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Abstract

We study the decoherence and the relaxation dynamics of topological states in an ex-
tended class of quantum Ising chains which can present a multidimensional ground state
subspace. The leading interaction of the spins with the environment is assumed to be
the local fluctuations of the transverse magnetic field. By deriving the Lindblad equation
using the many-body states, we investigate the relation between decoherence, energy re-
laxation and topology. In particular, in the topological phase and at low temperature,
we analyze the dephasing rates between the different degenerate ground states.
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1 Introduction

The quantum Ising chains introduced in quantum magnetism [1–6] represent a class of ex-
actly solvable many-body systems [7] that exemplifies one-dimensional quantum phase tran-
sitions [8–12]. More recently, the quantum Ising model was studied in the non-equilibrium
regime to investigate the dynamical behavior of quantum phase transitions, e.g. the quenching
in a driven Ising chain [13–18], the Kibble-Zurek mechanism [19,20], the Loschmidt echo of
a single impurity coupled to the Ising chain [21], the engineered quantum transfer [22], the
quantum superposition of topological defects [23], the decoherence dynamics in the strong
coupling regime [24] as well as the role of quantum correlations in quantum phase transi-
tions [25–27]. Importantly, the generalized class of Ising models can be characterized by a
topological number [28–32] and, in the topologically nontrivial phase, localized states can
occur at the end of an open chain [1, 4] or at the interface separating regions with different
topological number [33]. This is associated to the ground state degeneracy in the limit of
long chains. For instance, in the case of the X Y Ising chain, these end-states correspond to
the Majorana zero mode of the one-dimensional fermionic Kitaev model [34–36]. Depending
on the topological number, the extended models of Ising chains can present more than two
end-states, viz. several Majorana zero modes [28–32, 37, 38]. The topology can even change
by simply adding a single impurity at one end of an open chain [39].

The quantum Ising model has been experimentally implemented using neutral atoms in
optical lattices [40], lattices of trapped ions [41–43], Rydberg atoms [44], Josephson junc-
tions [45] and superconducting qubits [46–48]. These realizations have to be considered as
open quantum systems [49,50] since the degree of freedom corresponding to the spin can be
readily affected by interaction with the environment. In general, the interplay between dissipa-
tion and interactions in quantum many-body systems presents a rich phenomenology [51–57].
A quantum reservoir-engineering can lead to desired quantum states [58–61]. Dynamical in-
stabilities can occur in the phase diagram of driven dissipative systems [62–65]. The deco-
herence and relaxation dynamics can be characterized by a slow, algebraic decay [66] or by
anomalous diffusion [67]. Other interesting effects are the formation of maximally entangled
states protected against phase-flip noise [68] and the non-monotonic critical line in the phase
diagram of a system with competing dissipative interactions [69].

Although, a priori, spin lattices synthesized in mesoscopic devices can encode Majorana
states [70–72], which have potentially application in topological quantum computation, the
dissipative interaction affecting such systems distinguish them from other realizations. In topo-
logical insulators and semiconducting nanowires, Majorana states are protected by fermion
parity conservation against the dephasing induced by bosonic fluctuations. By contrast, when
one transforms the Ising chains into the fermionic lattices via the Jordan-Wigner transforma-
tion, one has to transform consistently the spin operators coupled to the environment. As
a consequence, the system is not anymore topologically protected and the dissipation in the
transformed model can induce, for instance, inelastic transitions between states of different
parity.

Remarkably, the parity still plays a crucial role when the spins have a longitudinal dis-
sipative coupling, namely they are coupled to the environment via the same spin component
coupled to the transverse magnetic field, see Fig. 1. This model of longitudinal dissipation was
considered to address the quantum phase transition using the mean field approximation [73]
or an exact approach based on path integral [74]. This kind of dissipation was also analyzed to
investigate dynamical phase transitions [75–78], non-equilibrium states in presence of temper-
ature differences [79], quantum diffusion [80] and relaxation dynamics in the strong coupling
limit [24].

For a single spin/qubit, the dissipation in the Markovian regime can be characterized by
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Figure 1: Schematic figure of the interacting spin chain with local coupling to the
environment. Each spin is coupled to a local bath via the spin component parallel to
the magnetic field of the Ising model.

two time constants: the energy relaxation time T1 (the characteristic time scale in which the
spin releases energy to the environment) and the dephasing time T2 (the time scale after
which a coherent superposition of two quantum states reduces to a statistical mixture). In
this work, we analyze the energy relaxation and the decoherence dynamics for an extended
class of quantum Ising chains formed by N spins under the effect of longitudinal dissipative
interaction. This represents the natural dephasing mechanism for the spins in absence of
interaction. Such regime can occur when, for instance, the individual energy relaxation time
of the single qubit T1, is much larger than the individual dephasing time T2, with T1 and
T2 defined in absence of interactions. In general, one has T2 < T1 and, in some cases, one
can also approach T2 � T1, e.g. for flux and fluxonium qubits [81]. Assuming this regime,
we consider only the longitudinal coupling as the dominant interaction with the surrounding
environment. In order to show that the topological protection is conserved in presence of
this longitudinal dissipative interaction, we derive the appropriate Lindblad equation for the
many-body system.

In the limit of low temperature, we investigate the correlations between the topology of the
spin chain, characterized by a winding number g, and the decoherence in the multidimensional
ground state subspace. For the simplest case of the transverse Ising model (g = 1), we discuss
the crossover from the trivial to the topological phase. We distinguish different contributions,
of thermal or topological origin, appearing in the dephasing rate for an initial state given by a
coherent superposition of the ground state and the zero-energy excitation. In the topological
regime, these two states are almost degenerate for N � 1 and the decoherence rate is set by
the overlap of the square modulus of the wave functions of the state localized at the left and
the right end of the chain (one Majorana zero mode). This term decreases exponentially by
increasing the chain length N such that the coherent superposition survives for a long time, viz.
the transient regime to achieve statistical mixture of the two ground states is long compared
to the other time scales of the system.

