
SciPost Phys. 6, 007 (2019)

Fractal symmetric phases of matter

Trithep Devakul1?, Yizhi You2, F. J. Burnell3 and S. L. Sondhi1

1 Department of Physics, Princeton University, NJ 08544, USA.
2 Princeton Center for Theoretical Science, Princeton University, NJ 08544, USA.
3 Department of Physics, University of Minnesota Twin Cities, MN 55455, USA.

? tdevakul@princeton.edu

Abstract

We study spin systems which exhibit symmetries that act on a fractal subset of sites, with
fractal structures generated by linear cellular automata. In addition to the trivial sym-
metric paramagnet and spontaneously symmetry broken phases, we construct additional
fractal symmetry protected topological (FSPT) phases via a decorated defect approach.
Such phases have edges along which fractal symmetries are realized projectively, lead-
ing to a symmetry protected degeneracy along the edge. Isolated excitations above the
ground state are symmetry protected fractons, which cannot be moved without breaking
the symmetry. In 3D, our construction leads additionally to FSPT phases protected by
higher form fractal symmetries and fracton topologically ordered phases enriched by the
additional fractal symmetries.
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1 Introduction

Symmetries are indispensable in the characterization and classification of phases of matter.
In many cases, knowledge of the systems symmetries and how they are respected or spon-
taneously broken provide a complete description of a phase. Beyond the usual picture of
spontaneously broken symmetries, it has been recently appreciated that multiple phases with
the same unbroken symmetry can also exist, known as symmetry protected topological (SPT)
phases, which has been the subject of great interest in a variety of systems [1–23]. These
phases cannot be connected adiabatically while maintaining the symmetry, but can be so con-
nected if the symmetry is allowed to be broken.

The vast majority of these cases deal with global symmetries, symmetries whose operation
acts on an extensive volume of the system. On the opposite end of the spectrum, one also
has systems with emergent local gauge symmetries [24], which act on a strictly local finite
part of the system; such symmetries may lead to topologically ordered phases [25, 26]. In
between these two, one also has symmetries which act on some subextensive d-dimensional
(integer d) subsystem of a system, such as along planes or lines in a 3D system; these are
intermediate between gauge and global symmetries, and have as such also been called gauge-
like symmetries. Systems with such symmetries display interesting properties [27–29], and are
intimately related to models of fracton topological order [30–35] through a generalized gauging
procedure [36, 37] (Type-I fracton order in the classification of Ref 37). Fracton topological
order is a novel type of topological order, characterized by subextensive topology-dependent
ground state degeneracy and immobile quasiparticle excitations, and has inspired much recent
research [35–62]. In a recent work by the present authors, such subsystem symmetries were
shown to also lead to new phases of matter protected by the collection of such symmetries [63].

The subject of this paper is yet another type of symmetry, which may be thought of as being
“in between” two of the aforementioned subsystem symmetries: fractal symmetries. These act
on a subset of sites whose volume scales with linear size L as Ld with some fractal dimension
d that is in general not integer. Note that these models have symmetries which act on a fractal

2

https://scipost.org
https://scipost.org/SciPostPhys.6.1.007


SciPost Phys. 6, 007 (2019)

subset of a regular lattice, and should be distinguished from models (with possibly global
symmetries) on fractal lattices [64–69]. Systems with such symmetries appear most notably
in the context of glassiness in translationally invariant systems [34], such as the Newman-
Moore model [70–78]. Via the gauge duality [36, 37], systems with such symmetries may
describe theories with (Type-II) fracton topological order [32, 33]; these have ground state
degeneracies on a 3-torus that are complicated functions of the system size, and immobile
fracton excitations which appear at corners of fractal operators. Indeed, the recent excitement
in the study of fracton phases arose from the discovery of the Type-II fracton phase exemplified
by Haah’s cubic code [33].

We focus on a class of fractal structures on the lattice that are generated by cellular au-
tomata (CA), from which many rich structures emerge [79–83]. In particular, we will focus
on CA with linear update rules, from which self-similar fractal structures are guaranteed to
emerge, following Ref 32. We construct a number of spin models which are symmetric under
operations that involve flipping spins along these fractal structures. Unlike a global symmetry,
the order of the total symmetry group may scale exponentially with system size, and therefore
their case is more like that of subsystem symmetries.

We first present in Sec 2 a brief introduction to CA, and how fractal structures emerge
naturally from them. When dealing with such fractals, a polynomial representation makes
dealing with seemingly complicated fractal structures effortlessly tractable (see Ref [32]), and
we encourage readers to become familiar with the notation. In Sec 3, we take these fractal
structures to define symmetries on a lattice in 2D. These symmetries are most naturally defined
on a semi-infinite lattice; here, symmetries flip spins along fractal structures (e.g. translations
of the Sierpinski triangle). We describe in detail how such symmetries should be defined on
various other lattice topologies, including the infinite plane. Simple Ising models obeying these
symmetries are constructed in Sec 4, which demonstrate a spontaneously fractal symmetry
broken phase at zero temperature, and undergoes a quantum phase transition to a trivial
paramagnetic phase.

In Sec 5 we use a decorated defect approach to construct fractal SPT (FSPT) phases. The
nontriviality of these phases are probed by symmetry twisting experiments and the existence of
symmetry protected ungappable degeneracies along the edge, due to a locally projective rep-
resentation of the symmetries. Such phases have symmetry protected fracton excitations that
are immobile and cannot be moved without breaking the symmetries or creating additional
excitations.

Finally, we discuss 3D extensions in Sec 6, these include models similar to the 2D models
discussed earlier, but also novel FSPT phases protected by a combination of regular fractal
symmetries and a set of symmetries which are analogous to higher form fractal symmetries.
These FSPT models with higher form fractal symmetries, in one limit, transition into a frac-
ton topologically ordered phase while still maintaining the fractal symmetry. Such a phase
describes a topologically ordered phase enriched by the fractal symmetry, thus resulting in
a fractal symmetry enriched (fracton) topologically ordered (fractal SET [84–92], or FSET)
phase.

2 Cellular Automata Generate Fractals

We first set the stage with a brief introduction to a class of one-dimensional CA, from which
it is well known that a wide variety of self-similar fractal structures emerge. In latter sections,
these fractal structures will define symmetries which we will demand of Hamiltonians.

Consider sites along a one-dimensional chain or ring, each site i associated with a p-state
variable ai ∈ {0, 1, . . . , p−1} taken to be elements of the finite field Fp. We define the state of
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Figure 1: Fractal structures generated by (left,blue) the Sierpinski rule
a(t+1)

i = a(t)i−1 + a(t)i and (right,red) the Fibonacci rule a(t+1)
i = a(t)i−1 + a(t)i + a(t)i+1,

starting from the initial state a(0)i = δi,0. In the polynomial representation, the row
t is given by f (x)t , with (blue) f (x) = 1 + x and (red) f (x) = x−1 + 1 + x over
F2. Notice that self-similarity at every row t = 2l (here, we show evolution up to
t = 40).

the CA at time t as the set of a(t)i . We will typically take p = 2, although our discussion may
be easily generalized to higher primes. We consider CA defined by a set of translationally-
invariant local linear update rules which determine the state {a(t+1)

i } given the state at the

previous time {a(t)i }. Linearity here means that the future state of the ith cell, a(t+1)
i , may be

written as a linear sum of a(t)j for j within some small local neighborhood of i. Throughout
this paper, all such arithmetic is integer arithmetic modulo p, following the algebraic structure
of Fp. Figure 1 shows two sets of linear rules which we will often refer to:

1. The Sierpinski rule, given by a(t+1)
i = a(t)i−1 + a(t)i with p = 2, so called because starting

from the state a(0)i = δi,0 one obtains Pascal’s triangle modulo 2, who’s nonzero elements
generate the Sierpinski triangle with fractal Hausdorff dimension d = ln 3/ ln2 ≈ 1.58.
In the polynomial representation (to be introduced shortly), this rule is given by
f (x) = 1+ x .

2. The Fibonacci rule, a(t+1)
i = a(t)i−1 + a(t)i + a(t)i+1 also with p = 2, so called because

starting from a(0)i = δi,0 it generates a fractal structure with Hausdorff dimension
d = 1+ log2(ϕ)≈ 1.69 with ϕ the golden mean [32]. The polynomial representation is
given by f (x) = x−1 + 1+ x .

Fractal dimensions for CA with linear update rules may be computed efficiently [95].
To see why such linear update rules always generate self-similar structures, it is convenient

to pass to a polynomial representation. We may represent the state a(t)i as a Laurent polynomial
st(x) over Fp as

st(x) =
∞
∑

i=−∞
a(t)i x i (1)

for an infinite chain. Alternatively, periodic boundary conditions may be enforced by setting
x L = 1. In this language, these update rules take the form

st+1(x) = f (x)st(x) (2)

for some polynomial f (x) containing only small finite powers (both positive or negative)
of x . For the Sierpinski rule we have f (x) = 1 + x , and for the Fibonacci rule we have
f (x) = x−1 + 1+ x .
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Then, given an initial state s0(x), we have that

st(x) = f (x)ts0(x). (3)

A neat fact about polynomials in Fp is that they obey what is known as the Freshman’s Dream,

f (x) =
∑

i

ci x
i =⇒ f (x)p

k
=
∑

i

ci x
ipk

, (4)

whenever t is a power of p. This can be shown straightforwardly by noting that the binomial

coefficient
�pk

n

�

is always divisible by p unless n= 0 or n= pk.
It thus follows that such CA generate fractal structures. Let us illustrate for the Fibonacci

rule starting from the initial configuration s0(x) = 1, i.e. the state where all ai = 0 except for
a0 = 1. Looking at time t = 2l , the state is st(x) = x−2l

+ 1+ x2l
. In the following evolution,

each of the non-zero cells a−2l = a0 = a2l = 1 each look locally like the initial configuration
s0, and thus the consequent evolution results in three shifted structures identical to the initial
evolution of s0 (up until they interfere), as can be seen in Figure 1. At time t = 2k+1, this
process repeats but at a larger scale. Thus, we can see that any linear update rule of this kind
will result in self-similar fractal structures when given the initial state s0(x) = 1. As the rules
are linear, all valid configurations correspond to superpositions of this shifted fractal.

