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Abstract

We discuss generalized global symmetries and their breaking. We extend Goldstone’s
theorem to higher form symmetries by showing that a perimeter law for an extended
p-dimensional defect operator charged under a continuous p-form generalized global
symmetry necessarily results in a gapless mode in the spectrum. We also show that a
p-form symmetry in a conformal theory in 2(p + 1) dimensions has a free realization.
In four dimensions this means any 1-form symmetry in a CFT, can be realized by free
Maxwell electrodynamics, i.e. the current can be photonized. The theory has infinitely
many conserved O-form charges that are constructed by integrating the symmetry cur-
rents against suitable 1-forms. We study these charges by developing a twistor-based
formalism that is a 4d analogue of the usual holomorphic complex analysis familiar in
CFT,. The charges are shown to obey an algebra with central extension, which is an
analogue of the 2d Abelian Kac-Moody algebra for higher form symmetries.
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1 Introduction

In this short note we discuss aspects of generalized global symmetries [1]. A p-form general-
ized global symmetry is an invariance of a theory parametrized by a closed p-form, resulting
(in the continuous case) in a divergenceless p + 1-form current J:

d+J=0. 1)

The O-form case is just a conventional global symmetry and results in a conserved particle
number, whereas the higher-form generalizations result in a conserved density of higher di-
mensional objects (strings, branes, etc.). Thus the operator charged under a p-form symmetry
is p-dimensional: in the conventional O-form case we have a point-like local operator that
creates a particle, in the 1-form case we have a line-like operator (e.g. a Wilson or t’Hooft
line [2,3]) that creates a string, etc.

Though they may sound unfamiliar, such generalized symmetries are in fact present in
many very familiar theories. They have recently found applications in diverse contexts, ranging
from constraining the phase structure of gauge theories and topological phases [4-10] to a new
symmetry-based formulation of magnetohydrodynamics [11].

At the heart of these applications lies the fact that higher-form symmetries are just as
powerful as conventional global symmetries: they may be coupled to external sources, they
sometimes have anomalies and they can spontaneously break. Following Landau, we should
then classify low-energy phases of matter by studying the realization of these symmetries. An
order parameter for the potential breaking of the symmetry is the long-distance behavior of the
charged operator. For a p-form symmetry, a charged object W(C) is defined on a p-dimensional
submanifold C.

There are two possible phases: in the first, the symmetry is unbroken. In this case, we find
at long distances

(W(C)) ~ e~ Trmtrea©), )

where Area(C) denotes the volume of a (minimal) p + 1 dimensional manifold B that “fills in”
C such that 9B = C and T, should be understood as the non-zero tension of the p + 1 di-
mensional objects that J counts. This is the analogue of an exponentially decaying correlation
function (@7(x)@(0)) ~ exp(—m|x|) in the 0-form case, and in the 1-form case it is literally
an area law for the line-like operator. If C is topologically non-trivial, then there exists no B
and W (C) vanishes.

In the other phase, the symmetry is spontaneously broken. In this case, we find

(W(C)) ~ e—TpPerimeter(C) , 3)

where Perimeter(C) is understood to denote the p-volume of the p-dimensional manifold C it-
self.! This only depends locally on C and so is the analogue of a factorized correlation function
(07(x)0(0)) ~ (07)(0) in the 0-form case.

2 Higher form Goldstone modes

We now present a higher-form generalization of Goldstone’s theorem to show that a sponta-
neously broken p-form symmetry results in a gapless Goldstone mode. The Ward identity for
J in the presence of W(C) is [1]:

(d*J(x)W(C) = iq6c(x)W(C), (4)

I This is somewhat imprecise: it may actually include any local functional of the geometry of C, e.g. an extrinsic
curvature, etc.
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Figure 1: Geometry for Goldstone theorem: C is an infinite p-plane that intersects
B4, at a single point; S d=p=1 js the boundary of By_p-

where q is the charge of W(C) and &(x) is a (d — p)-form delta function? with support on C.
Now, suppose that we are in a spontaneously broken phase. As W(C) obeys the perimeter
law (3), we may define a new renormalized W (C) by stripping off the perimeter dependence:

W(C) = W(C)e+TpPerimeter(C) ) (5)

This satisfies the same Ward identity (4) and is still defined locally on C.

