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Abstract

We report polariton lasing in localised gap states in a honeycomb lattice of coupled
micropillars. Localisation of the modes is induced by the optical potential created by
the excitation beam, requiring no additional engineering of the otherwise homogeneous
polariton lattice. The spatial shape of the gap states arises from the interplay of the
orbital angular momentum eigenmodes of the cylindrical potential created by the exci-
tation beam and the hexagonal symmetry of the underlying lattice. Our results provide
insights into the engineering of defect states in two-dimensional lattices.
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1 Introduction

The recent implementation of two-dimensional lattices of coupled photonic resonators pro-
vides a new sandbox for the study of propagation and localisation of photons with engineered
dispersions [1–6]. By selecting the geometry of the lattice it has been possible to imple-
ment photonic dispersions that mimic those of electrons in certain solid state materials like
graphene [6,7] and the polyacetilene macromolecule [8–11]. Beyond lattice geometries that
already exist in nature, the control of the onsite energy and hopping between resonators has al-
lowed the engineering of synthetic two-dimensional photonic lattices with exotic dispersions.
Two significant examples are lattices with flat [12–14] and fractal bands [15, 16], in which
the effects of localisation can be studied with exquisite precision. Up to now, most works in
this domain have focused on the understanding of the bulk properties, particularly, the lasing
dynamics [2,3,12–14] and the topological properties [17,18]. Similar studies have been per-
formed in passive lattices of waveguides, which have provided valuable information on the
effects of bulk localisation [19–21] and propagation in topological edge states [22,23].

An interesting feature of photonic lattices is the possibility of engineering states in the
photonic gaps. They provide localised modes isolated in energy from the photonic bands.
Their properties can eventually be tailored to create, for instance, localised lasing modes [5,
24], or used as precursors of lattice solitons [25–29]. A method to create isolated gap states
is to implement one-dimensional lattices with nontrivial topology. At their edges, or when
two lattices with different topological invariants are interfaced, localised states whose energy
lies in the middle of the gap appear [30, 31]. Lasing in this kind of topological modes has
been recently predicted [8, 32] and observed in one-dimensional lattices of micropillars [9]
and of semiconductor ring resonators implementing the driven-dissipative version of the Su-
Schrieffer-Heeger Hamiltonian [10,11].

In the bulk of a homogeneous lattice, the only way to engineer a localised mode is to locally
break the lattice periodicity. This can be done, for instance, via a local variation of the on-site
potential. The so-called defect states emerge from the top or bottom of the photonic bands
and get deeper into the gaps when the local perturbation is increased. This idea has been
exploited to create localised photonic modes in subwavelength photonic crystal slabs [33].

A very suitable system to study the emergence of defect modes in lattices of resonators are
semiconductor microcavities. Their eigenstates are polaritons, mixed light matter quasiparti-
cles arising from the strong coupling between quantum well excitons and photons confined
in a microcavity [34]. One of the main advantages of this system is the fact that the local
potential can be varied with an external optical beam: nonresonant excitation of the micro-
cavity injects a reservoir of excitons that interact repulsively with polaritons. In this way, the
reservoir induces a local blueshift that can be used to shape the local potential [35–38]. This
feature was employed in Refs. [5,24] to demonstrate the emergence of localised gap states in
a one-dimensional microcavity wire subject to a periodic photonic potential. In those works,
it was shown that the symmetric or anti-symmetric character of the defect state depends on
the specific point in the periodic potential at which the periodicity is broken.

