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Abstract

In order to have a better understanding of ultrafast electrical control of exchange in-
teractions in multi-orbital systems, we study a two-orbital Hubbard model at half filling
under the action of a time-periodic electric field. Using suitable projection operators and
a generalized time-dependent canonical transformation, we derive an effective Hamil-
tonian which describes two different regimes. First, for a wide range of non-resonant
frequencies, we find a change of the bilinear Heisenberg exchange Jex that is analogous
to the single-orbital case. Moreover we demonstrate that also the additional biquadratic
exchange interaction Bex can be enhanced, reduced and even change sign depending
on the electric field. Second, for special driving frequencies, we demonstrate a novel
spin-charge coupling phenomenon enabling coherent transfer between spin and charge
degrees of freedom of doubly ionized states. These results are confirmed by an exact
time-evolution of the full two-orbital Mott-Hubbard Hamiltonian.
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1 Introduction

The exchange interaction Jex between microscopic spins is the strongest interaction in mag-
netic systems. Therefore, the control of exchange is a very promising way for ultrafast control
of magnetic order, with potentially high energy efficiency. Recently, the ultrafast control of Jex
has received significant interest both in experiments with cold atoms as well as in condensed
matter systems [1–11]. An appealing way to achieve a control of Jex is to use periodic driving
with off-resonant pulses as was extensively investigated theoretically [12–17]. In particular, it
was predicted theoretically [12,13] and recently confirmed experimentally [11] that by tuning
the strength and frequency of the driving, Jex can be reduced, enhanced and even reverse sign
in a reversible way. However, so far, most theoretical studies rely on single-orbital models,
while multi-orbital physics is important in many materials. Moreover, existing studies [18–21]
on multi-orbital systems did not reveal the role of orbital dynamics on the control of exchange
interactions.

In order to have a better understanding of the influence of orbital dynamics on the ultrafast
and reversible control of exchange, we report the study of a two-orbital system at half filling
under the effect of a periodic electric field. There are two main differences between single
and multi-orbital systems which are already captured in the two-orbital case. First, there
is the Hund interaction JH that directly arises from inter-orbital exchange on the same site.
At half filling and for JH>0, each orbital is singly occupied and the low-energy degrees of
freedom are spin-one states which interact both via a normal Heisenberg exchange Jex~Si·~S j

and with a biquadratic exchange interaction Bex(~Si·~S j)2. While Jex favors collinear spin order
at neighboring sites, for Bex>0 , non-collinear spin order can become preferential. For calssical
spins, the presence of biquadratic exchange interaction can lead to spin spiral states [22]. For
quantum spins in low dimentions systems, the presence of Bex can give rise to disordered
phases such as dimerized or quadruolar phase [23–25]. Second, as illustrated in Figure 1,
the two-orbital model has excited states which are doubly ionized and strongly gapped with
respect to states with only one electron in each orbital (we will refer to configurations with
one electron in each orbital as singly occupied states). The doubly ionized states are charge
states, which are coupled to singly occupied states by two subsequent hopping processes.

Below we demonstrate that there exist two distinct regimes for the non-resonantly driven
two-orbital model. First, a regime for which the control of intersite exchange interactions
dominates. We recover a Heisenberg exchange interaction Jex(E ,ω) that is similar as in single-
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orbital systems, where E is the driving strength and ω the driving frequency. We find that
analogous to Jex(E ,ω), also the biquadratic exchange interaction Bex(E ,ω) can be reduced, en-
hanced and reverse sign by tuning the strength and frequency of the driving field. In addition,
we find a regime for which the exchange interactions compete i.e. Jex(E ,ω)∼Bex(E ,ω)>0.
Second, we elucidate a regime for which a new type of spin-charge coupling phenomenon
dominates over the exchange interaction. In this regime, a reversible transfer between spin
and charge degrees of freedom is feasible.

Figure 1: (Color online) Sketch of virtual hopping processes t0 (in blue) between site
i and j with different number of doublons d in the case of a single orbital (left) and a
two-orbital (a and b) model (right). Small red arrows indicate the spins of electrons.
U denotes the Coulomb repulsion and JH is the on-site Hund exchange interaction.

The paper is organized as follows: in Section 2 we introduce the two-orbital Hubbard
model, define projection operators, and introduce a generalization of the time-dependent
canonical transformation [16, 18, 26, 27]. In Section 3 we derive the effective Hamiltonian,
study its low energy part, and show how to map it onto a spin-one model. From this spin-one
model, the Heisenberg exchange interaction as well as the additional biquadratic exchange
interaction are extracted. Beyond the spin model, we study the spin-charge coupling phe-
nomenon. Moreover, we confirm the analytical results on the spin-charge coupling by com-
puting the time evolution of the full two-orbital Mott-Hubbard model for a two-site cluster.
Finally, in Section 5, we draw conclusions.

2 Method

2.1 Electronic model

To study the role of orbital dynamics on the electrical control of exchange, we investigate a two-
orbital model at half-filling. This can be associated with the eg band of an oxide compound.
The Hamiltonian is given by Ĥ(t) = ĤU + Ĥkin(t), where ĤU = Ĥnn + Ĥsf. Ĥnn, Ĥsf and
Ĥkin contain the density-density interaction, the spin-flip and pair hopping, and the intersite
hopping, respectively:

Ĥnn=
∑

i

∑

α6=β ,σ

¦

Un̂iα↑n̂iα↓+
(U−2JH)

2
n̂iασ n̂iβσ̄ +

(U−3JH)
2

n̂iασ n̂iβσ

©

(1)

Ĥsf=−JH

∑

i,α6=β

�

ĉ†
iα↑ ĉiα↓ ĉ

†
iβ↓ ĉiβ↑+ĉ†

iα↑ ĉiβ↓ ĉ
†
iα↓ ĉiβ↑

�

(2)
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Ĥkin(t)=−
∑

<i, j>

t i j(t)
∑

α,σ

ĉ†
iασ ĉ jασ. (3)

Here ĉ†
iασ(ĉiασ) are fermionic creation (anihilation) operators for site i, orbital α=a, b, spin

σ= ↑,↓, and n̂iασ=ĉ†
iασ ĉiασ. U is the on-site Coulomb interaction and JH is the Hund exchange

interaction.
The time-dependence of the hopping term originates from the external electric field which

is described using the Peierls substitution t i j(t)=t0eieAi j(t) [12, 28, 29], where e is the elec-
tronic charge, Ai j(t)=−

1
ω E0cos(ωt)(Ri−R j) is the projection of the vector potential along the

direction from site i to j, where E0 is the amplitude of the field. Since both eg orbitals origi-
nate from d orbitals, no on-site electric dipole transition are allowed. We define the parameter
E = eaE0/ω which represents the driving strength, whith a=|Ri−R j| and we take t0=1 for the
numerical calculations.

2.2 Projection operators

The conventional way to derive the exchange interaction is to use a canonical transformation
also known as Schrieffer-Wolff transformation [16, 18, 26, 27]. For the two-orbital case, this
is more involved due to the Hund interaction JH. To deal with this additional complexity, we
restrict the Hilbert space to blocks involving only two sites (i j). For all states |φk

�

on the bond
(i j), we then define projection operators P̂νd (N , M) onto the following quantum numbers:

• Particle number:

(N − N̂) P̂νd (N , M) |φk

�

= 0, (4)

where N̂=
∑

iασ
n̂iασ and N=0, ..., 8 the number of electrons which occupy the system.

• Total spin Ŝz component:

(M − Ŝz
tot) P̂νd (N , M) |φk

�

= 0, (5)

where Ŝz
tot =

∑

i
(Ŝz

ia + Ŝz
ib) and M=− 2, ..., 2.

Below we focus on a half filled system, N = 4. In addition, we consider an antiferromag-
netic state such that M=0, and write P̂νd (N = 4, M = 0)≡ P̂νd .

• Number of doublons:

(d − d̂) P̂νd |φk

�

= 0, (6)

where d=0, 1, 2 is the double occupancy and d̂=
∑

iα
n̂iα↑n̂iα↓. Hence, P̂νd projects onto states

with d doublons.
• Hund rule violation:

(ν− ν̂) P̂νd |φk

�

= 0, (7)

with ν̂=
∑

iα6=β

1
2(n̂iα↑ĥiα↓ĥiβ↑n̂iβ↓+n̂iα↑n̂iα↓ĥiβ↑ĥiβ↓), where ĥiασ=(1−n̂iασ). The value ν=0, 1

corresponds to configurations that satisfy or violate local spin alignment dictated by Hund
exchange, respectively. For example, in the P̂ν0 sector, the states with ν=0 are |↑,↑

�

i|↓,↓
�

j ,
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|↓,↓
�

i|↑,↑
�

j , and the ν=1 states are |↑,↓
�

i|↑,↓
�

j , |↓,↑
�

i|↓,↑
�

j , |↑,↓
�

i|↓,↑
�

j , |↓,↑
�

i|↑,↓
�

j , where

|σa,σ′b
�

i = ĉ†
i bσ′ ĉ

†
iaσ|0

�

.
Although

�

Ĥsf, P̂νd
�

=0, the states P̂νd |φk

�

, with ν=1 do not diagonalize Ĥsf. In principle, it
is possible to further decompose P̂νd by introducing additional quantum numbers that project
on states that simultaneously diagonalize P̂νd and Ĥsf. Here we restrict ourselves to the pro-
jectors P̂νd , since this is already sufficient to describe the control of the biquadratic exchange
interaction as well as the spin-charge coupling, as we discuss in more detail below.

It is shown in Appendix A that explicit expressions for P̂νd (N , M) in terms of single-electron
operators can be derived using

p̂(i) =
∏

α,σ

(n̂iασ + ĥiασ), (8)

where ĥiασ=(1−n̂iασ). With these definitions, the identity reads

1= p̂(i)p̂( j) =
∑

d,ν,N ,M

P̂νd (N , M). (9)

The hopping term Eq. (3) connects P̂νd with different d and can be re-written in terms of
operators T̂+1(t), T̂−1(t) and T̂0(t) that change d by +1, −1 and 0 respectively

Ĥkin(t) = T̂+1(t) + T̂−1(t) + T̂0(t), (10)

where

T̂+1(t) =
∑

ν=0,1

�

P̂ν2 Ĥkin(t)P̂
0
1 + P̂0

1 Ĥkin(t)P̂
ν
0

�

, (11)

T̂−1(t) =
∑

ν=0,1

�

P̂ν0 Ĥkin(t)P̂
0
1 + P̂0

1 Ĥkin(t)P̂
ν
2

�

, (12)

and

T̂0(t) = P̂0
1 Ĥkin(t)P̂

1
1 + P̂1

1 Ĥkin(t)P̂
0
1 . (13)

Expressions for for T̂+1(t), T̂−1(t) and T̂0(t) in terms of single electron operators are given
in Appendix A. The projection operators P̂νd and hopping operators T̂+1(t), T̂−1(t), T̂0(t) play
an important role in the canonical transformation described below.