Let us now take C to be an infinite flat p-plane and consider a (d — p) dimensional ball
By, with radius R that intersects C at a single point, as shown in Figure 1. The boundary
of By_, is a $9=P=1 that wraps C, and R is the perpendicular distance from C to the S¢P1,
Integrating both sides of (4) over this ball and using Gauss’s law we find

w(C) *J =iqW(C). (6)
§d—p—1 (R)

Now take the vacuum expectation value of both sides of this expression. As we have re-
moved the leading perimeter dependence, by construction W (C) will have a finite expectation
value: W(C) = c. Now as we increase R the right-hand side and thus the left-hand side cannot
change. But this means that the correlation function

iqc

JRW(C)) ~ Rip—1"

(7
where J(R) is the current evaluated at a typical point on the SY=P~1. There is thus a power-law
correlation between the current and W(C). This implies that there is a massless excitation in
the spectrum, which we will call the higher-form Goldstone mode.

In particular, in the case that p = 0, C is just a single point and the argument is merely
a reformulation of the usual Goldstone theorem in the language of Euclidean path integrals
rather than commutators.

Let us now apply this machinery to Maxwell electrodynamics in four dimensions. In the ab-
sence of dynamical magnetic monopoles, this theory has a p = 1 generalized global symmetry,
with a conserved current that counts magnetic flux:

1
JI“”} = EgHVPUFPU, (8)

2More precisely it is a d — p form that is zero away from C and such that for any p-form field B, we have

f Bp/\5c(x)=J B,.
R4 c
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where F is the field strength. The line-like operator W(C) charged under J is the t'Hooft
line [2]; this corresponds to the insertion of an external magnetic monopole along a fixed
worldline C.

We now discuss the phases of electromagnetism from this point of view. Consider first
free electrodynamics with no charged matter. In this case it is straightforward to show that
W(C) has a perimeter law, and thus the 1-form symmetry associated with (8) is spontaneously
broken. The Goldstone mode is the usual photon [1]. To make this comparison clear we write
the low-energy action and current as

2
S=—%Jd4x (dA—b), J=g?(dA—b), 9)

where A is a 1-form that is conventionally called the magnetic photon, b is an external 2-form
source that couples to this current, and (9) is the electric-magnetic dual of the usual Maxwell
action. The t'Hooft line is realized in terms of this low-energy field as W(C) = exp (iq f CA).
We see that (9) should actually be viewed as the Goldstone action for a spontaneously broken
1-form symmetry, where the usual U(1) gauge coupling g2 plays the role of the stiffness of the
symmetry breaking.

This description applies to our own universe provided we are at scales longer than the
mass of the electron. Thus the fundamental (gauge invariant) principle protecting the mass-
lessness of our photon is a spontaneously broken 1-form symmetry. The basic physical idea
that condensation of extended objects leads to gapless modes is central to the idea of “string-
net condensation” used to construct emergent photons from lattice models [12], and our proof
shows how such ideas may be understood in the continuum.

In the Higgs (i.e. superconducting) phase of electromagnetism the behavior of magnetic
flux is different: it is instead collimated into a tensionful Abrikosov-Nielsen-Olesen vortex.
Thus W(C) has an area law (2) with Tpiq the tension of the vortex. The 1-form symmetry
in this phase is unbroken. This provides an order parameter for superconductivity: it is well-
known that there does not exist a conventional gauge-invariant order parameter using only
local operators [13]. See also [14,15].

Returning to the general case, we see that for a spontaneously-broken p-form symmetry,
the current J is always realized nonlinearly in terms of a Goldstone p-form gauge field B as
J = v2dB with action

S = —VZJ d9x (dB)?, (10)

where v is a stiffness and where the coupling to the charged operator is W(C) = exp (iq f c B).
This construction saturates the broken Ward identity (4).

3 Conformality and photonization

We will now discuss a property of p-form symmetries in even dimensions d where d = 2(p+1);
in other words, the rank of the current p + 1 is half of the dimension. We will show that
conformal field theories with such currents always have a free realization of the current in a
sense that we will make precise.

