
Select SciPost Phys. 6, 025 (2019)

A classical density functional from machine learning
and a convolutional neural network

Shang-Chun Lin1? and Martin Oettel1

1 Institut für Angewandte Physik, Universität Tübingen,
Auf der Morgenstelle 10, 72076 Tübingen, Germany

? shang-chun.lin@uni-tuebingen.de

Abstract

We use machine learning methods to approximate a classical density functional. The
functional ‘learns’ by comparing the density profile it generates with that of simulations.
As a study case, we choose the model problem of a Lennard–Jones fluid in one dimension
where there is no exact solution available. After separating the excess free energy func-
tional into a “repulsive” and an “attractive” part, machine learning finds a functional for
the attractive part in weighted–density form. The predictions of density profile at a hard
wall shows good agreement when subject to thermodynamic conditions beyond those
in the training set. This also holds for the equation of state if this is evaluated near the
training temperature. We discuss the applicability to problems in higher dimensions.
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1 Introduction

Density functional theory (DFT) for many–body systems is built upon the one–to–one cor-
respondence between the one–body density profile of particles and the one–body external
potential acting on these particles [1, 2]. In quantum Kohn–Sham (KS) DFT the particles are
electrons with Coulomb interactions and most work has addressed the case of zero temper-
ature (T = 0) [3]. In classical DFT, particles can be molecules, macromolecules or colloidal
particles with a huge variety of interparticle interactions and DFT addresses the finite temper-
ature case [4]. Both in quantum KS DFT and in classical DFT the theorems of DFT guarantee
the existence of a unique functional depending on the density; it is an energy functional for KS
DFT and a free energy functional for classical DFT. Densities are computed by self–consistent
equations involving functional derivatives of these functionals and these equations are solv-
able with much less numerical effort than full many–body quantum calculations/simulations
or classical simulations. The exact energy/free energy functionals are not known in general,
therefore considerable effort has gone into the theoretical development of functionals.

The art of functional building is very different in the quantum and the classical case. In the
quantum case, we deal with one type of interparticle interaction (Coulomb interaction) but
additionally one has the problem of indistinguishable fermions. Therefore a major problem
in quantum DFT is the kinetic energy functional T[n] which is solved largely by introducing
KS orbitals (however, at rather high numerical costs). The remaining contributions to the
electron energy besides the classical Coulomb energy are hidden in the exchange–correlation
functional Exc[n] which in the majority of applications is assumed to be local (the energy
density at a given point only depends on densities n and gradients of densities∇n at this point).
In the classical case, the equivalent of Coulomb energy plus Exc[n] is the excess free energy
functional Fex[ρ] depending on the particle number density ρ. Due to the variety of particle
interactions in classical system, there is no unique model–building recipe for Fex[ρ]. Very
often, interparticle potentials feature steeply repulsive cores and more or less smoothly varying
attractive and/or repulsive portions outside this core. The steepness of the potential in general
makes local approximations to Fex[ρ] very unreliable. Considerable progress over the past
decades has been made for the case of hard–body fluids where the hard interaction serves as an
idealized approximation to the repulsive cores in the interaction of realistic fluids. In particular,
excess functionals derived from Fundamental Measure Theory (FMT) [5] have a high degree
of accuracy. For anisotropic particles, these are rather recent achievements [6–8]. On the other
hand, the contribution to Fex[ρ] from attractive interactions outside the hard core is treated
by mean–field concepts in various guises (random phase approximation (RPA) [9], functional
expansions [10, 11], Wertheim theory for patchy attractions [12, 13] etc.) but a qualitatively
new and successful ansatz (such as FMT was in the treatment of hard bodies) is missing.

