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Abstract

The formation and dissolution of a droplet is an important mechanism related to various
nucleation phenomena. Here, we address the droplet formation-dissolution transition
in a two-dimensional Lennard-Jones gas to demonstrate a consistent finite-size scaling
approach from two perspectives using orthogonal control parameters. For the canonical
ensemble, this means that we fix the temperature while varying the density and vice
versa. Using specialised parallel multicanonical methods for both cases, we confirm
analytical predictions at fixed temperature (rigorously only proven for lattice systems)
and corresponding scaling predictions from expansions at fixed density. Importantly, our
methodological approach provides us with reference quantities from the grand canonical
ensemble that enter the analytical predictions. Our orthogonal finite-size scaling setup
can be exploited for theoretical and experimental investigations of general nucleation
phenomena – if one identifies the corresponding reference ensemble and adapts the
theory accordingly. In this case, our numerical approach can be readily translated to
the corresponding ensembles and thereby proves very useful for numerical studies of
equilibrium cluster formation, in general.
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1 Introduction

There is a wide range of nucleation processes in nature, with the formation of a droplet being
the prime example [1–3]. In principle, the formation of a droplet in an equilibrium vapour
can be induced by a pressure or temperature quench, corresponding to a supersaturated or
supercooled gas. Due to experimental constraints on controlling the temperature homoge-
neously, most experimental approaches follow a setup at fixed temperature with increasing
oversaturation [4], whereas undercooling is typically used for crystal nucleation in metals and
colloids [5,6].

On the quest to develop a theory on droplet formation, intensive research was devoted to
the phenomenological understanding of droplet formation and growth [1–3,7]. The resulting
classical nucleation theory is still extensively employed, where droplet growth uses particles
from a reservoir. Then, the stability of a droplet is determined by the competition between
energy gain from the droplet bulk and surface tension from the resulting interface. This theory
is particularly successful for the scenario of small metastable droplets, which one would expect
to observe on the time scale of an experiment due to their low free-energy barrier. Recently,
molecular dynamics simulations with O(109) Lennard-Jones atoms have shown homogeneous
nucleation of small metastable droplets with results comparable to experiments [8].

It was relatively late that the problem was formulated in an equilibrium framework includ-
ing the droplet’s surrounding [9–12]. Here, the energy gain of forming the droplet competes
with the cost of forming the interface, as well as the entropic loss by binding otherwise free
gas particles to the droplet. As a result, one expects either a gas phase or a mixed phase with a
single macroscopic droplet in equilibrium with the surrounding vapour. The free-energy bar-
rier separating both phases increases with system size [10–12] and the probability to observe
increasingly large droplets during a given time decreases drastically. In this work, we focus on
this equilibrium scenario.

Monte Carlo simulations are an established tool to study the equilibrium scenario of droplet
formation either at fixed temperature (varying density) [11,13–21] or at fixed density (varying
temperature) [22–24]. This requires techniques that overcome the large free-energy barrier, or
systems need to be prepared suitably. So far, the different approaches yielded overall consistent
results of the leading-order finite-size scaling corrections. Yet, different formalisms and models
made direct comparisons of the two perspectives cumbersome. Here, we aim to close this gap
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Figure 1: Sketch of the transition between the pure gas phase and the mixed phase of
a liquid droplet surrounded by vapour. Below the critical point, the black infinite-size
transition line can be crossed in either one of two orthogonal regimes: The blue hor-
izontal arrow depicts the fixed-temperature approach in which density serves as the
control parameter, where ρg(Tsim) is the infinite-size transition density. Alternatively,
the red vertical arrow depicts the fixed-density approach in which temperature serves
as the control parameter and Tg(ρsim) is the infinite-size transition temperature.

by taking one model subject to both temperature and density variation. We choose the two-
dimensional Lennard-Jones gas to numerically verify the phenomenological theory by Biskup
et al. [10] at fixed temperature, which was rigorously proven only for the two-dimensional
lattice gas.

The remainder of the paper is structured as follows: We recapitulate the theory on droplet
formation by Biskup et al. [10] and its extension [23] in the next section. The model, our
methods and implementation details are discussed in Sec. 3, followed by the results in Sec. 4.
Lastly, Sec. 5 contains a concluding discussion.

2 Theory

Let us consider a particle gas in a canonical ensemble of fixed particle number (N), fixed
volume (V ) and fixed temperature (T). For such a system, we could induce droplet formation
by choosing any of the three as a control parameter. As an example, when taking the gas to
be in a fixed volume, we could either increase the particle number or decrease temperature to
form a droplet (see Fig. 1).

In particular, fixing V and T while considering a variable densityρ = N/V allows us to con-
struct a reference grand canonical ensemble in which we can define the bulk (or background)
densities of a system in a gas or liquid phase. Thus, at coexistence,

ρg =
Ng

V
and ρl =

Nl

V
(1)

are the expected densities for the system in the respective pure phases (Fig. 2). We then choose
N as the control parameter in the canonical ensemble; but only in light of the reference grand
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Figure 2: Grand canonical probability distribution of a system with linear size L = 30
at temperature T = 0.4 and equal-height chemical potential µ≈ −1.6518. Matching
snapshots are shown on top and the whole density region over which the gas-liquid
transition takes place is covered. P(ρ) shows peaks at the densities corresponding to
the gas (ρg) and the liquid (ρl). In between appears a suppressed plateau around
the density where a stripe occurs (ρs).

canonical ensemble can we define a particle excess over the background gas. This particle ex-
cess (δN) either manifests itself through local density fluctuations of the gas (δNF) or through
the formation of a macroscopic droplet (δND):

δN = N − Ng = δND +δNF . (2)

Biskup et al. have shown that “the probability of even a single droplet of the intermediate
scale is utterly negligible” [10], i.e., that the droplet excess δND will only contribute to the
creation of a single, large droplet – as opposed to a multitude of small or intermediately sized
ones. Consequently, the whole discussion of the droplet formation-dissolution transition is
simplified significantly and can be expressed by a two-state model.