2.3 Generalized time-dependent canonical transformation

The canonical transformation is a technique which enables the derivation of an effective Hamil-
tonian for the subspace of states P̂νd [16, 18, 26, 27, 30]. Formally, this is achieved by unitary

transformation V̂ (t)=e−iŜ(t) that transforms the Hamiltonian Ĥ(t) to a rotated frame. The
effective Hamiltonian in the rotated frame reads

Ĥeff(t) = V̂ †(t)(Ĥ(t)− i∂t)V̂ (t). (14)

The aim is to identify a suitable subspace (defined by values of d and ν) and determine V̂ such
that Ĥeff leaves this subspace invariant. To do this, we perform the unitary transformation

5
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perturbatively, treating the hopping parameter t0 � U as a perturbation. We expand iŜ(t)
and Ĥeff(t) in terms of a Taylor series

iŜ(t) =
+∞
∑

n=1

iŜ(n)(t), (15)

Ĥeff(t) =
+∞
∑

n=0

Ĥ(n)eff (t), (16)

where Ŝ(n), Ĥ(n)eff ∝ tn
0 . For deriving a pure spin model, one could construct the unitary trans-

formation such that Ĥ(n)eff does not contain terms that change d [16, 30–32], and obtain an
effective Hamiltonian in the subspace d = 0. Here we use a more general requirement which
will allow us to derive an effective Hamiltonian in a subspace different from that without dou-
blons. This turns out to be crucial for a description of multi-orbital systems. We enlarge our
effective model and keep terms that change d by ±2, while we design P̂νd iŜ(n) P̂ν

′

d ′ such that

P̂νd Ĥ(n)eff (t)P̂
ν′

d±1 = 0. (17)

At half filling and without inter-orbital hopping (tα6=β=0), only odd orders of iŜ(n)(t)∝ tn
0

remain,

iŜ(n)(t) = iŜ(1)(t) + iŜ(3)(t) +O(t5
0). (18)

Eqs. (17) and (18) not only allow us to obtain an effective description of the low energy states
P̂ν0 , but also enable us to keep track of the coupling between the low energy space (spin: P̂ν0 )
and the space with the highest excited states (charge: P̂ν2 ). Eqs. (17) and (18) yields the
zeroth order contribution to the effective Hamiltonian

Ĥ(0)eff = Ĥnn + Ĥsf. (19)

Using the projection operators, we obtain the following equation for iŜ(1)(t)

P̂νd
�

T̂±1(t) + [iŜ(1)(t), ĤU]− ∂t iŜ
(1)(t)

�

P̂ν
′

d±1 = 0. (20)

In contrast to the zeroth order contribution Ĥ(0)eff , Eq. (20) is a time-dependent equation. In
principle, it is possible to solve this equation for arbitrary time-dependency, as worked out
in [18]. Here we use a simpler algebraic solution that is feasible for time periodic driving
and which is closely related to Floquet theory [12, 16, 31] and the high frequency expansion
[13, 26, 32]. Given a time periodic electric field E(t)=E(t + T ) with a period T=2π

ω , we can
expand T̂±1(t) and iŜ(n)(t) in a Fourier series as follows

T̂±1(t) =
+∞
∑

m=−∞
T̂±1

m eimωt , iŜ(n)(t) =
+∞
∑

m=−∞
iŜ(n)m eimωt , (21)

where m is the Fourier index, which can be seen as the number of virtual photons absorbed
by the system [31]. Using Eqs. (20) and (21), we obtain:

P̂νd iŜ(1)m P̂ν
′

d±1 = Cνν
′, m

dd±1 P̂νd T̂±1
m P̂ν

′

d±1, (22)

with Cνν
′, m

dd ′ =(E
ν
d − Eν

′

d ′ +mω)−1 and

P̂νd ĤU P̂ν
′

d ′ = δdd ′δνν′E
ν
d P̂νd . (23)
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For ν= 1, Eνd is a matrix and we would have to further decompose Pνd for the procedure to be
exact (see also Section 2.2). Here instead we use an approximation Eνd=min

�

Eν,µ
d

�

, where Eν,µ
d

are the eigenvalues obtained from diagonalizing



φk|P̂νd ĤU P̂νd |φk′
�

. This is a generalization of
the energy approximation employed in [33], where Ed is approximated by the mean energy
of all states for given d. The present approximation is accurate for

|Eν,µ
d − Eν,µ′

d | � |Eνd − Eν
′

d ′ |, (24)

where the number of doublons d 6=d ′ and the Hund rule violation index ν6=ν′. We find that
this condition is satisfied for the calculations presented in Section 3.

The first order effective Hamiltonian Ĥ(1)eff (t) vanishes because T̂0(t)=0 for orbital-diagonal
hopping tα6=β=0. Eq. (22) allows us to compute higher order contributions to Ĥeff(t) in a
straightforward way. The second order contribution reads

P̂νd Ĥ(2)eff (t)P̂
ν′

d ′ =
∑

m

∑

k+l=m

P̂νd
1
2

�

iŜ(1)k , T̂±1
l

�

P̂ν
′

d ′ e
imωt , (25)

where, d, d ′=0,2 and ν,ν′=0, 1.
The third order contribution to Ĥeff(t) gives us an expression for P̂νd iŜ(3)m P̂ν

′

d±1:

P̂νd iŜ(3)m P̂ν
′

d±1=Cνν
′,m

dd±1
1
3

∑

p+q+r=m

P̂νd
�

iŜ(1)p , [iŜ(1)q , T̂±1
r ]

�

P̂ν
′

d±1. (26)

This yields the following fourth order contribution to the effective Hamiltonian:

P̂νd Ĥ(4)eff (t)P̂
ν′

d ′=
1
8

∑

p

∑

k+l+m+n=p

P̂νd
�

iŜ(1)k ,
�

iŜ(1)l , [iŜ(1)m , T̂±1
n ]

�

�

P̂ν
′

d ′ e
ipωt , (27)

with Eqs. (25) and (27) we have derived the central result of this section, namely an effective
Hamiltonian up to fourth order in the hopping.

3 Results

In this section we present the results obtained with the projection operators and the effective
Hamiltonian derived above. First we show that the d = 0 part can be mapped onto an effective
spin-one (S=1) model. This requires two additional unitary transformations: one to reduce
Ĥeff to the d=0 sector and a second to specialize to the S=1 states only. In the effective spin-
one Hamiltonian, we extract the Heisenberg Jex(E ,ω) and biquadratic Bex(E ,ω) exchange
interactions. Second, we focus on the coupling terms between sectors d=0 and d=2 by taking
both of them into account in the low energy description. This goes beyond the spin model and
captures the spin-charge coupling dynamics.

3.1 Spin-one model

According to condition Eq. (17), the full effective Hamiltonian yields

∑

n=2,4

Ĥ(n)eff (t) =
∑

n=2,4
νν′

¦

P̂ν0 Ĥ(n)eff (t)P̂
ν′

0 + P̂ν2 Ĥ(n)eff (t)P̂
ν′

2 + P̂ν0 Ĥ(n)eff (t)P̂
ν′

2 + P̂ν2 Ĥ(n)eff (t)P̂
ν′

0

©

.
(28)
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In this subsection we study the low energy effective Hamiltonian up to fourth order in the
hopping. In the derivation of the spin-one model, we have to consider the sector P̂ν2 as a
high energy sector and perform a second time-dependent canonical transformation in order
to project out states for which d=2:

Ĥd=0
eff (t) =

∑

νν′

P̂ν0
¦

Ĥ(2)eff (t) + Ĥ(4)eff (t) + H̃(4)eff (t)
©

P̂ν
′

0 , (29)

where
∑

ν,ν′
P̂ν0 H̃(4)eff (t)P̂

ν′

0 =
∑

ν′′

m,m′

Cν
′0,m

20 P̂ν0 Ĥ(2)eff,m(t)P̂
ν′′

2 Ĥ(2)eff,m′(t)P̂
ν′

0 . (30)

We used that Cν0,m
d0 =Cν1,m

d0 . Note that this canonical transformation includes all modes m
from the first canonical transformation. Details of the second canonical transformation are
given in Appendix B and illustrated in Figure 2b. We would like point out that in the full
lattice, additional 4th order interactions occur, such as ring-exchange terms, spin chirality
terms [16] as well as additional 4th order contribution to the Heisenberg and biquadratic
exchange interactions. Since we restrict ourselves to a two site model, such processes are not
taken into account in our calculations.