We generalize the results of the simple transverse Ising model by studying an extended
model which includes three body, next nearest neighbor interaction, with g = 2 in the topo-
logical phase. In this case the ground state subspace is fourfold degenerate, with two ground
states in each parity sector (even and odd) and with two zero modes whose wave functions are
localized at the ends of the chain. Hence, the extended model opens the possibility to imple-
ment adiabatic quantum computation in a given parity ground state subspace. Naturally, this
is impossible in the simple transverse Ising model, as the ground states have different parity,
which is conserved by the Hamiltonian. Within each parity subspace of the extended model
and at low temperature, we find a formula for the decoherence rate that is proportional to a
generalized overlap of wave functions involving both Majorana zero modes. This generalized
overlap factor still decreases exponentially with the length of the chain in the limit N � 1.
Finally, in the extended model, the lowest energy excitations in each parity subspace can relax
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Figure 2: Chain of interacting spins. The nearest neighbor interaction couples two
neighboring spins in the x- and y-component with coupling constants J (1)x , J (1)y (red

lines). The three-body interaction (blue lines) with coupling constants J (2)x and J (2)y
involves the x- and y- components of two next nearest neighbor spins at position
n− 1 and n+ 1, and the z-component of the intermediate spin at position n.

towards one of the two possible ground states. By preparing the system in one of these excited
states, we study the decay rates and the final probability of occupation of the different ground
states in a (long) transient regime. We show that the latter quantity is associated to the be-
havior of the wave functions of the Majorana zero modes and of the single particle spectrum
in the topological region g = 2.

This work is organized as follows. In Sec. 2 we recall the class of exactly solvable extended
Ising models and their topological characterization. Using the Jordan-Wigner transformation,
we map the spin model to the fermions model which we diagonalize using the generalized
Bogoliubov transformations. In Sec. 3 we discuss the interaction with the local baths and we
derive a Lindblad equation starting from the Bogoliubov operators. The Lindblad operators
are associated to the transitions between different many-body states of the system. In Sec.
4 we show the results for the transverse Ising model. Afterwards, in Sec. 5 we discuss the
results for the simplest extended quantum Ising model characterized by a fourfold ground
state degeneracy for which we analyze the dephasing dynamics of the two ground states of
same parity. We summarize our results in Sec. 6.

2 Extended quantum Ising models and topology

In this section we introduce an extended class of quantum Ising models. We set the notation
ħh = kB = 1. These models describe one-dimensional interacting spin chains with equal spins
and nearest neighbor interaction as well as next nearest neighbor interaction as shown in
Fig. 2. We consider chains of finite length with N spins [82]. The Hamiltonian of these chains
reads

HS = Hc + εHb.c., (1)

with

Hc =− B
N
∑

n=1

σz
n −

N−1
∑

n=1

�

J (1)x σ
x
nσ

x
n+1 + J (1)y σ

y
nσ

y
n+1

�

−
N−1
∑

n=2

�

J (2)x σ
x
n−1σ

z
nσ

x
n+1 + J (2)y σ

y
n−1σ

z
nσ

y
n+1

�

, (2)
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and the boundary term

Hb.c. =− J (1)x σ
x
Nσ

x
1 − J (2)x

�

σx
N−1σ

z
Nσ

x
1 +σ

x
Nσ

z
1σ

x
2

�

− J (1)y σ
y
Nσ

y
1 − J (2)y

�

σ
y
N−1σ

z
Nσ

y
1 +σ

y
Nσ

z
1σ

y
2

�

, (3)

with the spin operators σαn at site n with α = x , y, z obeying the algebra

[σαn ,σβm] = δn,m iεαβγσ
γ
n and εαβγ the Levi-Civita symbol. There are two different boundary

conditions: ε = 1 for the closed chain and ε = 0 for the open chain. The model of Eqs. (1-
3) consists of an external transverse magnetic field B in the z-direction, a pairwise nearest
neighbor interaction for the spins n and n+ 1 in the x- and y-component of the spins, and a
three-body interaction with next nearest neighbor interaction in the x- and y-component of
the spins at position n−1 and n+1 mediated by the z-component of the intermediate spin at
position n. A schematic picture is reported in Fig. 2. This extended interaction is chosen, as it
can be projected to a simple next nearest neighbor interaction in the fermionized Hamiltonian
via the Jordan-Wigner transformation defined by

c†
n = νnσ

−
n , νn =

n−1
∏

m=1

ei π2 (1−σ
z
m) , (4)

with σ±n = σ
x
n ± iσ y

n and the fermionic (spinless) operators satisfying the anticommutation re-

lations {cn, c†
m}= δnm and {cn, cm}= {c†

n, c†
m}= 0. Setting J (1)x±y = J (1)x ± J (1)y , J (2)x±y = J (2)x ± J (2)y

and the parity operator

P =
N
∏

n=1

(1− 2c†
ncn) , (5)

the resulting fermionic Hamiltonian reads

Hc =− B
N
∑

n=1

�

1− 2c†
ncn

�

−
N−1
∑

n=1

�

J (1)x+y c†
ncn+1 + J (1)x−y (cn+1cn + h.c.)

�

−
N−2
∑

n=1

�

J (2)x+y c†
ncn+2 + J (2)x−y (cn+2cn + h.c.)

