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Foliated fracton order from gauging subsystem symmetries

Wilbur Shirley1?, Kevin Slagle1,2 and Xie Chen1

1 Department of Physics and Institute for Quantum Information and Matter,
California Institute of Technology, Pasadena, California 91125, USA

2 Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

? wshirley@caltech.edu

Abstract

Based on several previous examples, we summarize explicitly the general procedure to
gauge models with subsystem symmetries, which are symmetries with generators that
have support within a sub-manifold of the system. The gauging process can be applied
to any local quantum model on a lattice that is invariant under the subsystem symme-
try. We focus primarily on simple 3D paramagnetic states with planar symmetries. For
these systems, the gauged theory may exhibit foliated fracton order and we find that the
species of symmetry charges in the paramagnet directly determine the resulting foliated
fracton order. Moreover, we find that gauging linear subsystem symmetries in 2D or 3D
models results in a self-duality similar to gauging global symmetries in 1D.
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1 Introduction

Gauging is a powerful tool in the study of gapped quantum phases with global symmetry. When
gauging the global symmetry of a system, gauge fields corresponding to the symmetry group
are added to the system so that the global symmetry can be enhanced to a local symmetry. It
is useful to consider such a procedure because different phases under global symmetry map
into different phases of the gauge theory. Symmetric (e.g. paramagnetic) phases map into
deconfined gauge theories while symmetry breaking phases map into a Higgsed gauge theory.
Different symmetry protected topological (SPT)/symmetry enriched topological (SET) phases
map into different deconfined gauge theories with different statistics among the gauge fluxes
(see, e.g., Refs. [1,2]).

Recently, it has been realized that a similar gauging procedure can be applied to systems
with subsystem symmetries as well [3–9]. Subsystem symmetries are symmetries with gener-
ators that act non-trivially only on a sub-manifold of the system. After gauging, the system is
mapped to a model with ‘fracton order’ [3, 10–37]. This relation has been demonstrated for
various classical/quantum spin models, stabilizer codes, domain-frame condensate models,
etc. In this paper, we summarize and make explicit the general gauging procedure. That is,
we describe explicitly a systematic procedure for gauging models with subsystem symmetries
which can be applied to any local quantum model with such symmetry. In particular, the gauge
fields are added at the center of ‘minimal’ coupling terms which are not on-site symmetric and
which generate all other non-on-site-symmetric coupling terms. A modified Hamiltonian can
then be written with enhanced local symmetry and with dynamical terms for the gauge field,
which defines the gauge theory. We focus on abelian symmetry groups only in this paper.

The next key question is: what is the relation between the ungauged order under subsystem
symmetry and the gauged fracton order? To address this question, we study the mapping
between ungauged and gauged phases (several of these examples have been studied in the
previous literature [3–9]) and propose a way to interpret the correspondence. In 2D and 3D,
gauging linear subsystem symmetries (which act on 1D lines) maps paramagnetic (trivially
symmetric) phases and symmetry breaking phases into one another, while subsystem symmetry
protected topological (SPT) phases [6]may map into themselves. This is similar to the case of
global symmetries in 1D, where paramagnets are mapped into symmetry breaking phases, and
SPT phases can map into SPTs. In 3D, gauging planar subsystem symmetries leads to foliated
fracton order, as defined in Refs. [15, 28]. In particular, symmetry charges that transform
under planar symmetries in one, two or three directions map directly to planon, lineon and
fracton charge excitations, which are restricted to move only in a plane, along a line, or which
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cannot move at all. The restricted motion of the charge excitations in the fracton model hence
originates from the requirement to preserve subsystem symmetries in the ungauged model.
By counting the species of symmetry charges in the ungauged model, we can make direct
connection to the foliated fracton order after gauging. For example, it was shown in Ref. [3]
that gauging the (paramagnet phase of) the plaquette Ising model and the tetrahedral Ising
model results in the X-cube and the checkerboard model respectively. By counting symmetry
charges, we can see that the checkerboard model should be equivalent to two copies of the
X-cube model. We present the mapping between the two in Ref. [38] and in section 4, we
explain how counting symmetry charges leads to the same conclusion.

Figure 1: Correspondence of foliation structure in 3D systems with planar subsystem
symmetry and 3D foliated fracton models.

Given the analogous foliation (or layered) structure in 3D models with planar subsystem
symmetry and 3D foliated fracton phases, there is a natural correspondence. As shown in
Fig. 1, for 3D models with planar subsystem symmetry, to increase the system size by one
lattice spacing in the direction of one set of planar subsystem symmetries, it is necessary to
add degrees of freedom (DOFs) on an entire plane and increase the number of generators
of subsystem symmetries by one. The added planar subsystem symmetry acts as a global
symmetry on the added plane. On the other hand, as we discussed in Ref. [15, 28], for 3D
foliated fracton phases, to increase the system size by one lattice spacing along one of the
foliation axes, it is necessary to add a layer containing a gapped 2D topological state as a
resource. Thus, it is natural that subsystem symmetry symmetric states gauge into foliated
fracton models since the added layer gauges into a deconfined 2D gauge theory with gapped
topological order.

The paper is organized as follows: In section 2, we briefly review the procedure of gauging
global symmetries using as an example the 2D paramagnetic state. Section 3 then discusses the
generalized gauging procedure that can be applied to systems with subsystem symmetries in
a systematic way. Multiple examples (including examples that have appeared in the previous
literature) are discussed to show how the procedure works in different situations. Section 4
studies the correspondence between phases with subsystem symmetries and the phases of
their gauged theories through multiple examples and the result is summarized in Table 1 in
section 5.

2 Review: Gauging global symmetry

First, we give a brief review of the procedure for gauging global symmetries (for more careful
discussions see, e.g., Refs. [1, 39]). We consider the simplest example: the transverse field
Ising model with global Z2 symmetry, coupled to a Z2 gauge field. The Hamiltonian takes the
simple form of

H = −Jx

∑

v

σx
v − Jz

∑

〈vw〉

σz
vσ

z
w, (1)
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where the σ’s are Pauli matrices on each lattice site (blue dots in Fig. 2) and 〈vw〉 denotes
nearest neighbor pairs. The system has a global Z2 symmetry of U =

∏

v σ
x
v . To couple the

model to a Z2 gauge field, we introduce gauge field degrees of freedom τ on each link of the
lattice (green dots in Fig.2). τx corresponds to (the exponential eiE of) the ‘electric field’ of
the gauge field and τz corresponds to (the exponential of) the ‘vector potential’ of the gauge
field. The local symmetry, or the Gauss’s law, is given by Av = σx

v

∏

e3v τ
x
e where the product

is over all edges e with v as one end point.

Figure 2: Gauging global Z2 symmetry in 2D. (a) Vertex Av = σx
v

∏

e3v τ
x
e and pla-

quette Bp =
∏

e∈p τ
z
e terms that appear in Eq. (2). (b-c) String operators.