With the steep increase of available computing power over the past years, methods of
machine learning (ML) have come into the focus of research also in physics. ML is designed for
finding patterns in high–dimensional data. Algorithms of ML still rely on insight and intuition
how to represent and process data but a detailed model–building (specific for the problem
at hand) is not required. The optimization of data representation/processing can be viewed
as a numerically intensive data fitting task which is very familiar to physicists. Therefore it
appears also natural to apply ML to the problem of functional construction in DFT. In the past
years, such ideas have been driven by the quantum DFT community. Refs. [14, 15] address
the construction of a ML functional for the kinetic energy functional T[n] in one dimension
(1D). Although successful in obtaining energy values, certain limitations when going to three
dimensions (3D) have led the authors of Ref. [16] to apply ML directly to the functional map
between the external potential and the electron density. Although the approach appears to be
quite promising in terms of possible accuracy, it amounts to hiding the energy functional in a
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“ML black box”, which might appear less appealing to theorists.
Certainly, in the case of a “ML black box” functional one must be careful in choosing train-

ing data sets in relation to the applications one has in mind. For classical DFT, training data
sets would be created most naturally by Monte Carlo (MC) or Molecular Dynamics (MD) sim-
ulations. To keep numerical efforts down, training sets should be created using small sets of
parameters (chemical potential, temperature, external potentials) with good statistics. For a
classical “ML black box” functional, the highly nonlinear packing effects would probably ne-
cessitate to train the ML functional with densities at least as high as in the application cases.
On the other hand, packing is well described by the existing hard–body functionals and one
may doubt whether the currently existing ML schemes can improve those. Therefore, for a
fluid with repulsive cores it makes sense to maintain the splitting of the excess free energy
functional into a hard core part and a part describing the soft parts of the potential. In this
paper, we consider a Lennard–Jones (LJ) model fluid in 1D (where this soft part is attractive)
and we aim to find a ML functional for the attractive part of Fex[ρ] while representing the
repulsive part by the exactly known hard rod functional.

A LJ model in 1D is not of the nearest–neighbor interaction kind for which exact function-
als (but only implicitly known) exist [17,18]. Therefore, training data sets have to be obtained
by simulations (similar to desired extensions to 3D). In 1D, mean–field approximations for the
attractive part of Fex[ρ] suffer from predicting an unphysical vapor–liquid transition. How-
ever, a study for a 1D nearest-neighbor fluid showed rather good results for pair correlations as
obtained from explicit minimization of a RPA–like functional [9]. For our LJ fluid, the RPA func-
tional performs somewhat worse (see below) and this finding therefore constitutes a case for
improving by ML fitting. The ML functional will be constructed using weighted densities which
are convolutions of the density with weight functions to be determined by ML fitting. Our ML
fitting is similar to a basic generative convolutional neural network which is used in image pro-
cessing. In convolutional neural networks, input image data are passed through convolution
kernels and a nonlinear function (describing “neuron firing”) thus obtaining convoluted data.
“Supervised” training occurs when image label data (“cat”, “dog” etc.) are compared to output
labels. These output labels are obtained by further processing the convoluted data by pooling
and reduction steps (using so–called perceptrons). “Unsupervised” training would correspond
in comparing the input image with an output image generated from the convoluted data (this
is the generative step). In our case, input data are MC density profiles, the convolution kernels
are the weight functions and the nonlinear function corresponds to the self-consistent mini-
mization equation, generating directly an output density profile. Therefore, the ML functional
is obtained by unsupervised training in the language of the ML community.

The remainder of the paper is structured as follows: In Sec.2 we briefly recapitulate the
necessary elements of classical DFT and introduce the model in Sec.3. In Sec.4 we describe
our results and in Sec.5 we conclude with a summary and a discussion of possible future work.