When further utilising the bulk densities, the amount of excess within the droplet can be
related to its volume VD through

δND =
�

ρl −ρg

�

VD . (3)

Using the particle number within the droplet (ND = ρlVD), we can also introduce the droplet
fraction

λ=
δND

δN
=

�

ρl −ρg

�

�

ρ −ρg

�

ρl

ND

V
= λ(ρ, V, ND) , (4)

serving as an order parameter. This quantity λ is most intuitively thought of as a rescaled
measure of droplet size, relative to the present excess δN (λ ∈ [0, 1]).
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a) b)

Figure 3: a) Free-energy functional Φ∆(λ) for different rescaled densities ∆. At
the transition density, phase coexistence is indicated through the two solutions, the
oversaturated vapour with no droplet (λ = 0) and the equilibrium droplet with sur-
rounding vapour (λc = 2/3). b) Plot of the analytic solution for the rescaled droplet
size λ(∆).

Compellingly, the theory suffices with considering free-energy contributions that arise from
the single droplet (FD) and from density fluctuations (FF) in the surrounding gas phase. They
are approximated by FD = τ

p

VD and FF = (δNF)
2 /2κ̂V [10], where we have assumed for FD

the special case of two dimensions. The constants τ and κ̂ stem from the reference ensemble
and quantify the surface free energy per unit volume of the droplet and the (reduced) isother-
mal compressibility. The equilibrium solution is obtained by minimising the total free energy
of the system

F = FD + FF = τ

√

√

√
δN

ρl −ρg

�p

λ+∆ (1−λ)2
�

= τ

√

√

√
δN

ρl −ρg
Φ∆(λ) , (5)

where

∆=

p

ρl −ρg

2κ̂τ
(δN)3/2

V
=

p

ρl −ρg

2κ̂τ

�

ρ −ρg

�3/2p
V =∆(ρ, V ) (6)

is the rescaled density parameter. In simple words, ∆ describes how much the current density
is increased over the background gas density. Comparing with Fig. 3 a), one readily sees that
as long as the excess is below the threshold (∆ < ∆c), the functional Φ∆(λ) is minimal for a
vanishing droplet fraction – which corresponds to the oversaturated vapour with no droplet
(λ= 0). Reaching the transition at ∆c, a droplet of leading-order size λc is formed:

∆c =
3
4

√

√3
2
≈ 0.918 and λc =

2
3

. (7)

For higher densities (∆>∆c), the analytic solution [14] is

λ=
4
3

cos2





π− arccos
�

3
p

3
8∆

�

3



 . (8)

Note that the actual numeric value of the transition point is only determined by dimension

(∆c =
1
d

� d+1
d

�(d+1)/d
, λc =

2
d+1) [10]. The leading-order finite-size corrections are encapsu-

lated in the definition of λ and ∆. While the shape of λ(∆) in Eq. (8) and Fig. 3 b) again de-
pends on dimension, the qualitative interpretation is universal: For rescaled densities∆<∆c,
the fraction of excess in the droplet is zero (λ= 0) – corresponding to zero droplet size ND = 0.
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For∆>∆c the fraction of excess in the droplet has a non-zero value (λ > λc) – corresponding
to a macroscopic droplet.

By plugging in the finite-size transition density ρ = ρc(V ) into Eq. (6) with
∆(ρc(V ), V ) = ∆c, the leading-order finite-size scaling of the native transition density, cf.
[11,12], follows as

ρc(V ) = ρg + aρV−1/3 with aρ =

�

2κ̂τ∆c
p

ρl −ρg

�2/3

. (9)

We can also use the density scaling to find out how the droplet scales at the transition
point. To that end, we rewrite the definition of λ [Eq. (4)] such that

ND(ρ, V ) = λ
�

ρ −ρg

�

�

ρl

ρl −ρg

�

V . (10)

Directly at the transition, we know that λ = λc and ρ = ρc(V ). The scaling behaviour of the
number of particles in the largest droplet – at the transition point – can then be obtained by
replacing (ρc(V )−ρg) using Eq. (9):

ND(ρc(V ), V ) = aND
V 2/3 with aND

= aρλc

�

ρl

ρl −ρg

�

. (11)

Up to this point, the bulk densities ρg, ρl as well as κ̂ and τ were assumed to be constant,
which is only valid for large systems – and fixed temperatures; the transition was driven by
density. However, it was shown that the leading-order finite-size behaviour is identical for
the temperature-driven transition [23]. Once the temperature dependence of the quantities is
restored in Eq. (6), one can rewrite it as

∆2/3V−1/3 =
�

ρ −ρg(T )
�

�Æ

ρl(T )−ρg(T )

2κ̂(T )τ(T )

�2/3

= f (ρ, T ) . (12)

When expanding this function f (ρ, T ) around the infinite-size transition
temperature limV→∞ Tc(V ) = Tg, we see that the first term vanishes in
f (ρ, T ) = f (ρ, Tg) + f ′(ρ, Tg)(T − Tg) + ..., since ρg(Tg) = ρ. We can then solve for
the finite-size transition temperature T = Tc(V ) and obtain the finite-size scaling of the
transition temperature at fixed density:

Tc(V )' Tg + aT V−1/3 with aT =
∆2/3

c

f ′(ρ, Tg)
, (13)

where f ′ denotes the temperature derivative ∂ f /∂ T . Generally speaking, aT remains un-
solved because the actual temperature dependence of individual quantities is unknown. How-
ever, f ′(ρ, Tg) can be approximated numerically and, as we will show in Sec. 4.1, finite-size
corrections to the contributing reference quantities (and thus f ′) are negligible.