The entire time evolution of the CA may be described at once by a single polynomial F(x , y)
over two variables x and y ,

F(x , y) =
∞
∑

t=0

f (x)t y t , (5)

and we have that the coefficient of y t in F(x , y)s0(x) is exactly st(x) = f (x)ts0(x).
The two-dimensional fractal structures in Figure 1 generated by these CA emerge naturally

due to a set of simple local constraints given by the update rules. In the next section, we will
describe 2D classical spin Hamiltonians which energetically enforce these local constraints.
The ground state manifold of these classical models is described exactly by a valid CA evolution,
which we will then take to define symmetries.

3 Fractal Symmetries

To discuss physical spin Hamiltonians and symmetries, it is useful to also use a polynomial
representation of operators. Such polynomial representations are commonly used in classical
coding theory [96], and refined in the context of translationally invariant commuting pro-
jector Hamiltonians by Haah [97]. We will utilize only the basic tools (following much of
Ref [32]), and specialize to Pauli operators (p = 2 from the previous discussion), although a
generalization to p-state Potts spins is straightforward.

Let us consider in 2D a square lattice with one qubit (spin-1/2) degree of freedom per unit
cell. Acting on the qubit at site (i, j) ∈ Z2, we have the three anticommuting Pauli matrices
Ẑi j , X̂ i j , and Ŷi j . We define the function Z(·) from polynomials in x and y over F2 to products
of Pauli operators, such that acting on an arbitrary polynomial we have

Z

 

∑

i j

ci j x
i y j

!

=
∏

i j

(Ẑi j)
ci j , (6)

and similarly for X (·) and Y (·). For example, we have Z(1+x+x y) = Z0,0Z1,0Z1,1. Some useful
properties are that the product of two operators is given by the sum of the two polynomials,
Z(α)Z(β) = Z(α+ β), and a translation of Z(α) by (i, j) is given by Z(x i y jα).

5
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Perhaps the most useful property of this notation is that two operators Z(α) and X (β)
anticommute if and only if [αβ̄]x0 y0 = 1, where [·]x i y j denotes the coefficient of x i y j in the
polynomial, and we have introduced the dual,

p(x , y) =
∑

i j

ci j x
i y j ↔ p̄(x , y) =

∑

i j

ci j x
−i y− j , (7)

which may be thought of as the spatial inversion about the point (0, 0). We will also often use
x̄ to represent x−1 for convenience. More usefully, we may express the commutation relation
between Z(α) and translations of X (β) (given by X (x i y jβ)) as

Z(α)X (x i y jβ) = (−1)di j X (x i y jβ)Z(α), (8)

where di j may be computed directly from the commutation polynomial of α and β ,

P(α,β) =
∑

i j

di j x
i y j = αβ̄ , (9)

which may easily be computed directly given α and β . In particular, P = 0 would imply that
every possible translations of the two operators commute.

3.1 Semi-infinite plane

We may now transfer our discussion of the previous section here. Let us consider a semi-
infinite plane, such that we only have sites (i, j) with x i y j≥0. We may then interpret the jth
row as the state of a CA at time j, starting from some initial state at row j = 0. Consider the
linear CA with update rule given by the polynomial f (x), as defined in Eq 2. The classical
Hamiltonian which energetically enforces the CA’s update rules is given by

Hclassical = −
∞
∑

i=−∞

∞
∑

j=1

Z(x i y j[1+ f̄ ȳ]), (10)

where we have excluded terms that aren’t fully inside the system.
As an example, consider the Sierpinski rule f = 1+ x ( f will always refer to a polynomial

in only x). Equation 10 for this rule gives,

HSierpinski = −
∑

i j

Ẑi j Ẑi, j−1 Ẑi−1, j−1, (11)

which is exactly the Newman-Moore (NM) model originally of interest due to being an exactly-
solvable translationally invariant model with glassy relaxation dynamics [70]. The NM model
was originally described in a more natural way on the triangular lattice as the sum of three-
body interactions on all downwards facing triangles, HNM = −

∑

Ï Z Z Z . This model does not
exhibit a thermodynamic phase transition (similar to the 1D Ising chain). Fractal codes based
on higher-spin generalizations of this model have also been shown to saturate the theoretical
information storage limit asymptotically [98].

We will be interested in the symmetries of such a model that involve flipping subsets of
spins. Due to the deterministic nature of the CA, such operation must involve flipping some
subset of spins on the first row, along with an appropriate set of spins on other rows such that
the total configuration remains a valid CA evolution. Operationally, symmetry operations are
given by various combinations of F(x , y) (Eq 5). That is, for any polynomial q(x), we have a
symmetry element

S(q(x)) = X (q(x)F(x , y)). (12)

6
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Here, q(x) has the interpretation of being an initial state s0, and S(q(x)) flips spins on all the
sites corresponding to the time evolution of s0. As the update rules are linear, this operation
always flips between valid CA evolutions. For example, S(1) will correspond to flipping spins
along the fractals shown in Fig 1.

To confirm that this symmetry indeed commutes with the Hamiltonian, we may use the pre-
viously discussed technology (Eq 8 and 9) to compute the commutation polynomial between
S(q(x)) and translations of the Hamiltonian term Z(1+ f̄ ȳ),

P = q(x)F(x , y)(1+ f y) = q(x)(1+ f y)
∞
∑

l=0

( f y)l

= q(x)

�∞
∑

l=0

( f y)l +
∞
∑

l=1

( f y)l
�

= q(x). (13)

Since terms which have shift y0 are not included in the Hamiltonian (Eq 10), this operator
therefore fully commutes with the Hamiltonian. We may pick as a basis set of independent
symmetry elements, S(qα), for α ∈ Z with qα(x) = xα. These operators correspond to flipping
spins corresponding to the colored pixels in Fig 1, and horizontal shifts thereof. Each of these
symmetries act on a fractal subset of sites, with volume scaling as the Hausdorff dimension of
the resulting fractal.

3.2 Cylinder

Rather than a semi-infinite plane, let’s consider making the x direction periodic with period
L, such that x L = 1, while the y direction is either semi-infinite or finite. In this case, there
are a few interesting possibilities.

3.2.1 Reversible case

In the case that there exists some ` such that f ` = 1, then the CA is reversible. That is, for each
state st , there exists a unique state st−1 such that st = f st−1, given by st−1 = f `−1st .

A proof of this is straightforward, suppose there exists two distinct previous states st−1,
s′t−1, such that f st−1 = f s′t−1 = st . As they are distinct, st−1 + s′t−1 6= 0. However,

0 = st + st = f (st−1 + s′t−1) = f `−1 f (st−1 + s′t−1) = st−1 + s′t−1 6= 0, (14)

there is a contradiction. Hence, the state st−1 must be unique. The inverse statement, that a
reversible CA must have some ` such that f ` = 1, is also true.

In this case, all non-trivial symmetries extend throughout the cylinder, and their patterns
are periodic in space with period dividing `. An example of this is the Fibonacci rule with
L = 2m, for which f L/2 = 1. There are L independent symmetries on either the infinite
or semi-infinite cylinder, and the total symmetry group is simply ZL

2 . The symmetries on an
infinite cylinder are given by S(q) = X

�

q(x)
∑∞

l=−∞( f y)l
�

, where f −1 ≡ f `−1.

3.2.2 Trivial case

If there exists ` such that f ` = 0, then the model is effectively trivial. All initial states s0 will
eventually flow to the trivial state s` = 0. On a semi-infinite cylinder, possible “symmetries”
will involve sites at the edge of the cylinder, but will not extend past ` into the bulk of the
cylinder. On an infinite cylinder, there are no symmetries at all. An example of this is the
Sierpinski rule with L = 2m, for which f L = 0.

7
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3.2.3 Neither reversible nor trivial

If the CA on a cylinder is neither reversible nor trivial, then every initial state s0 must eventually
evolve into some periodic pattern, such that st = st+T for some period T at large enough
t (this follows from the fact that there are only finitely many states). Thus, there will be
symmetry elements whose action extends throughout the cylinder, like in the reversible case.
Interestingly, however, irreversibility also implies the existence of symmetry elements whose
action is restricted only to the edge of the cylinder, much like the trivial case.

Let us take two distinct initial states s0, s′0 that eventually converge on to the same state at
time `. Then, let s̃0 = s0 + s′0 6= 0 be another starting state. After time `, s̃` = s` + s′

`
= 0, this

state will have converged on to the trivial state. Thus, the symmetry element corresponding to
the starting state s̃0 will be restricted only to within a distance ` of the edge on a semi-infinite
cylinder.

On an infinite cylinder, only the purely periodic symmetries will be allowed, so the total
number of independent symmetry generators is reduced to between 0 and L.

3.3 On a torus

Let us next consider the case of an Lx × L y torus. Symmetries on a torus must take the form of
valid CA cycles on a ring of length Lx with period L y . The order of the total symmetry group
is the total number of distinct cycles commensurate with the torus size, which in general does
not admit a nice closed-form solution, but has been studied in Ref 94. Equivalently, there is
a one-to-one correspondence between elements in the symmetry group and solutions to the
equation

q(x) f (x)L y = q(x), (15)

with x Lx = 1. This may be expressed as a system of linear equations over F2, and can be
solved efficiently using Gaussian elimination. For each solution q(x) of the above equation,
the action of the corresponding symmetry element is given by

S(q) = X

 

q(x)
L y−1
∑

l=0

( f y)l
!

. (16)

As an example, consider the Sierpinski model on an L× L torus. Let k(L) = log2(Nsym(L))
be the number of independent symmetry generators, where Nsym(L) is the order of the sym-
metry group. We are free to pick some set of k(L) independent symmetry operators as a basis
set (there is no most natural choice for basis), which we label by qα(x) with 0 ≤ α < k. To
illustrate that k(L) is in general a complicated function of L, we show in Table 2 k(L) and a
choice of q(L)α (x) for the few cases of L where the number of cycles can be solved for exactly.

An interesting point is that for the Sierpinski rule, f (x)2
l
= 0, thus for L = 2l , there are no

non-trivial solutions to Eq 15 and so k(2l) = 0. To contrast, the Fibonacci rule has f (x)2
l
= 1,

and so k(L = 2l) = L.