�

, (6)

and

Hb.c. =P
�

J (1)x+y c†
N c1 + J (1)x−y (c1cN + h.c.) + J (2)x+y

�

c†
N−1c1 + c†

N c2

�

+ J (2)x−y (c2cN + c1cN−1 + h.c.)
�

. (7)

Using the parity projection operators P± = (1± P)/2 with P++P− = 1 we project the Hamil-
tonian onto the subspaces of even and odd parity

HS = P+HSP+ + P−HSP− ≡ H+S +H−S . (8)

For a closed chain of finite length, owing to the discrete spatial translation invariance, one
defines the unitary transformation in the momentum space as ck± = e−iπ/4/

p
N
∑

n eiπk±n/N cn,
whereas k+ (k−) takes all odd (even) integers between −N and N for the even (odd) subspace
such that we can write the Hamiltonian (for one parity subspace) in the following form

H±S = 4
∑

k±

�

Bx(k
±)sx

k± +Bz(k
±)sz

k±
�

, (9)

where we have introduced the pseudo spin representation
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Figure 3: Example of the topological winding number in the extended Ising
model with closed boundary condition. (a) The transverse Ising model with
J (1)y = J (2)y = J (2)x = 0 has g = 0 for B > J (1)x (trivial phase) and g = 1 for

B < J (1)x (topological phase). (b) Example of g = 2 with J (1)x = 0.5B, J (2)x = 3B
and J (1)y = J (2)y = 0 and (c) g = 2 with J (1)x = J (2)x = B, J (1)y = 0 and J (2)y = 2B.

s−k = (s
+
k )

† = ĉk ĉ−k , sz
k =

1
2

�

ĉ†
k ĉk + ĉ†

−k ĉ−k − 1
�

, (10)

with sx
k = (s

+
k + s−k )/2, and the effective magnetic field

Bx(k) = J (1)x−y sin (kπ/N) + J (2)x−y sin (2kπ/N) , (11)

Bz(k) = J (1)x+y cos (kπ/N) + J (2)x+y cos (2kπ/N)− B . (12)

In the long chain limit N � 1, the Eqs.(11,12) describe a closed curve in the plane Bx ,By
when one varies parametrically the wave vector k in the first Brillouin zone. This curve is
uniquely defined by the set of parameter in the Hamiltonian. The number of closed loops
around the origin defines the winding (topological) number of the spin system [28–32]. More
specifically, the winding number g in the xz-plane is defined as the line integral on the closed
curve spanned parametrically by the vector k

g =
1

2π

∮

C

1
B2

x +B2
z
(BzdBx −Bx dBz) , (13)

and determines the number of clockwise rotations around the origin. Examples are given in
Fig. 3. The transverse Ising model with J (1)y = J (2)x = J (2)y = 0 is represented by a circle with

radius J (1)x and the center shifted by B, see Fig. 3(a). Hence for J (1)x < B the origin is not within
the circle, thus this regime is referred to as the trivial regime with g = 0. For J (1)x > B the origin
is within the circle leading to g = 1, thus we are in the topological regime. The topological
regime with g = 1 results in a twofold degenerate ground state, which is equivalent to a
Majorana zero mode in the fermionic picture for the open chain [28–32]. Other examples
with g = 2 are reported in Fig. 3(b) and Fig. 3(c). In these cases, the system has a fourfold
degenerate ground state in the open chain with two Majorana zero modes [28–32].

More explicitly, the Hamiltonian of the open chain Hc can be expressed in the following
diagonal form

Hc = EGS +
∑

i

Eiγ
†
i γi , (14)

with the fermionic Bogoliubov operators γi and the eigenenergies Ei . The Bogoliubov opera-
tors are determined by the unitary transformation which we define as

γi =
1
2

∑

n

��

ψL
i,n +ψ

R
i,n

�

cn +
�

ψL
i,n −ψ

R
i,n

�

c†
n

�

, (15)
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Figure 4: Single particle spectrum Ei of an open chain formed by N spins. (a) The
transverse Ising model defined by J (1)y = J (2)y = J (2)x = 0 with N = 20 and (b) the

extended model with parameters J (2)x = 4J (1)x , J (1)y = J (2)y = 0 and N = 40. Here the
blue and red lines correspond to the two zero modes, with vanishing energy in the
topological regime. The dotted line represents an effective, secondary gap E

′

gap as
discussed in Sec. 5.

where the coefficients (wave functions) ψL/R
i,n and the eigenenergies Ei are determined by

solving numerically the Lieb-Schultz-Mattis equations [1] (see appendix A). In some cases
analytic solutions are available. For instance, in the case of the transverse Ising model, the
coefficients ψL/R

i,n read [1]

ψL
i,n = fN sin [κi(N + 1− n)] , (16)

ψR
i,n= fN sign

�

sin(κi)
sin(κiN)

�

sin(κin) (transv. Ising), (17)

whereas fN is the normalization constant such that
∑

n |ψ
L/R
i,n |

2 = 1. The energies of the single

particle spectrum are given by Ei = 2
q

B2 + (J (1)x )2 − 2BJ (1)x cos(κi), whereas the possible k
values are the solutions of the following transcendental equation:

tan(κi(N + 1)) = J (1)x sin(κi)/(J
(1)
x cos(κi)− B).

An example of the single particle spectrum Ei of the open transverse Ising chain is shown in
Fig. 4(a). The lowest excitation - which hereafter we denote as i = 0 - has imaginary solution
for κ0 = iq0 in the topological regime (B < J (1)x ) leading to localization of ψL

0,n and ψR
0,n at

the ends of the chain [1] and with energy E0 that vanishes E0 ≈ 0 in the limit N � 1. This
represents the zero energy mode whose wave function, in the limit of long chain B/J (1)x � N ,
is given by [1]

ψL
0,n '

Ç

(J (1)x /B)2 − 1 e−q0n (transv. Ising) , (18)

andψR
0,n =ψ

L
0,N+1−n , namely we have a Majorana zero mode localized at the ends of the chain

with 1/q0 ≈ 1/ ln(J (1)x /B) as decay length. The wave functions ψL
0,n and ψR

0,n are plotted in
Fig. 5(a). Hence the system has a twofold degenerate ground state with the ground state |GS〉
defined in the trivial regime and the zero-energy Bogoliubov excitation γ0 |GS〉 = |0〉. The
energy gap is given by Egap = E0 in the trivial regime B > J (1)x which strongly decreases around
J (1)x = B (i.e. the critical value of the quantum phase transition in the thermodynamic limit),
see Fig. 4(a). By contrast, in the topological regime B < J (1)x the lowest fermionic excitation
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Figure 5: Behavior of the wave functions of the zero-energy end states (Majo-
rana zero modes) for open spin chains with length N = 20. (a) ψL

0,n and ψR
0,n

of the transverse Ising model in the topological regime g = 1 with J (1)x = 2B and
J (1)y = J (2)y = J (2)x = 0. (b) ψL

01,n, ψR
01,n, ψL

02,n, ψR
02,n of the extended model in the

topological regime g = 2 with B = J (1)x = 0.25J (2)x and J (1)y = J (2)y = 0.

