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Abstract

We compute correlation functions of three-dimensional Landau-gauge Yang-Mills the-
ory with the Functional Renormalisation Group. Starting from the classical action as
only input, we calculate the non-perturbative ghost and gluon propagators as well as
the momentum-dependent ghost-gluon, three-gluon, and four-gluon vertices in a com-
prehensive truncation scheme. Compared to the physical case of four spacetime dimen-
sions, we need more sophisticated truncations due to significant contributions from non-
classical tensor structures. In particular, we apply a special technique to compute the
tadpole diagrams of the propagator equations, which captures also all perturbative two-
loop effects, and compare our correlators with lattice and Dyson-Schwinger results.
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1 Introduction

Functional methods such as the Functional Renormalisation Group (FRG) or Dyson-Schwinger
equations (DSEs) are non-perturbative first-principles approaches to Quantum Chromodynam-
ics (QCD), and they are complementary to lattice simulations. At finite density the latter ap-
proach is hampered by a sign problem, while the former approaches face convergence and
accuracy problems. The aim of the fQCD collaboration [1] is to establish the FRG as a quan-
titative continuum approach to QCD, with the phase diagram and the hadron spectrum as
primary applications, see [2–7] for recent works.

Building on the advances made in a previous work in four-dimensional space-time [5], we
consider Landau-gauge YM theory in three dimensions, in this work. Similar to its four-dimen-
sional analogue, it is asymptotically free and confining. Upon adding an adjoint scalar, it cor-
responds to the dimensionally reduced asymptotic high-temperature limit of four-dimensional
YM theory. Furthermore, the reduced dimensionality allows lattice simulations at a consid-
erably reduced numerical expense, making the three-dimensional theory an interesting test-
ing case that allows truncation checks in functional approaches. Therefore, the propagators
of three-dimensional YM theory have been studied intensively on the lattice [8–24], with
DSEs [25–31], and in semi-perturbative settings [32–34]. Its vertices have been investigated
on the lattice [11,13] as well as with continuum methods [29,31,34].

So far, the most advanced results for YM theory in three dimensions within functional ap-
proaches have been obtained in a recent DSE investigation [31]. There, the coupled system of
equations for the classical tensor structures has been solved self-consistently. In terms of the
complexity of the truncation, the investigation [31] is comparable to the calculation performed
in [5] for the four-dimensional case, which is more complicated due to non-trivial renormal-
isation. The present work builds on these advances, with a focus on the effects of including
non-classical vertices and tensor structures in the tadpole diagrams of the gluon and ghost
propagator equations.

The paper is organized as follows: In Sec.2 we review the treatment of YM theory with the
FRG using a vertex expansion for the effective action. We focus on new developments for the
inclusion of the propagator tadpole diagrams. In Sec.3 we discuss our results, which includes
a thorough investigation of apparent convergence and a comparison to DSE and lattice results.
The conclusion is given in Sec. 4. We check the independence of the regulator and describe
the computational setup in the appendices.

2 Yang-Mills Theory from the FRG

In this section we review the FRG approach to YM theory using a vertex expansion for the
effective action. Although the overall set-up follows [5, 35], we repeat the most important
steps for the convenience of the reader.

The FRG is a non-perturbative continuum method that implements Wilson’s idea of includ-
ing quantum fluctuations in momentum shells for the effective action, see [36–40] for QCD-
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Figure 1: Flow equation. Wiggly and dotted lines represent the dressed gluon and
ghost propagators, respectively. The crossed circles denote regulator insertions ∂tR ,
see (1).

related reviews. The key object in this approach, pioneered by Wetterich [41], is the scale-
dependent analogue of the effective action Γk. The RG or infrared cutoff scale k is introducted
via a momentum-dependent regulator function Rk that acts like a fluctuation-suppressing mass
term on momentum scales p2 ® k2 . The scale dependence of Γk is governed by an exact equa-
tion with a simple one-loop structure,

∂tΓk[φ] =
1
2

∫

p
Gab
µν[φ]∂tR

ba
νµ −

∫

p
Gab[φ]∂tR

ba , (1)

where
∫

p =
∫

d3p/(2π)3 and the full field-, momentum-, and scale-dependent gluon and
ghost propagator

Gk[φ] =
1

Γ (2)[φ] + Rk
, Γ

(n)
k [φ] =

δnΓ [φ]
δφn

. (2)

The superfieldφ = (Aµ, c, c̄) consists of gauge, ghost, and anti-ghost fields. In (1) the propaga-
tors Gµνab [φ] and Gab[φ] are the diagonal gluon and off-diagonal ghost–anti-ghost components
of the propagator (2). A pictorial representation of (1) is given in Fig.1.