Hamiltonian Eq. (29), can be written in terms of spin-one (S=1) operators as described
before in [34, 35]. In general, S=1 operators can be defined using many-electron operators
[36]. Here, we define their projection onto local spin states |S, MS

�

|S, Ms

�

i =
¦

|1,1
�

i , |1, 0
�

i , |1,−1
�

i

	

. (31)

Then, we can write the spin-one states in terms of single electron states using suitable Clebsh-
Gordan coefficients

|1, 1
�

i = | ↑,↑
�

i , |1,0
�

i =
1
p

2
(| ↑,↓

�

i + | ↓,↑
�

i), |1,−1
�

i = | ↓,↓
�

i , (32)

where |σa,σ′b
�

i = ĉ†
i bσ′ ĉ

†
iaσ|0

�

. Using the relation [36]

Ŝq
i |S, MS

�

i =
Æ

S(S + 1)CSMS+q
SMS ,1q|S, MS + q

�

i , (33)

one can write Ŝq in terms of single electron operators (index i is omitted for brevity), which
yields

Ŝ+1=−
1
p

2

∑

α6=β

ĉ†
α↑ ĉα↓(n̂β↑ĥβ↓ + ĥβ↑n̂β↓), (34)

Ŝ−1=
1
p

2

∑

α6=β

ĉ†
α↓ ĉα↑(n̂β↑ĥβ↓ + ĥβ↑n̂β↓), (35)

Ŝ0 = n̂a↑ĥa↓n̂b↑ĥb↓ − ĥa↑n̂a↓ĥb↑n̂b↓. (36)

Using the definition Ŝ±1=∓ 1p
2
(Ŝ x±iŜ y) for the spin-one spin flip terms [36], one can com-

pute the product ~Si·~S j as well as (~Si·~S j)2 in terms of single electron operators and identify

8

https://scipost.org
https://scipost.org/SciPostPhys.6.3.027


SciPost Phys. 6, 027 (2019)

Figure 2: (Color online) Diagrams illustrating the fourth order hopping process of
(a) the first canonical transformation via the P̂ν0 sector in blue and via the P̂ν2 sector
in red. (b) The second canonical transformation via the P̂ν2 sector and (c) the third
canonical transformation between the spin one sector PS and a the non spin-one
sector PR from the P̂ν0 sector. Red and blue arrows represent first order hopping
processes in (a), double arrows represent second order hopping processes.

them with the terms of Eq. (29). This procedure leads to an effective Hamiltonain writ-
ten in terms of S=1, R̂1

i j and R̂2
i j operators, see Appendix D. Subsequently, by time averaging

H̄d=0
eff =

1
T

∫ T
0 Ĥd=0

eff (t)d t, we obtain an effective time-independent Hamiltonian:

H̄d=0
eff =

∑

<i, j>

¦

K1(E ,ω)
�

~Si·~S j + R̂1
i j

�

+ K2(E ,ω)
�

~Si·~S j + R̂1
i j

�2
+ K3(E ,ω)

�

(~Si·~S j)
2+R̂2

i j

�

©

. (37)

K1(E ,ω) corresponds to the exchange Jex(E ,ω) up to second order in the hopping. K2(E ,ω)
gives a fourth order contribution to Jex(E ,ω) as well as the biquadratic exchange Bex(E ,ω).
K3(E ,ω) gives a contribution directly to Bex(E ,ω).

The remaining terms R̂1
i j and R̂2

i j describe orbital resolved spin dynamics that strictly go
beyond a spin-one model. Their expression in terms of fermionic operators can be found in
Appendix D. To arrive at an effective spin-one model only, we perform a third time-dependent
canonical transformation between the spin one sector P̂S and the S 6=1 sector P̂R from the P̂ν0
sector. In this process, ilustrated in Figure 2c, P̂R is taken as a high energy sector. Details of the
calculations can be found in Appendix D. Eventually, we obtain an effective spin-one model
Ĥex=Jex~Si·~S j+Bex(~Si·~S j)2, where

Jex(E ,ω)=
+∞
∑

m=−∞

§ t2
0J2

m(E)
U+JH+mω

− 2t4
0

∑

k+l+m+n=0

Jk(E)Jl(E)Jm(E)Jn(E)(−1)k
�

(−1)m+(−1)n
�

C00,k
01 C00,l

10 C00,m
01

ª

,
(38)

where Jm is a Bessel function of order m. The first term of Eq. (38) corresponds to K1(E ,ω)
and the second term is a contribution from K2(E ,ω).

We now would like to compare the behavior of the second order Jex(E ,ω) in single and
two-orbital systems. Jex(E ,ω) for single-orbital systems reads

J single
ex (E ,ω) =

+∞
∑

m=−∞

2t2
0J2

m(E)
U +mω

. (39)

We can see that Jex(E ,ω) in the two-orbital model, Eq. (38), has an additional factor 1/2
as compared to J single

ex . This is due to the inter-orbital hopping tαβ=0 which changes the
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prefactor of Jex(E ,ω) as compared to the single-orbital case. For tαβ=tαα=t0, the second order
contribution of the single and two-orbital model would have the same prefactor. However, the
relative modification of the exchange ∆Jex(E ,ω)/Jex(E ,ω) is the same and therefore, orbital
dynamics does not change the control of Jex(E ,ω).

The biquadratic exchange interaction can be writen as a sum of six contributions:

Bex(E ,ω)=B[1]ex (P̂0) + B[1]ex (P̂
0
2 ) + B[1]ex (P̂

1
2 ) + B[2]ex (P̂

0
2 ) + B[2]ex (P̂

1
2 ) + B[3]ex (P̂0), (40)

where

B[1]ex (P̂0) = 2
∑

k+l+m+n=0

A1
klmn(E)C

00,k
01 C00,l

10 C00,m
01 , (41)

B[1]ex (P̂
0
2 ) =

∑

k+l+m+n=0

A2
klmn(E)C

00,k
01 C00,l

12 (C
00,m
21 − 3C00,m

10 ), (42)

B[1]ex (P̂
1
2 ) =

1
2

∑

k+l+m+n=0

A1
klmn(E)C

00,k
01 C01,l

12 (C
10,m
21 − 3C00,m

10 ), (43)

B[2]ex (P̂
0
2 ) =

∑

k+l+m+n=0

A2
klmn(E)C

00,k+l
02 (C00,k

01 − C00,k
12 )(C

00,m
21 − C00,m

10 ), (44)

B[2]ex (P̂
1
2 ) =

1
2

∑

k+l+m+n=0

A1
klmn(E)C

01,k+l
02 (C00,k

01 − C01,k
12 )(C

10,m
21 − C00,m

10 ), (45)

B[3]ex (P̂0) = −
∑

k+l+m+n=0

A1
klmn(E)

(C00,k
01 −C00,l

10 )(C
00,m
01 −C00,n

10 )

4(4JH + (k+ l)ω)
, (46)

with

A1
klmn(E) = t4

0(−1)k
�

(−1)m+(−1)n
�

Jk(E)Jl(E)Jm(E)Jn(E), (47)

A2
klmn(E) = t4

0(−1)k+l Jk(E)Jl(E)Jm(E)Jn(E). (48)

We used the notation B[i]ex (P̂
ν
d ) to denote the first, second and third canonical transformation

via the P̂νd sector, for i=1,2, 3 repsectively. Since the energy approximation Eq. (24) leads to
a same energy for both P̂0

0 and P̂1
0 , we group the biquadratic paths via these two sectors into

one path via the P̂0 sector, B[i]ex (P̂0)=
∑

ν B[i]ex (P̂
ν
0 ), where ν=0, 1. In deriving Eqs. (41-46), one

obtains factors which contain k, l, m and n indices, see Eqs. (47) and (48), these directly arise
from the canonical transformation and come from Bessel functions J−m which are symmetric
for even m but anti-symmetric for odd m.

Figure 3 shows the behavior of the Heisenberg exchange and the biquadratic exchange
interaction in the two-orbital model as a function of the driving strength E . The upper panel
of Figure 3a shows the typical behavior of Jex(E) while the lower panel shows behavior of
Bex(E) for frequencies ω=9, 18 and 25.We observe that Jex(E ,ω) can be controlled with the
strength E and frequencyω of the electric field similarly as found in [12] for the single-orbital
system i.e. Jex(E) can be reduced for frequencies above the Mott gap U + JH , enhanced for
frequencies below the gap and reversed for stronger driving field E . The major contribution
to Jex(E) comes from the second order contribution in the hopping.

Figure 3b shows the contributions of the different biquadratic paths B[i]ex (P̂
ν
d ) as a function

of the driving strength E . The top panel shows B[1]ex (P̂
ν
0 ) in red and B[2]ex (P̂

0
2 ) in blue which are
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Figure 3: (Color online) (a) Jex(E ,ω) in the upper panel and Bex(E ,ω) in the lower
panel as a function of E , the grey area represents regime for which both Jex(E ,ω)
and Bex(E ,ω) are positive for ω=9 and rectangular box represents the regime for
which |Jex(E ,ω)|∼|Bex(E ,ω)| for ω=18. (b) Biquadratic exchange paths B[i]ex (E) as
a function of E , where i=1,2, 3 indicates the canonical transformation order set in
Section 3.1. Results are computed forω=9 (dash-dot line),ω=18 (dashed line) and
ω=25 (dots), the frequency ω is expressed in units of the hopping t0. Parameters
for the Figure: U=10/t0, JH=2/t0.

the strongest contributions to the biquadratic exchange. The middle panel displays B[1]ex (P̂
1
2 )

in red and B[2]ex (P̂
1
2 ) in blue. On the bottom panel, we plotted the weakest contributions to the

biquadratic exchange: B[1]ex (P̂
0
2 ) in red and B[2]ex (P̂0) in blue. By summing up all the B[i]ex (P̂

ν
d )

paths the biquadratic exchange Bex(E) is obtained as shown in the bottom panel of Figure
3a. In equilibrium, Bex(E=0)<0 favors a collinear alignment of spins in the classical limit and
|Bex(E=0)| is weak as compared to |Jex(E=0)|.

We observe that analogous to Jex(E ,ω), also Bex(E ,ω) can be controlled by the electric field
strength and frequency. In the regime of low driving field strength E�1, |Bex(E ,ω)| is reduced
for frequencies above the Mott gap, ω=18 and 25, and enhanced for the frequency below the
gap, shown here for ω=9. The enhancement of |Bex(E)| can be understood from Figure 3b
where |B[1]ex (P̂

0
2 )| and |B[3]ex (P̂0)| are both enhanced at low driving field. In addition, the sum

of B[1]ex (P̂
1
2 ) and B[2]ex (P̂

1
2 ) gives a reduction of Bex. Eventualy, the sum these four contributions

dominates over the large enhancement of the B[1]ex (P̂0) contribution leading to an enhance-
ment of |Bex(E)|. The physical mechanism behind the increase/reduction of |Bex(E ,ω)| for
low driving field strength can be explained as follows: the virtual hopping to mω high energy
states is enhanced or reduced as compare to equilibrium. This leads to an increase, decrease
or change of sign of the Cνν

′,m
dd ′ products in different biquadratic paths B[i]ex (P̂

ν
d ), Eqs. (41-46).

Summing all the biquadratic paths, the total |Bex(E ,ω)| is enhanced or reduced as compare to
its equilibrium value.