In two-dimensional photonic lattices, defect modes have been hardly explored in a con-
trolled way. Yet, they play an important role in the transport properties of graphene [39], and
are at the origin of antibunched emission in WSe2 and hBN [40, 41]; their study in photonic
lattice simulators can provide insights into their properties. In this work, we study the ap-
pearance of defect gap states in a honeycomb lattice of coupled polariton micropillars. In the
absence of a local perturbation, the lattice shows two sets of bands separated by a gap. Each
set of bands arises from the coupling of either s- or p-modes confined in each micropillar [7].
When optically modifying the on-site potential, localised states emerge from the top of the
highest s-band. If pumping is localised on a single pillar of the lattice, we observe lasing from
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Figure 1: (a) Scanning electron microscope image of the polariton honeycomb lat-
tice under study. (b) Energy and in-plane momentum resolved emission from the
centre of the lattice under low excitation power (5 mW). The emission is recorded
for ky = 0.87 µm−1, for an excitation spot centred on a single pillar. The low power
emission is virtually identical for a spot centred in a hole of the lattice. Dashed lines
show the lower and upper limits of the gap between s- and p-bands. (c)-(d) Emis-
sion at 11 mW and 60 mW, showing the emergence of a localised gap state. The inset
in (d) shows the real space emission of the gap state at 60 mW. (e)-(f) Energy and
emission intensity of the gap state measured as a function of excitation power. (g)
Measured linewidth (full width at half maximum) of the gap state extracted from a
Gaussian fit to its spectral profile.

a single gap state above a certain pumping threshold, whereas if the pump is centred in the
middle of a hexagon, lasing takes place simultaneously in three ring-shaped modes containing
different angular momentum components. Our results clarify the picture of the emergence of
gap states from band modes in a hexagonal lattice, and show that in a polariton lattice, a local
excitation is enough to create tightly confined lasing modes.

2 The polariton honeycomb lattice

In the present experimental study we use a honeycomb lattice of coupled micropillars similar
to that of Ref. [7]. The lattice, shown in Fig. 1(a), is chemically etched from a Ga0.05Al0.95As
λ/2 planar microcavity surrounded by two Ga0.05Al0.95As/Ga0.8Al0.2As Bragg mirrors with 28
(upper mirror) and 40 (lower mirror) pairs grown by molecular beam epitaxy. The micro-
cavity contains three sets of four GaAs quantum wells of 7 nm in width, located at the three
central maxima of the electromagnetic field confined in the cavity. Strong light matter cou-
pling between quantum well excitons and confined photonic modes results in a Rabi splitting
of 15 meV. The experiments are performed at 4 K at exciton-photon detunings between -12 and
-17 meV. The micropillars forming the lattice are 2.7 µm in diameter and their center to center
distance a is 2.4 µm. The sample is excited with a continuous wave laser at 740 nm, about
100 meV above the lower polariton emission energy. To avoid thermal effects, we modulate
the laser with an acousto-optic modulator at 0.8 kHz with square gates and a duty cycle of
0.08%. The large numerical aperture of the excitation/collection microscope objective results
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in a pump spot of w = 3 µm full width at half maximum. Photoluminescence from the sam-
ple is collected by a spectrometer coupled to a CCD with which we measure the spatial and
momentum distribution of the emission as a function of energy.

Figure 1(b) shows the low power (5 mW) photoluminescence of the lowest energy bands
in momentum space, with an excitation spot centred on one of the micropillars of the lattice.
To avoid destructive interference effects characteristic of the emission from the first Brillouin
zone [7], we collect the light emitted through the K − Γ −K ′ line in momentum space centred
on the second Brilloin zone (ky = 0.87 µm−1). The lowest energy bands arise from the cou-
pling of the lowest polariton mode in each micropillar, of cylindrical symmetry. These bands
present a dispersion analogous to that of electrons in graphene. A fit of the measured disper-
sion to a tight-binding model gives a hopping amplitude of t = 0.26 meV [7]. The asymmetry
between upper and lower s-bands can be described within the tight-binding model by a phe-
nomenological next-nearest neighbours hopping of t ′ = −0.03 meV. A gap, marked by dashed
lines in Fig. 1(b)-(d), separates these bands from the four p-bands that arise from the coupling
of the first excited modes in the micropillars. From tight-binding fits we estimate a nearest-
neighbour hopping amplitude of −1.2 meV for p-orbitals oriented parallel to the links between
micropillars, and 0 for the hopping of polaritons in orbitals oriented perpendicular to the links
(see Refs. [7,18]).