The regulator functions are given in App. A, where we also demonstrate the independence
of the results from the choice of the regulator function. Flow equations for the 1PI n-point
functions are straightforwardly derived from (1) by taking functional derivatives with respect
to the fields, see Fig.2 for the diagrammatic equations.

2.1 Vertex expansion

Due to the structure of the flow equation (1), the flow equation for an n-point correlator de-
pends on up to (n+ 2)−point functions. This leads to an infinite tower of coupled equations,
which have to be truncated within appropriate non-perturbative expansion schemes in order
to be numerically solvable. As in [5], we work in a systematic vertex expansion scheme, corre-
sponding to an expansion of the effective action in terms of 1PI correlation functions. Relying
on the structural similarities of the three-dimensional theory to its four-dimensional analogue,
we take all classical vertices into account, i.e. the ghost-gluon, three- and four-gluon vertex.
In addition, we compute so-called tadpole vertices as discussed in the next subsection 2.2.
For later reference we quickly recapitulate the parametrisations for the propagators and clas-
sical vertex functions considered in this work. The gluon and ghost two-point functions are
parametrised in terms of scalar dressing functions 1/ZA(p) and 1/Zc(p),

[Γ (2)AA ]
ab
µν(p) = ZA(p) p

2δabΠ⊥µν(p) ,

[Γ (2)c̄c ]
ab(p) = Zc(p) p

2δab , (3)
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where Π⊥µν(p) = δµν − pµpν/p
2 denotes the transverse projection operator. We parametrise

the three-point vertices by

[Γ (3)c̄cA]
abc
µ (p, q) =

Æ

4πα(µ)λc̄cA(p, q) [T cl
c̄cA]

abc
µ (p, q) ,

[Γ (3)A3 ]
abc
µνρ(p, q) =

Æ

4πα(µ)λA3(p, q) [T cl
A3 ]abc

µνρ(p, q) . (4)

Their classical tensor structures are given by

�

T cl
c̄cA

�abc
µ
(p, q) = i f abcqµ ,

�

T cl
A3

�abc
µνρ
(p, q) = i f abc

�

(p− q)ρδµν + perm.
	

. (5)

The transversely projected basis for the ghost-gluon vertex consists of only one single element,
whereas the corresponding basis for the three-gluon vertex counts four elements. The impact
of non-classical tensor structures in the three-gluon vertex have been found to be subleading
[42] in four space-time dimensions. Here we assume that they are also subleading in three
dimensions and neglect them. The parametrisation of the four-gluon vertex is given by

[Γ (4)A4 ]
abcd
µνρσ(p, q, r) = 4πα(µ)λA4(p̄) [T cl

A4 ]abcd
µνρσ , (6)

where the classical tensor structure is given by

�

T cl
A4

�abcd
µνρσ

= f abn f cdnδµρδνσ + perm. . (7)

The inclusion of non-classical tensor structures in the four-gluon vertex is discussed below in
subsection 2.2. The four-gluon dressing function(s) are approximated as a function of the
average momentum p̄2 = 1

4(p
2
1 + p2

2 + p2
3 + p2

4) which was shown to be a good approximation
for the full momentum dependence in four space-time dimensions [43] and we assume that
the same holds in three dimensions.

