(31) can be
proved by iDMRG. Figure 2(b) demonstrates that also the dimer-dimer correlation function is
in agreement with the power-law behavior according to Eq. (32) for large distances £ > 1.

The relations between the coefficients in Egs. (29)-(32) can be verified by fitting the
iDMRG data to the field-theory predictions. For instance, in the case of the D-LD<D-AFM tran-
sition at D/J = 3 [Fig. 2(a)], we obtain ¢; ~ 0.381 (B ~ 0.617) and c3 ~ 0.158 (A~ 0.711),
i.e., AB/4 ~0.110, which is in good agreement with ¢, ~ 0.114 from Eq. (30).

Along the Ising critical line separating the D-H and D-AFM phases the long-distance behav-
ior of these correlation functions determined by iDMRG is again in excellent agreement with
field-theory predictions, c¢f. Egs. (29)-(32). A representative example is shown in Figs. 2(c)
and (d) for D/J =1 and A, ~ 1.789.

4.1.2 D-H = D-LD phase transition line

i — (a) " (b) |
i 1 S R ]
......... ol i —1 |
[0 (nfnj.) ] 10 L ey D/L/]/ 11\ ]
ol 4t Ermbng, (@jdjre) 3
gy 1074F [ x (K (K ~ 1'24())‘ A s
10720 T D ] ] i
O e, :
. [¢] M6,
o
. OO
D/J=1] ™2
1074} o,

L[ o 12K (K~ 1.234)
10-6L |7 o MK (K ~1.235)
o 02K (K ~1.246)

1 161

¢ ' D/J

Figure 3: Spin-spin (a) and dimer-dimer (b) correlation functions at the ¢ = 1 tran-
sition for D/J =1 and 6 = 0.1 computed by iDMRG with bond dimension y = 1600.
The extracted values of the LL parameter K are in good agreement. (c) Extrapolated
values of LL parameters K via S(q) of Eq. (44) on the ¢ = 1 transition line for 6 = 0.1,
obtained by DMRG with up to L = 1024 sites and open boundary conditions.

Along the line of Gaussian QPTs separating the D-H and D-LD phases the exponents char-
acterizing the long-distance behavior of correlation functions depends on the LL parameter K
as described in Egs. (39)-(41) and (43). In order to facilitate a comparison to the field-theory
results we therefore require the LL parameter K. For fixed D/J = 1 the Gaussian transition
occurs at A, ~ 1.135. In Figs. 3(a) and (b) we show numerical results of correlation functions
obtained by iDMRG. The values of LL parameters extracted from the fits to Egs. (39)-(41) and
(43) show reasonable agreement with each other.

These values can also be extracted from the long-distance behavior of the smooth part of
the spin-spin correlation function (42), that is, the LL parameter determines the amplitude of
the correlation function but not the exponent. We calculate the longitudinal spin correlation
function and isolate the smooth component from a Fourier transformed structure factor

— 1 iq(G—=0) ( [ &z &2 &z \ [ &z
S(q) = Zze:e ((328)—(32)(32)) (44)
j
for ¢ ~ 0, where g = 27/L. The LL parameter is determined as K = lim,_,o S(q)/q [34].
Figure 3(c) shows the results for the Luttinger parameter K on the ¢ = 1 line for & = 0.1.

9
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At A =1 we have K = 1.215, in reasonable agreement with the values obtained from the
exponents of correlation functions in Figs. 3(a) and (b). Following the Gaussian transition
line by increasing A and D/J the Luttinger parameter decreases and takes the value K ~1/2
at the point when the Gaussian line merges with the line of Ising QPTs.