2 Classical DFT

In classical DFT, the grand potential functional is

Ω[ρ(x)] = F id[ρ(x)] +Fex[ρ(x)] +

∫

d x(V ext(x)−µ)ρ(x), (1)

where ρ(x) is particle density distribution, F id is free energy functional of the ideal gas, Fex

is the excess free energy functional from the particle interactions, µ is chemical potential and
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V ext is the external potential. The exact form of F id is:

βF id =

∫

d x ρ (x) [ln (ρ (x)λ)− 1] , (2)

with β = 1/kB T , T the temperature, kB Boltzmann constant, and λ the thermal wavelength.
In the following we set β = 1/kB T = λ = 1. In equilibrium, the density profile ρeq must
minimize Ω for a given µ. Thus, with δΩ

δρ = 0 and Eq. (2), we obtain

ρeq = exp

�

µ−
δFex

δρ

�

�

�

�

ρ=ρeq

− V ext

�

. (3)

To solve Eq. (3), a robust but sometimes not very efficient method is Picard iteration with
mixing:

ρnew(x) = exp

�

µ−
δFex

δρ

�

�

�

�

ρ=ρi

− V ext

�

, (4)

and the density profile in step i + 1 is obtained from step i by ρi+1 = (1− ξ)ρi + ξρnew with
a suitable mixing parameter ξ (0 < ξ < 1), until ρi = ρnew. All the predictions of density
distribution in this paper are initialized by a constant value and iteratively solved using Eq. (4).

In this paper, we investigate a pair potential between particles given by the LJ potential:

ULJ(x) =











∞ if x < σ

4ε
�

�

σ
x

�12 −
�

σ
x

�6�
if σ < x < 16σ

0 otherwise,

with σ the diameter of the particles and ε the strength of interaction. In order to construct
the free energy functional, we split Fex into a reference system functional F ref (describing
the effect of the repulsive part in ULJ) and a remainder describing the attractive part. The
respective splitting of ULJ into a repulsive and attractive part is performed via the Weeks-
Chandler-Andersen (WCA) prescription [19,20]

Urep(x) =

¨

ULJ(x) + ε if x < 21/6σ

0 otherwise

and

Uatt(x) =

¨

−ε if x < 21/6σ

ULJ(x) otherwise.

Naturally, the hard rod functional FHR is chosen for F ref [21] (see also appendix). Fur-
thermore, we define the RPA–like mean field (MF) approximation, Fex = FHR + FMF with

FMF =
1
2

∫ ∫

ρ(x)ρ(x ′)Uatt(|x − x ′|)d xd x ′. (5)

3 Machine learning model

In order to construct a ML fitting procedure, we split Fex into FHR and FML. FHR is given by
Eq. (13) (see appendix) and FML is the remainder functional for the attractive part to be found
by ML, improving FMF. The network will be trained by grand canonical simulation data for
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the density profile, ρMC(x), for a restricted set of the parameters {µ,ε, V ext}. Using Eq.(3), we
define a ML output density as

ρML(x) = exp

�

µ−
δ(FHR +FML)

δρ

�

�

�

�

ρ=ρMC

− V ext

�

, (6)

which corresponds to the generative step in a generative convolutional network to determine
FML. Further, the cost function J is defined as

J =
M
∑

k=1

∫ L

0

�

ρMC
k (x)−ρ

ML
k (x)

�2
d x , (7)

where M is number of training samples. To minimize J , we choose stochastic gradient descent
as the back propagation method, details can be found in the appendix.

In Eq.(6), if FML is exact, then it will generate output ρML which is equal to the input ρMC.
The task is to find a suitable ansatz of FML that minimizes J . For FML we will consider forms
which locally depend on weighted (convoluted) densities

ni(x) =

∫ Lω/2

−Lω/2
ρ(x + x ′)ωi(x

′) d x ′, (8)

with weighting kernelsωi that have a range (cutoff length) Lω. The use of weighted densities
is motivated by the proven success of weighted-density formulations as in FMT for hard–body
interactions. (Note that the MF approximation (5) has a particularly simple weighted density
form.) For example, assuming FML[n] =

∫

d x
∑

i j βi jnin j (as in one example below), the
trainable parameters βi j and ωi(x) will be tuned in minimizing J (see appendix). Such a
minimization process is analogous to a generative convolution network [22] with 5 layers:
input layer (ρMC, ε, V ext), convolutional layer(weighted densities), fully connected layer (FML),
generative layer (Eq.(6)), and output layer (ρML).