From the momentum-dependent dressing functions of the different correlators, we can
define corresponding running couplings via

αc̄cA(p) = α(µ)
λ2

c̄cA(p)

ZA(p) Z2
c (p)

,

αA3(p) = α(µ)
λ2

A3(p)

Z3
A(p)

,

αA4(p) = α(µ)
λA4(p)
Z2

A(p)
. (8)

Due to gauge invariance, encoded in the Slavnov-Taylor identities, all the couplings (8) have
to agree in the perturbative regime of the theory. Furthermore, the dimensional suppression
of the running coupling ensures that the dressing functions take their bare values at large
momentum scales,

lim
p→∞

λc̄cA(p) = lim
p→∞

λA3(p) = lim
p→∞

λA4(p) = 1 , (9)

for UV-trivial wave function renormalisations

lim
p→∞

ZA(p)→ 1 , lim
p→∞

Zc(p)→ 1 . (10)
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∂t
−1 = + − 1

2
+

∂t
−1 = − 2 − 1

2
+

∂t = − − + perm.

∂t = − + 2 + + perm.

∂t = + − 2 − + perm.

∂t = + − 2 − − + perm.

∂t = + + − + perm.

∂t = + perm.

Figure 2: Diagrams that contribute to the truncated flows of propagators and vertices.
While filled circles denote dressed (1PI) vertices, the squares denote the tadpole ver-
tices explained in subsection 2.2. Shaded lines indicate the projection procedure of
the tadpoles vertices. Permutations include not only (anti-)symmetric permutations
of external legs but also permutations of the regulator insertions.
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Figure 3: Truncation dependence of the gluon propagator dressing 1/ZA(p) (left)
and ghost propagator dressing 1/Zc(p) (right). Symmetric point and full momentum
denotes using the average momentum and full momentum dependency, respectively,
in the three-gluon vertex. Results with + 4gl tadpole and + all tadpoles include the
respective tadpole diagrams.

The truncation described above depends only trivially on the gauge group. In particular,
only the quadratic casimir of the adjoint representation appears in the truncated set of equa-
tions. Therefore, it can be absorbed into a redefinition of the coupling, which in turn can be
turned into a redefinition of the physical scale, see [7,35] for a more detailed discussion. The
same holds for the extended truncation described in the next subsection. Thus, our results are
effectively independent of the gauge group. However, this does not indicate a bad truncation
since also in perturbation theory YM theory is independent of the gauge group up to three
loops, see e.g. [44] for a recent discussion. Also the DSE results from [31] do not possess a
genuine gauge group dependence and lattice results for the propagators show only a mild de-
pendence on the gauge group [45,46]. Consequently, we compare our results to SU(2) lattice
results.

2.2 Tadpole vertices

The structure of the flow equation (1) implies that fully dressed four-point functions appear
on the right hand side of the propagator equations, see Fig.2. In general, this requires the full
knowledge of all momentum-dependent non-classical four-point tensor dressings. Although
some exploratory studies exist [43,47–50], their dynamical back-coupling into the propagator
equations has still not been achieved. In the following, we propose a method that captures
most of the dynamics on the level of the propagator equations, while it keeps the numerical
effort at a manageable level. As an example, we consider the gluon tadpole contribution to the
gluon propagator equation. All other tadpole diagrams are obtained analogously. The gluon
tadpole contribution to the flow of the gluon two-point function is given by

∂t[Γ
(2)
A2 ]

ab
µν(p) =

1
2

∫

p
[Γ (4)A4 ]

abcd
µνρσ(p,−p, q) · [G ∂tR G]dc

σρ(q) . (11)

Exploiting that the gluon propagator is diagonal in colour space and transverse with respect
to its momentum in Landau gauge, we can project (11) with δabΠ⊥µν(p) . From this we see
that the gluon propagator equation depends only on the projected four-point function

TA4(p, q) = Π⊥µν(p)[Γ
(4)
A4 ]

abcd
µνρσ(p,−p, q)Π⊥ρσ(q) . (12)

Therefore, the full contribution of the four-gluon vertex to the tadpole is already contained in
this single scalar function, whose flow we can compute directly from projecting the correspond-
ing equation accordingly, cf. Fig. 2. In particular, this procedure includes the back-coupling
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Figure 4: Gluon propagator dressing 1/ZA(p) (left) and the dimensionful propagator
1/(p2ZA(p)) (right) in comparison with DSE [31] and lattice [11,13,23,51] results.

effect of all non-classical tensor structures that are generated at the perturbative one-loop
level, including therefore also all two-loop effects of the tadpole diagrams in the propagator
equations. The non-classical tensor structures couple back into the vertices indirectly via the
propagators. We neglect their direct back-coupling into the vertex equations. However, we
expect this approximate treatment to yield a considerable improvement of the truncation at
comparably moderate numerical costs.