3 Excitation centred on a micropillar

When the excitation density is increased, a state detaches from the top of the s-bands entering
the gap between the s- and p-bands (Fig. 1(c)-(e)). The energy of this gap state increases when
rising the excitation power (Fig. 1(e)), and above a threshold of 40 mW, lasing on this mode
is triggered. This is attested by the nonlinear threshold in the emitted intensity as a function
of the excitation density (Fig. 1(f)), and the simultaneous linewidth reduction by a factor of
2 across the threshold (Fig. 1(g)). Above the lasing threshold power, nonlinear effects arising
from the excited charges in the quantum wells induce spectral wandering of the gap state and
degrade the linewidth in our time-integrated measurement.

We can understand the origin of this gap state from the potential locally induced by the po-
lariton reservoir injected by the excitation laser. When exciting the microcavity non-resonantly,
that is, at an energy exceeding the quantum well band gap, hot electrons and holes are injected
in the microcavity. They relax down to form a reservoir of polaritons that accumulate at high
momenta close to the exciton energy, 20 meV above the s-bands. From there, polaritons relax
down to the lower polariton bands. The polariton reservoir interacts repulsively with the low-
est band polaritons inducing a blueshift. Due to the heavy mass of the reservoir states (close
to that of free excitons i.e. ∼ 0.9 me, with me being the free electron mass) the diffusion
length of the reservoir is very short, of the order of a few microns [36]. The induced poten-
tial is thus localised under the laser excitation spot, in this case centred on a micropillar of
the lattice. The reservoir potential creates a localised state that penetrates into the gap (defect
state), very similarly to what was observed in a 1D microcavity with a periodic modulation [5].
Electro-optics effects can be discarded to be at the origin of the local blueshift due to the very
low cw powers used in our experiments compared to the high peak energies required [42].

The hexagonal symmetry of the lattice determines the shape of the gap state, which shows
a three points star shape, as depicted in the inset of Fig. 1(d) for an excitation density of
60 mW, above the lasing threshold. At this power, the emission is fully dominated by the gap
state, and the real space image in Fig. 1(d) is recorded using a band-pass filter that eliminates
the excitation laser light. The zero of intensity between the lobes witnesses the anti-symmetric
nature of the state, with a phase change of π between adjacent lobes of the wavefunction. The
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Figure 2: (a) Calculated momentum space dispersion of a lattice with an external
potential localised in a single pillar with an amplitude UR = 0.5 mW. s- and p-bands
as well as a gap state close to the top s-band are visible. (b) Calculated real-space
emission intensity of the gap state. (c) Black dots: Calculated energy of the gap
state relative to the top of the s-band as a function of the reservoir potential (lower
scale). Solid line: Eq. 2. Red dots: measured energy of the gap state from the top
of the s-band as a function of the excitation density (upper scale) for low excitation
densities (< 18 mW, Fig. 1(e)). The relative extent of the upper horizontal scale has
been chosen to overlap the experimental points to the calculation.

anti-symmetric character of the state is inherited from the shape of the wavefunctions of the
anti-bonding top s-band [7].

The significant localisation of the gap state explains why lasing is favoured in this state
versus the bulk modes. Its localisation in an area comparable to the excitation laser spot
optimizes the overlap of this state with the reservoir, resulting in a lower threshold for the gap
state than for the bulk, propagating modes.

To provide a qualitative description of the spatial distribution and energy of the gap states
observed in the experiment, we solve the time-independent 2D Schrödinger equation describ-
ing the cavity field ψ(x , y) in the absence of pump and losses:

Eψ(x , y) = −
~2

2m
∆ψ(x , y) + (U(x , y) + Ures(x , y))ψ(x , y), (1)

where m is the effective mass of the lower polariton branch at k = 0 in the unetched planar
microcavity (m = 4.9 · 10−5 me). U(x , y) is the confinement potential of polaritons with a
value of 0 in the region where the micropillars are present, and 20 meV in the etched away
region (the barrier height is a fitting parameter, chosen to reproduce the dispersion, especially
the gap size). Ures(x , y) is the potential created by the reservoir polaritons, which we take as a
Gaussian with amplitude UR and width w= 3 µm (the size of the laser spot in the experiment)
centred on a micropillar. The solution of this equation on a grid gives the eigenenergies E and
the eigenstates of the s- and p-bands separated by a gap. When the on-site Gaussian potential
UR is increased, the simulation shows the emergence of a state from the top of the s-band
which enters the gap, as can be seen in Fig. 2(a) plotted in momentum space. The real-space
shape of this state for an amplitude UR = 0.5 meV is shown in Fig. 2(b) (yellow lines show
the confinement potential U). The analysis of the phase of the calculated wavefunction of the
mode confirms the anti-symmetric nature of the gap state.