3.4 Infinite plane

Now, let us consider defining such symmetries directly on an infinite plane, where we allow
all x i y j . In the CA language, we are still free to pick the CA state at time, say t = 0, s0(x),
which completely determines the CA states at times t > 0. However, we run into the issue
of reversibility — how do we determine the history of the CA for times t < 0 which lead up
to s0? For general CA, there may be zero or multiple states s−1 which lead to the same final
state s0. For a linear CA on an infinite plane, however, there is always at least one s−1. We
give an algorithm for picking out a particular history for s0, and discuss the sense in which it

8
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L k(L) q(L)α (x)
2m 0 -
2m − 1 L − 1 xα(1+ x)

2m + 2n − 1 gcd(L, 2n+1 − 1)− 1 xα(1+ x)
∑

L
k+1−1
l=0 (x2m−2n

)l

2m 2k(m) xα mod 2[q(m)bα/2c(x)]
2

Figure 2: The number of independent symmetry generators k(L) and a choice of
qα(x) for the Sierpinski model on an L× L torus for few particular L. Here, m, n are
positive integers, m > n, and 0 ≤ α < k labels the symmetry polynomials q(L)α (x),
and b·c denotes the floor function.

is a complete description of all possible symmetries, despite this reversibility issue. For this
discussion it is convenient to, without loss of generality, assume f contains at least a positive
power of x (we may always perform a coordinate transformation to get f into such a form).

The basic idea is as follows: we have written the Hamiltonian (Eq 10) in a form that
explicitly picks out a direction (y) to be interpreted as the time direction of the CA. However,
we may always write the same term as a higher-order linear CA that propagates in the x̄
direction,

1+ f̄ ȳ = x̄a ȳ

�

1+
nmax
∑

n=1

gn(y)x
n

�

≡ x̄a ȳ [1+ g(x , y)x] , (17)

where a > 0 is the highest power of x in f , nmax is finite, and gn(y) is a polynomial containing
only non-negative powers of y . This describes an nmax-order linear CA. For the Sierpinski
rule, we have only g1(y) = 1+ y , and for the Fibonacci rule we have both g1(y) = 1+ y and
g2(y) = 1. We then further define g(x , y) for convenience, which only contains non-negative
powers of x and y . Now, consider the fractal pattern generated by

x̄a ȳ
�

1+ ḡ(x , y) x̄ + ḡ(x , y)2 x̄2 + . . .
�

, (18)

which describes a higher-order CA evolving in the x̄ direction. Note that powers of ḡ no longer
have the nice interpretation of representing an equal time state in terms of this CA, due to it
containing both powers of ȳ as well as x̄ (but evaluating the series up to the ḡn x̄n does give the
correct configuration up to x̄n). As ḡ contains only negative powers of y , this fractal pattern
is restricted only to the half-plane with y j<0. It thus lives entirely in the “past”, t < 0, of our
initial CA.

The full fractal given by

F (x , y) =

�∞
∑

l=0

( f y)l
�

+ x̄a ȳ

�∞
∑

l=0

( ḡ x̄)l
�

(19)

unambiguously describes a history of the CA with the t = 0 state s0 = 1. This is shown in
Figure 3 for the Fibonacci model, with the forward propagation of f in red and the propagation
of ḡ in orange.

Going back to operator language, it can be shown straightforwardly that the symmetry
action

S(q) = X (q(x)F (x , y)) (20)

for arbitrary q(x) commutes with the Hamiltonian (Eq 10 but with all i j included in the sum)
everywhere. The only term with y0 in F is 1, so this operator only flips the spins q(x) on
row y0. Furthermore, the choice of choosing the y0 row for defining this symmetry does not
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?

-

y j

x i

Figure 3: A valid history for the state s0 = 1 for the Fibonacci rule CA. The forward
evolution (red) is fully deterministic, and here an unambiguous choice has been made
for states leading up to it (orange). Lattice points are labeled by (i, j) corresponding
to x i y j in the polynomial representation.

affect which operators can be generated, as it is easy to show that f (x)F (x , y) = ȳF (x , y),
so that S(q(x) f (x)) flips any set of spins q(x) on the row ȳ instead. Simple counting would
then suggest that the total number of symmetry generators thus scales linearly with the size
of the system, like on the semi-infinite cylinder.

This result seems to contradict the irreversibility of the CA. It would suggest that one can
fully determine st at time t < 0 by choosing the state s0 appropriately, which would seemingly
imply that the evolution is always reversible. The resolution to this paradox lies in the fact
that we are on an infinite lattice, and in this procedure we have chosen the particular f −1 such
that it only contains finitely positive powers of x (there are in general multiple inverses f −1).
Defining h(x) = [g(x , y)]y0 such that f = xa(1+ h̄x̄), then we are choosing the inverse

f −1(x) = x̄a(1+ h̄x̄ + (h̄x̄)2 + . . . ), (21)

from which it can be readily verified that f −1 f = 1. In this language, F (x , y) looks like

F (x , y) = · · ·+ ( f −1 ȳ)2 + ( f −1 ȳ) + 1+ ( f y) + ( f y)2 + . . . , (22)

which obviously commutes with the Hamiltonian. As an example, with the Sierpinski rule,
the two possible histories for the state s0 = 1 are s(−)−1 =

∑−∞
l=−1 x l and s(+)−1 =

∑∞
l=0 x l . By this

inverse, we would only get s(−)−1 . However, if we wanted to generate the state with history s(+)−1 ,
we would instead find that the t = 0 state should be the limit s0 = 1+ x∞. If we were just
interested in any finite portion of the infinite lattice, for example, we may get any history by
simply pushing this x∞ beyond the boundaries.

3.5 Open slab

Finally, consider the system on an open slab with dimensions Lx × L y . Elements of the sym-
metry group are in correspondence with valid CA configurations on this geometry. The state
at time t = 0 may be chosen arbitrarily, giving us Lx degrees of freedom. Furthermore, at
each time step the state of the cells near the edge may not be fully specified by the CA rules.
Hence, each of these adds an additional degree of freedom. Let x−pmin , x pmax , be the smallest
and largest powers of x in f (if pmin/max would be negative, then set set it to 0). Then, we
are free to choose the cell states in a band pmax× L y along the left (x i=0) edge, and pmin× L y

along the right edge as well. Thus, the total number of choices is Nsym = 2Lx+(pmin+pmax)(L y−1),
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and there are log2 Nsym independent symmetry generators. Note that some of these symmetries
may be localized to the corners.

One may be tempted to pick a certain boundary condition for the CA, for example, by taking
the state of cells outside to be 0, which eliminates the freedom to choose spin states along the
edge and reduces the order of the symmetry group down to simply 2Lx . What will happen in
this case is that there will be symmetry elements from the full infinite lattice symmetry group
which, when restricted to an Lx × L y slab, will not look like any of these 2Lx symmetries. With
the first choice, we are guaranteed that any symmetry of the infinite lattice, restricted to this
slab, will look like one of our Nsym symmetries. This is a far more natural definition, and will
be important in our future discussion of edge modes in Sec 5.3.

4 Spontaneous fractal symmetry breaking

At T = 0, the ground state of Hclassical is 2k-degenerate and spontaneously breaks the fractal
symmetries, where k is the number of independent symmetry generators (which will depend
on system size and choice of boundary conditions). Note that k will scale at most linearly
with system size, so it represents a subextensive contribution of the thermodynamic entropy
at T = 0. As a diagnosis for long range order, one has the many-body correlation function
C(`) given by

C(`) = Z

�

(1+ f̄ ȳ)
`−1
∑

i=0

( f̄ ȳ)i
�

= Z(1+ ( f̄ ȳ)`), (23)

which has C(`) = 1 in the ground states of Hclassical as can be seen by the fact that Eq 23 is a
product of terms in the Hamiltonian. If M is the number of terms in f , then this becomes an
M + 1-body correlation function when ` = 2l is a power of 2. Long range order is diagnosed
by lim`→∞ C(`) = const. At any finite temperature, however, these models are disordered and
have C(`) vanishing asymptotically as C(`)∼ p−`

d
, where d is the Hausdorff dimension of the

generated fractal, and p = 1/(1+e−2β). This can be seen by mapping to the dual (defect) vari-
ables in which the Hamiltonian takes the form of a simple non-interacting paramagnet [70],
and the correlation function C(`) maps on to a O (`d)-body correlation function. Thus, there
is no thermodynamic phase transition in any of these models, although the correlation length
defined through C(`) diverges as T → 0.

Even without a thermodynamic phase transition, much like in the standard Ising chain,
there is the possibility of a quantum phase transition at T = 0. We may include quantum
fluctuations via the addition of a transverse field h,

HQuantum = −
∑

i j

Z(x i y j[1+ f̄ ȳ])− h
∑

i j

X (x i y j). (24)

One can confirm that a small h will indeed correspond to a finite correction
liml→∞ C(2l) = 1 − const(h), and so does not destroy long range order. This model now
exhibits a zero-temperature quantum phase transition at h = 1, which is exactly pinpointed
by a Kramers-Wannier type self-duality transformation which exchanges the strong and weak-
coupling limits. This self-duality is readily apparent by examining the model in terms of defect
variables, which interchanges the role of the coupling and field terms. This should be viewed
in exact analogy with the 1D Ising chain, which similarly exhibits a T = 0 quantum phase
transition but fails to have a thermodynamic phase transition.

The transition at h= 1 is a spontaneous symmetry breaking transition in which all 2k fractal
symmetries are spontaneously broken at once (although under general perturbations they do
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not have to all be broken at the same time). Numerical evidence [69] suggests a first order
transition. If one were to allow explicitly fractal symmetry breaking terms in the Hamiltonian
(Z-fields, for example) then it is possible to go between these two phases adiabatically. Thus,
as long as the fractal symmetries are not explicitly broken in the Hamiltonian, these two phases
are properly distinct in the usual picture of spontaneously broken symmetries. In the following,
we will only be discussing ground state (T = 0) physics.

5 Fractal symmetry protected topological phases

Rather than the trivial paramagnet and spontaneously symmetry broken phases, we may also
generate cluster states [99] which are symmetric yet distinct from the trivial paramagnetic
phase. These cluster states have the interpretation of being “decorated defect” states, in the
spirit of Ref 100, as we will demonstrate. These fractal symmetry protected topological phases
(FSPT) are similar to recently introduced subsystem SPTs [63], and were hinted at in Ref 36.
In contrast to the subsystem SPTs, however, there is nothing here analogous to a “global”
symmetry — the fractal symmetries are the only ones present!