4.2 Topological order parameters

Let us now explore the topological properties of the phases of the model (2). Following Vi-
dal [35], we use the infinite matrix-product-state representation formed by y x y matrices I,
and a positive real, diagonal matrix A:

W)= D, AL AL 00, (45

...o-j’O-jJrl...

where the index o labels the basis states of the local Hilbert spaces. The T, and A are assumed
to be in the canonical form:

DA =1= TIAM, . (46)
g o

If |1p) is invariant under an internal symmetry represented by a unitary matrix %, then the
transformed T, matrices satisfy [5,36]

D BTy =eUTT,U. (47)

O-l

Here U is a unitary matrix that commutes with A, and €' is a phase factor. In the case of time
reversal symmetry (inversion symmetry), I, on the left-hand side is replaced by its complex
conjugate F; (its transpose FUT ). Exploiting the properties of the matrices U each SPT phase
can be classified [5]: In the case of time reversal (inverse) symmetry the matrices satisfy
U, Uz = %1 (U;U; = £1), and the sign can be used to distinguish different SPT phases. In
presence of a Z., x Z., symmetry the order parameter is given by

1 X
OZz><Zz = ;TI'(UX UZ UJCUZT) > (48)

where we use the symmetry operations R* = exp(ir >’ i §Jx ) and R* = exp(in >, i §Jz ) to calcu-
late U, and U,.

In the presence of dimerization the unit cell consists of two sites, which we have to block
together in order to apply the above description. For the model (2), blocking sites across weak
bonds gives the same values of the order parameters as blocking across strong bonds. Figure 4
shows the iDMRG results for the order parameters in case of inverse and Z, x Z, symmetries.
If U, and U, commute (O, .7, = 1), the system is in a trivial phase, i.e., a site-factorizable LD
state, whereas if they anticommute (O, .z, = —1), the system realizes a non-trivial Haldane
state. If the symmetry is broken, we set Oz, 7, = 0. Obviously, the order parameter Oy, .7,
changes its sign only if a phase transition occurs between D-LD and D-H phases. O behaves
similarly to O, z,, i.e., O = %1 for the two symmetric phases, and Oz = 0 in the D-AFM
phase.

To summarize this subsection, dimerization does not affect the topological properties of
the system (2), so that the D-H (D-LD) phase remains a non-trivial (trivial) SPT phase as in
the system without dimerization (1).

10
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A

Figure 4: Topological order parameters for inversion symmetry Oz and Z, x Z, spin
rotation symmetry Oy, .z, at D/J =1and 6 =0.1.

5 Relevance to experiments

Let us finally relate our findings with experimental results. There are several realizations of
spin-1 bond-alternating chains, such as Ni(CoH,4N,) (NO,)ClO, [37,38] and [Ni(333-tet) (u-
N3),1(ClO,), [39-41]. Most remarkably, in the latter material a logarithmic decrease of the
susceptibility was observed at low temperature, indicating a vanishing excitation gap [19].
Comparing quantum Monte-Carlo simulations with experimental data suggested that the ma-
terial is described by a Hamiltonian of the form (2) with & = 0.25, A =1 and D/J = 0. Totsuka
et al. [42] determined the critical point for D = 0 numerically and obtained 6. = 0.25 £ 0.01
and ¢ = 1, while results by Kitazawa and Nomura [11] suggested that 6. = 0.2598. Impor-
tantly these parameter sets are close to the location of the point where the Gaussian and Ising
phase transitions merge [10,11].

In the following, we therefore determine the ground-state phase diagram of the model (2)
for 6 = 0.25 and reexamine the magnetic susceptibility of the above mentioned nickel com-
pound using the infinite time-evolving block decimation (iTEBD) [35]. Figure 5(a) displays the
corresponding phase diagram of the model (2). Although the extent of the Haldane phase is
significantly reduced, the Gaussian and Ising transition lines can still be detected numerically.
As shown in Fig. 5(b) the experimental data of the magnetic susceptibility for [Ni(333-tet) (u-
N3),,1(ClO,),, can be fitted most successfully for A = 1 and D/J = 0.02, taking the reported
small single-ion anisotropy D/J < 0.1 [19] into account. On the other hand, the numerical
data at the Gaussian transition point for fixed A = 1 deviates from experimental ones in the
lower-temperature regime. Thus, this nickel compound may be even closer to the Ising transi-
tion line than to the c=1 transition line considered so far. It would be interesting to investigate
signatures of the Ising QPT experimentally, e.g., by inelastic neutron scattering, where the cor-
responding dynamical structure factor can be calculated numerically, see Ref. [43].