E0 vanishes (twofold degenerate ground state) and the gap is defined by Egap = mini Ei for
i 6= 0.

As a second model analyzed in this work we consider the model Hamiltonian introduc-
ing an additional interacting term in the transverse Ising model by setting J (2)x > 0 (but still
J (1)y = J (2)y = 0). In this case, the system can approach a winding number g = 2, see Fig. 3(b),

in the topological regime B < J (2)x − J (1)x . An example of the single particle spectrum for this
case is shown in Fig. 4(b) for a chain with N = 40 spins. Here we observe the appearance of a
first zero-energy excitation, which we denote i = 01, close to the point B = J (2)x + J (1)x in which
E01

is strongly reduced (this corresponds to the first critical point where the gap closes exactly
in the thermodynamic limit). Furthermore a second zero-energy excitation, which we denote
i = 02, also appears close to the point B = J (2)x − J (1)x in which E02

is also strongly reduced
(this corresponds to the second critical point where the gap closes again in the thermodynamic
limit). After this point, in the long chain limit, the ground state subspace is almost fourfold
degenerate with the states |GS〉 and γ†

01
γ†

02
|GS〉 = |01, 02〉 in the even parity subspace and

γ†
01
|GS〉= |01〉 and γ†

02
|GS〉= |02〉 in the odd parity subspace. Again, |GS〉 is connected to the

single ground state of the trivial regime. In the topological regime B < J (2)x − J (1)x with g = 2,
the wave functions of the two zero-energy states localized at the ends of the chain (Majorana
zero modes) have the following analytic formulas [28]

ψL
01,n ' c1e−q01

n (J (2)x > 0) , (19)

ψL
02,n ' c2e−q01

n + c3eiπne−q02
n (J (2)x > 0) , (20)

and ψR
0i ,n
= ψL

0i ,N+1−n (for i = 1,2), whereas the coefficients c1, c2, c3 are set by the condi-

tions that the wave functions are normalized and orthogonal (
∑

nψ
L/R
0i ,n
(ψL/R

0 j ,n
)∗ = δ0i ,0 j

). The
inverse of the decay lengths associated to the pairs of localized modes are given by

q01
= ln







2J (2)x
È

�

J (1)x

�2
+ 4BJ (2)x − J (1)x






, q02

= ln







2J (2)x
È

�

J (1)x

�2
+ 4BJ (2)x + J (1)x






. (21)
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An example of the wave functions ψL
01,n, ψR

01,n and ψL
02,n, ψR

02,n is plotted in Fig. 5(b). Notice
that the wave function associated to the second zero-energy states has an oscillatory behavior
with a longer decay length, whereas the first mode has a decay similar to the single zero energy
mode of the transverse Ising.

3 Lindblad equation for the interacting chain

Before discussing the spin chain of interacting spins, we first recall the results for a single spin
coupled to a thermal bath which can be expressed as

H1,spin = −Bσz +σ
xS x

b + (σ
z − 1)Sz

b +Hbath , (22)

with Sαb (hermitian) operators of the bath (to simplify the notation, we neglect the y compo-
nent). The shifted interaction in the z-component, namely the term σz − 1, does not affect
the rest of our analysis. If the bath is an ensemble of independent harmonic oscillators, this
shift can be formally removed by unitary (polaron) transformation that displaces the equilib-
rium position of the oscillators. In the limit of weak coupling with the environment, assuming
the Born-Markov approximation and the secular approximation, one can derive the Lindblad
equation, see for example [50]. This means that one factorizes the density matrix of the whole
system formed by the spin and the bath, with the bath at thermal equilibrium ρ ≈ ρs ⊗ρbath.
The relevant quantities in this approach are the Fourier transforms of the correlators of the
bath operators at thermal equilibrium

κα(ω) =

∫ ∞

−∞
d t eiωt trbath

�

Sαb (t)S
α
b (0)ρbath

�

. (23)

Moreover, in the Markov approximation, the memory effects are neglected assuming a fast
decay of the bath correlators in comparison to the time scales of the system. In the last step the
secular approximation is used, where the fast rotating terms are neglected, as they average out
on larger time scales. Using this approach for the single dissipative spin one finds the energy
relaxation rate of the single spin which reads 1/T1 = κx(2B) + κx(−2B). The fluctuations of
the longitudinal component of the bath operator leads to pure dephasing whose rate is given
by

1
Tφ
= 2 lim

ω→0+
κz(ω) . (24)

Hereafter we assume 1/Tφ , the dephasing rate of the single spin, as a given, effective param-
eter. The total dephasing rate is given by 1/T2 = (1/Tφ) + 1/(2T1).

In the limit of Tφ � T1, the longitudinal σz-coupling to the bath is the dominant one.
Therefore, if we regard the system at time scale smaller than T1, one can neglect the trans-
verse interaction of the qubit with the environment. Hence, we consider the pure dissipative
longitudinal interaction affecting the individual spins and the total Hamiltonian reads

Htot = Hc +
∑

n

�

σz
n − 1

�

Sz
n,b +

∑

n

Hn,bath . (25)

We remark that, even if this kind of coupling to the environment inσz-direction leads to a pure
dephasing in the non-interacting spin chain, this is not true anymore when we consider the
interacting case. In the latter case, the appropriate basis in the perturbative scheme between
system and environment are the many-body eigenstates. The latter are not eigenstates, in
general, of the local spin operator σz

n. In other words, this interaction can also lead to energy
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relaxation in the case of interacting spin chains. Note, however, that the dissipative interaction
in Eq. (25) commutes with the parity operator and can not induce energy relaxation between
states of different parity.