5.1 Decorated defect construction

To describe these cluster Hamiltonians, we require a two-site unit cell, which we will refer to
as sublattice a and b. For the unit cell (i, j) we have two sets of Pauli operators Ẑ (a)i j , Ẑ (b)i j , and

similarly X̂ (a/b)
i j and Ŷ (a/b)

i j . Our previous polynomial representation is extended as

Z

�

α

β

�

= Z

�
∑

i j c(a)i j x i y j

∑

i j c(b)i j x i y j

�

=
∏

i j

�

Ẑ (a)i j

�c(a)i j
�

Ẑ (b)i j

�c(b)i j , (25)

and similarly for X (·) and Y (·). This notation is easily generalized to n spins per unit cell,
represented by n component vectors.

Our cluster FSPT Hamiltonian is then given by

HFSPT = −
∑

i j

Z

�

x i y j(1+ f̄ ȳ)
x i y j

�

−
∑

i j

X

�

x i y j

x i y j(1+ f y)

�

−hx

∑

i j

X

�

x i y j

0

�

− hz

∑

i j

Z

�

0
x i y j

�

, (26)

which consists of commuting terms and is exactly solvable at h = hx = hz = 0, which we
will assume for now. There is a unique ground state on a torus (regardless of the symmetries).
The ground state is short range entangled, and may be completely disentangled by applications
of controlled-X (CX) gates at every bond between two different-sublattice sites that share an
interaction, as per the usual cluster states — however, this transformation does not respect the
fractal symmetries of this model. These fractal symmetries come in two flavors, one for each
sublattice:

Z(a)2 : S(a)(q(x)) = X

�

q(x)F (x , y)
0

�

,

Z(b)2 : S(b)(q(x)) = Z

�

0
q(x)F̄ (x , y)

�

, (27)

where we have assumed an infinite plane with F (x , y) as in Eq 22, and q(x) may be any
polynomial.

12

https://scipost.org
https://scipost.org/SciPostPhys.6.1.007


SciPost Phys. 6, 007 (2019)

X

X

X

X

Z

Z

ZZ

i

j

(a) (b)
X

X X

XX

X X X X

Z Z Z Z Z

Z Z

Z Z

ZZZZ

Z Z Z Z

Z

ZZ

Z

Z

Z

Z

Z

X

X

(c)
g1 :

g2 :
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Figure 4: In (a), we show how to place the Sierpinski FSPT on to the honeycomb
lattice naturally. The orange circle is the unit cell, and blue/red sites correspond to
the a/b sublattice sites. The interactions involve four spins on the highlighted trian-
gles triangles. In (b), we show the sites affected by a choice of symmetry operations
on an infinite plane. The large circles are those affected by a particular Z(a/b)

2 type
symmetry (Eq 27). In (c), we perform a symmetry twist on the Sierpinski FSPT on
a 7× 7 torus. The chosen symmetries g1 (g2) corresponds to operations on all spins
highlighted by a large blue (red) circle. The green triangles correspond to terms
in the twisted Hamiltonian Htwist(g1) that have flipped sign. The charge response
T (g1, g2) = −1 is given by the parity of red circles that also lie in the green triangles,
and is independent of where we make the cut j0.

The picture of the ground state is as follows. Working in the Ẑ (a), Ẑ (b) basis, notice that if
Ẑ (b)i j = 1, the first term in the Hamiltonian simply enforces the Ẑ (a)i j spins to follow the standard

CA evolution. At locations where Ẑ (b)i j = −1, there is an “error”, or defect, of the CA, where the
opposite of the CA rule is followed. The second term in the Hamiltonian transitions between
states with different configurations of such defects. The ground state is therefore an equal
amplitude superposition of all possible configurations. The same picture can also be obtained
from the X̂ (a), X̂ (b) basis, in terms of the CA rules acting on the X̂ (b)i j spins.

5.1.1 Sierpinski FSPT

As a particularly illustrative example, let us consider the FSPT generated from the Sierpinski
rule. The resulting model is the “decorated defect” NM paramagnet, which we refer to as the
Sierpinski FSPT. The Hamiltonian is given by

HSier-FSPT = −
∑

i j

Ẑ (a)i j Ẑ (a)i, j−1 Ẑ (a)i−1, j−1 Ẑ (b)i j −
∑

i j

X̂ (b)i j X̂ (b)i, j+1X̂ (b)i+1, j+1X̂ (a)i j . (28)

It is particularly enlightening to place this model on a honeycomb lattice, as shown in Fig 4a.
Fig 4b shows the action of two symmetries as an example.

We may then redefine Ẑ (b)i j ↔ X̂ (b)i j , after which the Hamiltonian takes the particularly
simple form of a cluster model

Hcluster = −
∑

s

X̂s

∏

s′∈Γ (s)

Ẑs′ , (29)

where s = (i, j, a/b) labels a site on the honeycomb lattice and Γ (s) is the set of its nearest
neighbors. However, we will generally not use such a representation. Note that this model is
isomorphic to the 2D fractal SPT obtained in Ref [107].
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5.1.2 Fibonacci FSPT

Our other example is the Fibonacci FSPT. The Hamiltonian takes the form

HFib-FSPT = −
∑

i j

Ẑ (a)i j Ẑ (a)i−1, j−1 Ẑ (a)i, j−1 Ẑ (a)i+1, j−1 Ẑ (b)i j (30)

−
∑

i j

X̂ (b)i j X̂ (b)i+1, j+1X̂ (b)i, j+1X̂ (b)i−1, j+1X̂ (a)i j , (31)

which we illustrate in Fig 5a. Unlike with the Sierpinski FSPT, this model does not have as nice
of an interpretation of being a cluster model with interactions among sets of nearest neighbors
on some simple 2D lattice.

5.2 Symmetry Twisting

To probe the nontriviality of the FSPT symmetric ground state, we may place it on a torus and
apply a symmetry twist to the Hamiltonian, and observe the effect in the charge of another
symmetry [102–105]. To be concrete, letHtwist(g1) be the g1 symmetry twisted Hamiltonian.
The g2 charge of the ground state ofHtwist(g1) relative to its original value tells us about the
nontriviality of the phase under these symmetries. That is, let

〈g2〉g1
= lim
β→∞

1
Z

Tr
�

g2e−βHtwist(g1)
�

, (32)

with Z the partition function, then, we define the charge response

T (g1, g2) = 〈g2〉g1
/〈g2〉1, (33)

where 〈g2〉1 is simply the g2 charge of the ground state of the untwisted Hamiltonian. On a
torus, we may twist along either the horizontal or vertical direction — here we first consider
twisting along the vertical direction.

Let us be more concrete. Take the FSPT Hamiltonian (Eq 26) on an Lx × L y torus, and let

k be the number of independent symmetry generators of the type Z(a)2 (which is also the same

as for Z(b)2 ). We assume Lx , L y have been chosen such that k > 0. The total symmetry group

of our Hamiltonian is therefore
�

Z(a)2 ×Z
(b)
2

�k
. Let us label the 2k generators for this group

S(a)α = X

�

q(a)α (x)
∑L y−1

l=0 ( f y)l

0

�

; S(b)α ) = Z

�

0

q(b)α (x)
∑L y−1

l=0 ( f̄ ȳ)l

�

, (34)

where 0≤ α < k and q(a/b)
α (x) have been chosen such that the set of S(a/b)

α are all independent.
Recall from Section 3.3 that only certain such polynomials q(x) are allowed on a torus.

To apply a g-twist, we first express the Hamiltonian as a sum of local terms
HFSPT =

∑

i j Hi j . We then pick a horizontal cut j = j0, dividing the system between j < j0
and j ≥ j0. For each term that crosses the cut, we conjugate Hi j → g<Hi j g

−1
< , where g< is the

symmetry action of g restricted to j < j0. For an Ising system, this will simply have the effect
of flipping the sign of some terms in the Hamiltonian. The resulting Hamiltonian isHtwist(g).

To understand which terms in the Hamiltonian change sign under conjugation, consider
the choice of symmetry g1 in Fig 4c, which consists of flipping all spins in the large blue (dark
and transparent) circles. Restricting g1 to j < j0 leaves g1,<, flipping only spins in the dark
circles. Conjugating by g1,< results in the terms in the green triangles appearing inHtwist(g1)
with a relative minus sign.
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Doing this explicitly for a symmetry element S(a)α , we find that the incomplete symmetry
restricted to j < j0 is given by

S(a)α,< = X

�

q(a)α (x)
∑ j0−1

l=0 ( f y)l

0

�

. (35)

The terms in the Hamiltonian that pick up a minus sign when conjugated with S(a)α,< are exactly
translations of the first term in HFSPT (Eq 26) given by the non-zero coefficients of the com-
mutation polynomial along j0: P = q(a)α (x)( f y) j0 . However, the same twisted Hamiltonian
may also be obtained by conjugating the entireHFSPT by

K(a)α = X

�

0
q(a)α (x)( f y) j0

�

(36)

such that Htwist(S(a)α ) = K(a)α HFSPTK(a)†α .

Next, we can compute the charge of another symmetry S(a/b)
β

in the ground state of

Htwist(S(a)α ). Without any twisting, the ground state is uncharged under all symmetries,

〈S(a/b)
α 〉1 = 1. After the twist, none of S(a)

β
will have picked up a charge (as they commute

with K(a)α ), but some S(b)
β

may pick up a nontrivial charge if they anticommute with K(a)α . Let-

ting T (S(a)α , S(b)
β
) = (−1)Tαβ , we have

Tαβ =



q(a)α (x)( f y) j0 × q̄(b)
β
(x)

L y−1
∑

l=0

( f y)l





x0 y0

=
�

q(a)α (x)q̄
(b)
β
(x)
�

x0
, (37)

where we have used y L y = 1 and the definition of a symmetry on the torus, Eq 15. As expected,
the result is independent of our choice of j0, and it is also apparent that T (g1, g2) = T (g2, g1)
for any g1,g2. If we choose the same symmetry basis for both sublattices, q(a)α (x) = q̄(b)α (x),
then we additionally get that Tαβ = Tβα.