6 Summary and Conclusions

In this work we investigated the ground-state phase diagram and quantum criticality of the
dimerized spin-1 XX Z chain with single-ion anisotropy D, employing a combination of ana-
lytical and numerical techniques. For weak dimerization (6 < 0.26) and single-ion anisotropy,
the symmetry-protected topological Haldane phase survives and the transition between the
D-LD and D-AFM phases, which is always of first order in the absence of dimerization, be-
comes partially continuous. The continuous section of the transition line belongs to the Ising
universality class with central charge ¢ = 1/2. With increasing the magnitude of D, this Ising
line terminates at a tricritical Ising point with ¢ = 7/10, above which the phase transition
becomes first order. A comprehensive description of the phases and phase boundaries can be
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Figure 5: (a) Ground-state phase diagram of the model (2) for &6 = 0.25. The
red star denotes the parameter set corresponding to the Ni compound [Ni(333-
tet) (u-N3),](ClO,),, and the green cross gives the Gaussian transition point
[(D/J). ~0.296] for fixed A = 1. (b) Temperature dependence of the magnetic sus-
ceptibility of the powdered sample for [Ni(333-tet) (u-N3),](ClO,), (circles) taken
from Ref. [19]. The red solid line is the iTEBD data for A = 1, D/J = 0.02 and
6 = 0.25 with J /kg = 88 K and g = 2.45. For comparison, we also show the iTEBD
result at the Gaussian transition for fixed A =1 (green dashed line).

achieved by a bosonization-based field theory including three Majorana fermions. The field-
theory predictions for various correlation functions have been confirmed by numerical iDMRG
calculations.

Finally, we have revisited the experimental results for the Ni compound [Ni(333-tet) (u-
N3),1(ClO,),, showing gapless behavior and have demonstrated that the corresponding pa-
rameter set might be not only in the vicinity of the Gaussian transition line but also very close
to the Ising transition line. Further experimental research for this material, such as neutron
scattering, would be desirable.
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A Low-energy projections of operators

Let us denote the Euclidean action corresponding to the Hamiltonian density (14) by
S:SB+SB +Sint: (49)

where S; and Sp involve only Ising and bosonic degrees of freedom respectively and S;,, de-
scribes the interaction between the two sectors. In the regimes where the mass scale associated
with S; is much smaller (larger) than the one associated with Sz and where S;,; can be treated
as a perturbation, we may integrate out the bosonic (fermionic) degrees of freedom, see e.g.
Ref. [33].

A.1 Integrating out the bosonic degrees of freedom

This case pertains to the transition lines between the D-AFM phase and the D-LD and D-H
phases. In these cases the low-energy projection of a general local operator is given by

)

= J Do e B S5m) = (0)y — (Si O + ... , (50)

low

where ()5 denotes the average with respect to the bosonic action Sz. As we have assumed that
the parameter m is positive, we have

(sin(vV471®))s = 0. (51)

This implies that the low-energy projection of the dimerization operator is

A

D;

~ (S0 (x)sin (vVd(x)))s + ...

low
= —A’J drdy 63(x)63(y, 7)(sin (vV7d(x,0))sin(v7d(y, 7)) +. ..
= (d)+iCR;(x)Ls(x) +... . (52)

In the last line we have used that the expectation value in the bosonic sector decays exponen-
tially in the Euclidean distance r = 4/(x — y)2 + v212,

(sin (v7td(x,0))sin (vV7d(y, 7)) o< /¢, (53)

which in turn allows us to employ the operator product expansion in the Ising sector

1

&30)63(y, ) = (%)4 [1—imrRy()La()]+... . (54)