3 Model and Methods

3.1 Lennard-Jones Gas in Two Dimensions

The Lennard-Jones gas is constructed using point particles that can move freely in a domain of
linear size L with periodic boundary conditions. They interact via the Lennard-Jones potential
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V (ri j) = 4ε

�

�

σ

ri j

�12

−
�

σ

ri j

�6�

, (14)

where ri j is the distance between particles i and j, the energy scales with ε, and σ defines the
characteristic length scale. For the presented results, ε = 1 and σ = 1. In order to decrease
the computational effort, a domain decomposition is used and the interaction range is limited
to a cut-off radius rc:

V ∗(ri j) =

¨

V (ri j)− V (rc) ri j < rc = 2.5σ

0 else
. (15)

Since the particle momenta are independent of position, we can integrate their correspond-
ing degrees of freedom explicitly. This contributes a constant (temperature-dependent) factor
to the partition function, and canonical expectation values are thus unaffected. For a recent
discussion, see [24]. Here, we only consider potential energy (E).

3.2 Metropolis Simulations

The first Markov chain Monte Carlo (MCMC) technique we employ is the METROPOLIS algo-
rithm [25]. System configurations are generated according to the Boltzmann distribution, the
corresponding configuration weight is e−βE and the canonical partition function can be written
as

ZNVT =

∫

dE Ω(E) e−βE , (16)

where Ω(E) is the density of states and β = 1/kBT is the inverse temperature, as usual. A com-
mon obstacle for MCMC simulations is the critical slowing down in the vicinity of phase tran-
sitions. In case of first-order phase transitions, the probabilities of states between metastable
phases are heavily suppressed and, especially when sampling with e−βE , the system tends to
stay a very long time in either phase.

3.3 Parallel Multicanonical Simulations

The multicanonical method (MUCA) [26–31] is our algorithm of choice in the fixed-density
regime. Instead of sampling the energy range according to a constant temperature, as is done
with METROPOLIS, it allows to cover a predefined energy range and to reweight (in a post-
production step) to any desired temperature for which underlying energies were sampled. This
is possible because the probability of intermediate states is artificially enhanced by replacing
the Boltzmann weight with a beforehand unknown configuration weight W (E), which, by
construction, ensures a flat probability distribution in energy. The multicanonical partition
function reads

ZMUCA =

∫

dE Ω(E)W (E) (17)

and the weights are iteratively obtained in a recursive simulation before the production run
takes place [32, 33]. In our MUCA simulations, only particle-displacement moves are per-
formed, any of which attempts to change a particle’s position – either locally within the inter-
action range or to a completely random position. The acceptance probability is

a =min
�

1,
W (Enew)
W (Eold)

�

, (18)

where the system’s energy will be updated from Eold → Enew if the proposed configuration
change is accepted. Our multicanonical simulations are performed in parallel on at least 64
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threads. Following the formalism presented in [34], the weight iteration is spread across mul-
tiple threads, wherein each one creates a separate histogram of occupied energies. After full
sweeps, the histograms are merged and transferred to the host, where the new weights are
generated and distributed back to all threads for the next iteration step. It was also shown
that the parallelisation of the production run (yielding data from independent Markov chains)
provides accurate results when compared to a single one with an equal amount of total mea-
surements [15,34].

3.4 Switching to the Grand Canonical Ensemble

In this work, we also use an adaptation of MUCA to the grand canonical ensemble (MUGC).
Flat histogram methods of this and similar kind are commonly found in the literature [19,
35–37]. The biggest advantage of the approach outlined here is that, by design, the very
same parallelised code base is used in canonical and grand canonical versions. The only small
differences are the weight variables and acceptance tests [38]. Where MUCA uniformly samples
a desired energy range, MUGC does the equivalent for a density range. To that end, the grand
canonical partition function can be written as

ZµVT =
∞
∑

N=0

∫

dEN Ω(EN ) e−βEN eβµN , (19)

where µ is the chemical potential and the dependence of energy on the amount of particles
in the system is emphasised. Analogously to the modification of ZNVT to obtain ZMUCA, the
contribution of the particle number to the configuration weight eβµN is replaced by artificial
weights W (N) that shall yield a flat distribution:

ZMUGC =
∞
∑

N=0

∫

dEN Ω(EN ) e−βEN W (N) . (20)

The probability distribution is flat with respect to N this time, and we may reweight to any
chemical potential (although only at the one simulated temperature).

Due to the variable particle number, grand canonical simulations are required to feature
insertion and deletion moves, while displacements are only included to increase the algorithm’s
efficiency. For such asymmetric Monte Carlo updates, the suggestion probability is dependent
on the particular move, which also leads to different acceptance criteria. To be more precise,
a particle insertion (N → N + 1) is suggested at some random coordinate with probability
s+ = 1/V and is accepted with

a+ =min
�

1,
V

N + 1
W (N + 1)

W (N)
e−β∆E

�

, (21)

where ∆E = Enew − Eold. The inverse, a particle deletion, is suggested with s− = 1/N ; any
random particle of the currently present ones is attempted to be deleted and the move gets
accepted with

a− =min
�

1,
N
V

W (N − 1)
W (N)

e−β∆E
�

. (22)

For particle displacements, the acceptance criterion of the METROPOLIS algorithm is used since
the particle number remains unchanged. The MUGC method does not only enable us to mea-
sure the pure-phase densities ρl and ρg, but one can also reweight the grand canonical time
series. For canonical estimators, only those entries Oi of the time series that match the particle
number of interest are considered: 〈O〉NVT ≈ ONVT =

∑

i Oi δNi N /
∑

i δNi N . Such estimates
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can be calculated for any N that was included in the predefined density range and at no point
of this procedure is an explicit knowledge of the chemical potential required.

We want to mention one more subtlety about the insertion and deletion moves: As a conse-
quence of the changing total particle number, the average probability of selecting a particle for
deletion somewhere in the memory container is not uniformly distributed across memory ad-
dresses (or indices). Subsequently, an unwanted correlation may be introduced if the insertion
move systematically adds newly created particles to the end of the memory container. In our
tests, this led to a small systematic shift (towards smaller droplets) of the MUGC results [39].
We avoid the relation between particle age and memory index by inserting particles at random
positions (not only in the simulation volume but also in memory). To ensure a correct imple-
mentation, we have carefully checked that the reweighting results from MUGC match those
from a generic, long METROPOLIS simulation.