Having in mind long spin chains, we focus on the case in which the local baths are uncor-
related and homogeneous such that we can write

∫ ∞

−∞
d t eiωt〈Sz

n,b(t)S
z
m,b〉bath

= δn,m κ(ω) , (26)

which is a realistic assumption for a homogeneous spin chain with locally separated spins
with average spacing larger than the correlation length of the fluctuations of the environment.
For open chain conditions, we express the local spin operator σz

n in term of the fermionic
Bogoliubov operators

σz
n − 1= −2

∑

i, j

�

Ai, j,nγ
†
i γ j + Bi, j,n(γiγ j + γ

†
jγ

†
i )
�

, (27)

with

Ai, j,n =
1
2

�

ψR
i,nψ

L
j,n +ψ

L
i,nψ

R
j,n

�

, (28)

Bi, j,n =
1
4

�

ψL
i,nψ

L
j,n +ψ

R
j,nψ

L
i,n −ψ

R
i,nψ

L
j,n −ψ

R
j,nψ

R
i,n

�

. (29)

Following the standard approach similar to a single spin [50], using the Markov-Born approx-
imation combined with the secular approximation, one can derive the Lindblad equation. In
the final result, the relevant quantity are the ladder (Lindblad) operators, which can be ob-
tained by considering the spectral decomposition of the coupling operator σz

n − 1 to the local
bath at site n. In the interaction picture we write these operators as

eiHc t
�

σz
n − 1

�

e−iHc t = −2
∑

i, j

Ai, j,nγ
†
i γ je

i(Ei−E j)t − 2
∑

i, j

Bi, j,n

�

γiγ je
−i(Ei+E j)t + h.c.

�

, (30)

and the Lindblad operators of the system are

Cn(ω) = −2
∑

ω=E j−Ei

Ai, j,nγ
†
i γ j − 2

∑

ω=E j+Ei

Bi, j,nγiγ j − 2
∑

ω=−E j−Ei

Bi, j,nγ
†
jγ

†
i . (31)

The operators Cn(ω) rotate with frequency ω in the time evolution of the interaction picture
such that the secular approximation can be used: one drops the fast rotating terms. This
approximation can be only used when the energy differences in the system are smaller than the
relaxation rates of the open system. Notice that, since we assume finite N , this approximation
is valid as the energy differences Ei − E j of the discrete spectrum remains finite (excluding
the zero modes). However one has to treat the zero modes carefully since their energy (for
finite N) becomes exponentially small (nearly degenerate). This implies that, in the case of
the topological regime, one can treat the zero modes as effectively degenerate with the ground
state in the Lindblad equation, i.e. in Eq. 31 the Lindblad operator withω= 0 has terms in the
sum with E j = Ei = 0 for i = 01 and j = 02. Ultimately, this ensures the validity of the Lindblad
equation for extremely long times in which the interaction picture of the zero modes can be
assumed as time-independent (exp(−i(E0i

+E0 j
)t)≈ 1), see Eq. 30. The secular approximation

becomes inaccurate near the critical points, where we have the transition between the finite
energy excitation to the zero energy mode. Thus in the following analysis we exclude the
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regime near the critical points. In the interaction picture (neglecting the Lamb shift terms),
the final Lindblad equation takes the canonical form which reads

dρs

d t
= −

∑

ω

κ(ω)
2

∑

n

Ln [ρs] , Ln [ρs] =
�

C†
n(ω)Cn(ω),ρs

	

− 2Cn(ω)ρsC
†
n(ω) . (32)

Inserting Eq. (31) into Eq. (32), one finds the explicit form of the Lindblad equation which is
reported in the appendix C. Hereafter we assume Ohmic dissipation for the transverse corre-
lation function

κ(ω) = η |ω| [θ (ω)(1+ nB(ω)) + θ (−ω)nB(|ω|)] , (33)

with η setting the dissipative coupling strength to the environment and the bosonic function
nB = 1/(eω/Θ − 1) with Θ the temperature. Notice that, in the limit of vanishing frequency
and fixed temperature, one has formally 1/Tφ = 2ηΘ. In a finite size system, the average
energy spacing in the single particle spectrum |Ei − E j| scales algebraically with the length N .
By contrast, the separation between the energy of zero-energy excitations in the topological
phase and the ground state |GS〉 scales exponentially with the length. At such vanishing energy
differences, the presence of other source of noise beyond the Ohmic one can become important.
Therefore, to take into account this effect, we use a phenomenological approach and we set
the “zero frequency” damping rate 1/Tφ as an independent parameter.

The derivation of the Lindblad equation as given by Eq. (32) (see also appendix C) is
one of the main result of this work. This can be applied to any spin chain system which can
be diagonalized via the Jordan-Wigner transformation. In the next section we discuss some
applications for two specific cases: the transverse Ising model with winding number g = 1 in
the topological phase and the extended model with J (2)x > 0 and winding number g = 2 in the
topological phase.

4 Results for the transverse Ising model

We recover the transverse Ising model by setting the parameter J (2)x = J (1)y = J (2)y = 0 in the
general class of the extended chain Hamiltonians. We focus on the low temperature limit
Θ � Egap where the gap is defined as Egap = E0 in the trivial regime and as Egap = mini Ei
with i 6= 0 in the topological regime. Then the occupation of excited states is small and we can
restrict to the lowest excitations of the spectrum formed by single or double particle excitation,
as schematically shown in Fig. 6.