The calculated energy of the gap state created by the reservoir is shown in solid black
dots in Fig. 2(c). Its apparent quadratic dependence as a function of UR can be described
analytically using a simple model of a shallow potential well [43]. Polaritons on top of the
upper s-band behave like quasi-particles with negative effective mass. Due to the negative sign
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of the mass, a positive localised potential UR results in the trapping of polaritons in a localised
state, with an energy higher than that of the top of the s-band. For a shallow potential well of
"depth" UR and size w (where shallow means UR� ~2/2|m∗|w2, which can be fulfilled either by
reducing UR, w, or both), the approximate energy of the first confined state (positive, measured
from the top of the s-band) takes the form

E1 ≈
|m∗|w2

2~2
U2

R , (2)

where m∗ is the (negative) effective mass at the top of the band, which we obtain from the
experimentally determined hopping coefficients t and t ′ (see above) and a parabolic band
approximation around the Γ point (kx , ky) = (0, 0). This energy is plotted in Fig. 2(c) as a
blue line, which shows a good agreement both with the numerical simulations, and with the
first three experimental points of Fig. 1(e), plotted here as red dots. These three points are
measured below the lasing threshold, where the reservoir potential UR is expected to increase
linearly with the pumping (above threshold, the stimulated scattering process results in a
sublinear increase of the reservoir density). In Fig. 2(c) the horizontal scale for the red dots is
the excitation power (upper scale). Its span has been adjusted to match the calculated energy
dependence of the gap state as a function of UR.

4 Lasing from gap modes induced by a hexagonal potential

The flexibility in shaping the local potential with the use of the injected reservoir allows ex-
ploring other gap states, in particular, states involving angular momentum modes. This is the
case when the pump is centred on a hole of the hexagonal lattice. As the pump spot is wider
than the size of the hole (∼ 1 µm), the injected reservoir induces a local blueshift on the six
micropillars encircling the hole. Since the induced repulsive potential is more extended than
in the case discussed above of pump centred on a single pillar, the shallow well picture does
not apply any more and several localized gap modes are expected.

Figure 3 shows the measured momentum space emission as a function of the excitation
power for such hole-centred spot. At 25 mW we observe a set of states detaching from the
upper s-band and entering the gap. At 35 mW, up to six gap states can be identified. When the
power is increased above 45 mW, lasing takes place simultaneously in three of them, labelled
S1, S2, and S3, up to the highest available power in our set-up. The lasing threshold is charac-
terised by a nonlinear increase of the emitted intensity with excitation density (Fig. 3(g)) and
by an abrupt linewidth reduction (see Fig. 3(h) for state S1 – similar features are observed for
states S2 and S3).

Insights into the nature of the three gap states can be revealed from their real- and
momentum-space distributions at an excitation power of 105 mW. Figure 4(b)-(d) shows the
spatial distribution of the gap modes. In this measurement, the emitted intensity is filtered in a
spectrometer with a narrow slit (spectral resolution of 60 µeV) attached to a CCD camera. By
recording the spectra for different positions of the imaging lens in front of the entrance slit, we
can reconstruct the real space pattern for any emission energy [9,44], in this case the energies
of the S1, S2, and S3 modes. As a reference, Fig. 4(a) shows the bulk extended emission from
the top of the upper s-band at 15 mW, below the excitation power required to create the gap
states. The extension of the emission far from the excitation spot (located at the central hole
of the image) proves its bulk nature, while the radial decay of the emission arises from the
cavity radiative losses. In contrast, at high excitation power, gap state S1 is highly localised in
the central hexagon (Fig. 4(b)). The emission pattern shows a clear C6ν symmetry following
that of the underlying hexagonal lattice, with zeros of intensity in between the micropillars.
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Figure 3: (a)-(f) Momentum-space emission as a function of power for an excitation
spot centred on one of the hexagons of the lattice, as sketched with a red circle in
the inset of (a). For each image, the linear colour scale has been normalised to
the maximum intensity. (g) Measured emission intensity as a function of excitation
power for the three lasing gap modes. (h) Measured linewidth (full width at half
maximum) of the S1 gap state extracted from a Gaussian fit to its spectral profile.
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Figure 4: Real-space of emission of the energy selected top states of the s-band at
low power 15 mW (a), and gap modes S1 (b), S2 (c) and S3 (d) at 105 mW. The
intensity in each panel has been independently normalised.