4 Results

To prepare training samples, we generate ∼ 100 density distributions with different V ext by
grand canonical MC simulation. For one density distribution, we use 106 trial moves to equi-
librate, and sample 108 times to calculate the histogram of the density distribution with grid
spacing ∆x = 1

8σ. (The same gridding is chosen for the numerical evaluation of the function-
als later on). To decorrelate, samples are separated by 1024 trial moves. As training external
potentials in a box with x ∈ [0, L], we choose a set of soft walls with tunable strength, steep-
ness and wall distance:

V ext(x) =











a((L/2− bσ)− x)c if x ≤ L/2− bσ

a(x − (L/2+ bσ))c if x ≥ L/2+ bσ

0 otherwise,

with random parameters a, b, c, in the range 1...3, 6...14, 2...4, respectively, and fix the system
size to L = 32σ. Examples are shown in Fig.1.

4.1 Training at constant temperature and chemical potential (ε and µ fixed)

Here 64 training density distributions are generated with fixed µ = ln1.5 and ε = 0.5 (cor-
responding to a fixed temperature). The cutoff length Lω is 6σ. To test the quality of the
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Figure 1: One example of ρMC(x) and three examples of V ext(x). Blue circles shows
ρMC(x) corresponding to V ext(x) with a = 2, b = 10 and c = 3. Lines show V ext(x)
for three different sets of {a, b, c}.
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Figure 2: RPA–like mean–field approximation. The black solid line is the ML–
optimized ω(x) appearing in Eq. (9). For comparison Uat t/(2ε)(x) (red dots) and
the full LJ potential ULJ/(2ε)(x) (green dot–dashed lines) are shown.

extracted FML, the pressure P(ρ) (equation of state) and the density ρ(µ) at the same tem-
perature (ε= 0.5) but different chemical potentials compared to the training are compared to
MC simulation values. Also, we will test the density distribution in contact with a hard wall,
ρwall(x), which is equivalent to V ext(x) =∞ if x < σ and 0 otherwise.

4.1.1 Learning an improved RPA mean field functional

Consider an extremely simple case,

FML
o=1[ρ] = ε

∫

d x ρ(x)n(x). (9)

This is the weighted–density form of the RPA mean field approximation (5). Thus, the kernel
ω, as described in Eq.(8), should correspond to Uat t/(2ε). Fig. 2 shows the final result of
the kernel ω after training. The tail of ω is close to Uat t/(2ε) as expected, and it extends
somewhat into the hard core region but goes to zero there (−σ < x < σ), which indicates that
the WCA prescription overestimates the attractive potential inside the core. Further, we show
the equation of state in Fig.3 and ρwall

o=1(x) in Fig.4 (green dot–dashed lines). The equation of
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Figure 3: Equation of state: (a) density ρ(µ) and (b) pressure P(ρ) for ε = 0.5.
The blue circles are simulation results and lines are results from the ML and MF
functionals. Yellow dots correspond to results from the hard rod functional and serve
as a reference.
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Figure 4: ρwall(x) with µ = ln 1.5 and ε = 1.5 (not in training set). The training
data are for ε = 0.5 and µ = ln1.5. The blue circles are simulations and lines are
predicted by ML and MF functionals

state is in remarkably good agreement with simulation, but ρwall
o=1(x) shows strong oscillation

and overestimates the density at x = σ, which is similar to the MF approximation from the
WCA separation.