Hereafter we focus on the decoherence rate for an initial state given by the superposition
between the even ground state |GS〉 and the (odd) lowest excitation |0〉, which is degenerate
to the ground state |GS〉 in the topological regime. Solving the Lindblad equation we find:

Γdec =
Λ
(Ising)
g

Tφ
+ Γs + Γd , (34)

where the first term arises from the fluctuations of the energy levels and corresponds to “pure
dephasing”. This is proportional to the overlap of the two wave functions of the zero mode
and reads

Λ(Ising)
g =

∑

n

|ψR
0,n|

2|ψL
0,n|

2 . (35)

The second term in Eq. (34) is associated to thermal fluctuations between the state
|0〉= γ†

0 |GS〉 and the single particle excitations |i〉= γ†
i |GS〉 and reads

Γs = 2
∑

i 6=0

∑

n

A0,i,nAi,0,nκ(E0 − Ei) , (36)
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Figure 6: (a) Schematic view of the spectrum of the open transverse Ising chain in
the trivial regime J (1)x < B. Energy transitions can occur between the even ground
state |GS〉 and the two particle excitations with energy difference Ei+ E j where Ei or
E j can be also E0. Energy transitions are also possible between the lowest odd parity
state |0〉 and the single particle excitations with smaller energy difference Ei − E0
or between the single particle excitations and many particle excitations with higher
energy difference Ei + E j . (b) Schematic view of the spectrum in the transverse Ising
open chain in the topological regime J (1)x > B with the zero-energy mode E0 → 0.
Energy transitions can occur between the even ground state |GS〉 and the two particle
excitations at Ei + E j with Ei , E j 6= E0 or at energy Ei + E0 ≈ Ei . Energy transitions
are also possible between the (almost) degenerate ground state |0〉 and the single
particle excitation at energy Ei− E0 ≈ Ei or with higher excitations at energy Ei+ E j .

with energy exchange Ei−E0, see Fig. 6. Similarly, the third term in Eq. (34) is related to ther-
mal fluctuations between the state |GS〉 and the double particle excitations γ†

i γ
†
j |GS〉 = |i, j〉

or the transitions between the state |0〉 and |i, j, 0〉 and energy difference Ei + E j , see Fig. 6.
The term Γd reads

Γd = 2
∑

i 6= j

∑

n

Bi, j,n

�

Bi, j,n − B j,i,n

�

κ(−Ei − E j) . (37)

Notice that |i, j〉 also include the states with i, j = 0, namely |i, 0〉, see Fig. 6.
The contribution Γd is exponentially small at temperature Θ� Egap. As shown in Fig. 6(a),

Γd connects transitions between the double particle excitations separated from the ground state
by twice the gap energy Ei + E j ∼ 2Egap in the trivial phase. Thus the thermal energy is not
sufficient to excite the lowest states to these higher excited states since Γd ∝ exp(−2Egap/Θ).
By contrast, Γs can be relevant even at low temperature in the trivial regime since it involves
transition with typical energy difference Ei − E0 � Egap, as shown in Fig. 6(a). Thus this
interaction is not suppressed for Θ � Egap and leads to additional decoherence in the trivial
regime. In Fig. 7(a) we plot Γs that rises with increasing N , since the energy difference between
the state |0〉 to the next excitation |i〉 becomes smaller for larger N , see Fig. 6(a). Finally, the
wave functions ψL

0,n and ψR
0,n does not correspond to localized states in the trivial regime and

hence we have a finite overlap factor of order one

Λ
(Ising)
g=0 = f 2

N

N
∑

n=1

sin2(k0n) sin2(k0(N + 1− n)) . (38)

This represent a finite pure dephasing contribution to the decoherence rate as plotted in
Fig. 7(a).
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Figure 7: The different terms appearing in the dephasing rate Λ(Ising)
g , Γs and Γd at

Θ = 0.1J (1)x as a function of N for the open transverse Ising chain. (a) The trivial
regime at J (1)x = 0.5B and (b) the topological regime at J (1)x = 2B. Notice the different
scale in the y axis.

In the topological regime, Γd has similar behavior as in the trivial regime hence is strongly
suppressed as Γd ≈ exp(−Egap/Θ). Contrary to the previous trivial regime, the rate Γs is
also strongly suppressed by the gap Γs ≈ exp(−Egap/Θ) since it now involves transition be-
tween states |i〉 and the state |0〉, the latter almost degenerate with the ground state, namely
Ei − E0 ∼ Ei ∼ Egap (see Fig. 6(b)). Finally, the pure dephasing contribution Λ(Ising)

g is directly
related to the overlap of the localized states. In the large N limit, it can be approximated as

Λ
(Ising)
g=1 ≈ N

�

(J (1)x /B)
2 − 1

�2
e−2q0(N+1) , (39)

namely it is exponentially small due to localization of the end statesψL
0,n andψR

0,n. In Fig. 7(b)

we plot the pure dephasing termΛ(Ising)
g=1 and the sum of the two contributions Γs+Γd . Notice the

different scale compared to the trivial regime. As expected Λ(Ising)
g=1 has a strong dependence

on N whereas Γs + Γd are almost constant as varying N since their behavior is ruled by the
presence of the energy gap.

5 Results for the extended model J (2)x > 0

We discuss now the extended model at finite value J (2)x > 0, as reported in Fig. 3(b),Fig. 4(b)
and Fig. 5(b). We focus only on the topological regime with winding number g = 2 and in the
zero temperature limit, namely Egap � Θ. In this case the system has a fourfold degenerate
ground state separated by a gap of order Egap ∼ 2(J (2)x − J (1)x − B).
By the analysis of the previous findings, we can restrict the dephasing dynamics in the ground
state subspace, as the contribution due to the interaction with excitations scales with
exp(−Egap/Θ) and can be neglected in the zero temperature limit. This means the Lindblad
operator can be expressed as

L̂(ρs) = −
1

2Tφ

∑

n

��

P0σ
z
nP0σ

z
nP0,ρs

	

−2P0σ
z
nP0ρsP0σ

z
nP0

�

. (40)

with P0 the projector onto the ground state subspace.
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Figure 8: Coefficients Λ+p and Λ+g=2 setting the dephasing dynamics (even parity

subspace) in the open extended Ising model for J (1)y = J (2)y = 0 and J (1)x = 0.25J (2)x at

(a) with B = J (1)x and at (b) with N = 30 spins, in the topological regime with g = 2.