For notational convenience, definen=p+1 = % and consider the two-point function of
two currents in a conformal theory on R?, which is completely fixed by scale invariance and
conservation up to an overall prefactor k:

xM1xP1

k
<JM1...MH(X)Jp1--~pn(0)> — F (gUlpl e g:unpn —d gﬂzpz e g“npn) . (1 1)

x2
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In this expression, it should be understood that the right-hand side is always antisymmetrized
over both u; and p;. There are only two possible tensor structures that can appear, and their
relative factor has been fixed by demanding that g, J""#(x) = 0.

Let us now define the “dual” current J, as:

1
_ s — L iy -
A LA e (12)

We now compute the two-point function of the divergence of J, with J. From (11) it is a few
lines of algebra to show that

3y, (J)1"n(x)JPrPr(0)) = 0, (13)

*

where the equality depends on the precise form of (11) and will not generically hold in a
non-scale-invariant theory. This implies that

8y, 11 (x)8p, J 2P0 (0)) = 0. (14

Thus the operator 8,,1J*v """ has vanishing two-point function in the vacuum. However,
this two-point function measures the norm of the state created by acting with the operator
8,,J.7"™ on the vacuum. This norm must be positive in a unitary CFT; it can only vanish if
the operator is itself zero. We conclude that just like J, its Hodge dual J, is also a divergenceless
current.

Using the fact that 2 = £1, we thus find that we have

dxJ=0, dJ=0. (15)

These two equations together mean that we can always locally write J in terms of a %— 1-form
B that obeys a free wave equation:

J=dB, d*dB=0. (16)

Thus the correlation functions of the current can always be obtained from a free theory. This
free theory is nothing else than the theory of Goldstone modes discussed above (if p > 0).
Therefore CF T's in this class are always in a spontaneously broken phase. This can only happen
for d = 2(p + 1) as only then, is the stiffness (10) a dimensionless parameter. Conversely, also
only when d = 2(p + 1), a symmetry broken phase always corresponds to a CFT. While free,
these theories are still parameterized by the dimensionless stiffness and the spectrum of (non-
local) operators depends on it.

Let us now discuss the implications of this result. Consider first the case d = 2, p = 0. Then
we have derived the well-known fact in CF T, that if a vector current J is conserved, its axial
counterpart ,J is also conserved. This allows us to break the current into separately conserved
holomorphic and antiholomorphic pieces and is the starting point for the construction of the
U(1) Kac-Moody algebra. B is a free compact scalar, and the representation of the current
algebra in terms of this free scalar is normally called bosonization.

We now turn to d =4, p = 1. It is helpful to think of the case of electromagnetism: if we
have a conserved 2-form current J for magnetic flux, conformality implies that we also have
a conserved 2-form current for electric flux. In other words, we cannot have electric charges.
The theory is necessarily free 4d electrodynamics with B the free (magnetic) photon: we have
shown that any 1-form current can be photonized.

Normally the logic here is reversed, and one says that the presence of electric charges
makes the U(1) coupling run logarithmically, spoiling conformality. The argument here shows
that this result is more general than the perturbative context in which it usually appears:
i.e. there is no way to have a conformal field theory with both a conserved magnetic flux
and with dynamical electric charges. Indeed this was recently demonstrated in a holographic
example [16] where non-conservation of xJ was correlated with a lack of conformality. See
also [17,18] for related work.
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4 Abelian Kac-Moody algebra for 1-form symmetries in Maxwell
theory

In this section we specialize to a 4d CFT with a 1-form current J and show that we may con-
struct infinitely many conserved charges. These charges will be constructed on codimension-1
manifolds, and so, unlike higher-form charges [1], are allowed to have nontrivial commuta-
tors. We will show that they form an algebra with central extension that can be thought of as
a higher-form generalization of the Abelian Kac-Moody algebra in 2d CFT. In this section, we
will compute commutators in the free Maxwell theory and in the next we will show how they
can be obtained generically in any CF T, showing explicitly that they can always be photonized
as a consequence of the conservation equation and conformal invariance.
We begin by constructing the following projectors on 2-forms in Lorentzian (3 + 1)d:

1 -1
P:£(1+i*4), p=§(1—i*4), (17)
PAz/\BZZAz/\PBz, pAz/\BzzAz/\PBz, (18)

where the second equality shows how to pass the projector through a product of 2-forms. As
shown previously, in a CFT, J and x4J are both necessarily conserved, and thus the current
may be split into separately conserved self-dual and anti-self-dual currents j and j.

j=PJ, j=PJ, dx,j=d*,j=dj=dj=0. (19)

These are the analogues of left and right-moving currents in 2d CFT. Specializing to the anti
self-dual sector, consider now a chiral 1-form A that satisfies

PdA=0. (20)
For any choice of such a 1-form, the 3-form j A A is closed:
dGAAN)=jAdA=jAPdA=PjAdA=0. (21)

Thus we can integrate this form over a 3-manifold to construct a conserved charge Q(A).

QA) = J JAA. (22)

We may do the same in the self-dual sector. We see that we have infinitely many conserved
charges Q(A) and Q(A). Note that shifting A — A + d¢ with ¢ a 0-form does not alter the
charges (up to boundary terms); thus there is a gauge redundancy in the parametrization of
charges. The same holds for A.

Above we have argued that any theory with this symmetry structure can be photonized to
free electrodynamics, and so it is thus perhaps not surprising that a free theory has infinitely
many conserved charges. They should be thought of as higher-form analogues of the infinitely
many left and right moving charges of an abelian current in 2d CFT. In particular, in the 2d
case the analogue of the chirality condition (20) is simply a restriction to holomorphic and
anti-holomorphic test functions.

It is also intriguing to note that though we started with a 2-form current, the charges
Q(A) and Q(A) are defined by integrals on 3-dimensional manifolds and thus are similar to
“ordinary” charges arising from a O-form symmetry. In particular, unlike charges defined by
integrals on lower-dimensional manifolds [1], any two of these charges will have a definite
ordering in spacetime and thus can have non-trivial commutators.
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We now compute these commutators. We will do this using free Maxwell theory in this
section. In the following section we develop a formalism that can be used to perform this
calculation without resorting to the free field realization and, thus, showing explicitly the
phenomenon of photonization. Consider

S = _L d*x F2 JHY = 1 wvpo g (23)
 4g2 e 2 £ Lo
with F = dA and A a photon field. With this normalization of the action k as defined in (11)

2
satisfies k = Zg?' From the fundamental commutation relation

[Ai(x), F; ()] = 1g°5,;6®(x — y) 24
we obtain the following commutator between the currents:
; 0 0 g 0
.M ] = ig? (572 =612 )5 y) (25)
Jx! dxk

It is then straightforward to derive the following mixed commutator between the charges,
which we assume are constructed as integrals on a constant time-slice in flat 4d space:

2

[Q(A),Q(A)]=—% f d3x €75 A0/ . (26)

The right-hand side is the advertised central extension. This can be seen to be a natural gen-
eralization to higher dimension of the Abelian Kac-Moody algebra in 2d, with the central term
taking a very similar form and with the U(1) gauge coupling playing the role of the Kac-Moody
level®. The diagonal commutators [Q(A),Q(A)] and [Q(A),Q(A)] are both total derivatives.
This is an interesting difference from 2d, where it is instead the mixed commutator between
holomorphic and anti-holomorphic currents that is trivial.

5 Twistor languange for CFT,’s

In the case of CFT,’s with a conserved 2-form the above discussion can be put in a completely
covariant formalism in terms of twistor variables allowing for a computation without mention
of the free field realization. This formalism puts these theories on equal footing to their CF T,s
cousins and allows for the use of complex analysis technology. We will show the phenomenon
of photonization in this language and develop a formalism to discuss charges covariantly, re-
covering the results from previous sections.