Next, we couple H to the gauge fields such that the new Hamiltonian is invariant under
the local symmetry transformations Av . The transverse field terms σx

i are already invariant
under the local symmetries, so we do not need to modify them and simply include them in the
new Hamiltonian. The Ising coupling terms σz

iσ
z
j need to be replaced with σz

i τ
z
i jσ

z
j in order

to be gauge invariant (i.e. commute with the Av term). Besides that we add the vertex term
Av = σx

v

∏

e3v τ
x
e at every vertex v to enforce gauge symmetry (Gauss’s law) and Bp =

∏

e∈p τ
z
e,

where the product is over all edges around a plaquette p, to enforce the zero flux constraint
on every plaquette. The total Hamiltonian then reads

Hg = −Jx

∑

v

σx
v − Jz

∑

〈vw〉

σz
vτ

z
vwσ

z
w − Jv

∑

v

σx
v

∏

e3v

τx
e − Jp

∑

p

∏

e∈p

τz
e. (2)

When Jz = 0, the Ising model H is in the symmetric paramagnetic phase. After gauging, it
maps to the deconfined phase of the Z2 gauge theory. This can be seen by noticing that when
the energy of the

∑

v σ
x
v term is minimized, the gauged Hamiltonian reduces to

HTC = −Jv

∑

v

∏

e3v

τx
e − Jp

∑

p

∏

e∈p

τz
e, (3)

which is exactly the toric code Hamiltonian representing the deconfined phase of the Z2 gauge
theory. The low energy excitations include a bosonic gauge flux, which corresponds to the
violation of one

∏

e∈p τ
z
e term, and a bosonic gauge charge, which corresponds to the violation

of one
∏

e3v τ
x
e term. These two excitations can be created with string operators shown in

Fig. 2b-c. They braid with each other with a phase factor of −1, which is the Aharonov-Bohm
phase factor in the Z2 case.

When Jx = 0, the Ising model H is in the symmetry breaking ferromagnetic phase. After
gauging, it maps to the Higgsed phase which lacks non-trivial topological order. This can be
seen by noticing that when Jx = 0, Hg has a unique ground state and no fractional excitations.

This gauging procedure can be applied to any local quantum Hamiltonian on any lattice
satisfying a global symmetry G by introducing gauge fields on the links of the lattice, enforcing
gauge symmetry (Gauss’s law), modifying interaction terms to be gauge invariant, and finally
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including a flux term for the gauge field. By doing so, we obtain a gauge theory of group
G. The properties of the gauge theory can be determined from the ungauged model in the
following ways:

1. If the symmetry is spontaneously broken in the ungauged model, then the gauge theory
is Higgsed with trivial topological order.

2. Otherwise, the deconfined gauge charge comes from the symmetry charge. The de-
confined charges are either bosonic or fermionic, depending on whether the symmetry
charges in the ungauged model are bosonic or fermionic.

3. The deconfined gauge flux comes from the symmetry flux, except it is dynamical. The
statistics of the gauge flux depends on the particular order (SPT/SET) of the ungauged
model. Some interesting examples include: gauging the Z2 fermion parity symmetry in
the 2D chiral p + ip superconductor results in a non-abelian flux; also, gauging the 2D
bosonic SPT with Z2 symmetry results in a semionic flux.

4. The braiding statistics between a gauge charge and a gauge flux is independent of the
original order; it is given by the Aharonov-Bohm phase factor, which is determined by
the symmetry group. For example, in a ZN gauge theory, the phase factor between an
elementary charge and an elementary flux is ei2π/N .

5. In 1D, gauge theories are not topologically ordered. Symmetry breaking and trivial SPT
phases map into each other upon gauging. Non-trivial SPT phases can map to themselves
upon gauging. (We briefly review the gauging of 1D phases in appendix B.)

3 Gauging subsystem symmetry: general procedure

How do we gauge models with subsystem symmetries? The simplest example of a system
with subsystem symmetry is an Ising paramagnet on a cubic lattice (corresponding to the
plaquette Ising model in Ref. [3]). Consider a cubic lattice with spin 1/2 degrees of freedom
at each lattice site (blue dots in Fig. 3). The Hamiltonian is simply given by H =

∑

v σ
x
v . This

Hamiltonian is invariant under planar subsystem symmetries

UX Y
n =

∏

v∈PX Y
n

σx
v , UY Z

n =
∏

v∈PY Z
m

σx
v , U ZX

n =
∏

v∈PZX
n

σx
v , (4)

where PX Y
n labels the X Y plane with Z direction coordinate n and similarly for PY Z

n and PZX
n .

Throughout this paper, we use X , Y , Z to label spatial directions and x , y , z to label spin
directions.

This model (with additional plaquette terms) was originally considered in Ref. [3]; how-
ever, we are not including the Ising coupling term here for simplicity of discussion. To gauge
it, Ref. [3] proposed to add a gauge degree of freedom τ at each face-center of the cubic lattice
(green dots in Fig. 3). The gauge symmetry is then given by

Av = σ
x
v

∏

f 3v

τx
f , (5)

which is the product of a symmetry charge σx
v at a site v and the (twelve) electric gauge fields

τx
f on the neighboring faces f . The gauge flux terms, which are minimal pure vector potential

terms that satisfy the gauge symmetry, now involve the product of four τz ’s as shown in Fig. 3.
The gauged Hamiltonian takes the form

Hg = −
∑

v

σx
v −

∑

v

Av −
∑

c

�

BX Y
c + BY Z

c + BZX
c

�

. (6)
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(a) (b) (c)

Figure 3: Gauging planar symmetry on a cubic lattice. (a) The minimal symmetric
coupling term: a product of four σz around a plaquette (of the cubic lattice of blue
spheres). A gauge field τ (green sphere) is therefore placed at the center of the
plaquette, and all other plaquettes. The gray lines form the dual lattice. (b) The red
vertex is involved in the twelve minimal coupling terms highlighted by red squares.
The gauge symmetry term is a product of a σx at the red sphere and twelve τx on
the green spheres. (c) The product of four minimal coupling terms around the four
blue plaquettes is the identity. The corresponding flux term is a product of four τz

on the green spheres.

Since the symmetry charges are fixed by the transverse field σx (in the ground state), the
zero temperature phase of the gauged Hamiltonian becomes equivalent to that of the X-cube
model [3].

However, for generic systems with subsystem symmetry the degrees of freedom may be
located at different places in the lattice and may transform under the subsystem symmetry in
different ways. For example, in Ref. [3], an example was discussed where the ungauged model
contains DOFs at the vertices and at the face centers of a cubic lattice, where the subsystem
symmetry acts on planes with integer and half integer coordinates (in units of the cubic lattice
constant). Ref. [8] discussed an example where the DOFs lives both at the vertices and body
centers; the ones at vertices transform under subsystem symmetry in one direction only. For
a generic configuration of lattice structure and DOFs, where should the gauge fields be added
and how should the gauge symmetry of the gauged model be defined?