In the even subspace we set the populations as pg = 〈GS|ρ |GS〉 and p0 = 〈01, 02|ρ |01, 02〉
and the off-diagonal coherent factor ρg,0 = 〈01, 02|ρ |GS〉. Then we obtain the equation

d(pg − p0)

d t
= −
Λ+p

Tφ

�

pg − p0

�

, (41)

with
Λ+p =

∑

n

(ψL
01,nψ

R
02,n −ψ

R
01,nψ

L
02,n)

2 , (42)

and for the coherence factor we have

dρg,0

d t
= −
Λ+g=2

Tφ
ρg,0 −

Λ̃+p

Tφ

�

p0 − pg

�

, (43)

with
Λ+g=2 =

∑

n

(ψL
01,nψ

R
01,n +ψ

L
02,nψ

R
02,n)

2 , (44)

and

Λ̃+p =
∑

n

�

ψL
01,nψ

R
01,n +ψ

L
02,nψ

R
02,n

��

ψL
01,nψ

R
02,n −ψ

L
02,nψ

R
01,n

�

. (45)

Examples of the behavior of the coefficients Λ+p and Λ+g=2 appearing in time scales of the
single qubit dephasing time are reported Fig. 8. Similar expressions are given for the odd
subspace in the appendix B. The coefficients Λ+p , Λ̃+p and Λ+g=2 are related to the overlap of
the Majorana zero modes and they reduce exponentially with the length of the chain N , and
with the decay length of the Majorana zero modes Eq. (21). In other words, the dephasing
rate of the topological states is exponentially suppressed compared to the dephasing rate of
an individual spin 1/Tφ . Notice, however, that in the limit t →∞, the steady state solution
of Eq. (41) and Eq. (43) is simply p0 = pg and ρg,0 = 0.

In the last part we analyze the relaxation dynamics of the excited subspace. To simplify
the notation, we discuss the relaxation in the even subspace and vanishing temperature limit.
We set the populations p j,01

as the occupation of the excited states in which the excitation
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Figure 9: (a) Schematic decay paths in the even parity subspace in an open chain
for the initial even state |3, 01〉 = γ

†
3γ

†
01
|GS〉 to one of the even ground states, |GS〉

or |01, 02〉 (or towards lower energy states E j < E3). (b) The populations for the
different states in the even parity subspace as a function of time for J (2)x = 4J (1)x = 8B
for N = 40 spins.

j and the zero energy mode 01 are occupied. Notice that such states have energy E j in the
topological regime. The populations {p j,01

} satisfy the following set of coupled rate equations

dp j,01
(t)

d t
' −

�

W( j,01)→g +W( j,01)→0

�

p j,01
(t)−





∑

E j′<E j

Wj→ j′



 p j,01
(t)+

∑

E j′>E j

Wj′→ j p j′,01
(t),

(46)

where the rates are given by

Wj→ j′ = κ(E j − E j′) χ
+
( j, j′) , (47)

W( j,01)→g = κ(E j) χ
−
( j,01)

, (48)

W( j,01)→0 = κ(E j) χ
+
( j,01)

, (49)

and the overlapping factor reads

χ±( j, j′) =
∑

n

�

ψR
j,nψ

L
j′,n ±ψ

R
j′,nψ

L
j,n

�2
. (50)

The Eq. (46) describes the relaxation dynamics of the excited states | j, 01〉 which can decay
directly towards one of the two ground states |GS〉 or |01, 02〉 or towards one excited state
of lesser energy E j′ < E j (see Fig. 9). The last term in Eq. (46) is the positive ingoing flux
due to the decay of states at energy E j′ > E j . Eq. (46) is valid in the time scale in which
we neglect internal relaxation in the ground state subspace. This is possible since we have
a separation of the time scales: the prefactor κ(E j) in W( j,01)→g and W( j,01)→0 is ruled by the
gap κ(E j) ' κ(Egap) and, at the same time, the overlap factor χ±( j,01)

involves a delocalized,

extended state in the chain with one localized state at the end. The overlap factor χ+( j, j′)
involves two delocalized states. In other words, there is no exponential suppression of the rate
as in the case of the internal dephasing in the ground state subspace. We solved numerically
Eq. (46) to obtain the population p j,01

(t) with the initial condition p j,01
(0) = δi j , see Fig.9.
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Figure 10: Exact final occupation pg(t∞) and the occupation p(dir.)
g (see text) of one

of the two ground states in the even parity subspace as a function of the initial excited
state |i, 01〉 (even parity) with J (2)x = 4J (1)x = 8B and N = 40 (see Fig. 9). The vertical
dashed line corresponds to the energy E

′

gap (see text and Fig.4(b)).

To complete the description of the relaxation dynamics, we have to write the equations for the
populations of the two ground states pg and p0

pg(t) =
∑

j

W( j,01)→g

∫ t

0

d t ′ p j,01
(t ′) , (51)

p0(t) =
∑

j

W( j,01)→0

∫ t

0

d t ′ p j,01
(t ′) . (52)

One can check that, at long time t ∼ t∞ with t∞ � 1/W but still t∞ � Tφ/Λ
+
p , the

occupations saturate at values pg(t∞) 6= p0(t∞) (with pg(t∞) = 1 − p0(t∞)) whereas for
times t > Tφ/Λ

+
p the occupations of the ground states approach the values p0 = pg = 1/2.