5.1 Photonization

It will prove useful to introduce spinorial notation. As usual, an SO(4) vector index u can be
exchanged for a pair of SU(2) spinorial indices aa with a, & = 1,2. Using this notation we
can write a generic antisymmetric tensor as

Juv = Joapp = Jap€ap + Jap€ap (27)

where j and j are symmetric SU(2) tensors. Notice that j and j are the self-dual and anti self-
dual parts of the current 2-form. In this notation e acts like the metric tensor. For example,
the square of the position vector is given by

x? = eaﬂedﬂxadxﬁfj . (28)

3As we are studying an Abelian theory, the value of the gauge coupling has physical significance only once the
normalization of periods of F is fixed, e.g. by fixing the charge lattice for electric and magnetic charges.
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Using this technology we can construct the most general form of two point functions between
j and j consistent with SU(2) symmetry. They are

(j%Pj1%) = f(x*)(e%7eP? +ePre®d), (29)
(9P 710) = g(x?)(xxP? + xPTx0), (30)
(]_"j"g]_'ﬁ) = h(x?) (e‘j‘?eﬂs + emedé) . (3D

If we now demand conformal symmetry and use the fact that j and j have weight 2 under
rescalings we obtain:

1 1 1
fOA)~ =, g~ =, h(xH~—, (32)
X X X

up to multiplicative constants.
Let us now add the requirement that the currents are conserved, i.e.

0up I + Bpai®; =0. (33)

This implies f = h = 0. The only nonzero correlation is, therefore, of the form:

k x“?xﬁ‘ﬁ + x’”xas

-aff 376 —
G0 =5 =6 (34)

The absence of null states makes the conservation equations stronger, as in CF T,, implying
separately the conservation of the dual and self-dual currents.

B 1% =0, (35)
aﬁdj“ﬁ =0. (36)
This is equivalent to the statement that currents can be represented by free Maxwell fields

where the above equations relate directly to the conservation of electric and magnetic fluxes.
Therefore our CF T, has photonized

5.2 Infinite dimensional charge algebra

At this point it pays off to use twistor technology [19] to write down the currents in terms
of operators that are holomorphic in CP?, parameterized by twistorial variables (z%,A,). We
write:

1 Ja 0

Jap(x) = oy dA® A aza@Q(Z,l), (37)
i L[, _
Jap(x) = 5= ¢ dA%Ag AeAp Q2 A), (38)

where the integrals are over a closed contour in a CP! parameterized by (2%, 1,;) = (x*%A,, A).
The A, integrals are always understood at fixed x*%, not 2.

With this notation it is straight forward to check that the following correlator for the Q’s
reproduces (34).

€*PB,Cp 5([AN])  [Ap/]

(Q= Q1)) = ni kBy(z — 2 Cs(z—2")° [AMw/]’

(39)

8
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where [A1/] = €% Adk;g, u’ is a non collinear spinor to A’ and B and C are two indepen-

dent spinors. Integration over the above expression over A’ and A proves independent of
', B and C. A more covariant version of the above formula can be obtained by replacing
S([AN] /{l,‘; ]] i Alw] and giving a contour prescription for the integrals in (37) and (38)

The formula above is important as it puts correlators in terms of a complex functions that
can be integrated by residues, exactly as in the more familiar CF T, context.

It turns out that the Q operators have a clear physical interpretation in terms of usual
charges integrated over compact codimension one surfaces. Consider as in the previous section
a chiral 1-form A such that its exterior derivative is strictly self dual, dA = (dA),p € ap- Then
we can build conserved charges

Q(A)=j]_'/\A. (40)

Notice that charges defined on compact surfaces require that A # d¢, as this would render
them trivial as a consequence of the conservation of the 2-form currents. Solving the con-
straints that A satisfies is hard in physical space but straightforward in twistor space

1 . 2
Aue = 5= § A2, [M;]a —(z,1). (41)

Using (38) and (41) we can write, by going to momentum space k, dual to z¢,

- 1 o, d%k
QA) = — ¢ dA”A,, 5 Q(k, A)p(—k, ). (42)
211 (2r )
If we pick a basis of functions:
I A/
0o, 2) = e 2mis [/ A]) LA (43)
’ [Au]
and define
1 Ug O d’k . o
A =— ¢ dA°N, —2 ikaz k, A/
=27 o © [uA’] oz (27[)26 Paall 2, @
we obtain: i )
Q(A; 1) =Q(z,4), (45)

which shows that the twistor space operators are nothing else than charges. The equivalent
statement can be made for Q(z, A) using 1-forms A with anti-self dual dA,