For larger driving field strenght E¦1, the reduction of photo assisted hopping as well as the
oscillatory origin of the Bessel function can lead to a change of sign of Bex(E ,ω). Interestingly,
for frequency ω=9, we identify a regime for which both Jex(E) and Bex(E) are positive for a
range of driving field strenght E>1, this regime is diplayed with a gray area in Figure 3a. At
ω=18, the rectangle box in Figure 3a shows a regime for which Jex(E)∼Bex(E)>0. Within this
regime, both Jex(E) and Bex(E) are positive which leads to a competition between the exchange
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Figure 4: (Color online) Value of the exchange ratio Bex(E ,ω)/Jex(E ,ω) for frequen-
cies 9≤ω≤40 and driving amplitude E up to 3. White lines at ω = 10,12, 16,20
and 32 red are centered around frequencies at chich the canonical transformation
diverges. The frequency range 11≤ω≤17 is not displayed in the figure since the bi-
quadratic formula is not accurate in this range. White curved areas correspond to
points for which Bex(E ,ω)∼Jex(E ,ω). Parameters: U/t0=10, JH/t0=2. For clarity,
Bex(E ,ω)/Jex(E ,ω) is restricted to −0.23 to 0.23.

interactions. We note that our results suggest that in principle it is possible to change the
ratio of Jex(E)∼Bex(E) over a large range, where the equilibrium phase diagram in 1D shows
several distinct quantum phases. It will be very interesting to study the feasibility of dynamical
transitions between such phases in future work. Analogously, it might be very interesting to
study the emergence of non-collinear order in classical spin systems by perturbation of the
ratio Jex(E)∼Bex(E). For resonant photo-excitation, this problem has been studied recently
and it was indeed found that the non-collinear phase can emerge [22].

Next, we study the possible enhancement of Bex(E ,ω)/Jex(E ,ω) for a wider range of fre-
qeuncies (9≤ω≤40) where ω=40 is larger than the highest energy of the undriven system
E0

2−E0
0 . The result is shown in Figure 4 as a color map as a function of E ,ω. Positive val-

ues of the ratio are shown in yellow and negative values are shown in blue. Below the Mott
gap (ω=12), accurate results can only be obtained in a frequency range 9≤ω≤9.5. Below
and above this range until ω'17, the energy approximation Eq. (24) breaks down and or-
bital resolved spin dynamics [34] is required to have an accurate description of the exchange
interactions. Therefore, the frequency range 10≤ω≤17 is not shown. Figure 4 clearly demon-
strates that the exchange ratio can be enhanced as well as reduced depending on ω and E .
The parameters for which Bex(E ,ω)/Jex(E ,ω) is strongly enhanced correspond to three types
of situations:
• Frequencies for which ω=Eνd−Eν

′

d ′+mω, this corresponds to white lines at ω=10,12, 16,
20 and 32. At these frequencies, Bex(E ,ω) diverges, such that the canonical transformation
breaks down. Note that ω=32 is the frequency that separates spin states from the doubly
ionized state, such that a coupling appears close to this frequency. This coupling leads to charge
dynamics and therefore, the spin-one model is not accurate in this region. This coupling to
charge states is studied in detail in the next section.
• Field parametersω and E for which Bex(E ,ω)∼Jex(E ,ω) are indicated in white curved ar-

eas. For these regime, the exchange ratio |Bex(E ,ω)/Jex(E ,ω)| is enhanced since Jex(E ,ω)'0.
This leads to a regime where Bex(E ,ω)>Jex(E ,ω) is realised however, Bex(E ,ω) itself remains
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small as compared to Jex(E=0).
• Parameters ω and E for which the relative sign of Bex(E ,ω)/Jex(E ,ω) is changed due to

the change of sign of Bex(E ,ω) leading to a slight enhancement of Bex(E ,ω)/Jex(E ,ω). This
can be clearly seen for frequency ω'9 at E'2.

Summarizing, orbital degrees of freedom do not change the behavior of Jex(E ,ω). Both
sign and strength of Jex(E ,ω) and Bex(E ,ω) as well as their relative sign can be controlled by
driving, while the regime for which Bex(E ,ω)∼Jex(E ,ω) is reached only for Jex(E ,ω)�Jex(E=0).

3.2 Beyond the spin-one model

Besides the additional term Bex, the inclusion of orbital degrees of freedom also gives rise to
qualitatively new effects that go beyond a description in terms of a spin model alone. In par-
ticular, under driving there can be coupling to the doubly ionized charge sector (d=2), which
is irrelevant in equilibrium due to the large energy difference between the sectors. Under
non-equilibrium conditions, the spin charge coupling reads

Ĥ(n)sc (t) =
∑

n

∑

ν=0,1

P̂ν0 Ĥ(n)eff (t)P̂
ν′

2 + h.c. (49)

We now study the regime for which P̂ν0 and P̂ν
′

2 from different m sectors overlap. This overlap
appears for frequencies ω close to Eν0=Eν2+mω. Although this seems a resonant condition, a
direct optical transition is not possible since two hoppings are required to go from the P̂ν0 sector

to the P̂ν
′

2 sector. Equation (49) can be divided into contributions
∑

m
Ĥ(n)sc,∆m=0 and

∑

m
Ĥ(n)sc,∆m 6=0.

The first contribution represents the coupling within one Fourier sector m. This contribution
remains weak since P̂ν0 and P̂ν

′

2 states are strongly gapped when they belong to the same
Fourier sector. We therefore focus on the second term that allows coupling between the spin
sector P̂ν0 and the charge sector P̂ν

′

2 with different m. For small E , the leading contribution to
Eq. (49) arises from n=2 and ∆m=±1. Here we restrict to the coupling between between P̂ν0
from m=0 and P̂ν

′

2 from m=−1 sector. This yields

Ĥ(2)sc,|∆m|=1(t) =
1
2

∑

k

� 1
3U − 5JH − kω

−
1

U + JH − kω

�

×
�∑

ν,ν′
P̂ν0 T̂−1

k P̂0
1 T̂−1

1−k P̂ν
′

2 e−iωt
�

+ h.c.∼ E .
(50)

To illustrate the spin-charge coupling, we restrict ourselves to the space ν′=0. These are two
states that have all electrons either on site i or on site j. The full expression of Ĥ(2)sc,|∆m|=1(t)
in terms of fermionic operators is given in Appendix E.

To show the effect of this coupling, we compute the low energy spectrum for driving fre-
quencies ω=ω0+δω, where ω0=|Eν0−E0

2 |. The spectrum is shown in Figure 5 for δω = 0.5
in the two-site system. In this case, the lowest energy state is a singlet state that couples to
the two charge states of P̂0

2 . The latter are degenerate up to t4
0 since four hoppings are needed

in order to transfer the four electrons from one atom to the other one. Black lines, from top
to bottom, show the quintet state (S=2) and the triplet state (S=1) that are not involved in
the spin-charge coupling. The black dashed line shows the behavior of the spin state which
is a singlet state from sector m=0. The dotted lines show the behavior of the charge states
from m=−1. The thick red and blue lines show the spin and charge states, respectively and
are obtained by diagonalizing the full Ĥ(2)eff that contains the spin-charge coupling terms, see
Appendix E. The eigen-energies show an avoided crossing, which reveals a hybridization be-
tween the spin and charge states. For driving frequencies far away from ω0, the spin-charge
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Figure 5: (Color online) Low energy spectrum as a function of the driving amplitude
E . The spectrum is restricted to the spin states of the m=0 sector and the highest
excited state of the sector m=−1. Upper and lower thin black lines represent the
quintet state and the triplet state. The thin black dots and the dashed line represent
the charge multiplet and the singlet without spin-charge coupling, respectively. Blue
to red thick line represents the charge (E<0.5) to spin (E>1) state and the red to blue
thick line represents the spin (E<0.5) to charge (E>1) state. Parameters: U/t0=10,
JH/t0=2 and ω=ω0+0.5.

coupling terms Ĥ(2)sc,|∆m|=1(t) remain small and for these frequencies, the spin and charge states
are gapped. Therefore, the hybridization is negligible and we recover the regime for which
the effective spin model is valid. However, in the regime ω∼ω0, the hybridization between
the spin and charge states cannot be neglected and the exchange interaction formula obtained
in the previous section are no longer accurate.

To sketch the hybridization process, let us take the equilibrium ground state state of the
system which is the singlet state (spin state). After switching on the electric field and by slowly
changing the field amplitude (∂t E0/E0�ω), one anticipates that the system starts in a pure
spin state and, approaching the avoided-crossing regime, charge states are mixed to the state.
For strong E , the spin state becomes a pure charge state.

In the literature, a time-dependent traverse of an avoided crossing is widely studied. The
basic example is the Landau-Zener (LZ) effect [38, 39]. Also condensed matter systems can
exhibit LZ physics. For instance, the Zener breakdown has been studied [40, 41] in semicon-
ductors and more recently in Mott insulators [42]. Nonetheless, distinct from these LZ effects
which involve changes of the electrical conductivity, here we report coherent transfer of spin
to charge degrees of freedom that keep the system in an insulating regime.

Summarizing, orbital dynamics gives access to charge states that are not accessible in equi-
librium. The spin-charge coupling offers the possibility to induce coherent charge dynamics
in the system. This phenomenon appears in the non-equilibrium low-energy spectrum as an
avoided crossing. We stress that it is quite distinct from spin-orbit coupling since here we have
an interplay with Coulomb and Hund interaction with the driving field. The spin-charge cou-
pling is not present in single band systems, and we expect it to be universal for multi-orbital
systems. Indeed, since multi-orbital systems offer the possibility of having multiple excited
states (multiple doublons), multi-doublon excitation should be possible for multi-orbital sys-
tems in general. Note that here we did not study P̂1

2 states, they are nonetheless very interesting
since they have a lower energy (at and below gap energy U+JH) and therefore are reachable
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with lower frequencies ω.