4.1.2 Functionals with higher order in n

Since the RPA mean field type assumption shows deficiencies in the hard wall profiles, we
consider a quadratic form in n,

FML
o=2[ρ] = ε

∫

d x
∑

i j

βi jnin j , (10)

with i, j=0,1...7 (in total eight kernels) and βi j = β ji . Eq. (10) correspondences to a deconvo-
lution ansatz for the Mayer f –bond f = exp−Uatt −1 in the low density and low ε limit. After
training, the predicted ρwall

o=2(x) is shown in Fig.4. Despite the ρwall
o=2(x) is less oscillatory and

seems quite reasonable compared to the simulation, the equation of state does not agree with
simulations as shown in Fig.3. The predicted equation of states does not improve with more
kernels and longer cutoff length.
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Figure 5: ρwall(x) with ε = 2 and µ = ln 2. The blue circles are MC simulations,
the black line is the prediction from the ML functional (Eq. (11)) and the red line is
determined by the RPA MF approximation (Eq. (5)). The training data are obtained
with ε= 1.0...1.5.

Thus, we further consider a functional with added cubic term in n:

FML
o=3[ρ] = ε

∫

d x

 

∑

i j

βi jnin j +
∑

i jk

γi jkn′in
′
jn
′
k

!

, (11)

where i, j, k run from 0 to 7 such that we have in total 16 unknown weight functions. As
shown in Fig. 3 and Fig. 4, the equation of state and the predicted ρwall

o=3(x) (black lines) are
now in good agreement with simulation results.

It is worth to note that the information about the exact equation of state is unknown to
the network, as we have only one training point for µ. Out of curiosity, we also tried Eq. (11)
without the quadratic term βi jnin j , and it still predicts reasonable density distributions and
equation of state.

4.2 Training at variable temperature and chemical potential

With the success of the ansatz in Eq. (11), we further extend training it to a general training
data set with variable ε and µ. Here, 128 training data are generated with random µ and ε
in the range of ln1.5... ln3 and 1.0...1.5, respectively. The number of kernels is still 16 with
range Lω = 6σ as before. For testing, we use the hard wall density profile ρwall(x) for µ= ln2
and ε= 2, which is not in the training set (it is at a lower temperature, corresponding to larger
attractions as in the training sets). The results are shown in Fig. 5 and the predicted ρML(x) is
much closer to the simulation than the RPA MF approximation (5).

In Fig. 6, we show the pressure P(ρ) for ε= 2 and ε= 2.5. The result from FML is in good
agreement with our MC simulations for ε = 2 while not for ε = 2.5. Here we encounter a
peculiarity of 1D systems. Even for arbitrarily low temperatures (arbitrarily high ε) the pres-
sure P(ρ) must be monotonically increasing, signalling the absence of a phase transition as
required for 1D. The RPA mean–field form FMF (Eq. (5)) necessarily entails a nonmonotonic
P(ρ) (with a van der Waals (vdW) loop) for ε > εc where εc corresponds to a critical tem-
perature. For FMF, εc ≈ 2.297 and thus the vdW loop is present for ε = 2.5 (see Fig. 6).
For FML (Eq. (11)) we find εc ≈ 2.989. It is an improvement that the onset of an unphysical
liquid–vapor transition has been moved to higher ε (lower temperatures) but the precursor of
it is seen in Fig. 6 for ε = 2.5. Thus the failure is understandable since the training data are
in the range of ε= 1.0...1.5 and Eq.(11) only approximates the functional up to first order of
ε. Treating higher ε in 1D would require a more sophisticated ansatz for FML. However, exact
results for the equation of state in 1D attractive fluids with strictly next–neighbor interactions
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Figure 6: Pressure P(ρ) for (a) ε = 2 and (b) ε = 2.5. Blue circles are simulations,
black lines are bulk results from the ML functional (Eq. (11)) and red dashed lines
results from the RPA MF aproximation. For ε = 2.5, the RPA MF approximation
shows clearly a vdW loop and thus phase coexistence while ML and simulations do
not.

(i.e. rather short–ranged attractions) point to a rather complicated dependence on ε [23]. We
expect that this problem is absent in a prospective application in 2D or 3D.