3.5 Simulation Procedure

The first task at hand is to determine all required constants in the grand canonical reference
ensemble for the two-dimensional Lennard-Jones gas. To that end, we start with a MUGC

simulation at fixed T = 0.4 (and in very close vicinity at T ± 0.002) sufficiently below the
critical temperature Tcrit ≈ 0.46 [40]. For this choice of temperature, we need to cover a
density range of 0 ≤ ρ ≤ 0.8. Thereby, we make sure that both the liquid and the gas phase
can be sampled. Otherwise, our criterion of phase coexistence cannot be fulfilled; we reweight
the measured flat MUGC histogram H(N) to the equal-height chemical potential, so that both
pure phases are equally likely. After normalisation, this yields the grand canonical probability
distribution P(N)∝ P(ρ), as illustrated in Fig. 4.

Our given upper density threshold is, of course, highly dependent on temperature as it
stems from the bulk-liquid peak position. Choosing the threshold too large will diminish ac-
ceptance rates of insertion moves: Packing ratios and geometric constraints become relevant
once the solid phase is approached for larger densities. Too low an upper density threshold
prevents sampling the full liquid peak and renders the equal-height criterion inapplicable.
Similarly, selecting the simulation temperature is rather delicate. Merely lowering the temper-
ature to T < 0.39 makes it impossible to distinguish whether the high-density peak represents
a liquid or solid phase because the respective suppression is overlapped by the two peaks. On
the other hand, raising the temperature quickly diminishes the suppression between the gas
and the liquid peak and, eventually, the equal-height criterion cannot be fulfilled.

After the grand canonical reference quantities are thus found (Sec. 4.1), we return to the
canonical ensemble. In all further simulations, time series are recorded for the energy E, the
current particle number N (and thereby ρ) as well as the number of particles contained in the
droplet ND (where particles are counted to belong to a cluster if they are located within 2σ of
another cluster particle). For the former two, we also store histograms that are updated after
every attempted update. Error estimates are made using Jackknife and binning methods [41],
where we directly treat the individual time series or histograms generated by the (parallel)
threads as the underlying bins. Using the constants from the first part, Eqs. (4) and (6) allow
us to directly map N and ND onto the respective finite-size corrected observables: ∆=∆(ρ, V )
and λ= λ(ρ, V, ND).

Focusing on the droplet formation-dissolution transition, we start with the regime of fixed
temperature (Sec. 4.2.1) and use the control parameter ∆. Even though we are now inter-
ested in the canonical ensemble, we perform MUGC simulations, again at T = 0.4 – but this
time on a smaller density range that covers the vicinity of the phase transition. Thereby, we
end up with a (multi) grand canonical time series that can be reweighted to any sampled N ,
yielding canonical expectation values. Alternatively, this could be achieved by running various
independent METROPOLIS simulations for each particle number (we only used METROPOLIS to
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confirm that our canonical expectation values match across different methods). The narrowed
down density range corresponds to a rescaled density of 0<∆< 1.5. By limiting the particle
number more strictly, the new range allows us to reach linear system sizes up to L = 640 (for
the full density range, only systems up to L = 70 were realistic).

In the fixed-density regime (Sec. 4.2.2), temperature serves as the control parameter.
Hence we run MUCA simulations at increasing particle numbers and adjust the volume to
match the desired density. The resulting time series can be reweighted to wanted temper-
atures, providing us again with canonical expectation values. In preceding works [23, 42],
the density was set to ρ = 0.01, so that a “sufficiently dilute” gas was ensured. But due to
the present grand canonical context, choosing the simulation density to be (close to) the gas
density ρ = 0.027857 ≈ ρg(T = 0.4) provides us with an a priori estimate of the infinite-size
transition temperature – namely T = 0.4 – which was set as a parameter in the previous steps.

Lastly, we want to briefly sketch the computational effort involved. We performed our
simulations on a cluster of INTEL XEON E5-2640 V4 CPUs (2.4GHZ). For METROPOLIS simu-
lations, we used a single thread and started from pre-constructed states. Choosing L = 320
as a reference, we set ∼4×109 thermalisation updates and ∼2×1010 measurement updates.
This typically took ∼3 days. For the corresponding parallel MUGC simulation (L = 320), we
used 128 threads. Here, the adaptive weight iteration (including thermalisation) required ∼6
hours. The consecutive production run took ∼3 days for ∼9×1010 updates per thread. For
the comparable parallel MUCA simulation (L ≈ 380), we used 240 threads. Here, the adaptive
weight iteration (including thermalisation) required ∼6 hours. The following production run
took ∼1 day for ∼8×1010 updates per thread. As an upper maximum, the L = 640 METROPO-
LIS simulations ran for up to 70 days. The most extensive parallel MUCA simulation took ∼16
days for N = 12288 (L ≈ 660) on 240 threads.

4 Results

4.1 Grand Canonical Reference Quantities

Using the parameters outlined in the previous section, equally high pure-phase peaks of the
grand canonical probability distribution are possible. Since density is discretised through the
particle number, it is convenient to stay in the representation via N . The probability minimum
at Ns = ρsV separates the two peaks, each of which can be in leading order approximated as
a Gaussian [14,20]. The according particle numbers are

Ng = 〈N〉g =
Ns
∑

N=0

N P(N)

� Ns
∑

N=0

P(N) (23)

and

Nl = 〈N〉l =
Nmax
∑

N=Ns

N P(N)

� Nmax
∑

N=Ns

P(N) , (24)

where Nmax is the largest particle number that was allowed in the simulation. At fixed tem-
perature, the peak positions stay almost constant for changing system sizes. That is, for the
rescaling in leading order that they contribute to, the finite-size corrections to those grand
canonical observables themselves are not dominant enough to have an impact [Figs. 4 and 5
a, b)]. As a consequence, finite-size corrections to the bulk densities are negligible.