The emission pattern for gap states S2 and S3 is quite different. S2 shows four intense
quasi-circular spots in the central hexagon with perpendicular separatrix, while in S3 two of
the four central spots are elongated and the separatrix present an angle θ ∼ 60◦. For S2 and
S3, away from the four central spots, the emission recovers a hexagonal pattern. Note that
the emission patterns shown in Fig. 4 and in all the other figures in this paper are measured
with a linearly polarised filter oriented in the horizontal direction with respect to Fig. 4. All
other polarisations show the same patterns; any eventual splitting between states of different
polarization is smaller than the linewidth of these states and, therefore, if present, it could not
be measured.
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Figure 5: (a) Calculated eigenvalues of the honeycomb lattice subject to a local po-
tential of 3 meV in the central hexagonal cluster. Only the region around the gap
between s- and p-bands is shown. (b), (d), (e) Calculated squared absolute values
of the eigenfunctions corresponding to the S2, S1, and S3 gap states in horizontal
polarisation (identical shapes are found for the vertically polarised modes). (c), (f)
Phase of the eigenfunctions corresponding to S2 and S3. The phase is displayed in
units of π.

The symmetry of the real space pattern of states S2 and S3 is C2ν, i.e., invariant under
rotations of 180◦. To understand this symmetry reduction with respect to the C6ν symmetry
of the hexagonal lattice, we have to analyse the properties of the eigenfunctions of such gap
states. This analysis is performed in the next sub-sections first by solving numerically the full
2D Schrödinger equation (Eq. 1) with a Gaussian reservoir centred in a hexagon of the lattice.
We then propose an analytical approach, based on the envelope function approximation which
explains qualitatively the peculiar shape of states S2 and S3. We discuss the difference between
these states and the eigenstates of a bare photonic benzene molecule [44].

4.1 Numerical simulations

The results of the numerical simulation based on Eq. 1 for a pump spot centred in a hole of the
lattice are presented in Fig. 5. Panel (a) shows the energies of the states close to the gap as
a function of the eigenvalue number (related to the total number of pillars in the considered
structure), calculated for an amplitude of the reservoir potential UR = 3 meV. Six modes S1-S6
appear in the gap. The states of interest here, S1-S3, are located in its upper part. States S2
and S3 would be degenerate in a perfectly symmetric system. In our simulations, in order
to reproduce the splitting observed in the experiment, we lift the degeneracy by introducing
a 10% ellipticity in the shape of the pump, with the long axis in the x direction. We have
checked that the spatial gradient due to the inhomogeneous cavity thickness present in our
sample (of about 6 µeV/µm) is not enough to induce the large measured splitting of 60 µeV
between S2 and S3. The calculated spatial distributions of the intensity and phase of states
S1-S3 are shown in Fig. 5(b)-(f). The order in energy of the simulated states, the number
of lobes, and their orientation correspond to the experimental findings. Therefore, the pump
ellipticity seems to be at the origin of the observed symmetry breaking: the degenerate states
S2+S3 conserve the C6v symmetry, whereas each of them alone (after degeneracy lifting)

8

https://scipost.org
https://scipost.org/SciPostPhys.5.6.064


SciPost Phys. 5, 064 (2018)

S2(b) S3(c)(a)

S1(d) S2(e) S3(f)