4 Time-dependent numerical simulations

In the previous section, we showed that the generalized canonical transformation can capture
a qualitatively new phenomenon that couples the spin and doubly ionized charge sector. To
further support this finding, we perform an exact time propagation of a cluster of two sites de-
scribed by the Mott-Hubbard Hamiltonian. We focus our attention on the coherent transfer of
spin to charge degrees of freedom. In order to describe the charge dynamics, we define pseudo-
spin one operators T̂ 0 that are composed of Anderson pseudo-spin 1/2 operators τ̂+iα=ĉ†

iα↑ ĉ
†
iα↓

(τ̂−iα=ĉiα↓ ĉiα↑) [43, 44]. The construction of T̂ 0 is inspired by the expression of the spin-one
operator Ŝ0. By using a similar procedure with T̂ 0 and pseudo-spin 1/2 operators, we obtain

T̂ 0 = τ̂+a τ̂
−
a τ̂
+
b τ̂
−
b−τ̂

−
a τ̂
+
a τ̂
−
b τ̂
+
b = n̂a↑n̂a↓n̂b↑n̂b↓ + ĥa↑ĥa↓ĥb↑ĥb↓, (51)

that characterizes fully occupied and completely empty sites from the P̂0
2 sector. Operators

T̂ +1 and T̂ −1 can be defined analogously, see Appendix C.
To solve the time-dependent Schrödinger equation, we use a second order commutator-free

approximation of the time-propagator [45] and we compute the time-dependent wavefunction
|Ψ(t)

�

and evaluate observables as



Ô
�

=



Ψ(t)|Ô|Ψ(t)
�

. We focus on three different observ-
ables: First, the spin correlation




~Si·~S j

�

to show the spin dynamics during the laser pulse.
Second, we characterize the charge states P̂0

2 with



T̂ 0
i T̂

0
j

�

. Finally, to probe the states that

possess one doublon d=1, we evaluate



N̂d=1

�

, where N̂d=1=P̂0
1 d̂ P̂0

1 .
Figure 5 shows simulated spin-charge dynamics for an electric field

E(t)=E0cos(ωt) × exp
�

−(t−t∗)2/τ2
�

, where E0 is the amplitude of the field, t∗ is the time
at which E(t) peaks and τ is the pulse width.

We choose a Gaussian envelope with τ=4000π/ω, ω=ω0+δω, with δω=0.5, such that
τ×ωsc�1 where ωsc'0.1 is the energy splitting of the avoided crossing (see Figure 5). It has
been shown that the effective Hamiltonian picture can break down for long-time dynamics in
the thermodynamic limit, because the system heats up to infinite temperature [46]. Here we
restrict ourselves to a two-site system to mimic the dynamics of a large system at relatively short
timescales. However, for generic systems it is shown that heating can occur at short timescale
since the adiabatic limit of Floquet does not exists [47]. Nevertheless, here the use of Floquet
restricts to the derivation of an effective Hamiltonian which gives a qualitative picture of the
avoided-crossing. We confirm the reversibility of the spin-charge coupling phenomenon within
the two-site system with the time-dependent numerical simulations displayed in Figure 6.

Figure 6a, c show the plot of the charge and spin observables respectively, for different
driving strength E from 0.1 to 1.5. The time-dependent electric field is represented in light
blue and the results are computed for U/t0=10 and JH/t0=2.

Figure 6c shows



~Si·~S j

�

for different E . In equilibrium and for small E ,



~Si·~S j

�

'−1.9,
which slightly deviates from the pure spin case (




~Si·~S j

�

=−2) due to hybridization with P̂ν0 ,
P̂0

1 and P̂0
2 sectors. Figure 6c shows that, with increasing E the state has less spin character-

istics. Moreover, it is observed in Figure 6a that with increasing E , the state has more charge
characteristics




T̂ 0
i T̂

0
j

�

. In addition, after the laser pulse, both charge excitation and the spin
correlations return to their initial value, demonstrating that the coupling is reversible.

Further, we confirm that for frequencies away from ω0 the spin-charge coupling dynamics
is not present. This is shown in Figure 6a,c where the charge and spin dynamics are plotted
in red lines for δω=3. In this case, no enhancement is observed. Similarly, in Figure 6c, the
spin correlations are not diminished. Moreover, we show the single doublon states dynamics
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Figure 6: (Color online) (a) and (c) Spin



~Si·~S j

�

and charge



T̂ 0
i T̂

0
j

�

dynamics as
a function of time in orange and green, respectively. The dynamics is computed for
driving amplitudes E from 0.1 to 0.9 with steps ∆E=0.2 represented by different
color shades. (b) Single doublon number




N̂d=1

�

in blue, for E=0.7. The amplitude
of the electric field envelop is shown in Figure (a),(b) and (c) by a light blue Gaussian,
each laser pulse contains 4000 cycles. Parameters U/t0=10 and JH/t0=2, for an
electric field frequency ω=ω0+0.5. The inset shows a comparison between the time
evolution (dots) and the analytical calculation in the adiabatic limit for the field
envelope (solid line). Red lines in (a) and (c) represent the spin and charge dynamics
for frequency ω=ω0+3 and E=0.7, away from the hybridization.




N̂d=1

�

in Figure 6b, for a field strength E=0.7. We observe that the laser pulse does not trigger
any positive excitation of P̂0

1 states. This means that enhancement of charge dynamics is not
due to resonant excitation of the intermediate excited states P̂0

1 . Interestingly, we actually
observe depopulation of the P̂0

1 states during the laser pulse. This means that more P̂0
1 states

are virtually excited to the doubly inonized sector than spin states excited to the P̂0
1 sector.

Finally, the inset of Figure 6a shows values of the peak of the spin correlations



~Si·~S j

�

tpeak
for

each E in dots and values of the spin correlations



~Si·~S j

�

as a function of E is obtained from the
anaytical calculation of Section 3.2. Good agreement between analytical and numerical results
is found, which confirms the predictions of the analytical theory. The slight discrepancies
between




~Si·~S j

�

E and



~Si·~S j

�

tpeak
at zero field E can be reduced by taking into account higher

order terms in the effective Hamiltonain as well as the spin-charge coupling dynamics to the
full Pν2 sector. In addition, we note that with careful tuning of δω, the reduction of |




~Si·~S j

�

| as
a function of E at small E can be made even stronger e.g. by increasing δω, one can move the
avoided-crossing closer to E=0 which enhances hybridization with the charge states at small
E .
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5 Conclusion

In summary, we obtain an analytical expression for the Heisenberg Jex(E ,ω) and biquadratic
Bex(E ,ω) exchange interaction in a periodically driven two-orbital system. We show that
Jex(E ,ω) can be controlled analogous to the single-orbital case. We find that for low driving
strength, |Bex(E ,ω)| can be reduced for frequencies above the Mott gap and enhanced for fre-
quencies below the gap. In addition, we show that Bex(E ,ω) can even change sign for stronger
driving field srength. We demonstrate that Bex(E ,ω)/Jex(E ,ω) can be controled by driving
while the regime for which Bex(E ,ω)∼Jex(E ,ω) is reached only for Jex(E ,ω)�Jex(E = 0).
Moreover, a new coupling between spin and charge states is demonstrated. While this cou-
pling is negligible in equilibrium, it can be strongly enhanced and even dominate under driving.
This coupling leads to a hybridization between spin and charge states for frequencies close to
the spin-charge gap. In contrast to a common charge excitation by resonant photo-absorption,
the spin-charge coupling allows non-resonant and reversible coupling to charge degrees of
freedom. We have furthermore confirmed these results by simulating the electron dynamics
on a two-site cluster.

Natural extension of this work are numerical studies for extended systems. This could
be possible for example using multiband extensions of nonequilibrium Dynamical Mean Field
Theory (DMFT) [48–52]. We emphasize that, besides the possibility to induce coherent charge
dynamics, the presence of the spin-charge coupling should also be visible for short pulses, en-
abling the excitation of doubly ionized states which could remain coherent due to the gapping
with the normal Mott-Hubbard gap. This suggests interesting perspectives for enhancing elec-
tronic coherence in correlated electron systems. In this context, it will be interesting to explore
the applicability of the two-orbital model to experimental spin-one systems such as KNiF3 [8],
which in the literature are considered as prototypical S=1 systems. We would like to point
out that modification of the charge occupation is known to systematically influence phonon
excitation. Since we did not take into account electron-phonon interactions in our model, an
outlook would be to study phonon excitation induced by the spin-charge coupling. In addition,
interesting prospect of this work is the two-orbitals system under arbitrary fields similarly to
what is done in [53] and, since our approach with the canonical transformation can also be
applied for arbitrary time-dependent fields [54]. Its extention to more exotic forms of time-
dependent fields seems feasible and is left for future work. Finally, we hope that our work can
find applications in cold atoms systems, where multi-orbital systems can nowadays be engi-
neered [55, 56]. With an adiabatic ramping of the electric field strength, the fully reversible
spin-to-charge conversion might be directly observed in double-well systems.
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A Projection operators

In this section, we express the projection operators P̂νd as well as the hopping operators T̂±1,
T̂0 in terms of the electron operators ĉ†

iασ(ĉiασ).
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P̂0
0 =

∑

σ

n̂iaσĥiaσ̄ n̂i bσĥi bσ̄ĥ jaσ n̂ jaσ̄ĥ j bσ n̂ j bσ̄, (52)

P̂1
0 =

∑

α6=β

n̂iα↑ĥiα↓ĥiβ↑n̂iβ↓
�

n̂ jα↑ĥ jα↓ĥ jβ↑n̂ jβ↓ + ĥ jα↑n̂ jα↓n̂ jβ↑ĥ jβ↓
�

, (53)

P̂0
1 =

∑

<i, j>

∑

α6=β ,σ

n̂iασ n̂iασ̄ n̂iβσĥiβσ̄(ĥ jασĥ jασ̄ĥ jβσ n̂ jβσ̄ + ĥ jασ n̂ jασ̄ĥ jβσĥ jβσ̄), (54)

P̂1
1 =

∑

<i, j>

∑

α6=β ,σ

n̂iασ n̂iασ̄ĥiβσĥiβσ̄ n̂ jασĥ jασ̄ĥ jβσ n̂ jβσ̄, (55)

P̂0
2 =

∑

<i, j>

ĥia↑ĥia↓ĥi b↑ĥi b↓n̂ ja↑n̂ ja↓n̂ j b↑n̂ j b↓, (56)

P̂1
2 =

∑

α6=β

n̂iα↑n̂iα↓ĥiβ↑ĥiβ↓
�

n̂ jα↑n̂ jα↓ĥ jβ↑ĥ jβ↓ + ĥ jα↑ĥ jα↓n̂ jβ↑n̂ jβ↓
�

. (57)