We further obtain the (gas) peak width – corresponding to the variance of the respective
expectation value – which is a measure for the reduced isothermal compressibility:

κ̂=
β

V

�




N2
�

g − 〈N〉
2
g

�

, (25)
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Figure 4: Grand canonical probability distribution of density at increasing linear sys-
tem size L = 30, 40, ..., 70 and T = 0.4 at equal-height chemical potential. Peak posi-
tions in terms of density stay almost the same, while the systematic decrease in peak
width – and seemingly in κ̂ – is accounted by the relation between density and par-
ticle number; the amount of possible N -values for a given density interval increases
with system size so that the compressibility stays constant after all. The depth of the
probability suppression at ρs is a measure for the linear interface tension σ. It stems
from the single liquid strip spanning across the system through periodic boundary
conditions, as depicted in Fig. 2.

with 〈N2〉g calculated analogously to Eq. (23). Only the compressibility that belongs to
the left-hand peak is used in the subsequent rescaling. Note that κ̂ is primarily a re-
sponse function. The real isothermal compressibility in its physical sense can be related via
κ= −V−1(∂ V/∂ p)T = κ̂/ρ2, where κ̂ and ρ belong to either one of the two pure phases [39].
Again, finite-size corrections to κ̂ are negligible [Fig. 5 c)].

The final information we extract from the probability distribution is the depth of the sup-
pression, from which the (normalised) interface tension can be calculated [43]:

σ =
1

2β L
ln

�

P(ρg)

P(ρs)

�

. (26)

As the suppression increases with system size, systematic finite-size behaviour of the form
σ = σ∞ + aL−1 is observed [Fig. 5 d)]. The surface free energy per unit volume of the
ideally shaped droplet is related as τ = 2

p
πσ. However, the additive corrections to σ will

influence only higher-order corrections of ∆ when plugged into Eq. (6). Hence, we stick
to convention [14] and use the infinite-size estimate τ = 2

p
πσ∞. For a collection of all

discussed grand canonical reference quantities, see Table 1.
At this point, we may apply the rescaling and calculate the numerical values of the ampli-

tudes of the leading-order scaling in both regimes. From Eq. (9), we directly calculate aρ at
fixed temperature. For fixed densities on the other hand, we have to estimate aT from Eq. (13)
via f ′(ρ, Tg) – which requires us to assess the temperature-dependence of the reference quanti-
ties. Again using the relation that ρg(Tg) = ρ, the temperature derivative of f (ρ, T ) simplifies
significantly and it is easy to check that

f ′(ρ, Tg) = −ρg
′
�p

ρl −ρg

2κ̂τ

�2/3

. (27)
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Figure 5: Grand canonical observables at fixed T = 0.398 (blue circles, dashed lines),
T = 0.400 (black crosses, solid lines) and T = 0.402 (red squares, dotted lines):
a) Bulk gas density ρg, corresponding to the left-hand peak of the grand canonical
probability distribution. b) Bulk liquid density ρl, as obtained form the right-hand
peak. c) Reduced isothermal compressibility κ̂, measured as the width of the gas
peak. d) Interface tension σ, plotted and linearly fitted as a function of inverse
system size. The intersection with 1/L = 0 is used for rescaling.

Table 1: Results for the grand canonical reference quantities. Systems of linear size
L ≥ 20 were included in the least-square fits (Fig. 5).

T ρg ρl κ̂ σ∞

0.398 0.0266170(55) 0.754354(85) 0.15799(17) 0.13087(53)

0.400 0.0278723(62) 0.750881(87) 0.17160(22) 0.12523(54)

0.402 0.0291850(69) 0.747667(90) 0.18580(23) 0.11937(50)

By evaluating the grand canonical observables slightly above and below our reference
temperature of T = 0.4, we may approximate ρg

′ = ∂ ρg/∂ T ≈ ∆ρg/∆T , where
∆ρg = ρg(T = 0.402)−ρg(T = 0.398) and∆T = 0.004. The amplitudes for the leading-order
scaling of density and temperature are then

aρ =

�

2κ̂τ∆c
p

ρl −ρg

�2/3

≈ 0.300 and aT =
∆2/3

c

f ′(ρ, Tg)
= −

aρ
ρg
′ ≈ −0.467 , (28)

respectively. From here, we also obtain a prediction for the amplitude of the scaling of the

12

https://scipost.org
https://scipost.org/SciPostPhys.5.6.062


SciPost Phys. 5, 062 (2018)

101

102

103

a)
101

102

103

b)

c) d)

Figure 6: Scaling behaviour of the droplet formation-dissolution transition at fixed
temperature T = 0.4 (left) and fixed density ρ = 0.027857 (right): a, b) Droplet
size ND as function of density and temperature, respectively. As the system size is
increased, the characteristic first-order discontinuity emerges analogously in both
regimes and ND is of similar magnitude for comparable system sizes. c, d) As de-
scribed in the text, N ′D is a proxy of the slope of ND and its peak positions indicate
the finite-size transition points.

droplet particle number at the transition:

aND
= aρλc

�

ρl

ρl −ρg

�

≈ 0.207 . (29)

4.2 Finite-Size Scaling of the Droplet Formation-Dissolution Transition

We now turn to discuss the droplet formation-dissolution transition. As shown in Fig. 6 a)
and b), the first-order transition behaviour is strikingly similar in both regimes. Using the
number of particles in the largest droplet as the observable, the transition develops analogously
at fixed temperature and fixed density.