3 Results

In this section we present the main findings of our investigation. Our solutions are of the scal-
ing type, and are obtained as described in App. B. After discussing the truncation dependence
of our results we provide an extensive comparison to results from lattice gauge theory and
Dyson-Schwinger equations. We close with a determination of the infrared scaling coefficients
and their comparison to those of finite temperature Yang-Mills theory in four dimensions.

3.1 Truncation and Apparent Convergence

In order to assess the influence of the truncation on our results, we compare three different
extensions of our simplest symmetric point approximation:

1. symmetric point: only classical vertices with dressing functions that depend only on the
symmetric momentum configuration,

2. full momentum: same as 1. symmetric point, but including the full momentum depen-
dence of the ghost-gluon and three-gluon vertex dressings,

3. sym. point + 4gl tadp.: same as 1., but with the effects of the non-classical tensors of the
four-gluon-vertex included in the tadpole diagram of the gluon propagator equation as
described in subsection 2.2,

4. sym. point + all tadp.: same as 3., but additionally including the effects of the two-ghost-
two-gluon and four-ghost vertices in both propagator equations, see subsection 2.2 and
Fig.2 for a visualization.

The corresponding results for the propagators are shown in Fig.3. The first immediate obser-
vation is that the additional momentum dependence (2.) in the three-gluon and ghost-gluon
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Figure 5: Ghost propagator dressing 1/Zc(p) (left) and ghost-gluon vertex dressing
λc̄cA(p̄) (right) compared to DSE [31] and lattice [11,13,23,51] results.

vertices does not visibly affect the propagators. On the contrary, the full momentum depen-
dence and tensor structures of the four-point functions in the tadpole diagrams significantly af-
fect the propagators. Concerning the goal of apparent convergence, we observe that including
the tadpole contribution of the four-gluon vertex alone has a comparably pronounced effect,
most of which is counteracted by the remaining tadpoles. This indicates that a fast conver-
gence may be achieved if the underlying consistent resummation pattern is preserved within
the truncation scheme. A similar observation has already been made in the matter sector of
QCD in four space-time dimensions [2,6]. There, it is found that the effect of non-classical ten-
sor structures in the quark-gluon vertex is counter-acted by corresponding structures in higher
quark-gluon interactions that stem from the same BRST-invariant operator. We conclude that
it is of chief importance to fully reveal these resummation patterns.

3.2 Comparison to DSE and Lattice

In this section we compare the results from our most extensive truncation,
4. sym. point + all tadp. (see subsection 3.1), to results obtained from SU(2) lattice
gauge theory [11, 13, 23, 51] and with Dyson-Schwinger equations [31]. To that end we
normalise both, lattice and DSE results respective to our results in the UV regime, for
more details see App. C. We emphasise again hat the presented FRG result is of the scaling
type [52–60], whereas the lattice and DSE results are decouplings solutions [12,14,17,61,62],
characterised by a finite, non-vanishing value of the gluon propagator at p = 0 .

3.2.1 Propagators

From Fig. 4 and the left panel of Fig. 5, it is clearly seen that our results agree well with
the rescaled lattice results in the UV regime with a discrepancy arising below 3 GeV. This
difference is most likely due to truncation artifacts in our results which has to be clarified in
future work. The most obvious culprit are missing effects in the equations for the classical
vertex tensor structures due to the leading non-classical tensor structures of the three- and
four-point functions.

The DSE gluon propagator from [31] has a smaller bump than both the FRG and lattice
propagators. In subsection 3.1 we have shown that non-classical tensor structures have the net
effect of increasing the bump in the gluon propagator. In comparison to the DSE truncation
in [31], the present approximation includes more non-classical tensor structures. Although
this may serve as an explanation, the system of equations is highly non-linear, and such an
incomplete comparison is potentially misleading. Another factor may be that the DSE results
are of the decoupling type whereas our results are of the scaling type, which generically show
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Figure 6: Three-gluon (left) and four-gluon (right) vertex dressings, λA3(p̄) and
λA4(p̄) , compared to DSE [31] and lattice [11,13,23,51] results.

a larger bump [5]. In order to perform a more informative comparison between the DSE and
FRG results, a DSE scaling solution would be preferable because of its uniqueness [58,60].