S1

cv

-1-2 0 1 2 -1-2 0 1 2 -1-2 0 1 2

0

1

-1

-2

2

-2

0

1

-1

2

kx (µm)-1 kx (µm)-1 kx (µm)-1

k
y

(µ
m

)-1
k

y
(µ

m
)-1

1

0

1

0

Figure 6: (a)-(c) Measured momentum space patterns of the S1, S2 and S3 gap states.
Hexagons in (a) represent the reciprocal Bravais lattice. Dotted circles indicate the
numerical aperture of the imaging setup. The intensity in each panel has been in-
dependently normalised. (d)-(f) Momentum space of the gap states obtained from
direct Fourier transform of the calculated eigenfunctions shown in Fig. 5.

possesses only a C2v symmetry (with the orientation determined by the elongated shape of the
laser spot). State S2 shows orthogonal separatrix between lobes (Fig. 5(b),(c)), while state
S3 (Fig. 5(e),(f)) presents separatrix crossing at 60◦ and 120◦, as in the experiment.

The measured and calculated Fourier images of the gap states S1-S3 are presented in Fig. 6.
The dotted lines in panels (a)-(c) show the numerical aperture of the experimental setup. Good
agreement between experiment (panels (a)-(c)) and simulations (panels (d)-(f)) for all states
confirms the validity of our model. The Fourier transform conserves the number of lobes for
localized states. The emission from the S1 mode is distributed over the centres of the Brillouin
zones surrounding the central one (marked by yellow hexagons), where the Brillouin zones
of a homogeneous lattice are defined. For states S2 and S3, a lobe can spread over two pillars
in real space (with a constant phase), and therefore its Fourier image spreads over several
Brillouin zones (also with a constant phase).

4.2 Analytical solution based on the envelope function approximation

An approximate analytical solution for states S1-S3 can be found by using the envelope func-
tion approximation: the states in a modulated lattice can be decomposed into the product
ψ = ψBψenv , where ψB is the eigenstate of the unperturbed-lattice wavefunctions (Bloch
wave), and ψenv are the eigenstates of the local modulation potential (envelope function).
The gap states emerge from the antisymmetric state located at the top of the first band (Γ
point of the π∗ band of graphene). The Bloch function of this state changes its phase by π
between neighbouring pillars (it goes from positive to negative amplitude in adjacent pillars).
If we consider only the x , y coordinates corresponding to the centre of each micropillar, it can
be written as

ψB (x , y) = sin

�p
3πx
d
−
πy
d

�

+ sin

�p
3πx
d

+
πy
d

�

− sin
�

2πy
d

�

, (3)

where d = 3a/2, and a = 2.4 µm is the distance between neighbouring sites. On a single
hexagon, this antisymmetric function can be written as ψB = cos3ϕ, where ϕ is the polar
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Figure 7: Analytically calculated real space intensity distribution (a),(c) and phase
(b),(d) for the states S1 (a)-(b) and S3 (c)-(d). The phase is displayed in units of π.

angle (choosing the centre of the hexagon as the reference for the polar coordinates). This
angular representation is useful to get a qualitative explanation for the separatrix angles of
the observed states.

The envelope function ψenv is a solution of the Schrödinger equation for a 2D circular po-
tential trap, effectively created by the reservoir. The solutions in such a trap are characterized
by two quantum numbers n (radial) and l (azimuthal). In our case, states S1-S3 all belong to
the lowest radial state n = 0 and differ only by the azimuthal number (angular momentum).
For a finite-size 2D trap of radius R, the solution reads [45]

ψenv (r,ϕ) =

(

eilϕ
p

2π
c1J|l| (kr) , k =

p

2 |m∗| E/~2, r ¶ R,
eilϕ
p

2π
c2K|l| (κr) , κ=

q

2 |m∗|
�

Eg − E
�

/~2, r > R,
(4)

where J is the Bessel function of the first kind, and K is the modified Bessel function of the
second kind. c1 and c2 are normalisation constants, and Eg is the depth of the trap.