In order to locate the transition in a consistent way across schemes, we measure the peak
position of a quantity that is motivated by specific heat. More precisely, we introduce

N ′D =
1

T2V

�

〈NDE〉 − 〈ND〉〈E〉
�

(30)

to describe the fluctuations of ND, where expectation values are estimated (as usual) by mean
values. At fixed density, N ′D is explicitly related to the temperature derivative:
N ′D = (1/V )∂ 〈ND〉/∂ T . In other words, N ′D is just the derivative of the order parame-
ter with respect to the chosen control parameter in this regime. A similar relation holds
at fixed temperature, although with other prefactors that lead to differently high peaks:
N ′D ∝ −(1/V )∂ 〈ND〉/∂ ρ. The actual amplitude of the derivative depends on ∂ E/∂ ρ, but
we have verified that the peak positions of N ′D indeed coincide with those of the numerical
derivative. In the end, we chose to use N ′D computed from the fluctuations as the transition
criterion; this proved to be more consistent than the true numerical derivative – which is very
sensitive to noisy data and requires a manual choice for the width of the (five-point) stencil.
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Analy
tic

Figure 7: Droplet formation-dissolution transition at fixed T = 0.4, expressed in
terms of the density parameter ∆(ρ, V ) and the droplet fraction λ(ρ, V, ND) that in-
clude leading-order finite-size corrections. Individual points with error bars stem
from METROPOLIS simulations and continuous lines are reweighted from MUGC.
Strong finite-size effects are apparent in the gas phase but with respect to ∆c, the
data convincingly approaches the analytic prediction. The intersection with the hori-
zontal dashed line (λc = 2/3) is subsequently used to further investigate higher-order
corrections.

4.2.1 Fixing Temperature: The Oversaturated Gas

In the fixed-temperature regime [corresponding to Fig. 6 a, c)], we have a canonical ensemble
in mind: We keep the temperature constant at T = 0.4 while increasing the particle number,
ever more exceeding the bulk gas density ρ > ρg. Small amounts of particle excess (∆<∆c)
seemingly vanish into the oversaturation of the vapour; the gas density is only locally increased
through fluctuations, but no droplet is formed. However, beyond the critical excess (∆≥∆c),
free energy is no longer minimised by fluctuations alone and we observe the mixed droplet-gas
phase with the majority of excess going into the droplet (λ≥ 2/3).

Contemplating Fig. 7, we can confirm that the analytic prediction is approached by the
measurements as system sizes grow. This includes the curvature and the transition point; both,
the threshold amount of droplet excess and the transition density move towards predicted
values. In this rescaled representation, the first-order nature of the transition is visible most
clearly. Evidently, our largest system (L = 640) suffers heavily from hidden barriers [18,36,44]
and we could only record tunnel events for around 5% of the threads running in parallel for
this particular size.

For small systems, notable finite-size effects in λ are visible (and expected) for all∆. Since
λ is essentially a measure of particles within the droplet – which is at least one, even in the
gas phase – small systems are prone to systematic overestimation of the droplet excess. Inter-
estingly, these finite-size effects of λ in the gas phase are less pronounced in three dimensions,
see [15] for a comparison of the according plots for the lattice gas in two and three dimensions.
We believe that this dimension-dependent behaviour can be explained by the probability sup-
pression of particles forming intermediate clusters – which is weaker when the system is two-
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Figure 8: Finite-size scaling of the transition density ρc(V ) at T = 0.4. Two dif-
ferent criteria were employed to pinpoint the transition: For the blue crosses, the
peak position of N ′D was used, while the yellow circles stem from the density at
which the droplet size crosses the threshold of λ = λc. The slope and offset of the
analytic prediction (ρc(V ) = ρg + aρV−1/3) were determined from grand canoni-
cal observables. The arrows indicate the range of data points used for the two fits
(ρc(V ) = ρ̃g + ãρV−1/3 + b̃ρV−2/3).

instead of three-dimensional. With respect to the transition point ∆c, we observe only weak
deviations from the prediction in two dimensions.

In order to investigate these corrections to the transition density, we utilise two different
approaches to specify the transition point. On the one hand, we use the intersection of λ with
λc = 2/3 to locate the native transition density ρc(V ) = ρ(λc), as was done in [45]. This
criterion is easy to implement and since we have data for every particle number by means of
MUGC, the transition density can be found with high precision. On the other hand, we take
reference in the fixed-density regime, where the peak position of an observable’s temperature-
derivative is commonly used as an indication for the transition. Here, we are interested in
the density value at which N ′D is extremal (as outlined in the previous subsection). When
comparing again with Fig. 7, it seems that the latter criterion – corresponding to the change
in slope – is more resistant towards the systematic overestimation of droplet size.

This conjecture is confirmed in Fig. 8, which shows the scaling behaviour of ρc(V ) for
both approaches. For small systems (L < 100), the transition point defined by N ′D consistently
yields higher transition densities than the λc-criterion. Moreover, we observe a crossover of
the data points stemming from the two different approaches: beyond L = 100, the estimates
from N ′D are lower than those from λc and, ultimately, approach the analytic leading order.
When we only use the N ′D data points of the largest three systems, a first-order fit of the form
ρc(V ) = ρg+ãρV−1/3 is possible, where the tilde indicates fit parameters of the least-square fit.
Here, ãρ is the only free parameter and ρg = 0.02787 is fixed to the grand canonical reference
value. This ansatz yields ãρ = 0.2962(5) at χ2 = 5.6 (per degree of freedom), which is in
decent agreement with the value of aρ ≈ 0.300 predicted in Eq. (28).

In order to describe the behaviour for smaller systems, we empirically include the second
order term (b̃ρV−2/3) into the fit ansatz. One can now either fix ρg again, or employ a fit with
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0.00 0.02 0.04 0.06 0.08

Figure 9: Scaling at fixed density ρ = 0.027857 ≈ ρg(T = 0.4). The slope of the
analytic prediction (Tc(V ) ' Tg + aT V−1/3) is again calculated from grand canon-
ical observables and the infinite-size transition temperature Tg = 0.4 is known
due to our simulation setup. All data points were included in the shown fit
(Tc(V ) = T̃g + ãT V−1/3 + b̃T V−2/3).

three free parameters: ρc(V ) = ρ̃g + ãρV−1/3 + b̃ρV−2/3. The results of the latter ansatz on
the range 120 ≤ L ≤ 640 are plotted in Fig. 8 for both data sets. Using the data from the
λc-criterion, the fit yields ρ̃g = 0.0270(1), ãρ = 0.356(7) and b̃ρ = 1.6(1) with χ2 ≈ 1.5. This
fitted estimate of the infinite-size transition density ρ̃g lies slightly below the grand canonical
reference value and the amplitude ãρ is larger. Using the data set from the N ′D-criterion, the
situation changes: With χ2 ≈ 0.8, the infinite-size density is overestimated as ρ̃g = 0.0285(1),
while ãρ = 0.192(9) is too small and b̃ρ = 4.3(1). Both fits cover respective data points of the
given fit range, but in case of the N ′D-data, the fit also covers small system sizes.