3.2.2 Vertices

The ghost-gluon and gluonic vertex dressings are shown in comparison with DSE [31] and
lattice [11,13,23,51] results in Fig.5 and Fig.6, where the momentum scale was set using the
fit parameters from the gluon propagator in the last section. Similar to the propagators, all
dressings converge to unity in the ultraviolet.

Concerning the ghost-gluon vertex dressing, we find that the lattice result has its peak at a
higher scale than the dressings computed with functional methods. A similar but, at least in the
FRG result less obvious, deviation can be observed already in the ghost propagator dressing,
indicating a general scale mismatch between ghost- and glue sector. This is particularly inter-
esting, since also recent QCD investigations with very sophisticated truncation schemes [2,6]
show such a scale mismatch between the matter sector and the glue part of the theory, whereas
the glue sector in itself runs consistently. We think that in both cases, missing higher-order
effects are the most likely source of these deviations.

The FRG three-gluon vertex dressing shows very good agreement with the lattice results
over all momenta. In particular, the agreement in the infrared is surprising, since the lat-
tice features a decoupling solution, which has a linearly divergent three-gluon vertex dressing
function [29,31,34], whereas our solution is the scaling solution, which has a stronger diver-

gence in the infrared, λA3(p)∝
�

p2
�−3κ−1/2

, cf. subsection 3.3. The FRG and DSE four-gluon
vertices agree well, whereas lattice measurements of the four-gluon vertex are not available
as of now.

3.3 Infrared Scaling Exponents

In the scaling solution, all correlators scale with a specific power law in the infrared. It can
be shown that self-consistency demands that the anomalous scaling behavior of any (2n+m)-
point function with 2n ghost and m gluon legs in d dimensions is determined by one single
scaling exponent and can be written as [25,58,60]

lim
p→0

λ(2n,m)(p)∝
�

p2
�(n−m)κ+(1−n)( d

2−2) . (13)
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In particular, for the two-point functions, the scaling power laws are then given by [53,54]

Γc̄c(p)∝ p2 ·
�

p2
�κ

,

ΓAA(p)∝ p2 ·
�

p2
�−2κ+ d

2−2
, (14)

where we took their canonical scaling into account. The right panel of Fig.4 and the left panel
of Fig.5 clearly reveal the power law behaviour. Fitting the propagators with (14), we obtain
the three-dimensional scaling exponents,

κsym. p. = 0.321± 0.001 ,

κfull mom. = 0.348± 0.013 ,

κsym. p. + tad. = 0.349± 0.003 , (15)

for the different truncations. The uncertainty stems from the difference of the ghost and gluon
propagator fits. In contrast to the large- and mid-momentum behaviour of the correlators, the
scaling coefficient is also susceptible to the full momentum dependence of the vertices.

We also compare these scaling coefficients with those of four-dimensional Yang-Mills theory
at finite temperature [7]. There an approximation similar to the symmetric point approxima-
tion, (1) in subsection 3.1, was used. Fitting the magnetic part of gluon propagators to the
scaling formula (14) yields κT = 0.323(3). Hence, the magnetic scaling exponent agrees very
well with the scaling exponent of the three-dimensional theory in the approximation (1). This
is expected from dimensional reduction, and yields a very consistent picture.

4 Conclusion

We have presented non-perturbative correlators of three-dimensional Landau-gauge Yang-
Mills theory obtained from first principles with the functional renormalisation group. We have
checked the reliability of the results by comparing to lattice results and achieved better agree-
ment by including non-classical tensors structures in the truncation scheme. However, at lower
momenta the functional and the lattice results still show a discrepancy of 10 %. This hints at
sizeable truncation artifacts in three dimensional Yang-Mills theory with functional methods
at the current truncation level.