Q(A) :Jj/\/_\. (46)

Now we can exploit this language to derive a Kac-Moody algebra satisfied by the conserved
charges Q(A) and Q(A). In this language the calculation is completely analogous to the residue
computation familiar in CFT,. Let us compute

ealiap(0), Q)] = 2 J (ap (O T1500) €550 dy™ Ady® Ady?? (47)

The fact that the above computation represents a commutator is related to the choice of con-
tours for the integrals as in CFT,. We can compute the above quantity by going as before to
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momentum space k, and performing the space integrals. The result is:

o 0 Urats
2
723 3287 M AT

mi 0 : Mg] O

= k— - O dA®A, — A
2 axﬁ[ﬂ§ & [pa] 3z ¥ &M

= —ﬂjzk(dA)aﬂ Edﬁ . (48)

eapliap(IQW)) = k7§ daa,

We can now integrate this against a 1-form A to obtain the charge commutator

[Q(A),Q(A)] = —n?k f dAAA, (49)

which agrees with (26) and is consistent with the photonization of CFTy’s.
We expect that this formalism will prove useful in understanding four dimensional gauge
theories in a gauge invariant manner.

6 Relation to soft photon theorems

In non-conformal theories (or, equivalently, theories with dynamical electric charges) we can-
not argue, as in (32), that the self-dual and anti self-dual parts of the currents are conserved.
Therefore the construction from the previous section is absent and there is no non-trivial al-
gebra of charges for theories defined on compact manifolds.

If the theories are quantized, however, over non-compact space-like surfaces X, we can
mimic part of the discussion above. The charges are now parameterized by flat connections
o =d¢ as:

Q(ﬂ)zJ *qJ N o = x4 N (50)
b ax

These charges are (up to electric-magnetic duality) precisely those discussed in the asymp-
totic symmetry approach to soft theorems [20,21] (see [22] for a review). We see that these
charges arise in a fully gauge-invariant formalism and they extend to any QFT enjoying higher
form symmetries. We thus expect that the Kac-Moody algebra appearing in [20] can be repro-
duced from (29)-(31). It would be interesting to better understand this connection.

7 Conclusions

We conclude this short note with some directions for further research. Our proof for the ex-
istence of Goldstone modes made heavy use of Lorentz invariance. We do not believe this is
necessary and it would be very interesting to relax this assumption. This has direct relevance
to lattice models of emergent gauge fields and finite-temperature dynamics.

Furthermore, it would be of great interest to extend the results from this work to non-
abelian gauge theories and gravity. While there are known obstructions to the construction of
higher form currents for non-abelian algebras [1], it is tempting to interpret massless degrees
of freedom in these theories (when they are free in the IR) in terms of corresponding Goldstone
modes.

10
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We also find the similarity of the twistor formalism for CF T4’s to the complex analysis tools
in CFT,’s to be intriguing. This suggests that (at least some sectors of) some higher dimen-
sional CFT’s might show as much structure as the well studied two dimensional case*. We
have only begun to work out the details of the twistorial approach to higher form charges. In
particular, 4d conformal invariance acts as an SU(4) in twistor space, which we did not attempt
to keep manifest above. Another advantage of the twistorial approach is that is provides a nat-
ural language to discuss the physics of light-ray operators which has proven of fundamental
importance to understand the UV consistency conditions on the space of CFT’s [26-29]

Lastly, let us add that while we have not worked out the details, we also expect a similar
structure for massless 2-form fields in 6d, which could have implications towards the under-
standing of the (2,0) CFTg. See [30] for an interesting discussion of asymptotic symmetries
in p-form theories.

Conceptually, this work can be viewed as progress towards organizing quantum field the-
ory in terms of the dynamics of extended objects (which are charged under higher form cur-
rents and are gauge invariant) rather than local operators (which are charged under ordinary
currents and are typically not gauge invariant)®. We anticipate further developments — both
applied and formal — from this program.

Note added: In the final stages of preparation of this paper, two pre-prints appeared on
the arXiv with some overlap with this work: [33] has some overlap with Section 3, and [34]
presents an alternative route to the gapless Goldstone modes in Section 2.
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