4.2.2 Fixing Density: The Undercooled Gas

Further hanging on to the canonical background, we now keep the density fixed and drive
the system from gas to condensate by lowering the temperature. In particular, the simulation
density was set to resemble the previously determined bulk gas density at the chosen refer-
ence temperature: ρ = 0.027857 ≈ ρg(T = 0.4). Our MUCA simulations with set particle
number (and accordingly adjusted volume) yield estimators for canonical expectation values
at any temperature; the size-dependent transition temperature is then obtained from the peak-
position in N ′D. Analogously to the fixed-temperature regime, Fig. 9 shows our attained data
points along with the analytic prediction (Tc(V ) ' Tg + aT V−1/3), where aT ≈ −0.467 was
again calculated from the grand canonical reference [Eq. (28)]. The plotted free fit is of sim-
ilar form as before (Tc(V ) = T̃g + ãT V−1/3 + b̃T V−2/3) and fitting the complete range of data
gives T̃g = 0.40018(6) with ãT = −0.430(3) and b̃T = −2.80(5) at good χ2 ≈ 1.6.

Similarly to the fixed-temperature regime, the fit nicely covers the full range of system sizes
– when the same criterion (peak-positions in N ′D) is used for both. We conclude that remaining
higher-order corrections must have negligible amplitudes. Having said so, an actual fit of our
data to first order is only possible when restricting the data points to the largest four systems:
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Figure 10: Comparison of probability distributions at the finite-size transition points
– obtained via N ′D – for the droplet formation-dissolution transition at fixed tempera-
ture (blue) and fixed density (red). The two-dimensional distribution P(E, ND) with
respect to both reaction coordinates E and ND can be projected along either axis to
obtain P(ND) on the left, or P(E) on the top.

Fitting Tc(V ) = Tg+ãT V−1/3 (and using systems of 3072≤ N ≤ 12288) yields ãT = −0.470(1)
with χ2 ≈ 1.8, which is in rather good agreement with the analytic prediction in Eq. (28).

Hence, we can confirm that the expected leading-order behaviour manifests at fixed den-
sity. Fits to first order are indeed possible. This was previously observed in three dimensions,
in which case the leading-order behaviour manifests already for much smaller systems with
only N ≤ 2048 particles [23,42].

4.2.3 Droplet Size

We now want to address the finite-size scaling of the droplet size at the finite-size transition
point. Directly at the transition, the droplet phase is in coexistence with the gas phase as
shown by the double-peak probability distributions in Fig. 10: The two-dimensional proba-
bility distribution P(E, ND) reveals a correlation between the reaction coordinates E and ND:
Energy decreases with increasing droplet size [24]. The coexistence at the droplet formation-
dissolution transition thus manifests in double peaks in both distributions, P(E) and P(ND).

The canonical equilibrium estimate of the droplet size ND would be a weighted average
over both gas and droplet phase. However, we seek the size of the largest cluster in the droplet
phase. Hence, we measure ND as the expectation value conditioned on the droplet phase,
i.e., we only consider the right-hand (upper) peak of P(ND). One may correctly expect that
there is a strong dependence on the control parameter (ρ or T) and, for fixed T , whether
we determine the finite-size transition density via the peak position in N ′D or as the crossing
point of λ(ρ) = λc (cf. Fig. 8). Therefore, we obtain the expectation value of ND as follows:
When the transition point was determined via the N ′D-criterion, then we first calculate ND,eq

such that
∫ ND,eq

0 P(ND) = 1/2 and then evaluate ND inside the droplet phase via the conditional

expectation value 2
∫ N

ND,eq
ND P(ND). When the transition point was determined via λc, then

the droplet phase dominates and the conditional expectation value practically coincides with
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the equilibrium estimate.

102 103
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103

Figure 11: Scaling of the droplet size ND at the finite-size transition point for fixed
temperature (blue crosses and yellow circles) and at fixed density (red squares). The
analytic prediction is plotted to leading order [black, solid, Eq. (11)] along with its
temperature expansion to second order [red, dashed, Eq. (32)], as is necessary to
describe the fixed-density data. The amplitudes aND

and bND
were determined from

grand canonical reference quantities.

The finite-size scaling of the droplet size is plotted in Fig. 11. Note that the leading-order
behaviour predicted for fixed temperature [Eq. (11), ND(ρc(V ), V ) = aND

V 2/3] is ultimately
approached by all data sets (from the two criteria and both regimes).

At fixed temperature, finite-size effects become small once the linear system size reaches
L ≥ 200. As for the transition density in Fig. 8, we observe a crossover of the data from the
two different transition criteria. Having said so, the results from both approaches converge
towards the leading order prediction rather quickly and the difference is barely visible on the
shown scale.