These findings are particularly interesting, because an analogous investigation with the
FRG in four dimensions shows considerably better agreement with the corresponding lattice
results already at a simpler truncation level, based on classical tensor structures only. This
indicates that apparent convergence is achieved with less effort in the four-dimensional the-
ory. A possible explanation are the stronger infrared effects that are generically present in
lower dimensions. Phrased differently, the three-dimensional theory features a weakened RG
irrelevance of the operators corresponding to the non-classical vertex components.

Interestingly, the effects of non-classical tensors seem to cancel largely. Although individual
contributions result in large corrections, their overall effect is relatively small but notable.
In this work this is explicitly shown in the propagator tadpole contributions, whose overall
effect is small, when compared to the individual contributions. A similar observation has also
been made in the matter sector of four-dimensional QCD for the effect of non-classical quark-
gluon interactions [2,6]. This finding is particularly important for devising quickly converging
truncation schemes by preserving the underlying resummation patterns.
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A Regulator independence

To check the stability of our results, we repeat the computations above with the flat [63] instead
of the exponential regulator shape function. We parametrise the ghost and gluon regulators
by

Rab(p) = p2δab r

�

p2

k2

�

,

Rab
µν(p) = p2δabΠ⊥µν r

�

p2

k2

�

. (16)

The exponential shape function is given by

rexp(x) =
xm−1

exp (xm)− 1
, (17)

whereas the flat one is given by

rflat(x) =
�

x−1 − 1
�

· θ
�

x−1 − 1
�

. (18)

The dependence of propagator dressings on the regulator shape functions is shown in Fig.7 as
relative errors, defined by

∆2
rel = 2 ·

(Oexp −Oflat)2

O 2
exp +O

2
flat

. (19)

Clearly, the relative errors are well below the percent level in the IR, and even smaller in the
mid-momentum and UV regimes that are relevant for hadronic observables. Importantly, the
regulator dependence is significantly smaller than the truncation dependence.

Explicitly demonstrating regulator independence is a standard quality and self-consistency
check for truncations in the FRG. It is a necessary but not sufficient criterion for the conver-
gence of a given truncation. Indeed, we observe that the dependence of our results on the regu-
lator shape function is negligible although the truncations are not yet converged. Nonetheless,
this regulator independence already at low truncation orders is a very welcome property.

B Numerical computation

Landau gauge has the convenient property that the transverse correlation functions close
among themselves [5, 64], i.e. correlators with at least one longitudinal leg do not couple
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Figure 7: Relative errors∆rel of propagator dressings obtained with different regula-
tor shape functions, given in (17) and (18), in the symmetric point approximation.

back into the transverse subsystem. In the presence of a regulator term, the BRST symme-
try is encoded in modified Slavnov-Taylor identities. Their most important consequence is a
non-vanishing gluon mass term at finite cutoff scales [65]. Here we present only results for
one choice of the gluon mass term, determined uniquely by the scaling solution [53,54]. The
consequences of other choices for the gluon mass term are qualitatively similar to YM theory
in four space-time dimensions and we refer to the discussion presented in [5] for details.

This work relies on the workflow established within the fQCD collaboration [1], see [5] for
details. Symbolic flow equations were derived using DoFun [66], traced using FormTracer [67],
which makes use of FORM [68] and its optimization procedure [69].

C Scale setting and normalisation

For comparison, the DSE and lattice results for the propagators in Sec. 3 are normalised in
amplitude and momentum scale relative to the FRG results. To that end we normalise the
DSE/lattice gluon dressings with a least squares fit to the FRG gluon propagator dressing in
the range 3 GeV to 6 GeV with

min
cA, cp

¦ ∑

pi,lattice

�

cA Z−1
A, FRG(cp pi)− Z−1

A, lat/DSE(pi)
�2©

. (20)

Here, cA normalises the amplitude while cp normalises the momentum scale. The momentum
scale normalisation has to be used for all correlation functions. Hence it is only left to fix
the amplitudes for the other correlation functions. In particular the amplitude of the ghost
propagator dressing is normalised with

min
cc

¦ ∑

pi,lattice

�

cc Z−1
c, FRG(cp pi)− Z−1

c, lat/DSE(pi)
�2©

. (21)

The lattice results for the vertices have large statistical lattice error, and we refrain from nor-
malising the amplitudes. The dressing of the DSE vertices is trivial for large momenta.
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