From Eqs. (11-13) of the main text, we can compute the following expressions for T±1 and
T0 in terms of single electron operators

T̂+1
m (t) = −t0Jm(E)

∑

α6=β ,σ

�

n̂iασ̄ ĉ†
iασ ĉ jασĥ jασ̄(n̂iβσ̄ĥ jβσ̄ + ĥiβσ̄ n̂ jβσ̄)

+ (−1)mn̂ jασ̄ ĉ†
jασ ĉiασĥiασ̄(n̂ jβσ̄ĥiβσ̄ + ĥ jβσ̄ n̂iβσ̄)

	

eimωt ,
(58)

T̂−1
m (t) = −t0Jm(E)

∑

α6=β ,σ

�

ĥiασ̄ ĉ†
iασ ĉ jασn̂ jασ̄(n̂iβσ̄ĥ jβσ̄ + ĥiβσ̄ n̂ jβσ̄)

+ (−1)mĥ jασ̄ ĉ†
jασ ĉiασ n̂iασ̄(n̂ jβσ̄ĥiβσ̄ + ĥ jβσ̄ n̂iβσ̄)

	

eimωt
(59)

and

T̂0
m(t) = −t0Jm(E)

∑

α6=β ,σ

�

ĉ†
iασ ĉ jασ(ĥiβσ n̂iβσ̄ n̂ jβσ n̂ jβσ̄ + n̂iβσ n̂iβσ̄ĥ jβσ n̂ jβσ̄)

+ (−1)m ĉ†
jασ ĉiασ(ĥ jβσ n̂ jβσ̄ n̂iβσ n̂iβσ̄ + n̂ jβσ n̂ jβσ̄ĥiβσ n̂iβσ̄)

	

eimωt .

(60)

B Effective Hamiltonian

In this section we provide explicit expressions for the effective Hamiltonian up to fourth order
in the hopping in terms of electron operators. In addition, more details are given for the second
canonical transformation that is used to obtain the mapping of the d = 0 sector. The second
order contribution to the low energy effective Hamiltonian reads

∑

ν,ν′
P̂ν0 Ĥ(2)eff (t)P̂

ν′

0 = −
∑

m,m′

ν,ν′

P̂ν0 T̂−1
m P̂0

1 T̂+1
m′ P̂ν

′

0

U + JH +mω
ei(m+m′)ωt . (61)
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Note that for the P̂ν1 sector, only ν=0 contributes since the P̂1
1 sector is not connected to P̂νd 6=1

for inter-orbital hopping tα6=β=0. The fourth order contribution to the low energy effective
Hamiltonian reads:

∑

νν′

P̂ν0
¦

Ĥ(4)eff (t) + H̃(4)eff (t)
©

P̂ν
′

0 , (62)

where the first term, P̂ν0 Ĥ(4)eff (t)P̂
ν′

0 , is computed using the direct generalized canonical transfor-

mation, Eq. (27) while the second term P̂ν0 H̃(4)eff (t)P̂
ν′

0 is computed using the second canonical

transformation with terms P̂ν0 Ĥ(2)eff (t)P̂
ν′

2 +h.c. in order to obtain the fourth order contribution
to the effective Hamiltonian in the d=0 sector. After developing the commutator in Eq. (27)
of the main text and inserting identities

∑

d,ν
P̂νd=1, P̂ν0 Ĥ(4)eff (t)P̂

ν′

0 reads

∑

ν,ν′
P̂ν0 Ĥ(4)eff (t)P̂

ν′

0 =
1
8

∑

p

∑

k+l+m+n=p

P̂ν0
∑

ν,ν′,ν′′
d=0,2

§

iŜ(1)k P̂0
1 iŜ(1)l P̂ν

′′

d iŜ(1)m P̂0
1 T̂+1

n

−iŜ(1)l P̂0
1 iŜ(1)m P̂ν

′′

d T̂±1
n P̂0

1 iŜ(1)k −iŜ(1)k P̂0
1 iŜ(1)m P̂ν

′′

d T̂±1
n P̂0

1 iŜ(1)l −iŜ(1)k P̂0
1 iŜ(1)l P̂ν

′′

d T̂±1
n P̂0

1 iŜ(1)m

+iŜ(1)m P̂0
1 T̂±1

n P̂ν
′′

d iŜ(1)l P̂0
1 iŜ(1)k +iŜ(1)l P̂0

1 T̂±1
n P̂ν

′′

d iŜ(1)m P̂0
1 iŜ(1)k +iŜ(1)k P̂0

1 T̂±1
n P̂ν

′′

d iŜ(1)m P̂0
1 iŜ(1)l

−T̂−1
n P̂0

1 iŜ(1)m P̂ν
′′

d iŜ(1)l P̂0
1 iŜ(1)k

ª

P̂ν
′

0 eipωt ,

(63)

where T̂±1
m = T̂+1

m + T̂−1
m . We introduce the shorthand notations:

P̂ν0 T̂
−−
kl P̂ν

′

2 = P̂ν0 T̂−1
k P̂0

1 T̂−1
l P̂ν

′

2 , (64)

P̂ν2 T̂
++
kl P̂ν

′

0 = P̂ν2 T̂+1
k P̂0

1 T̂+1
l P̂ν

′

0 , (65)

P̂ν0 T̂
−+
kl P̂ν

′

0 = P̂ν0 T̂−1
k P̂0

1 T̂+1
l P̂ν

′

0 . (66)

We express iŜ(1)m in terms of hopping operators T̂±1
m and factors Cνν

′,m
dd ′ using Eq. (22) in the

main text. After simplification we obtain

∑

ν,ν′
P̂ν0 Ĥ(4)eff (t)P̂

ν′

0 =
∑

p

P̂ν0
∑

k+l+m+n=p
ν,ν′,ν′′

¦1
4

C00,k
01 C00,l

12 (C
00,m
21 −3C00,m

10 )T̂−−kl P̂0
2 T̂
++
mn

+
1
8

�

C00,k
01 C01,l

12 T̂
−−
kl P̂1

2 (C
10,m
21 T̂

++
mn−3C00,m

10 T̂
++
nm)−C00,k

10 C10,l
21 (C

01,m
12 T̂

−−
nm−3C00,m

01 T̂
−−
mn)P̂

1
2 T̂
++
lk

�

+
1
2

C00,k
01 C00,l

10 C00,m
01

�

T̂−+kl P̂ν
′′

0 T̂
−+
mn + T̂

−+
nm P̂ν

′′

0 T̂
−+
lk

�

©

P̂ν
′

0 eipωt , (67)

where we used Cν0,m
d0 =Cν1,m

d0 . Note that the last term of Eq. (67) describes the hopping process
via P̂ν0 states and therefore, is simpler than the rest of the equation which describes hopping
processes via P̂0

2 and P̂1
2 . Performing the second canonical transformation we obtain:

∑

ν,ν′
P̂ν0 H̃(4)eff (t)P̂

ν′

0 =
1
2

∑

ν,ν′

∑

m

P̂ν0
�

iS̃(1)m (t), T̃±1
m′ (t)

�

P̂ν
′

0 , (68)
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where P̂νd iS̃(1)m (t)P̂
ν′

d ′=Cνν
′,m

dd ′ P̂νd T̃±1
m (t)P̂

ν′

d ′ , Cνν
′,m

dd ′ =(E
ν
d−Eν

′

d ′+mω)−1.

Note that Eνd=Eν(0)d +Eν(2)d , where Eν(n)d is the energy contribution to Eνd of order tn
0 . We

use Eνd'Eν(0)d and do not take into account second order contribution Eν(2)d since it leads to 6th

order corrections to P̂ν0 H̃(4)eff (t)P̂
ν′

0 .
The effective hoppings T̃±1

m (t) in the second canonical transformation are determined by sec-

ond order off-diagonal contributions to Ĥ(2)eff :

T̃+1
m (t) =

∑

νν′

P̂ν2 Ĥ(2)eff,m(t)P̂
ν′

0 , T̃−1
m (t) =

∑

νν′

P̂ν0 Ĥ(2)eff,m(t)P̂
ν′

2 . (69)

Substitution of Eq. (25) yields

T̃+1
m (t) =

1
2

∑

νν′

∑

k+l=m

P̂ν2
�

C00,k
01 T̂

++
kl − C0ν,k

12 T̂
++
lk

�

P̂ν
′

0 eimωt , (70)

and

T̃−1
m (t) = −

1
2

∑

νν′

∑

k+l=m

P̂ν0
�

Cν
′0,k

21 T̂
−−
kl − C00,k

10 T̂
−−
lk

�

P̂ν
′

2 eimωt . (71)

Note that T̂qq
kl 6=T̂

qq
lk , for k 6=l. Finally, P̂ν0 H̃(4)eff (t)P̂

ν′

0 reads

∑

ν,ν′
P̂ν0 H̃(4)eff (t)P̂

ν′

0 =
∑

p

1
8

∑

k+l+m+n=p
ν,ν′,ν′′

P̂ν0
�

C0ν′′,k+l
02 (C00,k

01 −C0ν′′,k
12 )(Cν

′′0,m
21 −C00,m

10 )T̂−−kl P̂ν
′′

2 T̂
++
mn

−Cν
′′0,k+l

20 (C00,m
01 −C0ν′′,m

12 )(Cν
′′0,k

21 −C00,k
10 )T̂

−−
mn P̂ν

′′

2 T̂
++
kl

�

P̂ν
′

0 eipωt .

(72)

C Spin-one and pseudo spin-one operators

Here we derive expressions for pseudo spin-one operators T̂ q, where q=±1, 0. Starting from
the spin-one operators in term of spin 1/2 operators acting on orbital α,β=a, b.