3.1 General procedure

We will now outline a gauging procedure that is consistent with the gauging procedure for
global symmetry [1, 39] and various previous works for gauging subsystem symmetries. The
input to the procedure is a lattice of degrees of freedom (in a Hilbert space), a set of symmetry
operators, and a model H =

∑

h that is symmetric under the symmetry. We will focus on
abelian groups only in this paper.

Suppose that the on-site symmetry charge at each site is measured by σx
v (in general the

charge does not have to be a Z2 charge, although we use the σ notation without loss of gen-
erality). The procedure is as follows:

1. Find the minimum coupling terms c that a) are not on-site symmetric; b) are a tensor
product of operators carrying elementary symmetry charges at each site; and which, c)
together with on-site symmetric terms, can be composed into any coupling term satisfy-
ing the symmetry. (Note that these minimum coupling terms are not necessarily included
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in the Hamiltonian; they are used only to locate the gauge degree of freedom in the next
step.)

2. Assign a gauge degree of freedom τc at the center of each minimum coupling term. (τx
c

can be thought of as the exponential eiE of the electric field E, while τz
c is the exponential

of the vector potential. τ can be a general gauge field, not just a Z2 one.)

3. The gauge symmetry is given by Av = σx
v

∏

c3v τ
x
c , where the product is over all mini-

mum coupling terms c that contain v.

4. All symmetric coupling terms h can then be made into gauge symmetric terms hg by
multiplying each minimal coupling factor in h by a τz

c .

5. The minimum coupling terms will usually not be independent of each other. Or some-
times, gauge fields are added for non-minimum coupling terms as well. In such cases,
we then find independent minimum sets C of coupling terms c ∈ C whose product is
either the identify or a product of on-site symmetric terms σx .1 Correspondingly, the
product BC =

∏

c∈C τ
z
c becomes the flux term of the gauge field if it is a local term.

In this way, we can gauge a model H =
∑

h with global or subsystem symmetry into a gauge
theory Hg =

∑

h′ −
∑

v Av −
∑

C BC . Note that a large part this procedure, such as determin-
ing the gauge degrees of freedom and the gauge symmetry, is completely independent of the
original Hamiltonian and depends on the action of the symmetry operators on the ungauged
Hilbert space. The only step that depends on the original Hamiltonian is step 4 where the
original Hamiltonian is made gauge symmetric.

Let us consider some examples to see how this works.

3.2 Example: global symmetry

For global symmetry, the minimum symmetric coupling term is a nearest neighbor two-body
term of the form OiO

′
j where Oi carries charge e and O′j carries charge −e. Other symmetric

coupling terms, including non-nearest-neighbor two-body terms and multi-body terms, can all
be constructed as composites of the nearest-neighbor two-body terms and on-site symmetric
terms. Therefore, the gauge DOFs are assigned to each link of the lattice. The gauge symmetry
term involves one lattice site and all the emanating links. The set of two-body terms around
the same plaquette combine into on-site symmetric terms; therefore we have one flux term per
plaquette. This is exactly the gauging procedure we reviewed in Sec. 2. Changing the lattice
structure corresponds to choosing a different set of minimum coupling terms, which does not
affect the nature of the gauge theory obtained.

3.3 Example: 3D planar symmetry on a cubic lattice

For the subsystem symmetry example discussed above (DOFs at vertices of cubic lattice, trans-
forming under planar symmetry in three directions), the minimum symmetric coupling term
is the four-body plaquette term

∏

v∈pσ
z
v , as shown in Fig. 3a. All other symmetric coupling

terms can be obtained as composites of such plaquette terms and on-site symmetric terms.
Therefore, as suggested in Ref. [3], we can add one gauge field per plaquette. Each vertex is
involved in 12 minimum coupling terms; therefore the gauge symmetry term is a product of
one σx and twelve τx (Fig. 3b). Four minimum coupling terms around the same cube com-
bine into identity as shown in Fig. 3c; therefore we have the corresponding flux terms. This is
exactly the gauging procedure we reviewed at the beginning of this section [Sec. 3].

1Products of on-site symmetric terms can result for example when choices of minimal couplings terms contain
σx .
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3.4 Example: 3D planar symmetry on a FCC lattice

Consider the situation corresponding to the tetrahedral Ising model discussed in Ref. [3], as
shown in Fig. 4. Besides the DOF σv at vertices of the cubic lattice, there are DOF σ f at the
faces of the cubic lattice. Subsystem symmetry acts on each X Y , Y Z and ZX direction plane
either with integer or half integer coordinates.:

UX Y
n =

∏

v, f ∈PX Y
n

σx
vσ

x
f , UY Z

n =
∏

v, f ∈PY Z
n

σx
vσ

x
f , U ZX

n =
∏

v, f ∈PZX
n

σx
vσ

x
f ,

UX Y
n+1/2 =

∏

f ∈PX Y
n+1/2

σx
f , UY Z

n+1/2 =
∏

f ∈PY Z
n+1/2

σx
f , U ZX

n+1/2 =
∏

f ∈PZX
n

σx
f .

(7)

The minimum coupling terms, as shown in Fig. 4a, are the tetrahedral terms involving one
σz

v and three σz
f ’s. All other symmetric coupling terms, including four-body terms of σz

v ’s and
four-body terms of σz

f , can all be constructed from this minimum coupling term. Therefore,
as discuss in Ref. [3], one gauge DOF τ is to be assigned to each tetrahedron. The gauge
symmetry terms are the product of one σx together with the eight τx ’s in the surrounding
tetrahedrons (Fig. 4b). The product of the same eight tetrahedron minimum coupling terms
also happens to be the identity; therefore, we have the product of eight τz ’s as the flux term
(Fig. 4b). If the σ DOF are all polarized by −σx , the gauged model becomes exactly the same
as the checkerboard model.

(a) (b)

Figure 4: Gauging planar symmetry on FCC lattice. (a) A minimal symmetric cou-
pling term: a product of four σz at the corners of the red tetrahedron. A gauge field
τ (green sphere) is placed at the center of tetrahedron. Within the above cube, there
are eight tetrahedra (one for each corner of the cube) and gauge fields. The gray lines
form the dual lattice. (b) The red vertex is involved in the eight minimal coupling
tetrahedron terms centered at the green spheres. The gauge symmetry term is thus
a product of a σx at the red sphere and eight τx on the green spheres. The product
of the eight minimal coupling tetrahedron terms is the identity. The corresponding
flux term is a product of eight τz on the green spheres.