At fixed density, the droplet size is systematically smaller than at fixed temperature but
shows the same V 2/3 = L4/3 trend. In fact, the leading-order scaling of the droplet size in
Eq. (11) was (so far) only given for fixed temperature. To derive the finite-size scaling of
the droplet size at fixed density, we go back to Eq. (10) and re-introduce the temperature
dependence:

ND(ρ, V )/λV =
�

ρ −ρg(T )
�

�

ρl(T )
ρl(T )−ρg(T )

�

= g(ρ, T ) . (31)

When expanding g(ρ, T ) to second order around the infinite-size transition temperature Tg,
most terms vanish because ρg(Tg) = ρ. We then plug in the leading-order scaling for fixed
density [Eq. (13), (Tc(V )− Tg) ' aT V−1/3] – supported by Fig. 9, from which we know that
the largest system sizes indeed approach this leading-order solution – and arrive at

ND(Tc(V ), V )' λc(−ρg
′)

�

ρl

ρl −ρg

�

aT V 2/3 +λc

�

ρg
′ ρl

′ρg −ρlρg
′

(ρl −ρg)2
−ρg

′′ ρl

ρl −ρg

�

a2
T V 1/3

' aND
V 2/3 +λc

�

ρg
′ ρl

′ρg −ρlρg
′

(ρl −ρg)2
−ρg

′′ ρl

ρl −ρg

��

aρ
ρg
′

�2

V 1/3 (32)

' aND
V 2/3 + bND

V 1/3 ,
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Figure 12: Example configurations at fixed temperature T = 0.4 for increasing sys-
tem sizes. The snapshots were taken so that ρ and ND attain their size-dependent
transition values, obtained via N ′D (i.e. matching the blue crosses in Fig. 11, not the
analytic prediction). Although the droplet grows continuously with system size, its
relative volume vanishes as the probability gas peak sharpens (top row). With in-
creasing system size, the observed droplet volume and shape approach the analytic
prediction with radius RD = (aND

/πρl)1/2 L2/3, shown as shaded circle (bottom row,
rescaled to RD).

where we used aT = −aρ/ρg
′ and aND

= aρλcρl/(ρl − ρg). Thus, the leading-order ampli-
tude in the finite-size scaling of the droplet size at fixed density coincides with that at fixed
temperature – if the infinite-size transition point (ρ, T ) coincides. This initially seems quite
surprising but is explained by the finite-size transition points converging to the same limit
with increasing system size, while the droplet continues growing. Note that, even though the
droplet grows to infinity, its relative size (compared to the box size) vanishes, see Fig. 12. Us-
ing the grand canonical reference quantities – where we computed the derivatives as ratios of
finite differences (ρ′ = ∆ρ/∆T and ρ′′ = ∆ρ′/∆T) – we can evaluate aND

≈ 0.207 as well
as bND

≈ −2.264. The prediction of Eq. (32) is shown as the dashed line in Fig. 11 and well
describes the largest system sizes, where the actual volume occupied by the droplet does not
exceed the analytic prediction.

5 Conclusion

We have verified the leading-order theory on equilibrium droplet formation and dissolu-
tion [10–12] for the two-dimensional Lennard-Jones gas at fixed temperature (varying den-
sity), and at fixed density (varying temperature). Specifically for fixed temperature, we
showed that the analytic prediction by Biskup et al. [10] well describes the size of the largest
droplet as a function of density. While this solution is rigorously proven for the lattice gas,
we are not aware of prior confirmations for continuous systems. For the orthogonal case of
fixed density, we adapted the theory to obtain an analytic prediction for the leading-order
scaling of the transition temperature [23]. Using grand canonical reference values, we were
able to quantitatively predict the amplitude of the leading-order corrections. In particular, we
found a direct relation between those amplitudes of corrections on the transition density, the
transition temperature, and the transition droplet-size. Surprisingly, we found that the scaling
of the finite-size transition density and temperature down to very small system sizes is well

19

https://scipost.org
https://scipost.org/SciPostPhys.5.6.062


SciPost Phys. 5, 062 (2018)

described by the leading-order term V−1/3 plus a heuristic (quadratic) higher-order correc-
tion term V−2/3, despite knowing that there is a multitude of higher-order correction sources,
including capillary waves, the Gibbs-Thompson effect, the breakdown of the Gaussian approx-
imation, and logarithmic corrections [11,13,14,24,46].

Most importantly, we showed that a switch between control parameters (here density and
temperature) is straightforward, such that numerical approaches may fall back onto the setup
most easily realised. For example, with macromolecules it is very easy to work in the canon-
ical ensemble [24], where the orthogonal setup in the grand canonical ensemble is more in-
volved [47, 48]. Of course, combining both approaches allows one to estimate higher-order
corrections consistently, which provides a complete picture of the finite-size scaling behaviour.

In order to obtain the precise data presented in this study, we applied parallel generalised-
ensemble simulations in the (multi) canonical and (multi) grand canonical ensemble. The
general formulation of the method presented in Sec. 3 should allow an easy application of this
powerful parallel method to other setups, in particular those involving nucleation-like transi-
tions. In fact, it was shown that the parallelisation scales very well up to O(105) threads and it
can be implemented on both CPU and GPU clusters [49]. Examples of nucleation-like problems
that benefited from this method include polymer aggregation [24] as well as formation of void-
spaces in the Blume-Capel model – a model for superfluidity in 3He–4He mixtures [50, 51] –
where the generalised ensemble can be adapted to the crystal-field [52]. Parallel multicanon-
ical simulations should also be very fruitful for the study of heterogeneous nucleation at flat
and structured surfaces [53].

Our approach may thus serve as a template for the study of other nucleation-like problems.
Examples include cluster formation in colloidal, polymer and protein solutions [24, 54, 55],
crystallisation in colloidal suspensions [55,56], nucleation in iron melts [57], so-called phase-
change materials [58–60] and glassy solids [61], as well as domain formation in ferromagnetic
materials [62] or mixtures [50–52].

Lastly, we note that apart from their physical relevance in surface science, two-dimensional
systems are important model systems for the study of generic properties accompanying nu-
cleation. We believe that our results may serve as a reference point, e.g., for the study of
free-energy barriers in the presence of nucleation seeds, or to resolve the question about
the “critical” initial droplet size in equilibrium droplet formation. Another advantage of two-
dimensional models is the straightforward usage of transition-path methods such as the string
method [44,63,64], as well as an easy control of geometric parameterisations. In combination
with the advanced parallel generalised-ensemble methods we presented here, this may prove
helpful for tackling some of the long-standing questions about nucleation.
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