Let us first discuss the angular dependence of ψenv . Indeed, it is the angular momentum
which defines the energy of the eigenstate of the 2D trap potential considered here. The gap
states thus appear in multiplets labelled by the angular momentum of the envelope wavefunc-
tion (l = 0,±1,±2 . . .). Since we are dealing with negative mass particles, the highest energy
state is the l = 0 (this would be the ground state for a circular trap potential for positive mass
particles), which is of constant amplitude and phase in the central hexagon (ψenv = const).
Therefore, the real-space angular distribution of the total wavefunctionψS1 within the central
hexagon is determined purely by the Bloch wavefunction ψS1 =ψB = cos3ϕ.

Because of the ellipticity mentioned above, the envelope wavefunctions of states S2 and S3
involve linear combinations of l = ±1 modes: ψenv,S2 = χ(r) sinϕ and ψenv,S3 = χ(r) cosϕ,
respectively, where χ(r) contains the radial dependence shown in Eq. 4. The full eigenfunc-
tions ψS2 and ψS3 arise from the product of these envelope functions with the Bloch wave,
resulting in four distorted lobes in the central hexagon, as we discuss in details below. Out-
side of the central hexagon, the modulation linked with the envelope function becomes less
important, and only the Bloch function (antisymmetric, with six lobes) becomes visible. Other
multiplets (e.g. with l = ±2 envelope function) are also present in numerical simulations,
but in the experiment their population is too weak compared to the lasing modes S1-S3. In
the central hexagon, the zeros of the state ψS3 = ψBψenv,S3 = χ(r) cos3ϕ cosϕ, correspond-
ing to the change of the sign of the wavefunction, are at 120◦ and at 60◦, whereas those of
ψS2 = χ(r) cos 3ϕ sinϕ are at 90◦, which explains the separatrix angles observed in experi-
ment and in numerical simulations.

Finally, we use the full analytical expression for the wavefunction ψ = ψBψenv given by
Eqs. (3),(4) to calculate the spatial intensity and phase distributions for the states S2 and
S3. To simplify the calculations, we use the asymptotic development of the Bessel func-
tions J|l|(r) ∼ r |l| and K|l|(r) ∼ exp(−r) and a convolution with a Gaussian function. The
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results are shown in Fig. 7(a,b) for state S2 and (c,d) for S3. The zero-amplitude lines of the
wavefunctions appear clearly in the phase plots, at the boundary between regions of different
phase. They confirm our analytical predictions for the separatrix angles and agree well with
the numerical simulations (compare with Fig. 5(c,f)). The shape of the intensity patterns also
matches the experiment (compare with Fig. 4(c,d)): the state S2 is elongated horizontally and
S3 is elongated vertically.

It is interesting to compare the profile of the gap states on the central hexagon with the
quantized states of an isolated photonic benzene molecule, which can be labelled via the or-
bital angular momentum L = 0,±1,±2, 3 [44]. The antisymmetric intensity and phase profile
of gap state S1 in the central hexagon is qualitatively similar to the L = 3 wavefunction of
the benzene molecule, which also shows six lobes and phase jumps of π between adjacent
micropillars. However, their origin is different: in the S1 state, the antisymmetric structure
arises from the underlying Bloch state, of negative mass, combined with an l = 0 envelope
state. Gap states S2 and S3 have four lobes, similarly to the linear combinations of L = ±2
degenerate states in the isolated benzene molecule. The S2 and S3 gap states arise from the
interference of ψB = cos 3ϕ and ψenv = χ(r) cosϕ and ψenv = χ(r) sinϕ, with separatrix
involving 60◦, 90◦ and 120◦, whereas in an isolated benzene molecule the zero-amplitude
lines of the states L = ±2 are given simply by the zeros of cos 2ϕ and sin 2ϕ, and appear in
perpendicular directions (90◦). The origin of this difference is the interplay between the Bloch
wave of the lattice and the envelope function of the asymmetric trapping potential, absent in
benzene.