Ŝ+1 = −
∑

α6=β

(ŝ+α ŝ−α + ŝ−α ŝ+α )ŝ
+
β , Ŝ−1 = −

∑

α6=β

(ŝ+α ŝ−α + ŝ−α ŝ+α )ŝ
−
β , (73)

Ŝ0 = ŝ+a ŝ−a ŝ+b ŝ−b − ŝ−a ŝ+a ŝ−b ŝ+b , (74)

where ŝ+α=ĉ†
α↑ ĉα↓ and ŝ−α=ĉ†

α↓ ĉα↑, we obtain anolog expressions for pseudo-spin one opera-

tors T̂ q in terms of the Anderson pseudo-spin 1/2 operators τ̂± [43]. Using τ̂+α=ĉ†
α↑ ĉ

†
α↓ and

τ̂−α=ĉα↓ ĉα↑, we have

T̂ +1 = −
∑

α6=β

(τ̂+α τ̂
−
α + τ̂

−
α τ̂
+
α)τ̂

+
β , T̂ −1 = −

∑

α6=β

(τ̂+α τ̂
−
α + τ̂

−
α τ̂
+
α)τ̂

−
β , (75)

T̂ 0 = τ̂+a τ̂
−
a τ̂
+
b τ̂
−
b − τ̂

−
a τ̂
+
a τ̂
−
b τ̂
+
b . (76)

Hence, in terms of electron operators the pseudo-spin one operators read

T̂ +1 = −
∑

α6=β

(n̂α↑n̂α↓ + ĥα↑ĥα↓)ĉ
†
β↑ ĉ

†
β↓, T̂ −1 = −

∑

α6=β

(n̂α↑n̂α↓ + ĥα↑ĥα↓)ĉβ↓ ĉβ↑, (77)

T̂ 0 = n̂a↑n̂a↓n̂b↑n̂b↓ + ĥa↑ĥa↓ĥb↑ĥb↓. (78)
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D Derivation of the effective spin-one Hamiltonian

Here we derive the effective Hamiltonian up to fourth order in the hopping in terms of spin-
one operators. First we describe the second-order effective Hamiltonian

∑

ν,ν′ P̂
ν
0 Ĥ(2)eff P̂ν

′

0 in
terms of spin-one operators and R̂1

i j . Second, we describe the contribution to the fourth-order

effective Hamiltonian
∑

ν,ν′ P̂
ν
0

�

Ĥ(4)eff +H̃(4)eff

	

P̂ν
′

0 obtained with the first and the second canonical
transformation in terms of spin-one operators, R̂1

i j and R̂2
i j . Third, we do the third canonical

transformation which takes a state from Pν0 sector as a high energy state. Since the low-energy
subspace contains not only spin-one terms, we perform an additional downfolding.

The bilinear spin-one term reads

~Si·~S j =
1
2

∑

α6=β ,σ

¦

ĉ†
iασ ĉiασ̄ ĉ†

jασ̄ ĉ jασ

�

ĥiβσ n̂iβσ̄ n̂ jβσĥ jβσ̄+n̂iβσĥiβσ̄ĥ jβσ n̂ jβσ̄

�

+ĉ†
iασ ĉiασ̄ ĉ†

jβσ̄ ĉ jβσ

×(n̂iβσĥiβσ̄ĥ jασ n̂ jασ̄ + ĥiβσ n̂iβσ̄ n̂ jασĥ jασ̄)− n̂iασĥiασ̄ n̂iβσĥiβσ̄ĥ jασn̂ jασ̄ĥ jβσ n̂ jβσ̄

©

.

(79)

The first two terms of ~Si·~S j allows an exchange interaction process that transforms a state that
does not violate Hund rule (ν=0) to a state which violates Hund rule (ν=1) and vice versa.
The last term is a density term which stands for Ŝ0

i Ŝ0
j . One can derive the following relation

∑

m
ν,ν′

P̂ν0 T̂−m P̂0
1 T̂+−m P̂ν

′

0 = t2
0

∑

m

J2
|m|(E)

∑

<i, j>

�

~Si·~S j + R̂1
i j

�

, (80)

and use it to write P̂ν0 Ĥ(2)eff (t)P̂
ν′

0 in terms of ~Si·~S j . After time averaging H̄(2)eff =
1
T

T
∫

0
Ĥ(2)eff (t)d t,

we obtain:
∑

ν,ν′
P̂ν0 H̄(2)eff P̂ν

′

0 =
∑

<i, j>

Jex

�

~Si·~S j + R̂1
i j

	

. (81)

The term R̂1
i j contains a description for the non spin-one states from P̂ν0 , the coupling between

a S=1 and a S 6=1 state and a constant term. All these features can be easily seen after the
rotation of R̂1

i j into the spin-one basis. Here we restrict to R̂1
i j written in terms of single electron

operators:

R̂1
i j =

1
2

∑

α6=β ,σ

¦

ĉ†
iασ ĉiασ̄ ĉ†

jασ̄ ĉ jασ

�

ĥiβσ n̂iβσ̄ n̂ jβσĥ jβσ̄ + n̂iβσĥiβσ̄ĥ jβσ n̂ jβσ̄

�

− ĉ†
iασ ĉiασ̄ ĉ†

jβσ̄ ĉ jβσ(n̂iβσĥiβσ̄ĥ jασn̂ jασ̄ + ĥiβσ n̂iβσ̄ n̂ jασĥ jασ̄)
©

−
∑

σ

¦

n̂iaσĥiaσ̄ n̂i bσĥi bσ̄ĥ jaσ n̂ jaσ̄ĥ j bσ n̂ j bσ̄ + 2n̂iaσĥiaσ̄ĥi bσ n̂i bσ̄ĥ jaσ n̂ jaσ̄ n̂ j bσĥ j bσ̄

©

.

(82)
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Similarly, we map P̂0H̃(4)eff P̂0 onto the spin-one model. The biquadratic spin-one term reads

(~Si·~S j)
2 =

∑

α6=β ,σ

¦

−
1
2

�

ĉ†
iασ ĉiασ̄ ĉ†

jασ̄ ĉ jασ

�

ĥiβσ n̂iβσ̄ n̂ jβσĥ jβσ̄ + n̂iβσĥiβσ̄ĥ jβσ n̂ jβσ̄

�

+ ĉ†
iασ ĉiασ̄ ĉ†

jβσ̄ ĉ jβσ

�

n̂iβσĥiβσ̄ĥ jασn̂ jασ̄ + ĥiβσ n̂iβσ̄ n̂ jασĥ jασ̄

��

+ n̂iασĥiασ̄ n̂iβσĥiβσ̄ĥ jασ n̂ jασ̄ĥ jβσ n̂ jβσ̄

©

+
1
2

∑

σ

¦

2ĉ†
iaσ ĉiaσ̄ ĉ†

jaσ̄ ĉ jaσ ĉ†
i bσ ĉi bσ̄ ĉ†

j bσ̄ ĉ j bσ

+ ĉ†
iaσ ĉiaσ̄ ĉ†

i bσ̄ ĉi bσ

�

ĉ†
jaσ̄ ĉ jaσ ĉ†

j bσ ĉ j bσ̄ + ĉ†
jaσ ĉ jaσ̄ ĉ†

j bσ̄ ĉ j bσ

�

+ n̂iaσĥiaσ̄ĥi bσ n̂i bσ̄

�

ĥ jaσ n̂ jaσ̄ n̂ j bσĥ j bσ̄ + n̂ jaσĥ jaσ̄ĥ j bσ n̂ j bσ̄

�

+
�

ĉ†
iaσ ĉiaσ̄ ĉ†

i bσ ĉi bσ̄

�

ĥ jaσ n̂ jaσ̄ĥ j bσ n̂ j bσ̄ + n̂ jaσĥ jaσ̄ n̂ j bσĥ j bσ̄

�

+ h.c.
�

©

.

(83)

The first summation in Eq. (83) contains terms which are very similar to ~Si·~S j i.e. it contains
density terms which describe the states in the P̂0

0 sector and terms which connect the P̂0
0 states

to the P̂1
0 states. The second summation contains density terms which describe the states in

the P̂1
0 and terms wich operate an internal mixing of the P̂0

0 states as well as an internal mixing
of the P̂1

0 states. From Eq. (67) we obtain the following equalities

∑

k,l,m,n
ν,ν′,ν′′

P̂ν0 T̂
−+
kl P̂ν

′′

0 T̂
−+
mn P̂ν

′

0 =t4
0

∑

k,l,m,n

(−1)kJk(E)Jl(E)Jm(E)Jn(E)

×
�

(−1)m + (−1)n
�

∑

<i, j>

�

~Si·~S j + R̂1
i j

�2
,

(84)

for the hopping process via P̂ν
′′

0 sector,

∑

k,l,m,n
ν,ν′

P̂ν0 T̂
−−
kl P̂0

2 T̂
++
mn P̂ν

′

0 =4t4
0

∑

k,l,m,n

(−1)k+l Jk(E)Jl(E)Jm(E)Jn(E)
∑

<i, j>

�

(~Si·~S j)
2+R̂2

i j

�

,
(85)

for the hopping process via P̂0
2 sector,

∑

k,l,m,n
ν,ν′

P̂ν0 T̂
−−
kl P̂1

2 T̂
++
mn P̂ν

′

0 =2t4
0

∑

k,l,m,n

(−1)kJk(E)Jl(E)Jm(E)Jn(E)

×
�

(−1)m + (−1)n
�

∑

<i, j>

�

(~Si·~S j)
2+R̂2

i j

�

,
(86)
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for the hopping process via P̂1
2 sector. We obtain the following expression for R̂2

i j

R̂2
i j =

1
2

∑

α6=β ,σ

¦

− ĉ†
iασ ĉiασ̄ ĉ†

jασ̄ ĉ jασ

�

ĥiβσ n̂iβσ̄ n̂ jβσĥ jβσ̄ + n̂iβσĥiβσ̄ĥ jβσ n̂ jβσ̄

�

+ ĉ†
iασ ĉiασ̄ ĉ†

jβσ̄ ĉ jβσ

�

n̂iβσĥiβσ̄ĥ jασn̂ jασ̄ + ĥiβσ n̂iβσ̄ n̂ jασĥ jασ̄

�

− n̂iασĥiασ̄ n̂iβσĥiβσ̄ĥ jασ n̂ jασ̄ĥ jβσ n̂ jβσ̄

©

+
1
2

∑

σ

¦

ĉ†
iaσ ĉiaσ̄ ĉ†

i bσ̄ ĉi bσ

�

ĉ†
jaσ̄ ĉ jaσ ĉ†

j bσ ĉ j bσ̄ − ĉ†
jaσ ĉ jaσ̄ ĉ†

j bσ̄ ĉ j bσ

�

+ n̂iaσĥiaσ̄ĥi bσ n̂i bσ̄

�

ĥ jaσ n̂ jaσ̄ n̂ j bσĥ j bσ̄ − n̂ jaσĥ jaσ̄ĥ j bσ n̂ j bσ̄

�

−
�

ĉ†
iaσ ĉiaσ̄ ĉ†

i bσ ĉi bσ̄

�

ĥ jaσ n̂ jaσ̄ĥ j bσ n̂ j bσ̄ + n̂ jaσĥ jaσ̄ n̂ j bσĥ j bσ̄

�

+ h.c.
�

©

.