5 Conclusion

We have introduced a prototype method to obtain a classical density functional for a sim-
ple fluid within the framework of unsupervised machine learning, using a method which is
akin to a generative, convolutional network. The method is analyzed for the example of a
Lennard–Jones fluid in 1D. We have retained the phenomenologically successful splitting of
the functional into a reference part (describing repulsive cores and approximated by FMT for
hard particles) and a remainder describing attractions. This part is expanded using a set of
weighted densities whose functional form and strength is determined by ML. Training data
are generated for systems in slits with variable external potentials for a limited range of chem-
ical potentials and temperatures. In evaluating the performance of the ML functional, we
computed the equation of state and density profiles at a hard wall and focused on conditions
beyond the training set conditions. As a first check, ML finds a RPA–type functional which is
clearly superior to the RPA functional derived from the standard WCA separation of the inter-
action potential. For a ML functional cubic in weighted densities, the results for the hard wall
profiles are very good while there are discrepancies to the simulations for low temperatures
in the equation of state. This is presumably a 1D artifact.

In our method, the learning of functionals can be viewed as a fitting of weight functions
with a certain ansatz for the functional. This ansatz certainly limits the applicability by con-
struction and is not simply extendable to generate a “ML black box” functional which uses
the generic ML algorithms available in the literature for representing the one–to–one map be-
tween external potentials and density profiles. This route still awaits exploration. However,
we expect that problems in 2D and 3D are amenable to our method and may extend FMT
to soft and/or long range potentials, thus constituting a computational continuation of rare
theoretical work such as in Ref. [24].

We conclude with some remarks regarding the computational costs. One training sample
in this paper takes around 30 minutes on a GPU (graphics processing unit), and the training
process takes typically on the order of a week on a single CPU. The bottle neck of the training
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is convolution, which GPGPU calculation (general purpose computation on GPU, CUDA [25])
typically gives speedups with one to two orders of magnitude compared to one CPU. Thus, we
would expect the training could be done within hours on suitable GPUs. The extension, for
example, to 3D LJ particles may take one day [26] to generate one training density distribution,
and training may take a week with GPUs. Thus, ML functionals are definitely obtainable within
a reasonable time on multiple GPUs.
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A Functional derivative and gradient descent

Here we discuss some calculation details of forward and backward propagation in minimizing
the cost function. We start with the “generative” equation (6) for the k-th training data set

ρML
k (x) = exp

�

µML
k −

δ(FHR +FML)
δρ

�

�

�

�

ρ=ρMC
k

− V ext
k

�

. (12)

Here, we have denoted the chemical potential µ = µk of the training set by µML
k which we

will allow to vary in the minimization process. Below we specify δFHR

δρ and δFML

δρ , needed to
determine the rhs of Eq.(12). First, the exact form of FHR is [5,21]

FHR =

∫

φ[n] d x =

∫

−n0 ln(1− n1) d x , (13)

with ni(x) =
∫

ρ(x ′)ωHR
i (x − x ′)d x ′ (convolution), where ωHR

1 (x) = θ (σ/2 − |x |) and
ωHR

0 (x) =
1
2δ(σ/2 − |x |), and θ is the Heaviside function and δ the Dirac delta function.

Thus,
δFHR

δρ
=
∑

i

∂ φ[n]
∂ ni

∗ωHR
i , (14)

with i = {0,1} and ∗ denoting convolution.
We illustrate the determination of δF

ML

δρ with the example FML =
∫

d x
∑

i j βi jnin j:

δFML

δρ
=
∑

i j

βi j

�

ni ⊗ω j + n j ⊗ωi

�

, (15)

with ⊗ denoting cross correlation. (It is worth to note that convolution usually means cross
correlation in the ML community.)