Figure 4c is an illustration of this twisting calculation for the Sierpinski FSPT on a 7× 7
torus. Letting x0 y0 label the unit cell in the top left of the figure, g1 is an (a) type symmetry
with q(a)(x) = x3 + x4 and g2 is a (b) type symmetry with q(b)(x) = x4 + x5. Then, Eq 37
gives T (g1, g2) = −1, which can be confirmed by eye in the figure.

The exact same procedure may also be applied for twists across the horizontal direction,
which will provide yet another set of independent relations between the symmetries (but will
not have as nice of a form).

5.3 Degenerate edge modes

Upon opening boundaries, the ground state manifold becomes massively degenerate. Away
from a corner, we will show that these degeneracies cannot be broken by local perturbations
as long as the fractal symmetries are all respected, much like in the case of SPTs with one-
dimensional subsystem symmetries [63].

Let us review the open slab geometry from Sec 3.5 for the FSPT. We take the system to be a
rectangle with Lx × L y unit cells, such that we are restricted to x0≤i<Lx y0≤ j<L y . as before, let
x−pmin , x pmax , be the smallest and largest powers of x in f (and let pmin/max = 0 if they would

be negative). The total symmetry group is
�

Z(a)2 ×Z
(b)
2

�k
with

k = Lx + R(L y − 1); R= pmin + pmax, (38)
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and we assume Lx > R (otherwise there are no allowed terms in the Hamiltonian at all). A
Z(a)2 type symmetry acts as

∏

X̂ (a)i j on a subset of unit cells, and a particular symmetry is fully

specified by how it acts on the top row x i y0, the band x i<pmax y j (on the left side), and the
band x i≥Lx−pmin y j (on the right side). A Z(b)2 type symmetry acts as

∏

Ẑ (b)i j and a particular one
is fully specified in a similar manner, but spatially inverted (top↔bottom, left↔right). Alter-
natively, we may simply think of the symmetries as those of the infinite plane, but truncated
to the Lx × L y slab.

On the open slab, we take our Hamiltonian (Eq 26) with h = 0 on the infinite plane and
simply exclude terms that contain sites outside of the sample. For each term with shift x i y j

that are excluded, but for which the unit cell x i y j is still in the system, we lose a constraint
on the ground state manifold and hence gain a two-fold degeneracy. The number of terms
excluded is given by exactly the same counting as before. Along the top (bottom) edge, there
is one excluded Z (X ) term per unit cell. Along the left edge, there are pmax Z terms excluded
and pmin X terms, for a total of R excluded terms per unit cell, and similarly for the right edge.
Hence, there are a total of 22k ground states, coming from a 2R-fold degeneracy per unit cell
along the left/right edges, and 2-fold degeneracy per unit cell along the top/bottom (with
some correction for overcounting).

To describe the edge physics on the slab geometry, let us introduce some additional nota-
tion. Let us denote the truncation of an arbitrary polynomial p(x , y) to the slab as [p(x , y)]slab,
where only the terms with x i y j with (i, j) ∈ slab are kept, where

slab= [0, Lx − 1]× [0, L y − 1] (39)

is the set of sites (i, j) which exist on the Lx × L y slab, and [a, b] = {a, a + 1, . . . b}. We may
further make the distinction between those on the edge or the bulk of the slab. Let us denote
two types of bulks, which we denote by bulka and bulkb,

bulka = [pmax, Lx − pmin − 1]× [1, L y − 1], (40)

bulkb = [pmin, Lx − pmax − 1]× [0, L y − 2], (41)

such that the Hamiltonian on the slab is given by

Hslab = −
∑

(i, j)∈bulka

Z

�

x i y j(1+ f̄ ȳ)
x i y j

�

−
∑

(i, j)∈bulkb

X

�

x i y j

x i y j(1+ f y)

�

.

(42)

Finally, we denote the edge simply as those sites in the slab that are not in the bulk,

edgea = slab \ bulka, (43)

edgeb = slab \ bulkb. (44)

For each excluded Z term in Hslab, i.e. each (i, j) ∈ edgea, we may define a set of three
Pauli operators,

X̂ (a)i j = X

�

0
x i y j

�

; Ẑ (a)i j = Z

�

[x i y j(1+ f̄ ȳ)]slab
x i y j

�

,

Ŷ (a)i j = Z

�

[x i y j(1+ f̄ ȳ)]slab
0

�

Y

�

0
x i y j

�

, (45)

and similarly, for each excluded X term at (i, j) ∈ edgeb, we may define

X̂ (b)i j = X

�

x i y j

[x i y j(1+ f y)]slab

�

; Ẑ (b)i j = Z

�

x i y j

0

�

,

Ŷ (b)i j = X

�

0
[x i y j(1+ f y)]slab

�

Y

�

x i y j

0

�

, (46)
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where the [·]slab truncation ensures that only those sites physically in the slab are involved.
We will call such operators “edge” Pauli operators. There are 2k such sets of edge Pauli oper-
ators, one for each excluded term. It may readily be verified that X̂ (a/b)

i j , Ŷ (a/b)
i j , and Ẑ (a/b)

i j
satisfy the Pauli algebra while being independent of and commuting with every term in the
Hamiltonian and each other at different sites. They therefore form a Pauli basis for operators
which act purely within the 22k dimensional ground state manifold.

In principle, any local perturbation, projected on to the ground state manifold, will have
the form of being some local effective Hamiltonian in terms of these edge Pauli operators, and
may break the exact degeneracy. However, we wish to consider only perturbations commuting
with all fractal symmetries. To deduce what type of edge Hamiltonian is allowed, we must
find out how our many symmetry elements act in terms of these edge operators.

Consider the action of a Z(a)2 symmetry on the slab,

S(a)(q(x)) = X

�

[q(x)F (x , y)]slab
0

�

, (47)

which is written as the truncation of a symmetry on an infinite plane to a slab, as discussed in
Sec 3.5. By construction, we have that F (x , y)(1+ f y) = 0, so we may also write

S(a)(q(x)) = X

�

[q(x)F (x , y)]slab
[q(x)F (x , y)(1+ f y)]slab

�

. (48)

Let us denote for convenience γ ≡ q(x)F(x , y), which can be decomposed into three parts:
γ = [γ]bulkb

+ [γ]edgeb
+ [γ]slabc , the bulkb part, the edgeb part, and the parts external to the

slab (denoted by the complement slabc). Then, we may be decompose the symmetry action
as

S(a)(q(x)) = X

�
�

[γ]bulkb
+ [γ]edgeb

+ [γ]slabc
�

slab
�

([γ]bulkb
+ [γ]edgeb

+ [γ]slabc )(1+ f y)
�

slab

�

= X

�

[γ]bulkb
�

[γ]bulkb
(1+ f y)

�

slab

�

X

�

[γ]edgeb
�

[γ]edgeb
(1+ f y)

�

slab

�

X

�

0
[[γ]slabc (1+ f y)]slab

�

.

(49)

The first factor, the bulk action, is made out of products of terms in Hslab (i.e. is an element
of the stabilizer group) and therefore acts trivially on the ground state manifold. The second
factor acts only on edgeb, and operates within the ground state manifold as a product of X̂ (b)i j
edge Pauli operators. The third factor acts only on edgea and operates within the ground state
manifold as a product of X̂ (a)i j edge Paulis (as [[γ]slabc (1 + f y)]slab can only have non-zero
coefficients with (i, j) ∈ edgea). It is somewhat undesirable to have reference to [γ]slabc (which
exists outside of the slab), thus we may use the fact that 0= γ(1+ f y) and γ= [γ]slab+[γ]slabc

to obtain [γ]slabc (1+ f y) = [γ]slab(1+ f y). We therefore have that

S(a)(q(x)) = (bulk stabilizer)×
∏

(i, j)∈edgeb

�

X̂ (b)i j

�[γ]x i y j
×

∏

(i, j)∈edgea

�

X̂ (a)i j

�[[γ]slab(1+ f y)]x i y j
. (50)

In a similar fashion, we may show that a Z(b)2 type symmetry acts as a product of Ẑ (a)i j edge

Paulis in edgea and Ẑ (b)i j edge Paulis in edgeb. The action of a specific element in the symmetry
group is specified by [γ]slab.

We claim that it is always possible to find a particular symmetry element that acts locally
on one edge in any way (but it will generally extend non-trivially into the bulk and act in
complicated way on the other boundaries). For example, for any (i0, j0) on the left edge,
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there exists a Z(a)2 symmetry which acts only as X̂ (b)i0 j0
on the left edge, and there is also a Z(b)2

symmetry which acts only as Ẑ (a)i0 j0
on the left edge (although their action on the other edges

may be complicated). There is no non-trivial operator acting on a single edge that commutes
with both X̂ and Ẑ , and therefore we are prohibited from adding anything non-trivial to
the effective Hamiltonian on this edge which therefore guarantees that no degeneracy can be
broken while respecting all fractal symmetries. Note that we don’t even have the possibility of
spontaneous symmetry breaking at the surface — even simple Ẑ Ẑ couplings along the edge
violate the symmetries. The only way the ground state degeneracy may be broken without
breaking the symmetry is by terms which couple edge Paulis along different edges; these terms
are either non-local, or located at a corner of the system.

Suppose we have found a particular Z(a)2 symmetry element g1 and a Z(b)2 symmetry

element g2 which, on the left edge, acts as X̂ (a)i0 j0
and Ẑ (a)i0 j0

respectively on the same site
(i0, j0), and trivially everywhere else on the left edge (but will act non-trivially on the other
edges). These are said to form a projective representation of Z(a)2 × Z

(b)
2 on that edge. That

is, a linear (non-projective) representation of Z(a)2 × Z
(b)
2 with generators g1, g2, would have

(g1 g2)2 = 1. However, if we look at the action on this particular edge, then we have that
(gedge

1 gedge
2 )2 = (X̂ Ẑ )2 = −1. Since we know that as a whole g1 and g2 must commute, the

action of g1 and g2 on the other edges must again anticommute (to cancel out the −1 from this
edge). Small manipulations of the edges (such as adding or removing sites) or local unitary
transformations respecting the symmetry cannot change the fact that the actions of g1 and g2
are realized projectively on this edge.