3.5 Example: 3D planar symmetry on a BCC lattice

Now consider the situation described in Ref. [8], where there is one DOF σ0 at each cube
center and three DOFs σa, σb, σc at each vertex, as shown in Fig. 5. σ0 transforms under
subsystem planar symmetries in all three directions while σa, σb, and σc transform only un-
der symmetries in Y Z , ZX , and X Y planes, respectively. An X Y -plane subsystem symmetry
generator is a product of all σx

0 in a particular X Y plane (PX Y
m+1/2) with Z coordinate m+ 1/2
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and all σx
c in the two neighboring X Y planes (PX Y

m and PX Y
m+1) with Z coordinate m and m+1:

UX Y
m+1/2 =

∏

i∈PX Y
m+1/2

σx
0,i

∏

j∈PX Y
m

σx
c, j

∏

k∈PX Y
m+1

σx
c,k. (8)

UY Z and U ZX are defined in similar ways. The minimum coupling terms are the triangular
terms shown in Fig. 5a. All other symmetric coupling terms can be composed from these
minimum coupling terms. Therefore, to gauge the model, we need to assign one gauge DOF τ
per triangle. The gauge symmetry terms are then the product of one σx

0 with 24 τx ’s around
it (Fig. 5b), and the product of one σx

a (or σx
b , σx

c ) with four τx ’s around it (Fig. 5c). The
product of four triangular coupling terms is the identity, therefore we have the product of the
corresponding four τz ’s as the flux term (Fig. 5d). This is the minimum gauging scheme for
such a distribution of symmetry charges.

We could add gauge fields corresponding to non-minimum coupling terms as well. This is
what was done in Ref. [8], where a gauge field is added for each four-body plaquette coupling
term of the σ0’s. Since this four-body term can be obtained by composing two triangular
terms, this results in one more type of gauge flux term corresponding to the product of the τz

associated with these three coupling terms (one plaquette and two triangular terms).

(a) (b) (c) (d)

Figure 5: Gauging planar symmetry on BCC lattice. (a) A minimal symmetric cou-
pling term: a product of two σz

0 and one σz
c . The black lines form the cubic lattice,

while the gray lines form the dual lattice. There are 12 minimal coupling terms
within the shown dual-lattice cube: one for each gray edge of the cube. For the other
terms, the σz

c at the center becomes a σz
a or σz

b when the two σz
0 are displaced in

the x or y direction, respectively. (b) The body-center is involved in 4× 6 minimal
coupling terms, which are centered at the green spheres, which lie on the faces of the
black cube. (The orange lines are guides for the eye.) The gauge symmetry term is
therefore a product of a σx at the center and 24 τx on the green spheres. (c) The σz

c
operator in the center is involved in 4 minimal coupling terms (highlighted in red).
The gauge symmetry term is therefore a product of a σx

c at the center and four τx

on the green spheres. (d) The product of the four minimal coupling triangular terms
is the identity. The corresponding flux term is a product of four τz on the four green
spheres.

4 Correspondence before and after gauging

Using the general gauging procedure, in this section we are going to explore the correspon-
dence between models with subsystem symmetry (before gauging) and the gauged model with
(potential) foliated fracton order. We refer to such a correspondence as the ‘gauging corre-
spondence’. While the following discussion is mostly based on specific examples, we expect
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several features of the gauging correspondence to apply generically, as specified below. In
Appendix A, we will also show that the gauging procedure can be applied to global dipole
conservation symmetries to produce a symmetric tensor gauge theory.

4.1 Planar symmetry and foliated fracton order

First, let’s discuss models with subsystem planar symmetries. We are going to study models
of increasing complexity – paramagnets with subsystem planar symmetries in one direction,
two directions, three directions and four directions respectively – as well as models where
the symmetries are spontaneously broken. We expect the following features to be generically
true in the gauging correspondence: 1. when the planar symmetries are spontaneously bro-
ken, the gauged model does not have nontrivial order; 2. when the planar symmetries are
not spontaneously broken, the gauged model has foliated fracton order 3. symmetry charges
transforming under planar symmetries in one direction, two directions, and three or more di-
rections turn into planon excitations, lineon excitations, and fracton excitations respectively
upon gauging. The first feature is analogous to the Higgs mechanism in usual gauge theories.
For the second one, we gave an intuitive understanding in the introduction section. Let us
briefly discuss the third one before moving onto examples.

In Ref. [53], we proposed to characterize fractional excitations in foliated fracton phases
using the notion of quotient superselection sectors (QSS). In particular, two fractional excitations
are considered as equivalent (i.e. they belong to the same QSS class) if they differ only by local
excitation and planons – a fractional excitation that moves in a 2D plane. Among the foliated
fracton phases that we have studied, there are two types of QSS:

1. fracton sectors where the fractional excitation is fully immobile as an individual quasi-
particle, and

2. lineon sectors where the excitation can only move along a straight line.

Figure 6: Symmetry charges transforming under planar symmetries in three, two,
one directions are fractons (cannot move), lineons (can move only along a line), and
planons (can move only in a plane) respectively.

In terms of the gauging correspondence, it is easy to see how the fracton/lineon QSS can
emerge after gauging subsystem symmetries. Before gauging, if a symmetry charge transforms
under planar subsystem symmetries in three directions, then to preserve subsystem symmetry,
this charge cannot move freely in any direction. It is pinned at the intersection point of the
three planes, as shown in Fig. 6, and such fracton symmetry charges have to be created four
at a time. Upon gauging, they become the fracton gauge charges. If a symmetry charge
transforms under planar symmetries in two directions, then this charge can move but only
along the intersection line of the two planes. Such lineon symmetry charges become the lineon
gauge charge upon gauging. Finally, if a symmetry charge transforms under planar symmetries
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in one direction only, then this charge can move along the plane. Such planon symmetry
charges become the planon gauge charge upon gauging. Composites of fracton charges can
become lineon or planon charges. For example, composing two Z2 fracton charges in the same
plane and displaced by a diagonal direction results in a lineon charge because the composite
carries nontrivial symmetry charge in the two orthogonal planes only. By analyzing how the
symmetry charges and their composites transform under subsystem symmetry, we can see
how the gauging correspondence emerges. Let us see how this works through the following
examples.

4.1.1 3D paramagnet with planar symmetry in one direction

We start with a simple and almost trivial case where the subsystem symmetry acts only in X Y
planes. Consider again the cubic lattice with DOF at vertices and the paramagnetic model
H = −

∑

v σ
x
v . The subsystem symmetry is given by

UX Y
m =

∏

v∈PX Y
m

σx
v . (9)

Upon gauging, this model should naturally map to a stack of 2D (untwisted) deconfined
gauge theories in the X Y plane. The symmetry charges become the planon gauge charges in
each 2D layer. The gauged theory is a trivial foliated fracton phase. Of course, this result does
not depend sensitively on the lattice structure or details of the Hamiltonian, as long as the
planar symmetries are preserved.

4.1.2 3D paramagnet with planar symmetry in two directions

A less trivial example is the 3D paramagnet H = −
∑

v σ
x
v with two sets of planar symmetries

UX Z
m =

∏

v∈PX Z
m

σx
v , UY Z

n =
∏

v∈PY Z
n

σx
v . (10)

Each symmetry charge transforms under planar symmetries in two directions and hence be-
comes a lineon gauge charge upon gauging. The combination of two symmetry charges sep-
arated in the X or Y directions transform under planar symmetry in one direction only and
hence is a planon. The combination of two symmetry charges separated in the Z direction
does not transform under subsystem symmetry at all and hence is a not a fractional excitation.
Therefore, in the gauged theory, we expect only one lineon QSS in the charge sector.