It turns out that the minimization process is unstable if the chemical potential in
Eq. (12) is fixed at µk (the chemical potential of the MC training set). In order to stabi-
lize the minimization process, we fix it in each application of Eq. (12) by demanding that
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Figure A.1: (a) The cost function J versus number of training iterations and the
training result of trainable parameters (b) ω(x) and (c) βi j

∆ρk =
∫

(ρML
k − ρ

MC
k )

2d x is minimal, which entails that µML
k varies among different training

data sets and during the iterations. If the cost function J converges, µML
k will converge to

a certain number which is not necessarily µk. For example, for the training sets with fixed
z = exp(µ) = 1.5 in Sec.4.1, the final averaged z̄k = 1.43 (using Eq. (9)), 1.26 (using Eq. (10))
and 1.56 (using Eq. (11)). The difference between z̄k and z reflects the residual differences in
the equation of state. Both are biggest for the ML functional which is second order in weighted
densities (see Fig. 3).

Further, to minimize the cost function J as defined in Eq. (7), we perform stochastic gradi-
ent descent, which entails updating the unknown parameters by βnew

i j = βold
i j −α

∂ J
∂ βi j

and the

unknown weight functions by ωnew
i = ωold

i − α
δJ
δωi

, where α is the learning rate in the range
0...1 and

∂ J
∂ βi j

= −2
M
∑

k=1

∫ L

0

(ρMC
k −ρ

ML
k )ρ

ML
k

�

∂ µML
k

∂ βi j
− nk,i ⊗ω j − nk, j ⊗ωi

�

d x , (16)

where nk,i = ρMC
k ⊗wi . The derivative of the chemical potential can be obtained explicitly from

the condition min(∆ρk):

∂ µML
k

∂ βi j
=

1
zk

�

1
∫

d x(ρ′ML
k )

2

∫

d xρMC
k ρ

′ML
k

∂

∂ βi j

�

δFML

δρ

�

�

�

�

ρ=ρMC
k

�

−

∫

d xρMC
k ρ

′ML
k

(
∫

d x(ρ′ML
k )

2)2

∫

d x 2(ρ′ML
k )

2 ∂

∂ βi j

�

δFML

δρ

�

�

�

�

ρ=ρMC
k

��

,

(17)

with zk = exp(µML
k ) =

∫

d xρMC
k ρ′ML

k
∫

d x(ρ′ML
k )2

and ρML
k = zkρ

′ML
k . On the other hand, an approximation can

be found by considering a particle reservoir with density ρ0,k at the same chemical potential:

µML
k =

δF
δρ |ρ=ρ0,k

. This gives
∂ µML

k
∂ βi j

= n0
k,i ⊗ ω j + n0

k, j ⊗ ωi with n0
k,i = ρ0,k ⊗ wi . The final

minimization result is insensitive to the choice of
∂ µML

k
∂ βi j

and for obtaining the results in this
paper we have used the latter expression.

Similarly,

δJ
δωi(x ′)

= −8

(

M
∑

k=1

∫ L

0

d x (ρMC
k −ρ

ML
k )ρ

ML
k

∑

j

βi j

�

n0
k, j − nk, j(x + x ′)

�

)

, (18)

with the assumption βi j = β ji . Here we could see all trainable parameters are coupled with
each other.

“Stochastic” gradient descent means in total N training data, only M data are used in one
iteration (N > M). We have chosen M = 16 or 32 in this paper. Starting with α = 0.01...0.1,
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α is reduced when the cost J increased until α < 10−6 and then stopped. As an example, the
training results are shown in Fig.A.1 with the training set from Sec.4.1. Also, we tried adding
a regularization such as J ′ = J + λ

�

∑

i j β
2
i j +

∑

i

∫

ωi(x)2d x
�

with λ = 10−13 ∼ 10−14, but
the effect is negligible. In principle, gradient descent could be applied to arbitrary form of
functionals. The minimization procedure has been written in python from scratch, as attempts
to use a standard ML library (tensorflow) were not successful.
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