Near particular corners, some symmetry elements may act essentially locally. As a symme-
try element (as a whole) must commute with all others, nothing prevents the addition of the
full symmetry action itself as a term in the effective Hamiltonian when it is local. For example,
when h 6= 0 there will be terms appearing in the effective Hamiltonian at finite order in per-
turbation theory near such corners, which commute with all symmetries. The magnitude of
such terms will decay exponentially away from a corner, however, and therefore we still have
an effective degeneracy per unit length along the boundaries.

5.3.1 Local action of symmetries on edges

To prove our claim that there is always a symmetry element which acts locally along an edge,
let us first consider finding a particular Z(a)2 symmetry element which acts locally on an edge

as X̂ (a/b)
i0 j0

. The ability to find a Z(b)2 symmetry element acting locally as well then follows. Such
a symmetry will act locally in some way on the edge, but extend into the bulk in a non-trivial
way. Note that there is no “most natural basis” for these symmetries, unlike in the case of
integer d subsystem symmetries [63].

Let us take a general Z(a)2 symmetry element defined according to Eq 47 in terms of a single
polynomial q(x). However, multiple q(x)may lead to the same symmetry element on the slab.
Recall that in the CA picture, q(x) corresponds to the CA state at time 0, and the Lx× L y slab is
a space-time trajectory for the CA. There is a strictly defined “light-cone” determined by the CA
rules for which cells at time 0 can affect a future cell in our Lx× L y slab. It is easy to verify that
only the coefficients in q(x) of x i for −pmax(L y −1)≤ i < Lx + pmin(L y −1) can affect the way
the symmetry acts within the slab. Let us therefore take q(x) to only contain powers of x within
this range. Furthermore, we see that there are 2pmax(L y−1)+Lx+pmin(L y−1) = 2Lx+R(L y−1) = 2k

possible q(x)s, which is also the order of the (Z(a)2 )
k symmetry group, which means that there

is a one-to-one correspondence between q(x)s and different elements of the symmetry group.
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Figure 5: (a)We illustrate the terms in the Hamiltonian for the Fibonacci FSPT (Eq 26
with f = x−1+ 1+ x). The model is defined on a square lattice, with a two-site unit
cell (circled), a (blue) and b (red). The two terms in the Hamiltonian at h = 0 are
illustrated in the two triangles. Also shown are the edge Pauli operators along the
left edge. (b) We show a family of symmetry elements on a 10× 10 slab. The black
outlined circles represent the band of R= 2 unit cells on which we fix the action of the
symmetry so that it acts only as X̂ (b)0,7 on the left edge in this case (with (0, 0) being the
top left unit cell). This fixes how the symmetry must act on the top and some of the
right edge (gray outlined circles), but there is still some freedom along the remaining
sites on the right edge (yellow question marks), which will determine how it acts on
the remaining sites (transparent orange circles). There are 2Lx−R = 28 symmetry
elements (corresponding to the 8 question marks) satisfying our constraint. (c) We
also show the family of symmetry elements which act only as Ẑ (b)0,7 , and therefore
forms a projective representation with the symmetry element shown in (b) on the
left edge. Note that these symmetries will generally have some non-trivial action
along the other edges.

Top edge Finding a symmetry element that acts locally on the top edge is simple. The only
possibilities on the top edge are for it to act as X̂ (a)i,0 operators. For example, we may simply
choose any q(x) such that [q(x)]slab = x i0 , and the corresponding symmetry element will act
locally as only X̂ (a)i0,0 on the top edge (here [·]slab simply means we keep only the terms with

x0≤i<Lx ).

Bottom edge Along the bottom edge, the only possibility is for a symmetry elemnt to act as
X̂ (b)i,L y−1. Any q(x) chosen such that [q(x) f L]slab = x i0 will act locally as only X̂ (b)i0,L y−1 on the

bottom edge. There is always such a q(x) that does this, as we showed for the infinite plane
(Sec 3.4) that one can always find a history for any CA state).

Left/right edge Along the left/right edges, things are slightly trickier. Let us look at only
the left edge for now. A symmetry element may act as X̂ (a)i j for 0 ≤ j < pmax, or as X̂ (b)i j for

0 ≤ j < pmin. Per unit cell along the left edge, there are 2pmin+pmax = 2R possible ways to act.
From Eq 50, we see that the non-zero coefficients of q(x)F (x , y) in the columns 0≤ j < pmin

of the slab directly correspond to how the symmetry element acts as X̂ (a)i j on the left edge.
Once these have been fixed, the coefficients on the pmin ≤ j < R columns must be chosen to
specify how the symmetry element acts (as X̂ (b)i j ) on the left edge. Thus, to find a particular
symmetry element that will act in a particular way on the left edge, we must specify the leftmost
R columns of q(x)F (x , y). By a similar lightcone argument as before, these R columns are
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affected by coefficients of x i in q(x) with −pmax(L y −1)≤ i < R+ pmin(L y −1). As there are a
total of 2RL y possible histories, and also 2RL y cells within the leftmost R columns, we may fully
specify the action of the symmetry within these leftmost R columns by an appropriate choice of
q(x). The remaining degrees of freedom in q(x)means that there are a total of 2k−RL y = 2Lx−R

symmetry elements that act in the same way on the left edge.
Figure 5(right) shows the family of Z(a)2 symmetry elements chosen to act as only one

X̂ (b)i j on the left edge, for the Fibonacci FSPT (Eq 31), whose terms are shown in Fig 5(left).
The freedom to choose how the symmetry acts on the right edge (question marks) exactly
corresponds to the 2Lx−R symmetry elements with the specified action on the left edge. These
form a ZLx−R

2 subgroup of the total symmetry group. We choose to show the Fibonacci FSPT
here rather than the Sierpinski FSPT, as the latter has R= 1 and is straightforward.

5.4 Excitations

On the infinite plane, the lowest lying excitations are strictly immobile. They are therefore
fractons protected by the total fractal symmetry group.

Take h = 0, the lowest lying excited states consist of excitations of a single term in the
Hamiltonian, say the Z term at site x0 y0. This excited state can be obtained by acting on the
ground state with X̂ (b)0,0 . One may alternatively think in terms of symmetries. Take an indepen-

dent set of symmetry generators g(a/b)
α of the form Eq 27 with the basis choice q(a/b)

α = xα. We
find that this excited state is uncharged, 〈g(a/b)

α 〉 = 1, with respect to all symmetry elements

except g(b)0 , for which it has −1 charge. In fact, the only state with a single excitation with

〈g(b)0 〉= −1 is this one with the excitation at the origin.
Let us consider the block of the Hamiltonian with symmetry charges 〈g(b)α 〉= (−1)dα . The

blocks containing states with single fractons will have
∞
∑

α=−∞
dαxα = x i f̄ j , (51)

for which the excitation is strictly localized at site x i y j . The excitation may move away from
x i y j , but at the cost of creating additional excitations as well, such that the charge of all sym-
metries are unchanged. If one allows breaking of the fractal symmetries, then these charges
are no longer conserved and nothing prevents the excitation from moving to a different site.

On lattices with different topology, these fractons may not be strictly immobile. For exam-
ple, on a torus, depending on the symmetries, a fracton may be able to move to some subset of
other sites (or all other sites, if the symmetry group is trivial). However, such hopping terms
are exponentially suppressed with system size. In fact, for the Sierpinski FSPT on a torus with
no symmetries, it is actually easier perturbatively to hop a fracton a large power of 2 away
than it is to hop a short distance (mimicking some form of p-adic geometry with p = 2).

On an open slab, the ground state manifold is degenerate and all charge assignments are
possible in the ground state, protected by the symmetry. Therefore, a fracton may be created,
or moved, in any way. However, the amplitude for doing so will decay exponentially away from
the edges, and certain processes may only be possible near certain types of edges or corners.
The possibilities will depend on the details of the model.

5.5 Duality

Here we outline a duality that exist generally for these models, which maps the FSPT phase to
two copies of the spontaneous symmetry broken phase of the quantum Hamiltonian in Sec 4.
This duality involves non-local transformations and maps the 22k ground states of the FSPT
on the open slab to the 22k symmetry breaking ground states of the dual model.
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Figure 6: Illustration of the fractal order parameter CFSPT(`) for detecting the FSPT
phase of the Sierpinski FSPT, for ` = 23. The operator is a product of Z on the
highlighted sites.

This duality is most naturally described on an Lx × L y cylinder (with x Lx = 1) or slab. Let
us define new Pauli operators Z̃(·) and X̃ (·) as

Z̃

�

0
1

�

= Z

�

0
1

�

; X̃

�

1
0

�

= X

�

1
0

�

, (52)

Z̃

�

1
0

�

= Z

�

1
1+ f̄ ȳ + ( f̄ ȳ)2 + . . .

�

,

X̃

�

0
1

�

= X

�

1+ f y + ( f y)2 + . . .
1

�

, (53)

and translations thereof. It can be readily verified that the latter two commute, and as a whole
the set of these operators satisfy the correct Pauli algebra. The fractal symmetries only involve
operators in line 52, and so are unchanged. The interaction terms are modified however: in
terms of these operators, we have

Z̃

�

1+ f̄ ȳ
0

�

= Z

�

1+ f̄ ȳ
1

�

; X̃

�

0
1+ f y

�

= X

�

1
1+ f y

�

, (54)

and so the Hamiltonian HFSPT (Eq 26) becomes two decoupled copies of HQuantum (Eq 24)
with their own set of symmetries.

From this, it follows that the order parameter measuring long-range order in HQuantum,
C(`) (Eq 23), maps on to a fractal order parameter in our original basis

CFSPT(`) = Z̃

�

1+ ( f̄ ȳ)`

0

�

= Z

�

1+ ( f̄ ȳ)`

1+ f̄ ȳ + · · ·+ ( f̄ ȳ)`−1

�

, (55)

which is pictorially shown for the Sierpinski FSPT in Figure 6, and approaches a constant in
the FSPT phase, or zero in the trivial paramagnet, as ` = 2l → ∞. By the self-duality of
HQuantum, we also know the FSPT to trivial transition happens at exactly h= 1.