This can be seen explicitly by applying the gauging procedure described in section 3. The
two minimum coupling terms are 1) four σz ’s around a plaquette in the same X Y plane
(Fig. 7a), and 2) two σz ’s along the Z axis (Fig. 7b). Correspondingly, gauge fields are placed
in each X Y plane plaquette and on each link in the Z direction. The gauge symmetry term
involves the product of one σx

v , four τx
X Y ’s and two τx

Z ’s, as shown in Fig. 7c. The product of
two plaquette coupling terms and four link coupling terms is identity, giving rise to the flux
term as shown in Fig. 7d. The gauge charge, which corresponds to the violation of the gauge
symmetry term, is a lineon that moves in the Z direction. It turns out that the flux excitation
is also a lineon that moves in the Z direction. This is the anisotropic model introduced in
Ref. [53].

4.1.3 3D paramagnet with planar symmetry in three directions

Now let us consider the case where the planar subsystem symmetries lie along three directions.
We have discussed the gauging procedure of three different cases (with different distributions
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(a) (b) (c) (d)

Figure 7: Gauging planar symmetry in X Z and Y Z directions only. (a-b) Minimal
coupling terms. (c) The red vertex term in the center is included in four plaquette
minimal coupling terms (red plaquettes) and two Z-axis terms (red edges). There-
fore, the gauge symmetry term is a product of a σx at the center (red sphere) and six
τx at the green spheres. (d) The flux term is a product of six τz at the green spheres.

of symmetry charges) in section 3. Now we will examine how the symmetry charge becomes a
gauge charge through the gauging process and how the corresponding foliated fracton order
emerges after gauging.

A. Cubic lattice

In the case discussed in section 3.3, where symmetry charges live at the vertices of a 3D
cubic lattice and transform under planar symmetries in all three directions, each symmetry
charge is a fracton and cannot move (since the charge is conserved on every plane). If two
symmetry charges separated in the X , Y or Z direction are combined, then the composite
transforms under planar symmetry in one direction only and hence is a planon. Therefore,
upon gauging, the gauge charge sector of the gauge theory should contain only one quotient
superselection sector – a fracton QSS. This is indeed the case for the corresponding gauge
theory of X-cube model. As discussed in Ref. [53], the X-cube model contains three elementary
QSSs: one fracton QSS and two lineon QSS. The one fracton QSS is the gauge charge sector
of the gauge theory while the two lineon QSSs are the gauge flux sector of the gauge theory.

B. Cubic lattice: dual model

In fact, the X-cube model can be obtained through gauging a different model. Consider
a 3D cubic lattice with two DOFs σr and σb (red and blue) at each lattice site. The red σr
transform under planar symmetry in X Y and Y Z directions; the blue σb transform under
planar symmetry in Y Z and ZX directions; and their composite at each lattice site transforms
under planar symmetry in ZX and X Y directions. That is, the symmetries act as

UX Y
m =

∏

v∈PX Y
m

σx
v,r , UY Z

m =
∏

v∈PY Z
m

σx
v,rσ

x
v,b, U ZX

n =
∏

v∈PZX
n

σx
v,b. (11)

The minimum coupling terms are two-body terms σz
v,rσ

z
v+ ŷ ,r in the Y direction, two-body

terms σz
v,bσ

z
v+ẑ,b in the Z direction, and four-body terms σz

v,rσ
z
v,bσ

z
v+ x̂ ,rσ

z
v+ x̂ ,r in the X di-

rection, as shown in Fig. 8a. Therefore, according to the general procedure, a gauge field is
added to each link of the cubic lattice. The gauge symmetry term is the product of σx

v,r (σx
v,b)

with four τx on neighboring links in the X Y plane (ZX plane), as shown in Fig. 8b-c. The
combination of twelve minimum coupling terms around a cube is identity, therefore the flux
term is the product of twelve τz around a cube as shown in Fig. 8d.
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If the σ spins are all polarized by Hamiltonian H = −
∑

v

�

σx
v,r +σ

x
v,b

�

, then the gauged
model is exactly the X-cube model, but as the electromagnetic dual of the previous case. The
symmetry charges transform under two planar symmetries, and therefore gauge into two in-
dependent lineon gauge charges (that move in the Y and Z directions). Their combination is
a lineon charge that transforms under the X Y and X Z planar symmetries and therefore moves
only in the X direction. If two red charges separated in the X , Y , or Z directions are com-
bined, then they form either a planon or a local excitation, and similarly for the blue charges.
Therefore, the gauge charge sector contains two independent lineon QSSs. The gauge flux in
this case makes up the fracton QSS.

(a) (b) (c) (d)

Figure 8: Gauging planar symmetry on the cubic lattice with lineon charges. (a) The
three minimal coupling terms, which are each a product of σz operators across one
of the red links. (b) A σz

b operator at the center is included in four minimal coupling
terms on the red links. The corresponding gauge symmetry term is a product of a
σx

b at the center and τx operators on the green spheres. (c) Same as (b), but for σz
r .

(d) The flux term is a product of τz on the twelve green spheres.

C. FCC lattice

In the second case discussed in section 3.4, symmetry charges live both at vertices and
face centers and transform under planar symmetry in all three directions. Again, each sym-
metry charge (both the vertex and face-center charges) is a fracton and cannot move. The
combination of two vertex charges separated in X , Y , or Z directions transforms under planar
symmetry in one direction only, and hence is a planon. Therefore, the vertex charge alone
makes one fracton QSS after gauging. The combination of a vertex charge and a face-center
charge separated by half of a face diagonal transforms under two planar symmetries and are
hence lineons. Similarly, the combination of two face-center charges separated by half of a
face diagonal (out of the plane of the face) are also lineons. Taking into account neutral ex-
citations – excitations carrying no symmetry charges – involving one vertex charge and three
face-center charges, we can see that there are all together two independent lineon sectors.
Therefore, upon gauging, the charge sector should contain one independent fracton QSS and
two independent lineon QSSs. This corresponds exactly to the combination of the original and
dual cubic lattice examples discussed above. Therefore, the gauged theory – the checkerboard
model [3] – should be equivalent to two copies of X-cube model combined in a electromagnetic
dual way. This is exactly what we show in Ref. [38].