(87)

R̂2
i j rotated into the spin-one basis contains a fourth order contribution to the energy of the

non spin-one states, a contribution to the coupling between the spin-one and the non spin-one
state and the same constant as in R̂1

i j .
We use these equalities to write the time averaged effective Hamiltonian in terms of spin-

one operators

H̄d=0
eff =

∑

<i, j>

¦

K1(E ,ω)
�

~Si·~S j + R̂1
i j

�

+ K2(E ,ω)
�

~Si·~S j + R̂1
i j

�2

+ K3(E ,ω)
�

(~Si·~S j)
2 + R̂2

i j

�

©

,
(88)

where K1(E ,ω)=Jex(E ,ω) is the second order Heisenberg exchange interaction and reads

K1(E ,ω) =
+∞
∑

m=−∞

t2
0J2
|m|(E)

U + JH +mω
. (89)

K2(E ,ω) is responsible for an energy contribution to both the fourth order Heisenberg ex-
change as well as the biquadratic exchange interaction, see Eqs. (38) and (40) of the main
text.

K2(E ,ω) = t4
0

∑

k+l+m+n=0

(−1)kJk(E)Jl(E)Jm(E)Jn(E)
�

(−1)m+(−1)n
�

C00,k
01 C00,l

10 C00,m
01 . (90)

K3(E ,ω) only enters in the biquadratic exchange interaction formula, see Eq. (40), and reads

K3(E ,ω)=t4
0

∑

k+l+m+n=0

(−1)kJk(E)Jl(E)Jm(E)Jn(E)
¦

(−1)lC0
2 +

�

(−1)m+(−1)n
�C1

2

2

�

©

, (91)

where the Cν2 coefficients read

Cν2 = C00,k
01 C0ν,l

12 (C
ν0,m
21 − 3C00,m

10 ) + C0ν,k+l
02 (C00,k

01 − C0ν,k
12 )(C

ν0,m
21 − C00,m

10 ), (92)
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We now interest ourselves to the coupling between the spin-one and the non spin-one state of
P̂ν0 that is described by R̂1

i j . The basis transformation which allows one to go from a electron
occupation number basis to the angular momentum basis is the following

|S, MS , Si , S j

�

=
∑

Mi ,M j

CSM
Si Mi ,S j M j

|Si , Mi , S j , M j

�

, (93)

where CSMS
Si Mi ,S j M j

are Clebsch-Gordan coefficients. From this basis transformation, we obtain
three spin-one states, namely a singlet (S=0), a triplet (S=1) and a quintet state (S=2)

|0,0, 1,1
�

=
1

2
p

3

¦

2| ↑,↑
�

i| ↓,↓
�

j + 2| ↓,↓
�

i| ↑,↑
�

j − | ↑,↓
�

i| ↑,↓
�

j − | ↓,↑
�

i| ↓,↑
�

j

− | ↑,↓
�

i| ↓,↑
�

j − | ↓,↑
�

i| ↑,↓
�

j

©

,
(94)

|1,0, 1,1
�

=
1
p

2

¦

− | ↑,↑
�

i| ↓,↓
�

j + | ↓,↓
�

i| ↑,↑
�

j

©

, (95)

and

|2,0, 1,1
�

=
1
p

6

¦

| ↑,↑
�

i| ↓,↓
�

j + | ↓,↓
�

i| ↑,↑
�

j + | ↑,↓
�

i| ↑,↓
�

j + | ↓,↑
�

i| ↓,↑
�

j

+ | ↑,↓
�

i| ↓,↑
�

j + | ↓,↑
�

i| ↑,↓
�

j

©

,
(96)

and three states which are non spin-one states. We define spin-one projection operators such
that

∑

ν P̂ν0=P̂S+P̂R, where subscripts S and R refere to S=1 and S 6=1 states respectively [34].
The third canonical transformation leads to the following fourth order contribution to the
effective Hamiltonian

˜̃H(4)eff (t) = −
∑

m,m′

P̂S Ĥ(2)eff,mP̂RĤ(2)eff,m′ P̂S

ER − ES +mω
ei(m+m′)ωt , (97)

where, ES and ER are energies of the S= 1 and S 6=1 states, respectively. The coupling between
the P̂S and P̂R subspaces only involves the singlet state |0, 0,1, 1

�

and the S 6=1 state |0, 0,0, 0
�

|0,0, 0,0
�

=
1
2

¦

| ↑,↓
�

i| ↑,↓
�

j + | ↓,↑
�

i| ↓,↑
�

j − | ↑,↓
�

i| ↓,↑
�

j − | ↓,↑
�

i| ↑,↓
�

j

©

. (98)

Note that, the energy approximation of Eq. (24) is only for d 6=d ′. Here, within the d=0 sector,
we take the exact value for the energies of |0, 0,1, 1

�

and |0,0, 0,0
�

, 0 and 4JH respectively.
After time averaging and projection onto the singlet state, yields

˜̃E(4)Singlet=−
3
2

t4
0

∑

k+l+m+n=0

Jk(E)Jl(E)Jm(E)Jn(E)(C
00,k
01−C00,l

10 )(C
00,m
01 −C00,n

10 )
(−1)k

�

(−1)m+(−1)n
�

(4JH+(k+ l)ω)
.

(99)
This is the additional fourth order energy contribution to the singlet state due to the additional
downfolding of P̂ν0 . Using the spin-one Hamiltonian

Ĥspin = E0 +
∑

<i, j>

�

Jex~Si·~S j + Bex(~Si·~S j)
2
	

, (100)
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one can obtain a relation between Jex and Bex and the spin-one state energies

Jex=(EQuintet−ETriplet)/4, (101)

Bex=(EQuintet−ETriplet)/4−(EQuintet−ESinglet)/6. (102)

Since the additional downfolding of P̂ν0 gives rise to an energy contribution for the singlet
state only, we have the additional energy contribution to the biquadratic exchange interaction
B[3]ex (P̂0)=

˜̃E(4)Singlet/6, which leads to

B[3]ex (P̂0) = −
∑

k+l+m+n=0

A1
klmn(E)

(C00,k
01 −C00,l

10 )(C
00,m
01 −C00,n

10 )

4(4JH + (k+ l)ω)
, (103)

where

A1
klmn(E) = t4

0(−1)k
�

(−1)m+(−1)n
�

Jk(E)Jl(E)Jm(E)Jn(E). (104)

Note that B[3]ex (P̂0)∝Jex(E ,ω)/JH , which means that the canonical transformation gives an
accurate description of B[3]ex (P̂0) as long as Jex(E ,ω)�JH . This inequality is always fulfilled for
the regime of frequencies studied here but breaks down when orbital resolved spin dynamics
is needed, see the discussion in Section 3.1.

E Effective Hamiltonian with Spin-Charge coupling

In this section we discuss in more detail the effective Hamiltonian which describes the spin-
charge coupling phenomenon. We study the effective Hamiltonian responsible for the non-
equilibrium spin-charge coupling between P̂ν0 states from Fourier sector m=0 and P̂0

2 states
from the m=−1 sector as shown in Figure 5. This effective Hamiltonian forms a 8×8 matrix
in the occupation number basis states |φk

�

of the P̂ν0+P̂0
2 sector, which yields the following

matrix structure







































−4t2
0 F 0 0 0 2t2

0 F 2t2
0 F

... −t2
0 I t2

0 I

0 −4t2
0 F 0 0 2t2

0 F 2t2
0 F

... −t2
0 I t2

0 I

0 0 2JH 0 −JH −JH
... 0 0

0 0 0 2JH −JH −JH
... 0 0

2t2
0 F 2t2

0 F −JH −JH 2JH−4t2
0 F 0

... t2
0 I −t2

0 I

2t2
0 F 2t2

0 F −JH −JH 0 2JH−4t2
0 F

... t2
0 I −t2

0 I
. . . . . . . . . . . . . . . . . . . . . . . . . . .

−t2
0 I∗ −t2

0 I∗ 0 0 t2
0 I∗ t2

0 I∗
... EI−ω+4t2

0G 0

t2
0 I∗ t2

0 I∗ 0 0 −t2
0 I∗ −t2

0 I∗
... 0 EI−ω+4t2

0G







































, (105)

where
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F=
∑

m

J|m|(E)2

2(U + JH +mω)
, (106)

G=
∑

m

J|m|(E)2

2(3U − 5JH +mω)
, (107)

I=I(t)=
∑

k

(−1)kJk(E)Jk+1(E)
¦ 1

3U − 5JH + kω
−

1
U + JH + kω

©

e−iωt . (108)

I∗ is the complex conjugate of I and EI=4(U−JH) is the energy of the doubly ionized states.
The upper left block of the matrix Eq. (105) corresponds to the effective Hamiltonian in P̂ν0
sector with m=0 where the basis states are

hd=0 =
¦

| ↑,↑
�

i| ↓,↓
�

j , | ↓,↓
�

i| ↑,↑
�

j , | ↑,↓
�

i| ↑,↓
�

j ,

| ↓,↑
�

i| ↓,↑
�

j , | ↑,↓
�

i| ↓,↑
�

j , | ↓,↑
�

i| ↑,↓
�

j

©

, (109)

where |σa,σ′b
�

i = ĉ†
i bσ′ ĉ

†
iaσ|0

�

. The lower right block of the matrix corresponds to the effective
Hamiltonian in P̂0

2 sector withm=−1 where the basis is the following

hd=2 =
¦

| ↑↓,↑↓
�

i|0,0
�

j , |0,0
�

i| ↑↓,↑↓
�

j

©

. (110)

We diagonalize the matrix, Eq. (105) and, after time averaging, obtain the spectrum shown
in Figure 5. We emphasize that the diagonalization and time averaging do not commute e.g.
1
T

∫ T
0 I(t)d t=0 which washes out the coupling.
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