Finally, this duality allows us to determine the full phase diagram even as hx 6= hz . Keeping
hx small and making hz large, one of theHQuantum is driven into its paramagnetic phase where

spins are polarized as Ẑ (b)i j = 1. The HamiltonianHFSPT then looks like a singleHQuantum, and
therefore has spontaneously symmetry broken ground states. By the duality transformation,
we know this transition happens at exactly hz = 1. The phase diagram is summarized in
Fig 7(left).
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6 Three dimensions

Here, we briefly examine the possible physics available in higher dimension. We consider
our symmetry-defining CA in 3D in two ways: via one 2D CA, or two 1D CA. The first will
have similar properties to our earlier models, while the latter in certain limits also lead to
exotic fractal spin liquids introduced by Yoshida [32] and Haah [33], and may be thought of
as (Type-II [37]) symmetry-enriched fracton topologically ordered (FSET) phases.

6.1 One 2D cellular automaton

A 2D CA has a two-dimensional state space, combined with one time direction. The state of
such a CA may be straightforwardly represented by a polynomial in two variables, st(x , z),
where the state of the (i, k)th cell is given by the coefficient of x izk. The update rule is given
as a two variable polynomial f (x , z), such that st+1 = f st as before. Two dimensional CA also
result in a rich variety of fractal structures [101]. The classical Hamiltonian takes the form

H1CA = −
∑

i jk

Z(x i y jzk[1+ f̄ (x , z) ȳ]), (56)

with symmetries on the semi-infinite system (with y j≥0) given by

S(q(x , z)) = X (q(x , z)[1+ f y + ( f y)2 + . . . ]), (57)

which commutes withH1CA everywhere. On an infinite system, an inverse evolution f −1 may
be defined analogous to Eq 21 and the symmetry action takes the form

S(q(x , z)) = X (q(x , z)F (x , y, z)), (58)

with

F (x , y, z) = · · ·+ ( f −1(x , z) ȳ)−2 + f −1(x , z) ȳ + 1+ f (x , z)y + ( f (x , z)y)2 + . . . . (59)

The discussion of Sec 4 and 5 may then be generalized in a straightforward manner. The phase
diagram is exactly the same as in 2D, given by Fig 7(left).

As an example model, consider the Sierpinski Tetrahedron model, given by the update rule
f (x , z) = 1+ x + z. The Hamiltonian is given by

HSier-Tet = −
∑

i jk

Zi, j,kZi, j−1,kZi−1, j−1,kZi, j−1,k−1. (60)

The fractal structure of the symmetries for this model are Sierpinski Tetrahedra, with Hausdorff
dimension d = 2. The quantum model may be constructed which exhibit the same properties:
self-duality about h = 1, spontaneous fractal symmetry breaking, and instability to non-zero
temperatures. A cluster FSPT version may also be constructed, with the Hamiltonian

HSier-Tet-FSPT = −
∑

i jk

Z (a)i, j,kZ (a)i, j−1,kZ (a)i−1, j−1,kZ (a)i, j−1,k−1Z (b)i, j,k

−
∑

i jk

X (b)i, j,kX (b)i, j+1,kX (b)i+1, j+1,kX (b)i, j+1,k+1X (a)i, j,k. (61)

This cluster FSPT also has the nice interpretation of being the cluster model (Eq 29) on the
diamond lattice. In the presence of an edge, terms in the Hamiltonian must be excluded lead-
ing to degeneracies, and in exactly the same way as in 2D one finds these degeneracies along
a surface cannot be gapped, thus leading to a 2O (L

2) overall symmetry protected degeneracy
for an open system.
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Figure 7: (left) Phase diagram of our 2D or 3D FSPT models generated by one CA,
under hx/z ≥ 0 perturbations. Possible phases include the FSPT phase symmetric

under all Z(a)2 and Z(b)2 symmetries, two spontaneous symmetry broken (SSB) phases
where either of the two types of symmetries are spontaneously broken, and the trivial
paramagnetic phase. (right) Sketch of the phase diagram for the 3D models with
symmetries generated by two 1D CA. There exists the FSPT phase at small hx/z , a

SSB phase at large hz , a fracton topologically ordered phase enriched with with Z(a)2
symmetry (FSET) at large hx , and a trivial phase at both large hx and hz . For this
model, we do not know what the phase diagram looks like outside of these limits.

6.2 Two 1D cellular automata

Symmetries defined through two 1D CA allow for a wide variety of possibilities. This may be
thought of as evolving a 1D CA through two time directions, with potentially different update
rules along the two time directions. Let the state of the 1D CA at time (t1, t2) be represented
by a polynomial st1 t2

(x). The update rules along the two time directions are given as two
polynomials f1(x) and f2(x), with st1+1,t2

= f1(x)st1,t2
and st1,t2+1 = f2(x)st1,t2

. Interpreting
the y , z, directions as the t1, t2, directions, the classical 3D Hamiltonian takes the form

H2CA = −
∑

i jk

Z(x i y jzkᾱ)−
∑

i jk

Z(x i y jzkβ̄)

= −
∑

i jk

Z(ᾱ)−
∑

i jk

Z(β̄), (62)

where α = 1 + f1 y and β = 1 + f2z are defined, and in the second line for notational con-
venience we have suppressed the x i y jzk factor, when summation over translations is appar-
ent (and we will continue to do so). The fractal symmetries on a semi-infinite system (with
x i y j≥0zk≥0 are of the form)

S(q(x)) = X
�

q(x)[1+ f1 y + ( f1 y)2 + . . . ][1+ f2z + ( f2z)2 + . . . ]
�

, (63)

which can be readily verified to commute with everything in the Hamiltonian. On an infinite
system some inverse may again be defined and the symmetry takes the form

S(q(x)) = X (q(x)F1(x , y)F2(x , z)), (64)

with F1/2 each defined as in Eq 22 with f1/2.
The decorated defect construction starting fromH2CA results in the following Hamiltonian,
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Figure 8: The first three terms in the 3D FSPT HamiltonianHFSPT (Eq 65) generated
from two CA, using f1 = 1+ x the Sierpinski rule and f2 = x̄ + 1+ x the Fibonacci
rule. There are three spins on each site of the cubic lattice, labeled by a (blue), b
(red), and c (green). Terms are composed of products of X and Z Pauli operators as
shown. The Hamiltonian is a sum of translations of these terms.

with three spins per unit cell, on which we have operators Ẑ (a/b/c)
i j and X̂ (a/b/c)

i j ,

HFSPT = −
∑

i jk

Z





ᾱ

1
0



−
∑

i jk

Z





β̄

0
1



−
∑

i jk

X





1
α

β





−
∑

i jk



hx X





1
0
0



+ hz Z





0
1
0



+ hz Z





0
0
1







 , (65)

which is illustrated in Fig 8, for f1 = 1 + x and f2 = x̄ + 1 + x (the Sierpinski-Fibonacci
model). The first three terms all mutually commute, and hx , hz are small perturbations. The
symmetries come in three types: first, we still have the original symmetry elements

Z(a)2 : S(a)(q(x)) = X





q(x)F1(x , y)F2(x , z)
0
0



 ,

(66)

but now the remaining independent symmetry elements are more complicated, which arises
because there is a further local operator that commutes with the first three terms in HFSPT,
given by

B̂i jk = Z



x i y jzk





0
β̄

ᾱ







 . (67)

Due to the existence of B̂i jk, given any symmetry operation S, B̂i jkS is also a valid symmetry.
Thus, these should be thought of as higher form fractal symmetries [106]. Consider the analogy
with, say, a 1-form symmetries in 3D: these are symmetries which act along a 2 dimensional
manifold which may be deformed by local operations. Here, we have the symmetry operations
acting on only b or only c sublattice sites which may be made to live on a single plane,

Z(b)2 : S(b)(q(x , z)) = Z





0
q(x , z)F̄1(x , y)

0



 ,

Z(c)2 : S(c)(q(x , y)) = Z





0
0

q(x , y)F̄2(x , z)



 , (68)
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but we are also free to deform such symmetries using products of B̂i jk. Such higher form
fractal symmetries are an interesting subject by themselves, and we leave a more thorough
investigation as a topic for future study.

One may confirm that when hx = hz = 0, all these symmetries are products of terms in the
Hamiltonian, and therefore must have expectation value 1 in the ground state. As every term
is independent, and there are three terms that must be satisfied per unit cell of three sites, the
ground state is unique. This model in fact describes an FSPT protected by the combination
of the “global” fractal symmetries Z(a)2 , along with the set of higher form fractal symmetries

Z(b/c)2 . To see this, one may examine the boundary theory. Let’s consider the simplest case of
f1 = f2 = 1 + x the double Sierpinski. On the top surface, with edge Pauli operators Z ,X ,
one finds that Z(a)2 acts as a 2D Sierpinski fractal symmetry S(a) =

∏

X , while the Z(b/c)2
symmetries may be chosen to act as Z on a single site. Thus, the only Hamiltonian we can
write down on the surface must be composed of Z (to commute with a local Z ) and must
commute with the fractal symmetry. The only possibility is therefore the classical Hamiltonian
(as in Eq 10), which exhibits spontaneous fractal symmetry breaking in the ground state. Thus,
the surface is non-trivial and must either be gapless or spontaneous symmetry breaking.

Figure 7(right) shows a sketch the phase diagram for this model. Increasing hx/z drives
this model out of the FSPT phase. If we increase only hz while keeping hx small, we arrive
at the spontaneously fractal symmetry broken phase like in the 2D FSPT. Increasing both hx
and hz too large will result in the trivial paramagnetic phase. However, if we only increase hx
while keeping hz small, the system enters into a symmetric fracton topologically ordered phase,
which is the subject of the following discussion.

6.2.1 Connection to fracton topological order

The decorated defect approach of the previous sections may be thought of alternatively as the
following process:

1. Start with a classical Hamiltonian and some symmetries involving flipping some spins

2. Introduce additional degrees of freedom at each site and couple them to the interaction
terms via a cluster-like interaction (this is exactly what one would get following the
gauging procedure of Refs [36, 37], and adding the gauge constraint as a term in the
Hamiltonian).

3. The resulting theory still has the original symmetries, along with some additional sym-
metry which we may define acting on the new spins, which we take to be the defining
symmetries our model.

4. Perturbations respecting these symmetries may then be added to the Hamiltonian (note
these may break the gauge constraint from earlier: we are now interpreting both matter
and gauge fields as physical).