D. BCC lattice

Now we come to the case discussed in section 3.5, where symmetry charges at cube center
transform in three directions while symmetry charges at vertices transform in one direction
only. The vertex charges are planon charges so they can be omitted when counting QSSs.
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The cube center charge is a fracton. Two fracton charges separated in the X , Y or Z direc-
tion combine into a planon. Therefore, upon gauging, the gauge charge sector contains only
one fracton QSS. If the ungauged Hamiltonian is in the trivial phase (given for example by
H = −

∑

i σ
x
0,i −

∑

j σ
x
a, j −

∑

kσ
x
b,k −

∑

l σ
x
c,l ), then the gauged model would belong to the

same foliated fracton phase as the X-cube model.
In Ref. [8], a twisted version of the ungauged Hamiltonian is discussed. Upon gauging, the

charge sector remains the same, while the flux sector may have different statistics compared to
the X-cube model. Ref. [8] discussed the difference in statistics in terms of the self rotation of
lineons. In Ref. [53], we show that this difference can be removed if 2D layers of twisted gauge
theories are added to the 3D fracton model. Therefore, the gauged model has the same foliated
fracton order as the X-cube model. Correspondingly, the difference between the twisted and
non-twisted versions of the ungauged Hamiltonian can be removed by adding 2D layers of
twisted SPTs. Therefore, the twisted ungauged model is equivalent to a ‘weak SSPT’, i.e. a
stack of 2D SPTs, as defined in Ref. [6].

4.1.4 3D paramagnet with planar symmetry in 4 directions

It is also possible to construct a paramagnet in which every DOF transforms under a planar
subsystem symmetry in 4 different directions. The model is constructed as follows: first, a
lattice is constructed out of a fourfold foliation structure. To be precise, given four stacks
of parallel planes such that no four planes intersect at a single point, a natural cellulation
structure is defined in which each elementary 3-cell is a polyhedron bounded by these planes.
Then, a σ DOF is placed in each 3-cell. The planar subsystem symmetries act on all 3-cells
between neighboring parallel planes. The minimal symmetric coupling terms are the four-body
terms

∏

v∈pσ
z
v with a σz operator on each of the four 3-cells adjacent to a given edge (which

is along the intersection between two planes). In the dual cellulation (or lattice), this edge is
dual to a quadrilateral plaquette p, and the 3-cells are dual to vertices v. Upon gauging, the
subsystem symmetric paramagnet defined on this type of lattice yields a generalized X-cube
model as discussed in Ref. [16]. For example, using this type of construction, one can obtain
the stacked kagome lattice X-cube model.

4.1.5 3D symmetry breaking state with planar symmetry

In all previous examples, for the ungauged model, we considered the simplest symmetric
Hamiltonian of the form H = −

∑

v σ
x
v where the ground state is symmetric under all sub-

system symmetries. For global symmetry, it is known that when the matter field undergoes
spontaneous symmetry breaking, the gauge field is Higgsed and the gauge theory become non-
topological. For subsystem symmetry, a similar Higgs mechanism applies, as first discussed in
Ref. [3]. Let us repeat the exercise and see how Higgsing occurs in the cubic lattice example
of section 3.3.

The minimum Ising coupling term that can be added to the system is the plaquette term
involving four σz ’s (Fig. 3a). To make the term gauge invariant, we attach a τz term in the
middle of the plaquette. The total gauged Hamiltonian hence takes the form

Hg = −
∑

p

τz
p

∏

v∈p

σz
v −

∑

v

Av −
∑

c

�

BX Y
c + BY Z

c + BZX
c

�

. (12)

The Bc terms are actually redundant for determining ground state because they can be com-
posed out of the plaquette terms. Therefore, the Hamiltonian can be simplified into

Hg = −
∑

p

τz
p

∏

v∈p

σz
v −

∑

v

σx
v

∏

v∈p

τx
p . (13)
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This is a cluster state [54] Hamiltonian where the σ and τ DOFs are connected through face
diagonals. It has a unique ground state, and hence no topological or fracton order.

4.2 Linear symmetry and duality

Now let’s consider subsystem linear symmetries in 2D and 3D models. We find that the gauging
correspondence works in a very similar way to that of linear symmetries in 1D. It is well known
(and we review it in Appendix B) that upon gauging the linear (global) symmetry in 1D,
the gauged model also has an emergent global linear symmetry at low energy which comes
from the zero flux constraint around the 1D ring. The gauging procedure leads to a duality
between trivial symmetric paramagnets and symmetry breaking phases and a (self)-duality
among nontrivial symmetry protected topological phases. From the examples discussed in this
section, we find a similar correspondence in 2D and 3D with subsystem linear symmetries:

1. the model after gauging has linear subsystem symmetries at low energy which comes
from the zero flux constraint around nontrivial loops;

2. symmetry breaking phases are mapped to trivial paramagnets;

3. trivial paramagnets are mapped to symmetry breaking phases;

4. non-trivial subsystem symmetry protected topological phases are mapped to non-trivial
subsystem symmetry protected topological phases.

We expect these features to apply generically to all models with linear subsystem symmetries.

4.2.1 2D paramagnet/symmetry breaking state with linear symmetry

It is possible for 2D systems to have linear subsystem symmetries. As we will see, gauging 2D
systems with linear subsystem symmetries bears great similarity to gauging global symmetries
in 1D. In particular, in both cases, trivial paramagnet and symmetry breaking phases are dual
to each other through gauging. Consider a 2D square lattice with a σ DOF at each vertex. The
subsystem symmetries acts along each row LX

m and each column LY
n of the square lattice:

UX
m =

∏

v∈LX
m

σx
v , UY

n =
∏

v∈LY
n

σx
v . (14)

The minimum coupling term satisfying these symmetries is a product of four σz around a
plaquette. Consider the ungauged Hamiltonian

H = −Bx

∑

v

σx
v − J

∑

p

∏

v∈p

σz
v . (15)

To gauge this model, we place one gauge DOF τp on each plaquette so that the gauge symmetry
is given by Av = σx

v

∏

p3v τ
x
p . No local flux term satisfies all of the gauge symmetries; the only

allowed flux terms are products along an entire row or a column:

BX
m,m+1 =

∏

p∈LX
m,m+1

τz
p, BY

n,n+1 =
∏

p∈LY
n,n+1

τz
p. (16)

Thus, the flux terms become subsystem symmetries of the gauged theory.
The Hamiltonian after gauging takes the form

Hg = −Bx

∑

v

σx
v − J

∑

p

τz
p

∏

v∈p

σz
v − Jv

∑

v

σx
v

∏

v∈p

τx
p . (17)
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When Bx = 0, corresponding to the symmetry breaking phase before gauging, the gauged
model is

Hg = −J
∑

p

τz
p

∏

v∈p

σz
v − Jv

∑

v

σx
v

∏

v∈p

τx
p , (18)

which is a 2D cluster state model with unique ground state that is symmetric under the subsys-
tem symmetries BX and BY . Moreover, this state can be mapped to a symmetric product state
through a symmetric local unitary transformation, indicating that it is equivalent to a trivial
paramagnet. The symmetric local unitary is given by

V =
∏

v

�

∏

v∈p

CvXp

�

∏

v

Hv

∏

v

�

∏

v∈p

CvXp

�

, (19)

where CvXp =
1
2(1 + σ

z
v) ⊗ τ

0
p +

1
2(1 − σ

z
v) ⊗ τ

x
p is the controlled-X operation from a vertex

spin to its neighboring gauge field and the Hadamard operator H =

�

1 1
1 −1

�

maps between

σx and σz .
When J = 0, corresponding to the trivial paramagnet phase before gauging, the gauged

model is
Hg = −Bx

∑

v

σx
v − Jv

∑

v

σx
v

∏

v∈p

τx
p , (20)

which can be reduced to
Hg = −Jv

∑

v

∏

v∈p

τx
p , (21)

if the −Bxσ
x
v terms are all satisfied. This corresponds to the symmetry breaking phase of the

gauge field under subsystem symmetries BX and BY .