In Fig. 10 we report pg(t∞) for different initial states (i, 01) of energy Ei . The difference
between pg and p0 strongly depends on the initial state for two reasons: (i) different (internal)
decay paths towards lower lying excitations E j < Ei , (ii) the different overlap with the two
ground states. Naturally, higher excited states have more possible ways to decay towards more
lower energy excitations which can become relevant and comparable, a priori, to the direct
decay channel towards one of the two ground states. To distinguish between the two different
mechanisms of dependence on the initial state, we compare the full expression Eq. (51) with
the formula p(dir.)

g = W(i,01)→g

∫ t∞
0 d t ′ pi,01

(t ′) which contains only the direct decay from the
initial state toward the ground state, see Fig. 10. We observe that the qualitative behavior
of pg(t∞) is well reproduced by the p(dir.)

g with larger deviations as increasing the energy of
the initial state. In particular, the direct decay description captures the different qualitative
behavior at low and high energy.

In Fig. 10 pg(t∞) shows a regular behavior as a function of the initial state up to a maxi-
mum initial energy E

′

gap after which there are oscillations as increasing the energy of the initial
state. This behavior can be explained by observing the single particle spectrum reported in
Fig. 4(b): in the topological regime g = 2 (B < J (2)x − J (1)x ) the spectrum has a regular energy
spacing up to some energy E

′

gap, reported as dashed line in Fig. 4(b). Above this energy a
intersection of two different bundles of excitations appears. As a result of this intersection the
wave functions of the excited states have alternating large and small overlaps with the first
ground state |GS〉, leading to the oscillatory behavior in Fig.10 for Ei > E

′

gap. This energy E
′

gap
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plays the role, roughly speaking, of an effective, secondary gap of the system, which closes at
the transition for g = 1→ g = 0 (whereas the primary gap with energy Egap closes at the tran-
sition g = 2→ g = 1). Hence the topology of the model is not only a ground state property
but can also appear in the relaxation dynamics involving (low energy) excited states.

6 Summary

In order to understand the robustness of the topological properties of spin chains affected by
dissipative interaction with the environment, we studied an extended quantum Ising model in
which each single spin is subject to a longitudinal dissipative interaction with a local bath.

For the ground state subspace, we derive the formula for the dephasing rates, in a given
parity subspace, that incorporate the two Majorana zero modes showing the robustness of the
ground state subspace against the transverse dissipative coupling. The inclusion of a more
general dissipative coupling (i.e. with longitudinal) is a interesting future perspective. Fur-
thermore we have shown that the topology can also influence the relaxation dynamics of ex-
cited states. Here the secondary gap (which appears for g = 2) determines the relaxation
behavior of the excited states and the resulting occupation imbalance of the ground states. It
would be interesting if similar behavior can be observed in other topological systems.

Although we focus on the extended Ising chain with a specific form of the next nearest
neighbor interaction, with winding number g = 2 in the topological phase, our results can
be readily extrapolated to understand the relaxation and dephasing dynamics of the whole
extended class of quantum Ising chains.
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A Diagonalization of the Ising chains

Rewriting the fermionic Hamiltonian in Eq. (6) in matrix representation

Hc =
1
2

∑

n,m

�

c†
ncn

�

�

tnm ∆nm
∆mn −tnm

��

cm
c†

m

�

, (53)

with
tnm = δn,m2B −δn+1,m

�

J (1)x + J (1)y

�

−δn+2,m

�

J (2)x + J (2)y

�

, (54)

and
∆nm = −δn+1,m

�

J (1)x − J (1)y

�

−δn+2,m

�

J (2)x − J (2)y

�

. (55)

Inserting the transformation of Eq. (15) into the Hamiltonian Eq. (53), we impose that such
transformation diagonalizes the Hamiltonian in the form of Eq. (14) and we get the equations

Ei

�

ψL
i,n +ψ

R
i,n

�

=
∑

m

�

tnm

�

ψL
i,m +ψ

R
i,m

�

+∆nm

�

ψL
i,m −ψ

R
i,m

�

�

, (56)
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and

Ei

�

ψL
i,n −ψ

R
i,n

�

=
∑

m

�

tnm

�

ψL
i,m −ψ

R
i,m

�

−∆nm

�

ψL
i,m +ψ

R
i,m

�

�

. (57)

Setting the matrix (T̄ )nm = tnm and (∆̄)nm = ∆nm, and the vectors ( ~ψi
L,R
)n = ψ

L,R
i,n the two

Eqs. (56,57) are represented in the following matrix form

Ei
~ψi

L
= (T̄ − ∆̄) ~ψi

R
, (58)

Ei
~ψi

R
= (T̄ + ∆̄) ~ψi

L
. (59)

In general case, we have solved numerically the last equations to find the eigenvectors and the
respective eigenvalues Ei (single particle energy spectrum).

B Dephasing dynamics in the extended model for the odd sub-
space

We set the population p01
= 〈01|ρ |01〉 and p02

= 〈02|ρ |02〉 and the off-diagonal (coherent)
factor ρ0102

= 〈01|ρ |02〉. Then we derive the following equations

d(p02
− p01

)

d t
= −
Λ−p

Tφ
(p02
− p01

), (60)

with
Λ−p =

∑

n

�

ψR
01,nψ

L
02,n +ψ

R
02,nψ

L
01,n

�2
. (61)

The second equation for ρ0102
reads

dρ0102

d t
= −
Λ−g=2

Tφ
ρ0102

−
Λ̃−p

Tφ
(p02
− p01

) , (62)

with
Λ−g=2 =

∑

n

(ψL
01
ψR

01
−ψL

02
ψR

02
)2 , (63)

and

Λ̃−p =
∑

n

�

ψL
02,nψ

R
02,n −ψ

L
01,nψ

R
01,n

��

ψL
01,nψ

R
02,n +ψ

L
02,nψ

R
01,n

�

. (64)
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C Explicit formula of the Lindblad equation

One can derive the full Lindblad equation by using the spectral representation as given by
Eq. (31). The complete form of the Lindblad equation for the open chain reads
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