Most of our models, except the preceding one, were special under this gauging procedure
as they allowed for no local gauge fluctuations terms and exhibited a self-duality between the
topological and trivial phases. As we will show, in 3D with symmetries defined by two 1D CA,
gauge fluctuations are allowed (these are the B̂i jk operators we found in Eq 67) and there is
a phase in which these models exhibit fracton topological order. They may be thought of as
the simplest fractal symmetry enriched topological (FSET) phases (this possibility was already
hinted at in Ref 36). The phenomenology of the resulting topological orders are the same
as those of the Yoshida fractal codes [32]. The Z(a)2 symmetry will serve the purpose of the
enriching symmetry, while the other symmetries will have the interpretation of being logical
operators for the underlying Yoshida code.
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To avoid complications, let specialize to an L × L × L 3-torus with f L
1 = f L

2 = 1
(x L = y L = zL = 1). The symmetries in this case are given by Eq 66 and 68, but with
F1 =

∑L
l=0( f1 y)l and F2 =

∑L
l=0( f2z)l instead of F1, F2, with q still arbitrary. There are L

independent Z(a)2 symmetries, and 2L independent higher-form Z(b/c)2 symmetries. An inde-
pendent basis for these symmetries are, for α= 0 . . . L − 1, given by

S(a)α = X





xαF1(x , y)F2(x , z)
0
0



 (69)

and

S(b)α = Z





0
xα F̄1(x , y)

0



 ; S(c)α = Z





0
0

xα F̄2(x , z)



 . (70)

All remaining symmetry elements may be written as products of these and B̂i jk (as S(b/c) are
higher-form fractal symmetries).

The fracton topologically ordered phase corresponds to the limit in which we take hx in
Eq 65 to be large. Expanding about this limit, the Hamiltonian looks like

HFSET = −hx

∑

i jk

X





1
0
0



− G
∑

i jk

X





1
α

β



− K
∑

i jk

Z





0
β̄

ᾱ



+ (perturbations), (71)

where we have now specified an energy scale G for the second term, the third term is the
leading order perturbative correction to the Hamiltonian, and we neglect all the other pertur-
bations. Fixing all X̂ (a)i j = 1 results in exactly the Yoshida code

HYoshida = −
∑

i jk

X

�

α

β

�

−
∑

i jk

Z

�

β̄

ᾱ

�

, (72)

which exhibits a ground state degeneracy (with our geometry and choice of f1/2) of 2k with
k = 2L.

From the perspective of the original FSPT, one finds that the charge of all the S(a/b)
α (Eq 70)

in the ground state of this phase no longer has to be +1, but instead may be ±1. These are
exactly the logical operators of the Yoshida fractal code [32]. This transition may also be
thought of as some kind of non-local spontaneous symmetry breaking of the higher form fractal
symmetries Z(b/c)2 .

The ground state must still be uncharged under the Z(a)2 . We define the fracton excitation
as an excitation of only the first term in the HFSET (these are the relevant charge excitations
when G is large). Such an excitation may be created in multiplets by (for example) an operator
of the form

Z





1+ ( f̄1 ȳ)`

1+ ( f̄1 ȳ) + ( f̄1 ȳ)2 + · · ·+ ( f̄1 ȳ)`−1

0



 , (73)

which creates only excitations of the first term at locations given by the non-zero coefficients
in 1+ ( f̄1 ȳ)`, and is a few-body creation operator whenever ` = 2l . A single such excitation
clearly carries charge −1 under some Z(a)2 symmetries. This Hamiltonian therefore describes a

fracton topologically ordered phase, enriched by an additional Z(a)2 symmetry, and is a genuine
FSET. As a helpful analogy, in Appendix A we show how, in exactly the same way, a relaxed
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Ising gauge theory may be interpreted as an SPT protected by a global Z2 and 1-form Z2
symmetry, and in a certain limit describe an SET phase enriched by a global Z2.

A single charge is immobile, as discussed in Sec 5.4, provided that f1 and f2 are not alge-
braically related, the same condition which implies the lack of a string-like logical operator in
the Yoshida code [32]. Finally, we note that Haah’s cubic code [33] is isomorphic to this type
of model, but with a second-order CA along one time direction [32].

7 Conclusion

We have constructed and characterized a family of Ising Hamiltonians that are symmetric
under symmetry operations which involve acting on a fractal subset of spins. Fractal structures
on a lattice are taken to be those defined by cellular automata with linear update rules. We
discuss some possible phases in systems with such symmetries.

These include the trivial symmetric and spontaneously symmetry broken phases which
are symmetric under the fractal symmetry. These fractal symmetries form the total symmetry
group (Z2)k, where k will depend strongly on system size and topology. We then construct
non-trivial symmetric phases, FSPT phases, via a decorated defect approach. For fractal sym-
metry groups generated by a single CA, the decorated defect construction leads to a family of
cluster type Hamiltonians which have a non-trivial gapped ground state under the symmetry
group (Z2 ×Z2)k of fractal symmetries. We characterize such a phase by means of symmetry-
twisting, ungappable edge modes, and immobile excitations protected by the set of all fractal
symmetries.

In three dimensions, our construction leads to an FSPT protected by a combination of the
usual fractal symmetry along with a higher form fractal symmetry. Aside from the FSPT phase
one also has the possibility of fracton topological order, enriched by the fractal Z2 symme-
tries. The topological order in these models are those of the Yoshida fractal codes [32]. While
maintaining our fractal symmetries, these topologically ordered phases may be thought of as
simple fractal symmetry enriched topological phases (FSET), in which an elementary excita-
tion is charged under the fractal symmetries.

This construction is may also be generalized to higher D-dimensional systems, where one
may consider fractal symmetries generated by n d-dimensional CA, with D = n+d. The D = 3
dimensional models examined in this paper have (n, d) = (1, 2) and (2,1). This suggests an
avenue towards constructing higher dimensional fractal SPT or topological phases. Finally, we
note that a generalization to p-state Potts variables, rather than Ising, is also possible.

Recent work in Ref [107] develops a gauging/ungauging procedure for quantum error-
correcting codes. They provide a prescription for obtaining a D dimensional SPT from a gapped
domain wall of a D + 1 dimensional quantum code. The example provided of a 2D FSPT
obtained from this method is exactly isomorphic to our Sierpinski FSPT.
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A Relaxed Ising gauge theory as SPT and SET phases

In this appendix, we show how the symmetry enrichment of the FSET in Sec 6.2.1 works for
the simplest case: that of the Z2 topological order enriched by a global symmetry. We start
with the Ising model on a square lattice,

HIsing = −
∑

〈i, j〉

τz
iτ

z
j , (74)

where i and j label sites, and the sum is over nearest neighbors 〈i, j〉, and τx/y/z
i are Pauli

matrices on site i. We gauged this by introducing gauge fieldsσx/y/z
i j on every bond i j between

sites i and j, and writing
H = −

∑

〈i, j〉

τz
iτ

z
jσ

z
i j , (75)

along with the gauge constraint that on every site Gi|ψ〉= +|ψ〉, with

Gi = τ
x
i

∏

j∈Γ (i)

σx
i j , (76)

where Γ (i) is the set of all nearest neighbors of i.
Next, we follow the procedure of Sec 6.2.1, we relax the gauge constraint and enforce it

only as an energetic constraint, adding it to the Hamiltonian with coefficient G,

H = −
∑

〈i, j〉

τz
iτ

z
jσ

z
i j − G

∑

i

τx
i

∏

j∈Γ (i)

σx
i j . (77)

We now interpret this Hamiltonian not as a gauge theory, but as a physical model. This model
has a global symmetry

Sglobal =
∏

i

τx
i , (78)

along with the 1-form symmetries

SC =
∏

〈i j〉∈C

σz
i j , (79)

where C is any closed loop on the square lattice. We enforce that both types of symmetries
be respected, and add symmetry respecting perturbations,

HSPT = −
∑

〈i, j〉

τz
iτ

z
jσ

z
i j − G

∑

i

τx
i

∏

j∈Γ (i)

σx
i j − hx

∑

i

τx
i − hz

∑

〈i j〉

σz
i j , (80)

which we claim describes an SPT phase protected by the combination of the global Z2 and the
set of 1-form symmetries. Indeed, one can verify that the edge theory must either be gapless
or spontaneous symmetry breaking.

At large hx , we claim this describes an SET phase. In this limit,

HSET = −hx

∑

i

τx
i − G

∑

i

τx
i

∏

j∈Γ (i)

σx
i j − K

∑

�

∏

〈i j〉∈�

σz
i j + . . . , (81)

the ground state is clearly simply the state with all τx = 1 and σx/z in the ground state of the
toric code.

Let us take G to still be the largest energy scale. Then, the relevant charge excitations are
those of the hx term, and two such excitations are created by a string of σz terminated by
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τz on either end. A single such excitation therefore carries charge −1 under the global Z2
symmetry.

To verify that this indeed describes an SET, we may gauge the global Z2 symmetry and
verify that the charge excitation has non-trivial braiding statistics with the resulting gauge
flux. Let us gauge the global Z2 symmetry (again), by introducing gauge fields µx/y/z

i j on each

bond, along with the gauge constraint given by G̃i = τx
i

∏

j∈Γ (i)µ
x
i j . We then allow for gauge

fluctuations, in the form of a
∏

�µ
z term. Then, we may gauge-fix out the τ and we are left

with the Hamiltonian

HGauged = −hx

∑

i

∏

j∈Γ (i)

µx
i j − G

∑

i

∏

j∈Γ (i)

µx
i

∏

j∈Γ (i)

σx
i j − K

∑

�

∏

〈i j〉∈�

σz
i j − K ′

∑

�

∏

〈i j〉∈�

µz
i j + . . . .

(82)
Recalling that the charge excitation is an excitation of the first term, we may create two

such excitations at sites i0 and j0 by a double-string-like operator of the form

F(i0, j0) =
∏

〈i j〉∈Ci0 j0

µz
i jσ

z
i j , (83)

where Ci0 j0 is a path terminating at sites i0, j0. One can clearly see that moving this charge
around in a closed loop measures both the original flux

∏

�σ
z inside the loop, but also the

gauge flux
∏

�µ
z inside it. This charge excitation therefore has mutual braiding statistics with

both the original flux (as expected) but also the new gauge flux of the global Z2. Hence,HSET
describes a genuine SET phase, albeit very simple one.
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