4.2.2 2D linear symmetry protected topological model

We now discuss an example of a 2D model with linear SSPT order, which is self-dual under
gauging the subsystem symmetries. The system contains a σ DOF at each vertex of two inter-
locking square lattices labelled α and β . The linear symmetries act on all spins in a given row
or column of either the α or β lattice. Explicity, the symmetry generators are

UX ,α
m =

∏

v∈LX ,α
m

σx
v , UY,α

n =
∏

v∈LY,α
n

σx
v , UX ,β

p =
∏

v∈LX ,β
p

σx
v , UY,β

q =
∏

v∈LY,β
q

σx
v . (22)

As discussed in Ref. [6], the 2D cluster state model is a strong SSPT, which exhibits a
protected edge degeneracy that grows exponentially with the length of the boundary. The
Hamiltonian (also shown in Fig. 9) is

H = −
∑

a∈α
σz

i(a)σ
z
j(a)σ

z
k(a)σ

z
l(a)σ

x
a −

∑

b∈β

σz
i(b)σ

z
j(b)σ

z
k(b)σ

z
l(b)σ

x
b , (23)

where i(a), j(a), k(a), and l(a) refer to the four β lattice vertices neighboring vertex a, and
vice versa for i(b), j(b), k(b), and l(b).

The minimal coupling terms satisfying the subsystem symmetry are the four-body terms
around each elementary plaquette of either the α or β lattice. Thus, to gauge the model, gauge
fields τv are placed at every vertex v of both the α and β lattices (on top of each matter DOF),
as shown in Fig. 9. The gauge symmetries then take the form Av = σx

vτ
x
i(v)τ

x
j(v)τ

x
k(v)τ

x
l(v). As
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σz

σx

σz

σx

σz

σx

σz

σx

σx

σz

Figure 9: The 2D cluster state model. The two stabilizer terms in Eq. (23) are circled
in green above. The black and gray lattices are the α and β lattices. After gauging,
gauge fields τ are placed on both the red and blue vertices.

in the previous example, there are no local gauge-symmetric flux operators; the only allowed
flux terms act along an entire row or column:

BX ,α
m =

∏

v∈LX ,α
m

τz
v , BX ,β

n =
∏

v∈LX ,β
n

τz
v , BY,α

p =
∏

v∈LY,α
p

τz
v , BY,β

q =
∏

v∈LY,β
q

τz
v . (24)

These operators correspond to symmetry generators of the gauge theory.
Upon gauging the Hamiltonian takes the form

Hg = −
∑

a∈α
τz

aσ
z
i(a)σ

z
j(a)σ

z
k(a)σ

z
l(a)σ

x
a −

∑

b∈β

τz
bσ

z
i(b)σ

z
j(b)σ

z
k(b)σ

z
l(b)σ

x
b − Jv

∑

v∈α,β

Av . (25)

This gauged model is actually a linear SSPT and is dual to the original SSPT. To see this, note
that the matter DOFs can be decoupled from the gauge DOFs via the symmetric local unitary
operator

V =
∏

v∈α,β

Cσv
Xτi(v)

Cσv
Xτ j(v)

Cσv
Xτk(v)

Cσv
Xτl(v)

, (26)

where as before, CσVτ is the controlled-X gate from the vertex spin σ to an adjacent gauge
field τ. Then

V Hg V † ∼= −
∑

a∈α
τx

i(a)τ
x
j(a)τ

x
k(a)τ

x
l(a)τ

z
a −

∑

b∈β

τx
i(b)τ

x
j(b)τ

x
k(b)τ

x
l(b)τ

z
b −

∑

v∈α,β

σx
v , (27)

which is a 2D cluster state model residing on the gauge DOFs. Here the relation H ∼= H ′

indicates that H and H ′ have coinciding ground spaces and thus represent the same gapped
phase.

4.2.3 3D models with linear subsystem symmetry

It is also possible for 3D systems to have linear subsystem symmetries. For example, suppose
a system has a σ DOF at every vertex of a cubic lattice and symmetries which act along lines
of spins along the X , Y , or Z direction. In this case, the minimal coupling terms that commute
with the symmetries are eight-body terms

∏

v∈c σ
z
v involving the 8 qubits at the corners of a

cube c. Therefore, to gauge such models, gauge fields are placed at the centers of each cube.
The correspondence before and after gauging of linear subystem symmetries in 3D bears

similarities to the case of linear symmetries in 2D and global symmetries in 1D. For instance,
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the cubic Ising Hamiltonian,

H = −
∑

v

σx
v −λ

∑

c

∏

v∈c

σz
v , (28)

is self-dual under gauging: the weak-coupling paramagnetic phase maps into the strong-
coupling subsystem symmetry breaking phase and vice versa. Furthermore, the linear SSPT
given by the the 3D cluster state Hamiltonian [6] is self-dual under gauging, in analogy with
the 2D cluster state linear SSPT and the 1D cluster state global SPT.

5 Discussion

The gauging correspondence revealed in the previous examples is summarized in the table
below. Fracton charges are acted upon by planar symmetry in three directions, whereas lineon
charges are acted upon by planar symmetry in two directions. The fracton and lineon charges
in the table are counted up to the attachment of planon charges, which are acted upon by
planar symmetry in one direction only.

Table 1: Correspondence between phases with subsystem symmetries and gauge the-
ory phases. The X-cube and anisotropic model listed refer to the corresponding foli-
ated fracton phase, not to the specific model.

Before Gauging After Gauging

Planar One fracton charge X-cube with lineon flux
symmetry Lineon charges in X , Y , Z directions X-cube with fracton flux

in 3D One lineon charge in Z direction Anisotropic model with lineon flux
Symmetry breaking Topologically / fractonically trivial state

Linear Trivial paramagnet Symmetry breaking
symmetry Symmetry breaking Trivial paramagnet
in 2D/3D Non-trivial SSPT Non-trivial SSPT

Therefore, by counting the types of symmetry charges before gauging, we can determine
the gauge charge and correspondingly gauge flux quotient superselection sectors in the gauge
theory. A highly interesting and open question is whether there are non-trivial SPT phases
with planar subsystem symmetry in 3D. The model discussed in Ref. [8] we now know to be
equivalent to a weak SSPT. Hence upon gauging, it gives the same foliated fracton order as the
X-cube model [53]. For a truly non-trivial SSPT, upon gauging, we expect the gauge charge
and gauge flux to correspond to the same quotient superselection sectors while the gauge flux
has non-trivial statistics compared to the X-cube model.
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A 3D scalar charge tensor gauge theory by gauging the U(1) sym-
metry

Section 3 considered gauging various gapped qubit models with planar symmetries. However,
the gauging procedure in Sec. 3.1 can also be used to obtain the gapless U(1) tensor gauge
theory models [40–50], which also have fractons, lineons, and planons. In this case, the
gauging procedure is very closely related to the Higgs mechanisms discussed in Ref. [51,52].
In these U(1)models, one can gauge a disordered field theory that has various kinds of global
charge conservations laws. Similar to the previously discussed models, the conservation laws
for the U(1) models also result in mobility restrictions [40].