Finally we have fixed the constant part in the low-energy projection by using that it must give
the correct expectation value of the dimerization operator. Similarly we obtain

A

%
J

~ —A’J dtdy 63(y, ©){0,8(x,0)sin(vV7d(y,7)))e +. ..

low

= A3, 63(x)+.... (55)

The leading contribution to the low-energy projection of ﬁ? occurs at order O(A))° of our
procedure and gives

4

=>

B’{cos (ﬁ@(x)))q, &3(x) +...
= B&3()+.... (56)

low
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Figure 6: Correlation length £, (upper panels) and central charge c*(L) (lower pan-
els) for fixed D/J =1 (left panels) and 3 (right panels) with 6 = 0.1.

A.2 Integrating out the fermionic degrees of freedom

This case pertains to the transition line between the D-LD and D-H phases. Here we have

O

_ J DR,DL, ¢S50 = (0); — (SuO)a o ... . 57)

low

where ()5 denotes the average with respect to the Majorana action S5. On the transition line
we have m3 > 0 which implies

(B°(x))5 #0. (58)
An immediate consequence of (58) is that
iy o cOs (VRO (03 (x))3 + ... . (59)
The low-energy projections of other operators can be worked out as before
r“zjf o —A’B’J dydt (63(x,0)63(y, 7))5sin (ﬁ@(x, O)) cos (ﬁ@(y, T))

A, sin (1/4_7t<f>(x)) +.... (60)

Here we have used that
(63(x,0)6%(y, T))3 o< e /¢, (61)

which permits us to employ operator product expansions in the bosonic sector. The projection
of the dimerization operator is

A

J

~ _,vf drdy (63(x)63(y, 7)) sin (v7d(x,0))sin (vVd(y, 7)) +...

low

= (&)+Dcos(x/4_ﬂ'<i>)+.... (62)

B Determination of phase boundaries

In this section, we explain how the QPT points and their universality classes are determined
within the (i)DMRG method. Since the QPTs are the only points in the considered parameter
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Figure 7: (a) Phase diagram of the model (2) for & = 0.5. D-LD=D-AFM phase
boundary of the continuous Ising transition terminates at a tricritical Ising point.
Beyond this point, the QPT becomes first order. (b) Central charge c(L) on the D-

LD=D-AFM phase boundaries obtained numerically for L = 128 and periodic bound-
ary conditions.

region where the system becomes critical, they are easily obtained by simulating the corre-
lation length & 4> a8 demonstrated in Figs. 6(a) and (b) for 6 = 0.1 with fixed D/J = 1 and
3, respectively. The divergence of the physical correlation length at a QPT is reflected by a
pronounced peak of &, whose height increases with the bond dimension y. From the peak
positions for large enough y, we pinpoint the phase transition with an accuracy of at least three
digits. For D/J = 1 the transitions occur at A.; ~ 1.135 and A, ~ 1.789 [see Fig. 6(a) ], while
there is only one Ising transition at A. ~ 3.303 [see Fig. 6(b)].

The central charge c*(L) calculated by DMRG also exhibits a peak structure around the
critical points [see Figs. 6(c) and (d)]. These peaks become more distinct with increasing
system size L. From the heights of the peaks at large L, we obtain the central charges ¢ = 1
and ¢ = 1/2, which are consistent with Gaussian- and Ising-type transitions, respectively.
Moreover, the positions of the peaks agree with the QPT points estimated from the correlation
length.

C Ground-state phase diagram for strong dimerization

With increasing dimerization the D-H phase is reduced, and it disappears for § 2 0.26 [11] if
we limit ourselves to the parameter region J > 0 and 6 > 0. Figure 7(a) for 6 = 0.5 demon-
strates such a situation consisting of only D-LD and D-AFM phases, separated by continuous
and first-order transition lines. At the meeting of these transition lines the numerically ob-
tained central charge indicates ¢ = 7/10 [Fig. 7(b)], suggesting that this point belongs to the
tricritical Ising universality class.
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