5 Gap states lifetime

To explain why lasing occurs in gap states S1-S3 and not in the other possible gap states or in
the bulk states, we need to take into account both the lifetime of each state and the overlap
of the corresponding wavefunction with the reservoir [7, 12, 46]. The interplay of these two
elements establishes which mode reaches the lasing threshold at the lowest excitation density.
All the bulk states, extended over the whole lattice, have a weak overlap with the localised
reservoir. For a lattice of 30 × 30 sites, the overlap of the bulk modes with the reservoir
localised in a hexagon is of the order of Ibulk,R ∼ w2/S ∼ 10−3, where S is the patterned
area of the cavity. This weak overlap makes lasing in these states very unlikely under localized
nonresonant pumping. On the other hand, the overlap of the reservoir with the localized states
close to the middle of the gap is roughly of the order of Igap,R ∼ w2/Scel l ∼ 0.5, quite similar
for all the gap states. Lasing should therefore preferably occur in gap states versus bulk modes.
The gap states showing the highest overlap with the reservoir are those with higher energy
(deeper in the gap), showing higher confinement.

The other parameter determining the lasing threshold is the lifetime of each state. The
decay of any polariton state in patterned cavities has two contributions: Γi = Γ0 + Γex t,i . The
escape of photons through the mirrors is given by Γ0, and it is very similar for states whose en-
ergy span is much smaller than the Rabi splitting. Based on measurements in an unetched pla-
nar microcavity with the same layer structure, we estimate Γ0 to be on the order of 1/30 ps−1.
The radiative and non-radiative decay of polaritons in the pillar lateral surfaces is described
by Γex t,i . It depends on the amplitude of the field on the surface of the structure for a given
mode, resulting in losses. The field on the surface can be either absorbed or scattered by sur-
face defects. This contribution can be estimated by integrating the amplitude of the field of
each state i on the surface of the micropillars (assuming losses are concentrated on the surface
itself). Reducing the lattice to a purely two-dimensional system (as in Eq. 1) the field at the
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Figure 8: Calculated lifetime of the gap (solid dots) and bulk states (lines).

surface reduces to the field at the external line d` defining the etched area:

Γex t,i = α

∮

sur f

|ψi(x , y)|2 d`, (5)

where the integration is carried out along the etched surfaces of all the pillars, and α is a
constant which accounts for the surface density of losses.

The calculated overall lifetimes of the gap states S1-S6 are shown in Fig. 8, solid dots. We
have adjusted the value of α so that the lifetime of the s-band bulk modes is of the same order
as that measured in our sample in propagation measurements (not shown). The same value
of α is used for the calculation of the lifetime of all states. The gap states with the highest
lifetime are S1, S2, and S3, precisely those that lase in the experiment: they are favoured both
by their lifetime and by their enhanced overlap with the reservoir. In Fig. 8 we also include
the lifetimes of the states located at the bottom of the s- and p-bands (black dashed and red
dashed lines), and the top of the s-band (blue solid line). The lifetime of the latter is longer
than that of the gap states due to its purely anti-symmetric nature, which confines the mode far
from the edges of the micropillar structure. Despite its reduced losses, the very small overlap
of this extended mode with the localised reservoir prevents lasing from taking place at the top
of the s-band, and favours lasing in the gap modes.

6 Conclusions

We have demonstrated polariton lasing in gap states in a photonic honeycomb lattice. The
states appear as a consequence of the local potential created by the optically injected polariton
reservoir. The shape of the gap states is determined by the product of the anti-symmetric Bloch
wavefunction characteristic of the top s-band states and the envelope eigenstates of the two-
dimensional quasi-circular potential created by the reservoir. We have shown that a weak
deviation from cylindrical symmetry in the reservoir potential reduces the symmetry of the
spatial wavefunctions.

The experimental results presented here demonstrate an efficient method to create lo-
calised gap states in a lattice of photonic resonators without any need for further processing
of the sample. They provide insights into the expected symmetries of the electronic wavefunc-
tions of defect states in honeycomb-like lattices. These have appeared recently as promising
sources of single photon emission in two-dimensional solid-state materials [40,41]. However,
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their actual geometry is difficult to control, having been hardly studied experimentally. The
engineering of the shape of the pumping spot of our photonic lattice provides an efficient
method to simulate more elaborate defect architectures involving, for instance, higher orbital
modes or fully asymmetric shapes [47].
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