As an example, in this section we will consider gauging the following matter Hamiltonian

H =

∫

π2 +
∑

ab

(∂a∂bφ)
2, (29)

which has a global symmetry that results in a conserved dipole moment

Pa =

∫

xaπ, (30)

since [H, Pa] = 0, where φ and π are conjugate fields: [φ(x),π(x ′)] = iδ3(x − x ′). In this
section, Latin letters a, b, i, j = 1,2, 3 denote spatial indices. Repeated indices are implicitly
summed.

We will now follow the general gauging procedure. For clarity, we will number the steps
to match those in Sec. 3.1.

1. The minimal coupling operators that respect the symmetry are

∂a∂bφ. (31)

That is, [∂a∂bφ, P c] = 0, and all other local terms that commute with Pa can be written
as a polynomial in ∂a∂bφ and π.

2. Since the minimal coupling operator is a symmetric tensor, we introduce a symmetric
tensor gauge field Aab, which is conjugate to an electric field Eab:
[Aab(x), E i j(x ′)] = − i

2(δ
i
aδ

j
b +δ

j
aδ

i
b)δ

3(x − x ′).

3. The gauge symmetry at x is π(x) minus an electric field in place of every minimal cou-
pling term that contains φ(x). The resulting expression can be calculated as follows

π(x) + i

∫

x ′
[∂a∂bφ(x),π(x

′)]Eab(x ′) = π(x)− ∂a∂bEab(x). (32)

4. The minimal coupling term can be made gauge symmetric by coupling it to a gauge field:
∂a∂bφ→ ∂a∂bφ − Aab.

5. We now need to find linear combinations of the minimal coupling terms ∂a∂bφ that
result in zero. Equivalently, we want to find linear combinations of derivatives of Aab
that are invariant under the replacement Aab → Aab + ∂a∂bλ, which is often referred to
as a gauge transformation. Thus, we want to find the smallest possible basis of gauge
invariant operators, which is given by the magnetic tensor Bi

j = ε
iab∂aAb j [40].
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Therefore, gauging the matter Hamiltonian [Eq. (29)] results in the following gauged Hamil-
tonian

H =

∫

π2 +
∑

ab

(∂a∂bφ − Aab)
2 + (π− ∂a∂bEab)2 +

∑

i j

(εiab∂aAb j)
2 +

∑

ab

(Eab)2. (33)

(Eab)2 is added at the end since the above model is a gapless gauge theory. Traditionally,
the (π− ∂a∂bEab)2 is not explicitly written, but is instead imposed as a gauge constraint or is
considered irrelevant (under RG) at long length scales.

B Gauging global symmetry in 1D systems

In this section, we review the process of gauging 1D symmetric, symmetry breaking and SPT
phases and see how symmetric and symmetry breaking phases map into each other upon gaug-
ing while SPT phases can map into themselves.

Consider the 1D transverse field Ising model with Hamiltonian

H = −Bx

∑

i

σx
i − J

∑

i

σz
iσ

z
i+1 (34)

and global symmetry U =
∏

i σ
x
i . To gauge the model, we put gauge fields τ on every link.

The gauge symmetry term is Ai = τx
i−1,iσ

x
i τ

x
i,i+1. The only flux term that satisfies all the gauge

symmetries is a global term B =
∏

i τ
z
i,i+1. Therefore, the flux term effectively becomes a Z2

global symmetry of the gauged model.
Coupling H to the gauge field, we obtain the gauged Hamiltonian

Hg = −Bx

∑

i

σx
i − J

∑

i

σz
i τ

z
i,i+1σ

z
i+1 − Jv

∑

i

τx
i−1,iσ

x
i τ

x
i,i+1. (35)

When J = 0, in the ground state, all the σ spins are polarized in the X direction and the gauge
fields couple effectively through τx

i−1,iτ
x
i,i+1. With respect to the effective global symmetry of

B =
∏

i τ
z
i,i+1, the gauge field ground state spontaneously breaks the symmetry.

On the other hand, if Bx = 0, the Hamiltonian becomes a 1D cluster state [54]model with
unique ground state which is symmetric under the global B =

∏

i τ
z
i,i+1 symmetry.

Now let us discuss an SPT example. Consider the 1D cluster state model

H = −
∑

i

ho
2i−1 −

∑

i

he
2i = −

∑

i

σz
2i−2σ

x
2i−1σ

z
2i −

∑

i

σz
2i−1σ

x
2iσ

z
2i+1. (36)

This model has a global Z2 × Z2 symmetry generated by

g1 =
∏

i

σx
2i , g2 =

∏

i

σx
2i−1 (37)

and the model has symmetry protected topological order under this symmetry [55].
To gauge the Z2×Z2 symmetry, we put gauge fields τ between neighboring gauge charges.

That is, we place one gauge DOF per site. The ones on the even sites are gauge fields of g2.
The ones on the odd sites are gauge fields of g1. The Gauss law terms are

c2i = τ
x
2i−1σ

x
2iτ

x
2i+1, c2i+1 = τ

x
2iσ

x
2i+1τ

x
2i+2. (38)

The flux terms, which are pure gauge terms that satisfy the Gauss law, are

f1 =
∏

i

τz
2i−1, f2 =

∏

i

τz
2i . (39)
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They become the global Z2 × Z2 symmetry of the gauged model.
To make the original Hamiltonian terms gauge invariant, we modify them to be

ho
2i−1 = σ

z
2i−2σ

x
2i−1τ

z
2i−1σ

z
2i , he

2i = σ
z
2i−1σ

x
2iτ

z
2iσ

z
2i+1. (40)

Now the total Hamiltonian is

Hg = −
∑

i

�

τx
2i−1σ

x
2iτ

x
2i+1 +τ

x
2iσ

x
2i+1τ

x
2i+2 +σ

z
2i−2σ

x
2i−1τ

z
2i−1σ

z
2i +σ

z
2i−1σ

x
2iτ

z
2iσ

z
2i+1

�

.

(41)
All the terms commute, are independent, and are symmetric under the global symmetry. There-
fore, on a closed ring, the ground state is unique. On an open chain, the terms

σx
1τ

x
2 , τx

2N−1σ
x
2N (42)

no longer commute with the symmetry and need to be removed, leaving a two fold degeneracy
at the edge as the symmetry protected edge state.
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